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Abstract—Natural language provides a natural interface for
human communication, yet it is challenging for robots to
comprehend due to its abstract nature and inherent ambiguity.
Large language models (LLMs) contain commonsense knowledge
that can help resolve language ambiguity and generate possible
solutions to abstract specifications. While LLMs have shown
promise as few-shot planning policies, their potential for planning
complex tasks is not fully tapped. This paper shows that LLMs
can be used as both the commonsense model of the world and the
heuristic policy in search algorithms such as Monte Carlo Tree
Search (MCTS). MCTS explores likely world states sampled from
LLMs to facilitate reasoned decision-making. The commonsense
policy from LLMs guides the search to relevant parts of the tree,
substantially reducing the search complexity. We demonstrate the
effectiveness of our method in daily task-planning experiments
and highlight its advantages over using LLMs solely as policies.

I. INTRODUCTION

Natural language provides an intuitive and user-friendly
interface for humans to specify goals for robots. However, the
abstraction and ambiguity inherent in natural language often
result in incomplete information regarding both the goal state
and how the goal can be achieved. For example, a human
might instruct a robot to “bring me a fruit,” requiring the robot
to have commonsense knowledge of the types of objects that
can be considered fruits, as well as understand the goal state
indicated by that instruction. Furthermore, instructions such as
“bring me a fruit” describe high-level tasks that require multiple
actions to complete. For instance, the robot may need to look in
the fridge for a fruit (recognizing that apples, oranges, peaches,
etc. are fruits), and if the fridge has no fruit, look further in the
pantry. A typical household environment comprises hundreds of
moveable items and containers, resulting in a huge search space
that makes the planning intractable. Utilizing commonsense
knowledge to deduce missing information and reduce search
space is crucial for the robot to achieve the natural language-
specified goal successfully.

Recently, large language models (LLMs) [5, 26, 6] have
become prevalent in AI research. LLMs encode vast com-
monsense knowledge and exhibit impressive performance
in information retrieval and text generation. Li et al. [23]
suggested utilizing the fine-tuned LLMs as policies to provide
instructions for achieving abstract, incomplete goals specified
by natural language. Huang et al. [18] and Ahn et al. [2]
proposed to use the pre-trained LLM directly as a few-shot or
zero-shot policy for planning without fine-tuning, with only
a few examples as prompts. Furthermore, Huang et al. [19]

Put an apple on 
the table. 

(a) (b)

…

……

Go to 
bathroom Go to kitchen

Go to 
fridge

Go to 
pantry

✘ ✔

✔ ✔

Fig. 1. We focus on language-instructed object rearrangement tasks as shown
in (a). We use the commonsense knowledge to guide the search algorithms to
explore potentially promising actions and make reasoned decisions (b).

proposed translating sensor observations into language feedback
to provide to the pre-trained LLMs so that it is able to provide
the next instruction conditioned on the outcomes of the previous
instructions. These works use LLMs as policies, exploiting the
commonsense knowledge of the correct action to take given
the history of actions and observations previously encountered.

In this study, we leverage the vast commonsense knowledge
encapsulated in LLMs by incorporating it into an online search
algorithm, i.e., Monte Carlo Tree Search (MCTS) [9]. MCTS
utilizes LLMs’ rich world knowledge as a model for reasoned
decision-making, which is not fully exploited when LLMs
are used solely as policies. Specifically, LLMs provide prior
common sense beliefs of the world that can be used to sample
likely states. These generated samples encompass various
common scenarios, such as fruits being present on the kitchen
counter, inside the fridge, or in the pantry. MCTS summarizes
the useful information in searching the likely states through the
estimated Q value (the expected reward after taking action) so
as to make a reasonable decision. The algorithm progressively
updates its belief of the world as it acts in the world and receives
observations to rectify model errors. In addition, instead of
directly providing instructions, we employ the LLM as a search
heuristic to guide exploration only toward promising parts of
the search tree. For instance, when given the instruction “bring
me a fruit,” the LLM uses commonsense knowledge to prioritize
opening the fridge or pantry rather than opening the trash can.
By utilizing LLM policies as search heuristics, we transform
an otherwise intractable search task into a computationally
practical one.

