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ABSTRACT

Reinforcement learning (RL) models usually assume a stationary internal model
structure of agents, which consists of fixed learning rules and environment repre-
sentations. However, this assumption does not account for real problem-solving
by individuals who can exhibit irrational behaviors or hold inaccurate beliefs about
their environment. In this work, we present a novel framework called Dynamic
Structure Learning (DSL), which allows agents to adapt their learning rules and
internal representations dynamically. This structural flexibility enables a deeper
understanding of how individuals learn and adapt in real-world scenarios. The
DSL framework reconstructs the most likely sequence of agent structures, sourced
from a pool of learning rules and environment models, based on observed behav-
iors. The method provides insights into how an agent’s internal structure model
evolves as it transitions between different structures throughout the learning pro-
cess. We applied our framework to study the behavior of rats in a maze task. Our
results show that rats progressively refine their mental map of the maze, evolving
from a suboptimal representation associated with repetitive errors to an optimal
one that guides efficient navigation. Concurrently, their learning rules transition
from heuristic-based to more rational approaches. These findings underscore the
importance of both credit assignment and representation learning in complex be-
haviors. Going beyond simple reward-based associations, our research offers valu-
able insight into the cognitive mechanisms underlying decision-making in natural
intelligence. DSL framework allows better understanding and modeling how in-
dividuals in real-world scenarios exhibit a level of adaptability that current AI
systems have yet to achieve.

1 INTRODUCTION

Behavioral research traditionally explores how individuals address the credit assignment problem
(CAP), the challenge of attributing ’values’ to actions based on their effectiveness in achieving re-
wards (Doya, 1999; Daw et al., 2005; Niv, 2007; Otto et al., 2013; Dolan & Dayan, 2013; Dezfouli
& Balleine, 2013; Cushman & Morris, 2015). Typically, these studies assume a stationary agent
structure, where an agent adheres to a consistent learning rule and employs a fixed internal repre-
sentation of its environment. However, this model does not reflect the complexities of real-world
behavior, where an individual’s internal environment representation and learning rule can evolve,
resulting in more adaptive behavior.

We introduce a Dynamic Structure Learning (DSL) framework designed to capture how agents tran-
sition between different internal model structures. In dynamic structure models (Muzy & Zeigler,
2014a; Uhrmacher, 2001; Barros, 1997), changes in structure consist of the addition, deletion, or
alteration of model components. We extend this approach here to learning systems. Specifically, we
define an Agent Structure (AS) as a combination of an internal environment representation (decision
graph) and a learning rule, which is a Reinforcement Learning (RL) algorithm responsible for credit
assignment (Figure 1A). By constructing all possible AS combinations from a set of reinforcement
learning rules and environment representations, we can infer the most likely sequence of ASs for an
individual, based on its behavioral observations.

We apply the Dynamic Structure Learning (DSL) framework to a T-maze task involving rats to in-
vestigate their learning behavior during the experiment. Our first objective is to investigate whether
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rats begin with the suboptimal rats’ Internal Maze Representation (IMR) and later transition to the
optimal one. Specifically, we consider two types of environment representations: a suboptimal
representation (IMRsubOpt) that could lead to loop errors in the maze, and an optimal represen-
tation (IMRopt). Secondly, we explore whether rats rely on heuristic learning strategies, such as
memorizing past choices, when their observations conflict with their environmental expectations
(e.g., when using IMRsubOpt). Over time, we assess whether they shift to a more optimal learning
rule as they acquire the correct environmental representation. For this, we use a heuristic learning
rule called Cognitive Activity-based Credit Assignment (CoACA) (James et al., 2023), inspired by
Activity-based Credit Assignment (ACA) (Muzy, 2019). In CoACA, actions with longer durations
are considered more memorable and receive higher credits in rewarded episodes. This subopti-
mal approach is compared with a more optimal learning rule: Discontinuous Reward Reinforcement
Learning (DRL), a continuous-time variant of Q-learning (Watkins & Dayan, 1992; Bradtke & Duff,
1994) that aims to maximize expected returns. DRL is based on Temporal Difference (TD) learning,
which models dopamine activity in the brain’s reward system (Schultz et al., 1997). The combination
of two learning rules and two environment representations results in four potential agent structures
(ASs):

• suboptimal AS: the combination of the suboptimal learning rule (LRsubOpt or CoACA) and
the suboptimal internal maze representation (without feeder boxes) (IMRsubOpt),

• LR suboptimal AS: the combination of the suboptimal learning rule (LRsubOpt or CoACA)
and the optimal internal maze representation (with feeder boxes) (IMRopt),

• IMR suboptimal AS: the combination of the optimal learning rule (LRopt or Q-learning)
and the suboptimal internal maze representation (without feeder boxes) (IMRsubOpt), and

• optimal AS: the combination of the optimal learning rule (LRopt or Q-learning) and the
optimal internal maze representation (with feeder boxes) (IMRopt).

We use the DSL framework to infer the most likely sequence of agent structures (ASs) employed by
the rats based on their observed behavior. We define rats’ strategies as their ASs, characterized by
the combination of learning rules and internal environment representations they utilize.

Inverse Reinforcement Learning (IRL) (Ziebart et al., 2008; Babes et al., 2011; Michini & How,
2012) and latent dynamics models (Reddy et al., 2018; Herman et al., 2016) are used to capture
an agent’s behavior - IRL by inferring the agent’s reward function, and latent dynamics models by
capturing the agent’s belief about environmental dynamics. In contrast, our framework allows for the
evolution of an individual’s learning rule and internal environment representation over time, offering
a more realistic approach to real-world learning problems, which cannot be fully captured by the
static reward and transition functions inferred by IRL and latent dynamics models. Conceptually,
our framework aligns with Bayesian Theory of Mind (BToM) methods (Baker et al., 2009; 2017;
Rabinowitz et al., 2018), which infer an agent’s mental states, beliefs, desires, intentions, or goals
based on observed actions. However, BToM operates in a Partially Observable MDP (POMDP)
setting, where the observer is uncertain about an agent’s internal states and reward expectations.
However, in our framework, the observer is uncertain about the agent’s internal environment model
and learning rule.