In contrast to solely using LLMs as policies, our method is
able to exploit knowledge about likely states of the world in
the LLMs to facilitate reasoned planning through tree search1.
MCTS enables LLM to leverage its world modeling knowledge
and explore new combinations of actions to tackle novel tasks.

1For the purpose of the search, we assume that the action set is known with
known deterministic transitions. In the experiments, the physical-level motion
planning is processed separately when executing an action.



By employing the LLM policy as a heuristic, we substantially
reduce the search complexity required to identify good actions.
We demonstrate the advantages through our experiments con-
ducted in large, complex household environments, specifically
in the context of daily task planning.

II. PROBLEM STATEMENT

We aim to solve object rearrangement task-planning prob-
lems in a household environment. In this task, a human user
uses natural language to instruct the robot to find an item and
move it to a target location. The problem can be formulated
as a Partially Observable Markov Decision Process (POMDP):
(S,A,Ω, T,O,R, γ). The state space S is object-centric and
consists of the robot’s position and the positions of moveable
items and containers. The actions space A defines the action
that the robot can do. In our case, we predefine a set of
high-level actions: object picking, object placing, moving,
opening a container, and closing a container. The observation
space, Ω, is the space for natural language observations. T
defines the transition function of states, which we assume to
be deterministic. O is the observation function at the current
state s. We assume it is deterministic, but the robot will only
observe items in the same room or in an opened container at
the robot’s location. R(s, a) is the reward function determined
by the action a taken at the state s. In our setting, the robot
will receive a high positive reward if all the items are at the
goal position, and the task will be terminated. The discount
factor is specified by γ. The history trajectory ht at time step t
consists of a sequence of executed actions and received obser-
vations up to time t− 1, ht = (o0, a0, o1, a1, . . . , ot−1, at−1).
The objective is to find an optimal policy π∗(ht) that
maximize the expected cumulative rewards π∗(ht) =
argmaxa∈A E

[∑∞
i=0 γ

iR(st+i, at+i)|at = a
]
.

III. LLM-MCTS: MONTE CARLO PLANNING WITH
COMMONSENSE KNOWLEDGE

As shown in Fig 2, our core idea is to use LLMs as the
commonsense world model and the heuristic policy within the
MCTS framework, enabling reasoned and informed decision-
making for daily tasks. MCTS enables LLM to leverage its
world modeling knowledge and explore new combinations of
actions to tackle novel tasks. LLM helps MCTS through the
biased sampling of states and action selection, improving its
efficiency in resolving large, complex task-planning problems.

A. Large Language Models as commonsense world model

A commonsense prior belief of states can improve the
effectiveness of object and location searches by prioritizing the
search to appropriate locations. Our approach utilizes LLM’s
commonsense knowledge to generate the initial belief of states,
which is updated with each action and observation in the real
world. MCTS samples from the belief in simulation to estimate
the value of the action.

We use object-centric state representation and categorize
the objects in the house as moveable objects (e.g., apples),
containers (e.g., fridge), and surfaces (e.g., kitchen table). The

states of a moveable object might be inside the containers or
on the surfaces. The containers and surfaces should be inside
a room. Similar to [23, 29], we maintain the belief in object-
centric graphs, where nodes are objects and edges describe
abstract-level relationships (e.g., an apple is inside the fridge,
and the fridge is inside the kitchen) between objects and rooms.
Details are in the Appendix.

Assume a dataset D is accessible, containing expert actions
and observations in similar household environments to solve
daily tasks. LLMs can use the observations in the data to know
what are the objects in the house and predict their positions,
forming the commonsense belief of the state. To achieve this,
we find all the objects, containers, and surfaces that appeared
in the dataset D to form a list of objects Dobj using a unique
name for all of them. To approximate b(s0), we ask the LLMs
to sample the positions of objects M times. For each sample,
we ask the LLM to predict the position of objects using Dobj

and a fixed prompt. We use three prompt examples to provide
example formats of the response. The exact prompts we used
are provided in the appendix. As the responses from LLM
are free-form natural language, we have to precisely map
those expressions to Dobj for consistent state representation.
Thus, we encode the names of objects in the LLM’s response
into embeddings using sentence-BERT f(·) [30] and examine
their cosine similarity to the unique name of objects in Dobj:
CosineSim(ei, e) = f(ei)f(e)

∥f(ei)∥∥f(e)∥ , where e is the name of
objects, containers, or surfaces in the LLM’s response, and
ei ∈ Dobj are the unique names in the object list. We select the
most similar expressions in Dobj to form the sampled state. For
example, when querying the position of an apple, the LLM’s
response is “on the kitchen table,” we use the above technique
to translate “the kitchen table” to “kitchentable,” a unique name
in Dobj.

Similar to prior works [41], we use LLMs to translate the
natural language goal into a formal representation for the
search algorithm. We use a fixed set of prompt examples for
LLM to interpret natural language goals, such as “put one
apple into the fridge” is translated as a tuple “(apple, inside,
fridge).” For compositional instructions, it will translate it into
multiple tuples, such as “put one apple on the kitchen table
and one plate inside the dishwasher” is translated as “(apple,
on, kitchentable), (plate, inside, dishwasher).” Similar to initial
belief generation, we precisely map the LLM-generated goal
into the admissible expressions in Dobj for search using the
same representation as the state. In MCTS, the goal is used to
identify the reward. As the representations are the same, we
can directly check whether the object’s state is the same as the
goal by string matching. If the goal is reached, it will receive
a large positive reward, or 0 otherwise.

B. Large Language Models as heuristic policy

We use LLMs to play the role of π(a|h) in PUCT to
guide the action selection in the simulation procedure. In
this procedure, the LLM takes as input the examples in the
dataset, the goal description, the current observation, and the
history of actions, and then outputs the suggested action plan.
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Fig. 2. Overview of LLM-MCTS. We query the large language model (LLM) for the commonsense belief of states and the commonsense planning policy for
action selection. For each simulation in the MCTS algorithm, we sample from the commonsense belief to obtain an initial state of the world and use the LLM
as heuristics to guide the trajectory to promising parts of the search tree.

Similar to [23], the observations and goal description are
translated into English sentences. As the answer of LLM is
from the conditional distribution of the following words given
the context, it can also be viewed as a commonsense policy of
actions to take conditioned on the context of tasks, observations,
and completed actions. However, direct implementation and
access to the probability value of the GPT-3.5 is not available.
Thus, we propose an empirical policy distribution π̂ that uses
sampling to approximate the policy distribution.

We sample the LLM for M times to approximate the
policy probability distribution. For each sample, we query
the LLM with prompt and trajectory history h and receive an
answer of the following actions to take αi ∼ LLM(h,prompt),
where αi is the first action of the answer. The prompt
examples are retrieved from the dataset according to the
similarity to the current language instruction ℓ. We use [30]
to translate the instructions in the dataset ℓi ∈ D into
embedding and examine their cosine similarity to the current
instruction: CosineSim(ℓi, ℓ). In experiments, we use a subset
of D to show its performance when restricted to a small
training set. We select the top K similar instructions and
use the corresponding expert trajectories as a K-shot prompt.
However, the answer αi is a free-formed natural language
sentence that cannot be mapped to admissible actions for
the agent directly. To ensure that the action can be executed,
we follow the method in prior works [18] to represent the
actions and admissible actions by embeddings from [30]
and evaluate their cosine similarity CosineSim(αi, a). The
empirical policy distribution is formulated as follows: π̂(a|h) =
λ 1

|A| + (1− λ)Softmax{∑M
i=1 CosineSim(αi, a)− η}, where

η is the average value of
∑

i CosineSim(αi, a) and |A| is the
size of the admissible action space. λ is a hyper-parameter that
adds randomness to the belief, as the sampled actions from
LLM could be very deterministic. Therefore, the empirical
policy distribution is a mixture of approximated policy from
LLM and uniform distribution.