Applying DSL to the rats’ dataset shows that: (i) rats that show slower learning progress appear to
rely on the suboptimal AS during the early stages of the experiment before switching to the optimal
AS, whereas rats that learn quickly adopt the optimal AS from the beginning of the experiment, (ii)
rats’ switches from the suboptimal AS to the optimal AS indicate a progressive refinement in their
perception of the task structure (environment model). The gradual refinement of the IMR requires
the rats to “imagine” and construct novel maze representations consistent with their experience,
ultimately defining learning as the ability to forge an accurate mental model of the task.

The DSL method introduces a novel approach to understanding learning processes by examining
the interaction between the evolving learning rules and internal representations of individuals. By
conceptualizing learning as a dual process of environmental modeling and learning rule adapta-
tion, DSL reveals how agents transform their understanding of the environmental and adapt their
decision-making rules over time. While our current work focuses on model-free RL methods, the
framework can be extended to incorporate model-based RL approaches. This would enable the
analysis of complex behaviors, such as the transition between goal-directed (model-based RL) and
habitual (model-free RL) behaviors, in learning individuals (Daw et al., 2005; Dolan & Dayan,
2013; Otto et al., 2013). Additionally, the DSL framework could be adapted to accommodate more
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complex world model representations beyond the standard Markov Decision Process (MDP) that we
utilize in this paper. For instance, successor representations (Stachenfeld et al., 2017; Momenne-
jad et al., 2017; Gershman, 2018) and hierarchical models (Botvinick, 2008; Botvinick et al., 2009),
which have been explored in human and animal studies, could be integrated into the framework. The
dual process perspective of DSL has applications across diverse domains such as psychology (Lee
et al., 2012; Dayan & Daw, 2008; Niv, 2009; Doya, 2008), neuroeconomics (Daw & O’Doherty,
2014; Daw & Tobler, 2014; Bossaerts & Murawski, 2015), and neuroscience (Gupta et al., 2010;
Stachenfeld et al., 2017; Dupret et al., 2013), where understanding the dynamics of human and ani-
mal decision-making is crucial. In conclusion, DSL offers a valuable framework for understanding
adaptive intelligence across a wide range of systems.

2 METHODS

2.1 MAZE EXPERIMENT

Five male Long-Evans rats were used in the experiment. To motivate the rats to collect food rewards
from the maze, they were subjected to a food deprivation program by keeping them at 90% of their
body weight during the experiment. Each rat has multiple sessions in the maze, where each session
lasts 20 minutes. During sessions, rats can freely move around the maze uninterrupted. The T-maze
with return arms (Figure 1B) has two feeding places, left feeder (LF) and right feeder (RF), where
rats could receive a food reward. The maze consists of a central stem (100cm long), two choice
arms (of 50cm each) at one end of the central stem, and two lateral arms connecting the other end
of the central stem to the choice arms. Before the experiment, the rats were trained in the maze for
two days, with one 20-minute session per day during which they were free to explore the maze and
collect the sugar pellets that were randomly scattered throughout the maze. The experiment began
on the third day with two 20-minute sessions.

Task description In the experiment, rats are rewarded for taking the Good.LF path from the LF
feeder box and the Good.RF path from the RF feeder box (Figure 1B). The other 10 paths (Figure
2) do not yield any reward. Therefore, the task for the rats is to learn to associate the Good.LF and
Good.RF paths with reward.

(A) RL Agent Structure. (B) 3D representation of the T-maze experiment

Figure 1: Agent Structure and 3D representation of the T-maze experiment: (A) Semi-Markov Deci-
sion Problem (SMDP) formulation of a Reinforcement Learning (RL) problem where agent structure
is defined as a combination of learning rule and an internal environment representation, with action
of the agent having a random duration τ . (B) 3D representation of the T-maze experiment: A, B,
LF and RF are four choice points. LF and RF represent the Left and Right Feeders, respectively.
Reward path from LF, Good.LF, is shown in red, while reward path from RF, Good.RF, is shown in
blue.

Figure 3 highlight the differences between slow-learning rats (rat1, rat2, and rat3) and fast-learning
rats (rat4 and rat5). The fast-learning rats learn to get rewards from both LF and RF consistently,
whereas the slow learning rats seem to get fewer rewards during the early sessions.
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Figure 2: Valid paths in the maze. The rats rarely backtrack due to the narrow maze arm widths, so
backward movement is not considered a valid path in our analysis. Top column shows paths starting
in Left Feeder (LF) and bottom column shows paths starting in Right Feeder (RF). Rats are rewarded
if they take the Good paths from LF and RF.

Figure 3: Success rate as proportion of rewarded paths: Success rate computed as the proportion of
rewarded paths to the total number of paths traversed. The rats can be categorized as slower learning
(rat1, rat2, rat3) or faster learning (rat4, rat5) based on the proportion of rewarded paths.

2.2 SEMI-MARKOV DECISION PROCESS

The maze learning task is defined as a Semi-Markov Decision Process (SMDP), which is a gen-
eralization of a Markov Decision Process where actions have a random duration. An SMDP can
be defined by a tuple (S,A,R, T, F ), where S is the set of states, A is the set of actions, R is the
reward function that gives the reward associated with each (S,A) in the environment, T is the tran-
sition function that gives the transition probabilities Pr(s′|(s, a)), F : F (t|s, a), with t ∈ R+, gives
the probability that the next state s′ is reached within time t after action a is chosen in state s.

An episode is defined as a minimal segment of the rat’s trajectory where the rat starts from one
feeder box, visits the other feeder box, and returns to the starting box. Two examples of episode are
given below, where τp,n,t1 , τp,n,t2 and τp,n,t3 represents the durations of actions taken at times t1,
t2 and t3 in episode n of session p:

LF
(sp,n,t1 ,ap,n,t1 )−−−−−−−−−−→

τp,n,t1

RF
(sp,n,t2 ,ap,n,t2 )−−−−−−−−−−→

τp,n,t2

LF

LF
(sp,n,t1 ,ap,n,t1 )−−−−−−−−−−→

τp,n,t1

LF
(sp,n,t2 ,ap,n,t2 )−−−−−−−−−−→

τp,n,t2

RF
(sp,n,t3 ,ap,n,t3 )−−−−−−−−−−→

τp,n,t3

LF

2.3 LEARNING RULES

We employ two learning rules to study the behavior of rats, which are described below.

Cognitive Activity-based Credit Assignment (CoACA) Cognitive Activity-based Credit Assign-
ment (CoACA) uses the concept of activity from Activity-based Credit Assignment (Muzy & Zei-
gler, 2014b; Muzy, 2019).By prioritizing choices with higher activity (longer duration), CoACA
becomes a heuristic decision-making approach – favoring choices that are more memorable due to
the effort invested, but not necessarily the most rewarding (James et al., 2023). The CoACA learning
rule is further detailed in Section B.1.
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Figure 4: An example of ASs inferred by DSL framework over multiple sessions of rat experiment.

Discounted Reward Reinforcement Learning (DRL) A continuous-time version of Q-learning
called SMDP Q-learning, which uses temporal difference (TD) errors to iteratively update Q-
values, defines the rational behavior of agents based on an exponential discounting of future rewards
(Bradtke & Duff, 1994). The DRL learning rule is further detailed in Section B.2.

2.4 INTERNAL MAZE REPRESENTATIONS

(A) IMRsubOpt: Suboptimal Internal Maze
Representation

(B) IMRopt: Optimal Internal Maze Representation

Figure 5: Suboptimal and optimal maze representations: (A) IMRsubOpt: Suboptimal Internal
Maze Representation captures the state and action spaces of the rats in the maze when they do not
not account for starting feeder box. (B) IMRopt: Optimal Internal Maze Representation captures
the state and action spaces of the rats in the maze with two different decision graphs based on the
starting feeder (indicated by dotted circles): LF decision graph and the RF decision graph.

5
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Given the initial high loop error rate, which decreases with learning (see Section A), we propose
two distinct MDP representations to model a potential shift in the rats’ internal maze representation
over time.

Suboptimal maze representation: IMRsubOpt (Figure 5A) illustrates a suboptimal decision graph
of the maze, representing the state and action spaces of rats in a simplified, but suboptimal manner.
The rat’s state is defined solely by its current position within the maze, without distinguishing be-
tween trajectories based on the starting feeder box. This suboptimal representation can lead to
loop errors in the maze (described in detail in Section A.1) as the reward path from LF to RF
(LF → A → B → RF ) shares the trajectory A → B → RF with the loop path from RF
(RF → A→ B → RF ).

Optimal maze representation: IMRopt (Figure 5B) illustrates an optimal decision graph of the
maze, representing the state and action spaces of rats in a more complex, but optimal manner. The
reward path from LF to RF (LF → A → B → RF ) belongs to the LF decision graph, while the
reward path from RF to LF (RF → A → B → LF ) and the loop path from RF back to itself
(RF → A → B → RF ) belong to the RF decision graph. This separation prevents credit sharing
between the LF reward path and RF loop path. In IMRopt, the rat’s state is represented as a tuple
consisting of the starting feeder box and the current position in the maze.

2.4.1 RATS’ AGENT STRUCTURES

To model the rats’ behavior in the maze, we propose four distinct agent structures, summarized in
Table 1. These structures result from combinations of two learning rules, LRsubOpt and LRopt, and
two environment representations, IMRsubOpt and IMRopt.

Agent Struc-
ture (AS)

Learning
Rule

Internal
Maze Rep-
resentation
(IMR)

Description

suboptimal AS LRsubOpt

(CoACA)
IMRsubOpt Suboptimal learning rule and suboptimal

maze representation.
LR suboptimal
AS

LRsubOpt

(CoACA)
IMRopt Suboptimal learning, but optimal maze

representation.
IMR suboptimal
AS

LRopt (DRL) IMRsubOpt Optimal learning rule, but suboptimal
maze representation.

optimal AS LRopt (DRL) IMRopt Optimal learning rule with optimal maze
representation.

Table 1: Four different agent structures based on combinations of learning rules and internal maze
representations.

2.5 INFERRING RATS’ SWITCHING AGENT STRUCTURES

Our objective is to infer the agent structure (AS) used by the rats in each session based on their
experimental trajectories. The AS in session p is represented by xp ∈ {suboptimal AS, LR subop-
timal AS, IMR suboptimal AS, optimal AS}. The complete log-likelihood, consisting of the joint
distribution of the unknown ASs x1:P and the observed trajectories for each session y1:P , where P
is the final session, can be expressed as:

logPrθ(x1:P , y1:P ) = log µ(x1) +

P∑
p=1

log gθ(yp|xp) +

P−1∑
p=1

log fθ(xp+1|x1:p) (1)

where the initial probabilities µ(x1) are uniformly initialized to 0.25, gθ(yp|xp) gives the likelihood
of observations yp in the pth session and fθ(xp+1|x1:p) gives the transition probabilities of AS given
all past ASs and θ represents the parameters estimated from the experimental data of rats.