C. Search with commonsense world model and heuristic policy
We integrate the world model and policy from LLM in

MCTS, presented in Alg 1 in Appendix B. For each simulation,
MCTS samples a state from the belief b(s) at the root (line
4). It independently samples one position for each object to

construct a state s. This sampled state s is then employed in
the simulation, generating a new tree trajectory. An action a∗

is chosen during the simulation based on the Q value, visit
counts, and LLM policy (lines 28 and 29). The observation and
transition function, denoted as G (lines 15 and 30), predict the
next state s′ given the selected action a∗ and the sampled state
s, thus progressing to the subsequent step in the simulation
(lines 30 and 31). When encountering leaf nodes in the tree,
MCTS expands the tree and performs a random rollout for
the corresponding node (lines 23 to 26). A uniform policy is
employed to sample actions in the rollout, and the discounted
reward is then returned (lines 14 to 17). Upon completing
the task or reaching the maximum depth, the accumulated
rewards are backpropagated, updating each node’s estimated
Q value (lines 32 to 35). Following N simulations, the output
action is determined based on the estimated Q value (lines 3
to 8). Upon completion of the search process, the agent will
execute an action and receive a new observation. For simplicity,
we assume that the observation and transition functions are
deterministic and known. In cases where an object is detected,
its corresponding position within the belief will be updated
with the observed position. Conversely, if the object remains
undetected at certain positions, the belief regarding its presence
in those positions will be rendered null, denoted by a zero
value.

IV. EXPERIMENTS

A. Experimental settings

We proceed with our experiments in the VirtualHome
[28], a large household simulated environment with partial
observation, large action space, and long planning horizon. The
house contains hundreds of interactive items and containers
with various types of rooms. It is a well-suited platform for
evaluating embodied decision-making for solving daily tasks
in household environments.

The tasks we use to evaluate our method are object
rearrangement tasks, such as table setup, food preparation,
snack preparation, and bathroom cabinet organization. To
generate training data, we follow the method described in [29],
creating 2000 tasks with randomly initialized scenes and expert
action trajectories. There are several settings for the evaluation.



Simple tasks are the tasks that only require the rearrangement
of one item generated from the same distribution as the training
dataset. Comp. refers to the composition of simple tasks in
order to rearrange multiple objects sampled from the same
distribution as the dataset. The composition of tasks increases
the planning horizon, making it more challenging to complete.
In evaluation, we also use the Novel Simple tasks with seen
items. For compositional tasks, we include Novel Compositional
tasks, with 2 or 3 primary tasks composed. We also generate
scenes at a Novel Apartment for testing, where the distribution
of object positions differs from the training dataset.

We evaluate the success rate of completing the tasks within
30 steps, while a typical task can be finished within at
most 15 steps. The task is considered successful if all the
requirements of object positions are satisfied. For example,
given the instruction “Put one apple inside the fridge,” the task
is successful if any apple is in the fridge. For simplicity, we
don’t consider the task of rearranging a very specific object,
e.g., putting the leftmost apple in the fridge.

We evaluate the following baselines as comparisons. UCT
[21]: We use the UCT algorithm to conduct planning without
commonsense knowledge and use the ground-truth reward
function in simulation. We use uniform distribution as the initial
belief for states of objects. For the finetuned GPT2 policy [23],
we use the collected training dataset with 10000 trajectories
to fine-tune a language model (GPT-2) as the planning policy.
GPT3.5 Policy: This is an improved version of [18]. When
querying for actions, it not only takes as input the instructions
and history of actions but also the currently visible objects.
We use the LLM as the policy only, with a few examples as
prompts to interact with the environments.