From an observer’s perspective, we assume that rats do not adopt new ASs once they acquire
IMRopt, as they begin to maximize rewards immediately upon learning IMRopt. Since their be-
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havior stabilizes and does not change further once they learn IMRopt, we assume that no additional
AS changes occur. Thus, in theory, rats can learn the optimal policy using both CoACA and DRL
alongside IMRopt. Therefore, we restrict the rats from exploring new ASs after acquiring IMRopt.
As a result, we focus on six specific ASs, categorized into two groups:

• Switching from suboptimal to optimal representation: The rat might start with
IMRsubOpt, but can still switch to the optimal one later.

• Sticking with the optimal representation: Once a rat chooses an AS with IMRopt, it
stays with that choice throughout the experiment.

By focusing on below six possible AS combinations, we create a more realistic model that captures
the decision-making switch process of the rats:

• suboptimal AS→ LR suboptimal AS
• suboptimal AS→ optimal AS
• IMR suboptimal AS→ LR suboptimal AS
• IMR suboptimal AS→ optimal AS
• LR suboptimal AS
• optimal AS

We use a time-varying transition function based on the Chinese Restaurant Process (CRP) (Aldous
et al., 2006) to capture the evolution of ASs according to the six possibilities above. This function
defines the probability of employing an AS based on its popularity (the number of times it has been
chosen previously). The transition function fθ(xp|x1:p−1) is defined below.

For k = 1, 2, 3, 4 representing the four ASs, the occurrences of each of the four ASs in the previous
sessions p− 1 is given by:

nk =

p−1∑
i=1

1(xi=k)

The number of ASs that been chosen at least once until session p is given by:

chosenASCount =

4∑
k=1

1(nk>0)

The transition function fθ(xp|x1:p−1) is defined for two scenarios: Case 1, where the AS with
IMRopt has not yet been selected, allowing the rat to explore new ASs, and Case 2, where the AS
with IMRopt has already been chosen, limiting the rat to switching between previously selected
ASs without trying any new ones.

Case 1: If optimal AS or LR suboptimal AS has not been selected until session p, the probability of
selecting AS in session p is given by:

(2)fθ(xp = k|x1:p−1) =



nk

p− 1 + αcrp
, if nk > 0

αcrp

4−chosenASCount

p− 1 + αcrp
, otherwise

where nk is the number of times AS k has been selected during sessions 1 : p − 1, αcrp is the
concentration parameter of CRP. If the rat has not yet selected an optimal AS or the suboptimal AS
with IMRopt, the probability of selecting an already-used AS is proportional to how often it was
selected previously (nk), while the probability of choosing a new AS depends on the concentration
parameter (αcrp) and the number of ASs not yet explored.

Case 2: If either optimal AS or LR suboptimal AS is selected once:

fθ(xp = k|x1:p−1) =


nk +

αcrp

chosenASCount

p− 1 + αcrp
, if nk > 0

0, otherwise
(3)
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Once the rat selects either an optimal AS or the suboptimal AS with IMRopt, it transitions to a
restricted phase where only previously chosen ASs can be selected. The probability of selecting an
AS depends on how often it was chosen previously, adjusted by a fraction of αcrp for all used ASs,
while new ASs are no longer considered.

In our study, observations yp are the trajectories of the rat in a particular session p and g(yp|xp)
gives the probability of trajectory yp in session p:

gθ(yp|xp) =

Np∏
n=1

Tn,p∏
t=1

Pr(ap,n,t|sp,n,t)

where Np represents the total number of episodes in session p and depending on the value of xp,
Pr(ap,n,t|sp,n,t) can be given either by Equation (7) or Equation (10).

To infer ASs of rats from their behavioral observations, we employ the Dynamic Structure Learn-
ing (DSL) method in Algorithm 1 that computes the smoothing distribution of ASs given by
Prθ(xp|y1:P ) and takes the Maximum A Posteriori estimate to determine the AS in each session.
We use Conditional Particle Filter With Ancestor Sampling (CPF-AS) to generate samples from the
joint smoothing distribution Prθ(x1:P |y1:P ) (Lindsten et al., 2014).

In the first step of DSL, we estimate the model parameters θ by computing the maximum likeli-
hood estimate using the approach from Lindsten et al. (2013); Lindholm & Lindsten (2018), which
combines Stochastic Approximation Expectation-Maximization (SAEM) with CPF-AS, as outlined
in Algorithm A1. In the second step, these estimated parameters are used to compute the joint
smoothing distribution Prθ(x1:P |y1:P ) using Algorithm A2. Finally, the sequence of ASs in each
session is determined as the Maximum A Posteriori (MAP) estimate of the smoothing distribution
Prθ(xp|y1:P ), where p represents the current session and P is the final session. These steps are
detailed in Algorithm 1, while CPF-AS is described in Algorithm A3.

Algorithm 1 Dynamic Structure Learning

Input: Rat behavioral data y1:P
Output: Inferred ASs x1:P

1. Estimate Parameters:
Run PSAEM (Algorithm A1) to estimate:
θ = (α1

CoACA, γ
1
CoACA, α

2
CoACA, γ

2
CoACA, α

3
DRL, λ

3
DRL, α

4
DRL, λ

4
DRL, αcrp)

2. Compute Joint Smoothing Distribution:
Use θ and Algorithm A2 to find Prθ(x1:P |y1:P )

3. Infer ASs:
For each session p, compute xp = argmaxxPrθ(xp|y1:P )

Here the model parameters θ include the following: suboptimal AS: α1
CoACA, γ

1
CoACA, LR subop-

timal AS: α2
CoACA, γ

2
CoACA, IMR suboptimal AS: α3

DRL, λ
3
DRL, optimal AS: α4

DRL, λ
4
DRL, CRP

concentration parameter: αcrp.

3 RESULTS

3.1 INFERENCE ON RAT DATA

To infer how rats switch between agent structures (ASs), we used the Dynamic Structure Learning
(DSL) method (see Algorithm 1). This involved first performing model fitting on the experimental
data by combining the Conditional Particle Filter with Ancestor Sampling (CPF-AS) (Lindsten et al.,
2014) (see Algorithm A3) with Stochastic Approximation Expectation-Maximization (SAEM), fol-
lowing Algorithm A1 (Lindsten, 2013; Lindholm & Lindsten, 2018). The model parameters es-
timated through Algorithm A1 are presented in Table A.2. The agent structures (ASs) for each
session were identified by calculating the Maximum A Posteriori (MAP) estimate of the smoothing
distribution Pr(xp|y1:P ) determined using Algorithm A2.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Inference results in Figure 6 show that the slow learning rats - rat1, rat2 and rat3, utilize the sub-
optimal AS during the initial few sessions before switching the optimal AS. In addition, rat1 seems
to switch between suboptimal AS and optimal AS, before settling on optimal AS. In contrast, fast
learning rats (rat4 and rat5) seem to learn the optimal maze representation early in the experiment
and their behaviour is captured by optimal AS throughout the experiment. The behaviour of the slow
learning rats - rat1, rat2 and rat3 - where they use the suboptimal AS in the first sessions leads to a
high frequency of loop errors (Table A.1) without learning the good path from LF and RF. The fast
learning rats, on the other hand, are quicker to use the optimal AS, even if they also make loop errors
in the beginning (Table A.1).

0 10 20 30

rat1

Sessions

Strat 1
Strat 2
Strat 3
Strat 4

5 10 15 20

rat2

Sessions

Strat 1
Strat 2
Strat 3
Strat 4

0 5 10 15 20 25 30 35

rat3

Sessions

Strat 1
Strat 2
Strat 3
Strat 4

5 10 15

rat4

Sessions

Strat 1
Strat 2
Strat 3
Strat 4

5 10 15

rat5

Sessions

Strat 1
Strat 2
Strat 3
Strat 4 Strat 1: Suboptimal strategy

Strat 2: LR suboptimal strategy
Strat 3: IMR suboptimal strategy
Strat 4: Optimal strategy

Figure 6: Agent Structures (ASs) of rats inferred using DSL method (see Algorithm 1). ASs result
in “strategies” followed by the rats to obtain rewards.

The slow learners showed the cognitive flexibility over time to recognise the need to incorporate
“start feeder box” into their internal maze representation and to transition to an optimal behaviour
AS. The transition from a suboptimal to an optimal AS over successive sessions highlights two key
aspects of the learning process:

• Ability of rats to “imagine” and adopt a new, more complex internal maze representation
that matches their empirical observations.

• Nature of learning as an ongoing process of refining and improving the internal maze rep-
resentation.

Simulation Validation We used simulations to analyze how well DSL recovers the true ASs used
to generate the simulated data. In Section Section 2.5, we define learning as the point at which rats
infer IMRopt. Once rats infer IMRopt, it is assumed to have learned the task, and its AS evolutions
are restricted to six possible combinations where an AS with IMRsubOpt can change to an AS with
IMRopt. Simulated trajectories of rats were generated based on the six possible combinations
defined in Section 2.5. Parameter recovery on simulated data using Algorithm A1 is plotted as
boxplot of the recovery error between the true parameter value and the value recovered from the
simulated data is shown in Figure 7A. Overall, the parameter recovery error is small, except in the
case of LR suboptimal AS. The parameter γ2

CoACA exhibits high variance during recovery, likely
because it represents a forgetfulness factor in Equation (6) that decays to zero with the square root
of the session number p, allowing for a broader range of parameter estimates.

AS recovery is tested by using DSL method (see Algorithm 1) to recover ASs from simulated data.
Figure 7B shows two examples where the true ASs were perfectly recovered. The recovery rate of
agent structures (ASs) across sessions, based on 300 simulations with 60 instances of each of the six
possible AS combinations for 5 rats, is shown in Table A.3.

9
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.0

IMR suboptimal strategy
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−
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1
.0

Optimal strategy

(A) Boxplots of errors between parameter estimates
from the DSL method and true values on simulated
data

5 10 15 20

Simulation 1

Sessions

Strat 1

Strat 2

Strat 3

Strat 4

0 5 10 20 30

Simulation 2

Sessions

Strat 1

Strat 2

Strat 3

Strat 4

Strategies

Strat 1: Suboptimal strategy
Strat 2: LR suboptimal strategy
Strat 3: IMR suboptimal strategy
Strat 4: Optimal strategy

Recovered strategies

(B) Successful recovery examples using DSL method

Figure 7: Simulation Validation: (A) Boxplots showing the errors between the parameter values
estimated by the DSL method and the true values on simulated data. The data is based on 300
simulations, with 60 simulations per each of the six possible ASs. (B) Recovery examples with
successful recovery using DSL method on simulated data: Simulation 1 (using rat1 parameters)
where AS switches from suboptimal AS→ optimal AS; Simulation 2 (using rat3 parameters) where
AS switches from LR suboptimal AS→ optimal AS.

4 CONCLUSION

We developed a Dynamic Structure Learning (DSL) framework to infer an agents’ internal models
based on their evolving cognitive processes. DSL models an agent’s internal dynamics as the inter-
action between its learning rule and its internal environment representation, reconstructing the most
likely sequence of agent structures (ASs) from observed behavior.

We applied DSL to test whether the rats’ strategies evolved during learning, defining four agent
structures (ASs) by combining two maze representations (suboptimal and optimal) with two learning
rules (heuristic and optimal). The optimal AS, which paired the optimal maze representation with the
optimal learning rule, maximized rewards, while suboptimal ASs resulted in more errors. Inference
showed that slow learners initially relied on the suboptimal AS and gradually transitioning to the
optimal AS over time, in contrast to fast learners, who adopted the optimal AS early on. Slow-
learning rats use a heuristic credit assignment scheme (CoACA) that prioritizes previously rewarded
choices with longer durations. This behavior may arise when their internal environment model
(IMRsubOpt) conflicts with their observations - such as the absence of rewards from the loop path.
In such cases, the rats rely on the heuristic learning rule rather than optimizing based on their internal
model (Mousavi & Gigerenzer, 2017).