In Appendix C we show the result of ablation studies within
the GPT3.5-MCTS framework, as well as the limitation and
failure case analysis.

B. Results

The main results of the experiments are shown in Table
I, reporting the success rate of our method and baselines in
completing the tasks in VirtualHome environments. In this
result, GPT3.5-MCTS outperforms all the compared baselines,
especially for unseen situations. UCT works poorly in all
conditions, as the poor model and the huge search tree make
the planning intractable. Thus, we focus our discussion on
comparing the finetuned GPT2 policy and GPT3.5 policy.

For Simple, in-distribution tasks, the planning horizon
is relatively short. Finetuned GPT2 policy, GPT3.5 Policy,
and our method work reasonably well, but our method still
outperforms the baselines. For Novel Simple tasks, finetuned
GPT2 policy works significantly worse than GPT3.5 Policy and
GPT3.5-MCTS. This is because the fine-tuning of narrow tasks
results in a biased distribution of the policy and compromises
generalizability. GPT3.5 Policy and GPT3.5-MCTS work better
due to the LLM’s few-shot planning capability. GPT3.5-MCTS
works better for both situations. It benefits from the MCTS’
look-ahead search that explore commonsense states of the world
for potential outcomes in order to make reasoned decisions. It

TABLE I
SUCCESS RATE (%): MEAN ± STANDARD ERROR

Seen Apartment

Method Simple Comp. NovelSimple NovelComp.(2) NovelComp.(3)

UCT 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
finetuned GPT2 policy 81.3±2.4 59.0±6.7 41.2±7.1 30.9±2.8 2.3±1.5

GPT3.5 Policy 83.4±6.8 47.0±7.8 74.3±4.0 48.2±8.8 5.4±2.0
GPT3.5-MCTS (Ours) 91.4±3.3 71.2±6.2 88.1±4.3 72.6±6.9 33.6±3.1

Unseen Apartment

Method Simple Comp. NovelSimple NovelComp.(2) NovelComp.(3)

UCT 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
finetuned GPT2 policy 65.5±3.4 39.9±5.2 33.4±6.4 12.8±3.9 1.1±0.9

GPT3.5 Policy 74.3±5.0 43.3±4.0 67.8±4.9 54.0±3.0 6.9±2.1
GPT3.5-MCTS (Ours) 82.9±3.2 71.9±5.6 79.3±3.3 70.4±6.4 38.8±3.4

utilizes the additional commonsense knowledge of the world
encoded in LLM, compared to using LLM solely as policy.

For the Compositional, in-distribution tasks, the finetuned
GPT2 policy and GPT3.5 policy get significantly worse
performance, while GPT3.5-MCTS works far better. The
finetuned GPT2 policy is trained by behavior cloning that
suffers from compounding errors. Therefore, when the planning
horizon gets longer, the influence of the errors accumulates
and compromises the overall performance significantly. As for
GPT3.5 Policy, the longer horizon potentially introduces more
possible errors during planning, which might not be included in
the prompt examples. Without suitable guidance from prompt,
we cannot guarantee the GPT3.5 Policy will carry out suitable
replanning when encountering errors or mistakes. MCTS
encourages exploration to a certain extent of different possible
actions during searching, introducing additional guidance to
the GPT3.5 policy to look into other possible solutions. This
is because the action selection procedure in GPT3.5-MCTS is
not purely determined by GPT3.5 Policy but also by the Q
value and visit counts. Therefore, MCTS encourages GPT3.5
Policy to explore other possible search directions instead of
excessively applying certain actions sampled by itself.