Our model captures rats’ switching between internal model structures but assumes fixed internal
models within sessions. While it is plausible that rats transition gradually from a suboptimal to an
optimal internal representation (IMRsubOpt → IMRopt), it’s challenging to accurately infer such
subtle changes from observational data. Therefore, we focused on identifying the two most signif-
icant representations that explain most of the rats’ behavioral changes in our experiment. By mod-
eling the transition from suboptimal to optimal maze representations, we demonstrate how learning
involves ”imagining” new world models. This capacity for generating novel ideas from past expe-
riences is key to natural intelligence (Buzsáki & Tingley, 2018; Comrie et al., 2022; Kurth-Nelson
et al., 2023), enabling adaptability across environments—a capability that current AI models lack.
Understanding the computational mechanisms behind this imaginative process could bridge the gap
between natural and artificial intelligence, helping build more flexible and robust AI systems (Lake
et al., 2017; Botvinick et al., 2017; Siemens et al., 2022).
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APPENDIX

A BEHAVIORAL ANALYSIS

A.1 COGNITIVE INSIGHTS INTO RATS’ SUBOPTIMAL BEHAVIORS

During the learning stage, the rats make significantly more loop path errors compared to other errors.
Table A.1 shows the number of errors of each type (loop, backward loop, reverse and v) (Figure 2)
made by the rats during the learning stage (first 400 paths). Chi-square test shows that the looping
errors occur above chance levels and cannot be explained as simply random chance events during
the learning phase of the rats.

Table A.1: Error path comparison

V Inverse Loop Inverted
Loop

Are all wrong paths
equally likely?

rat1 2 1 43 1 No (pval < 2.2 · 10−16)
rat2 2 0 19 2 No (pval = 6 · 10−9)
rat3 5 4 72 4 No (pval < 2.2 · 10−16)
rat4 8 3 13 5 No (pval = 4.9 · 10−2)
rat5 6 2 17 4 No (pval = 3.3 · 10−4)

A possible explanation for the high number of loop errors is that the rats might be misinterpreting the
reward association. The final segment of their successful path from the Left Feeder (LF) (red dotted
line in Figure A.1) could be mistakenly linked to the reward itself (located at the Right Feeder, RF).
Since both the successful “Good.LF” path and the looping “Loop.RF” path share the segment A→
B→ RF, rats might attempt to replicate this sequence even when starting from RF, hoping to receive
another reward (depicted by the blue dotted line in Figure A.1).

Figure A.1: Loop error: rats mistakenly associate the trajectory A → B → RF with reward. In
suboptimal representation, A→ B → RF while starting in LF (in Good.LF) is same as A→ B →
RF while coming from RF (in loop.RF). Dotted circle indicates the starting feeder box.

Alternate explanations for the high number of loop errors are possible, but they are not in agreement
with experiment data:

• The loop path could arise because the rats forget which feeder they come from and mis-
takenly decide to return to the same feeder. If this were the case, then this behavior should
consistently persist throughout the experiment, which is not the case. The rats stop making
loop errors after they learn the both good paths.

• It is possible that the rats receive a reward and simply want to revisit the same feeder,
anticipating more rewards. However, if their sole motivation were to return to the last
feeder, a similar preference for both loop and “inverted loop” (returning directly to LF)
would be expected. However, in the rats’ dataset, we do not observe the same preference
for the inverted loop as for the loop path, suggesting a different underlying cause.
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Based on the explanation that rats make more loop errors due to mistakenly associating the final
segment of the “Good” path with the reward (as shown in Figure A.1), we can hypothesize that
these loop errors arise because rats are unaware that “starting feeder box” defines the next reward
path. Based on this insight, we will proceed to define both a suboptimal and an optimal decision
graph in the subsequent section to further understand and characterize the ASs of rats.

A.2 BEHAVIORAL MODELS

A.2.1 INTERNAL MAZE REPRESENTATIONS (IMR): SUBOPTIMAL VS OPTIMAL

Figure 5A represents IMRsubOpt, a suboptimal version of the maze decision graph, not accounting
for the starting feeder box. Here A → B → RF coming from LF shares the same representation
with A → B → RF coming from RF , thus leading rats to make loop errors (Figure A.1) while
searching for rewards.

The optimal maze representation in the maze task, IMRopt (Figure 5B) has a larger state space
with a separate decision graph for trajectories starting from LF and trajectories starting from RF .
Unlike IMRsubOpt, IMRopt, differentiates trajectories A → B → RF coming from LF and
A→ B → RF coming from RF , thus avoids loop errors in the maze.

B LEARNING RULES

We employ two learning rules to capture the behavior of rats: Cognitive Activity-based Credit As-
signment (James et al., 2023) (CoACA), that represents a heuristic learning rule and Discounted
Reward Reinforcement Learning (DRL), which implements continuous-time Q-learning (Bradtke &
Duff, 1994), representing a more optimal learning rule. Since the task requires rats to remember
their starting feeder boxes and, in general, animals are known to employ their working memory
(WM) in learning tasks (Lloyd et al., 2012; Zilli & Hasselmo, 2008), we incorporate the memory of
one episode into both CoACA and DRL. CoACA implements this by memorizing the actions from
last episode, in DRL, eligibility trace implements the working memory of one episode.

B.1 COGNITIVE ACTIVITY-BASED CREDIT ASSIGNMENT (COACA)

Cognitive Activity-based Credit Assignment (CoACA), which is based on the activity of actions, is
used to model heuristic decision-making in rats. Activity is computed as the duration of an action,
relative to the duration of an episode:

A(sp,n,ti , ap,n,ti) =
τp,n,ti∑M
i=1 τp,n,ti

(4)

where ti represents the the time of the ith action in episode n of session p, where i ∈ [0,M ] with M
being the total number of actions in the nth episode of pth session. τp,n,ti represents the duration of
the action taken at time ti in episode n of session p.

At the end of an episode n in session p, credits of all (s, a) selected during the episode are updated:

(5)Kp,n+1(s, a) = Kp,n(s, a) + α×
M∑
i=1

A(sp,n,ti , ap,n,ti)1sp,n,ti
=s1ap,n,ti

=aRp,n ∀(s, a)

Here ti represents the time at which ith action of episode n in session p was taken, i ∈ [1,M ],
Rp,n = {0, 1, 2} is the total reward obtained in episode n and α is the learning parameter (0, 1].
CoACA implicitly employs memory trace of one episode as it requires the agent to maintain a
memory of its choices in the last episode. At the end of a session, the credits of all (s, a) pairs in the
maze are decayed:

(6)Kp+1,1(s, a) = (1− γ
√
p
)×Kp,Np(s, a)

where γ ∈ [0, 1] is forgetfulness parameter, which decays with time, i.e., the rats forget less and less
with training and Np represents the final episode of session p.
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The probability of selecting an action a in state sp,n,t is computed using the softmax rule:

(7)Prcoaca(a|sp,n,t) =
exp(Kp,n(sp,n,t, a))∑
a′ exp(Kp,n(sp,n,t, a′))

In contrast to traditional RL which views action duration as a cost to minimize, CoACA interprets
duration as the effort invested in a choice. This distinction is captured in CoACA’s concept of
activity, which acts as a measure of action effort.

B.2 DISCOUNTED REINFORCEMENT LEARNING (DRL)

We employ a continuous-time version of Q-learning (Bradtke & Duff, 1994) to model the optimal
learning rule in rats, referred to as Discounted Reinforcement Learning (DRL). The continuous-
time Q-learning approach is outlined below. Let sp,n,t1 , ap,n,t1 be part of episode n of ses-
sion p, leading to new state sp,n,t2 after duration τp,n,t1 with a reward r(sp,n,t1 , ap,n,t1) =
exp(−βτp,n,t1)Rt1+τp,n,t1

where Rt1+τp,n,t1
= {0, 1} is the reward obtained in the maze after

time τp,n,t1 for taking action ap,n,t1 at time t1, and β is the exponential discount factor applied to
future rewards. This state transition can be noted as:

(sp,n,t1 , ap,n,t1)
duration=τp,n,t1−−−−−−−−−−−→
r(sp,n,t1

,ap,n,t1
)

sp,n,t2

Since CoACA implicitly implements a memory trace of an episode, we implement an eligibility
trace in DRL, lasting for the duration of a single episode. At time t2 = t1 + τp,n,t1 after taking
action ap,n,t1 at time t1, eligibility trace ep,n,t2 is updated as below:

ep,n,t2(s, a) =


λ exp(−βτp,n,t1)ep,n,t1(s, a) + 1, if (s, a) =

(sp,n,t1 , ap,n,t1)

λ exp(−βτp,n,t1)ep,n,t1(s, a), otherwise
(8)

where ep,n,t1(s, a) represents the eligibility trace of state-action pair (s, a) at time t1 in episode n
of session p. At the end of an episode, e(s, a) = 0 ∀(s, a).
Temporal difference prediction error δ is given by:

δ = r(sp,n,t1 , ap,n,t1) + exp(−βτ)max
a′

Q(sp,n,t2 , a
′)−Q(sp,n,t1 , ap,n,t1)

TD update is given by: (9)
∀(s, a) :
Qp,n,t(s, a)←− Qp,n,t1(s, a) + αδep,n,t1(s, a)

The probability of selection of action a in state sp,n,t is

Prdrl(a|sp,n,t) =
exp(Q(sp,n,t2 , a))∑
a′ exp(Q(sp,n,t, a′))

(10)

C DYNAMIC STRUCTURE LEARNING (DSL) ALGORITHMS

In DSL (see Algorithm 1), the first step is to learn the best fitting model parameters using Particle
Stochastic Approximation Expectation Maximization (PSAEM), which is described below.

Particle Stochastic Approximation Expectation Maximization (PSAEM) In Algorithm A1,
model parameters θ are estimated by computing the maximum likelihood estimate by combining
Stochastic Approximation Expectation-Maximization (SAEM) with CPF-AS (Lindsten et al., 2013;
Lindholm & Lindsten, 2018). Line 8 of Algorithm A1 represents the E-step of SAEM, where CPF-
AS is used to estimate Q̂k(θ) using Equation 1. In the M-step (Algorithm A1, line 9), new pa-
rameters θk, maximizing the Q̂k(θ), are determined using the Self-adaptive Differential Evolution
optimiser from the Pagmo cpp package (Biscani & Izzo, 2020).

Discount rate βDRL in IMR suboptimal AS and optimal AS are set to 10−4 so that CoACA and DRL
models have two parameters each.
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Algorithm A1 Particle Stochastic Approximation Expectation Maximization (PSAEM)

1: Initialize:
2: Set θ0 = (α1

CoACA, γ
1
CoACA, α

2
CoACA, γ

2
CoACA, α

3
DRL, λ

3
DRL, α

4
DRL, λ

4
DRL, αcrp)

3: Set β2
DRL, β

4
DRL to 10−4

4: Set Q̂0(θ) = 0
5: Set reference trajectory x1:P [0] arbitrarily
6: for k ≥ 1 do
7: Run CPF-AS (Algorithm A3) with N particles and reference trajectory as x1:P [k − 1]
8: Compute SAEM update by

(11)Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk

N∑
i=1

wi
P∑

l w
l
P

logPrθ(x
i
1:P , y1:P )

where wi
P is the importance weight of ith particle after final session P , computed by Algo-

rithm A3
9: Compute θk = argmaxθ Q̂k(θ)

10: Sample particle j with Pr(j = i) ∝ wi
P

11: Set x1:P [k] = xj
1:P

12: end for

Smoothing Algorithm The second step of DSL involves using the parameters estimated with
PSAEM to compute the smoothing distribution of Agent Structures (ASs). This algorithm is de-
scribed below.

Algorithm A2 Smoothing Algorithm

1: Input: x1:P [0]
2: Input: θ = (α1

CoACA, γ
1
CoACA, α

2
CoACA, γ

2
CoACA, α

3
DRL, λ

3
DRL, α

4
DRL, λ

4
DRL, αcrp)

3: Output: x1:P [1], x1:P [2], . . . , x1:P [K]
4: for k = 1 to K do
5: Run CPF-AS (Algorithm A3) with N particles and reference trajectory as x1:P [k − 1] to

generate N new agent structure (AS) sequences and particle weights {xi
1:P , w

i
P }Ni=1.

6: Sample particle j with Pr(j = i) ∝ wi
P

7: Set x1:P [k] = xj
1:P

8: end for

Conditional Particle Filter with Ancestor Sampling (CPF-AS) CPF-AS is used to compute the
smoothing distribution by running with N = 30 particles. Each particle i has an ancestral trajectory
aip that represents the ASs from sessions 1 : p − 1. The ancestral path of each particle represents
a potential sequence of ASs, reflecting the behavior of a rat in the maze. Each particle maintains
its own unique set of credits or q-values for each of the four different ASs based on its ancestral
trajectory aip. A locally optimal proposal distribution is used to propagate particles to time p given
by (Chopin et al., 2020)

r(xp|x1:p−1, yp) =
fθ(xp|x1:p−1)gθ(yp|xp)∑
xp

fθ(xp|x1:p−1)gθ(yp|xp)
(12)

In CPF-AS, the N th particle ASs xN
1:P are deterministically set to input reference trajectory. The

ancestor of the N th particle is resampled based on the ancestor weights given by Equation (13).
Since the ASs evolve in non-Markovian manner in our models, (Lindsten et al., 2014) provides a a
non-Markovian adaptation where the product is truncated to L steps, which implies a gradual decay
of the non-Markovian influence of the current time step p over the next L steps. In our analysis we
set (L = 5).
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Algorithm A3 Conditional Particle Filter with Ancestor Sampling (CPF-AS)

1: Input: Reference Trajectory x′
1:P

2: Input: Truncation parameter L = 5
3: Input: θ = (α1

CoACA, γ
1
CoACA, α

2
CoACA, γ

2
CoACA, α

3
DRL, λ

3
DRL, α

4
DRL, λ

4
DRL, αcrp)

4: Output: Trajectory x⋆
1:P

5: for i = 1 to N − 1 do
6: Draw xi

1 ∼ r(x1|y1)
7: end for
8: Set xN

1 = x1[k]
9: for i = 1 to N − 1 do

10: Set w̃i
1 =

gθ(y1|xi
1)Pr(xi

1)

rθ(xi
1|y1)

11: end for
12: for p = 2 to P do
13: for i = 1 to N − 1 do
14: Draw aip with Pr(aip = j) ∝ wj

p−1
15: end for
16: for i = 1 to N − 1 do
17: Draw xi

p ∼ r(xp|x
ai
p

1:p−1, yp)
18: end for
19: Set xN

p = x′
p

20: Draw aNp with

Pr(aip = j) ∝ wj
p−1

p−1+L∏
s=p

gθ(ys|xj
1:p−1, x

′
p:s)fθ(x

′
s|x

j
1:p−1, x

′
p:s−1) (13)

21: for i = 1 to N do
22: Set xi

1:p = {xai
p

1:p−1, x
i
p}

23: end for
24: for i = 1 to N do
25: Set

(14)w̃i
p =

gθ(yp|xi
p)fθ(x

i
p|xi

1:p−1)

r(xi
p|xi

1:p−1, yp)

26: end for
27: end for
28: Sample particle j with Pr(j = i) ∝ wi

P

29: Set x⋆
1:P = xj

1:P

D MODEL PARAMETERS ESTIMATED FROM RATS’ BEHAVIORAL DATA

The model parameters estimated using Algorithm A1 in Step 2 of DSL are given below.

Table A.2: Parameters estimated using Algorithm 2 on experimental data of rats

Rats acaSubopt acaOpt drlSubopt drlOpt
αcrpα γ α γ α λ α λ

rat1 0.07 0.37 0.93 0.85 0.14 0.12 0.03 0.90 1.88
rat2 0.32 0.56 0.26 0.92 0.73 0.88 0.07 0.43 4.03
rat3 0.077 0.19 0.71 0.85 0.66 0.31 0.02 0.65 4.18
rat4 0.26 0.46 0.94 0.80 0.14 0.81 0.05 0.72 1.63
rat5 0.78 0.06 0.59 0.96 0.52 0.05 0.05 0.52 4.15
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E SIMULATION VALIDATION

Table A.3: Recovery rate of agent structures (ASs) across sessions for six different AS combinations,
determined using the DSL method on simulated data

Recovered AS
True AS suboptimal AS LR suboptimal AS IMR suboptimal AS optimal AS None

suboptimal AS 0.90 0.09 0.01 0 0
LR suboptimal AS 0.01 0.99 0 0 0
suboptimal AS 0.96 0 0.01 0.03 0
optimal AS 0 0 0 1 0
IMR suboptimal AS 0 0 0.96 0.04 0
LR suboptimal AS 0 0.90 0.01 0.08 0.01
IMR suboptimal AS 0 0 0.96 0.04 0
optimal AS 0 0 0 1 0
LR suboptimal AS 0 1 0 0 0
optimal AS 0 0 0 1 0
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