V. CONCLUSION

We use Large Language Models as the commonsense world
model and the heuristic policy within the Monte Carlo Tree
Search framework, enabling better-reasoned decision-making
for daily tasks. MCTS enables LLM to leverage its world
modeling knowledge for informed reasoning and explore new
combinations of actions to tackle novel tasks. LLM helps
MCTS through the biased sampling of states and actions,
improving its efficiency in resolving complex task-planning
problems. The runtime of our method is currently hindered by
computational constraints, resulting in sluggish performance.
Nonetheless, we are optimistic about the potential of our
approach. Future advancements in edge computing devices
may allow our method to be applied in robotic systems to
enhance decision-making capabilities. Our analysis and empir-
ical evidence suggest that, for some domains, the knowledge
possessed by LLM in world modeling exhibits a higher degree
of comprehensiveness than policies, owing to the significant
discrepancy in their respective description complexities. Thus,
leveraging LLM’s world knowledge holds considerable promise
in decision-making disciplines and beyond.
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APPENDIX

A. Related work

Grounding robot behaviors from natural language instruc-
tions is critical to human-robot interactions. It is useful in a
broad range of tasks, such as language-conditioned manipula-
tion [34, 33, 35, 45, 24, 25, 39], visual language navigation
[3, 40], and visual question answering [31, 16, 17, 43, 32, 20,
8]. However, those tasks lack a large, complex state and action
space or a long planning horizon. Our research mainly focuses
on object rearrangement tasks [4] in household environments to
demonstrate the method. Object rearrangement is a typical and
comprehensive instruction-following problem with large-scale,
long-horizon task planning. The comprehensiveness comes
from its coverage of many instruction-following subtasks, such
as object searching, navigation, and object pick-and-place. It
also requires long-horizon planning to determine how to pick
an object, navigate, and place it somewhere. Some prior works
[2, 13, 38] focus on grounding low-level robot actions in
object rearrangement tasks, therefore using a limited number
of objects or a small room environment for simplicity. The
resulting planning tasks are simpler. We select the large-scale
house environment for experiments, where the scale of task
planning is significantly more complex.

The execution of natural language instructions entails long-
horizon task planning due to the inherent abstraction of the
language. For task planning, early attempts [1, 15, 14, 11] used
symbolic representation and search algorithms to efficiently
carry out small-scale or short-horizon problems; these methods
do not work well for large-scale, long-horizon problems.
Recently, researchers [36, 37, 42, 7] have used deep learning
and reinforcement learning methods to learn search heuristics
to accelerate planning. Those learned policies or heuristics
are not generalizable to other unseen settings. Most recently,
the pre-trained LLMs have been exhibiting impressive ability
for format following and content generation, allowing them to
be applied as policies for task planning [18, 2, 19]. However,
the planning policy may suffer from hallucination issues of
LLMs. Our method uses the LLM’s knowledge of the world
together with a search algorithm for better-reasoned decision-
making. To operate in the real world, task planning should be
integrated with physical-level motion planning, i.e., task and
motion planning (TAMP) [12, 11]. Limited by the scope, we
consider the influence of physical-level motion planning as
future work.

Pre-trained large language models (LLMs) have recently been
dominating AI research due to their vast encoded knowledge.
That knowledge has been leveraged in many tasks successfully.
It has been used as a few-shot policy for language-conditioned
task planning [18, 2, 19]. LLMs can also be viewed as
probabilistic priors for non-linguistic perception and decision-
making tasks [22]. In reinforcement learning, LLMs are applied
as heuristics to provide background knowledge for providing
exploration bias [10]. Studies also leverage LLMs as a human
model to simulate human behaviors [27] or facilitate better
human-robot interactions [44]. However, the literature has

not discussed utilizing LLMs’ commonsense knowledge of
modeling the world in depth. In this paper, we show that
LLMs’ commonsense knowledge of the world can be exploited
in a search algorithm such as Monte Carlo Tree Search to
facilitate more reasoned planning for daily tasks.

B. Pseudocode of LLM-MCTS

The pseudocode of LLM-MCTS is shown in Alg 1. For
each simulation, MCTS samples a state from the belief b(s)
at the root (line 4). It independently samples one position for
each object to construct a state s. This sampled state s is then
employed in the simulation, generating a new tree trajectory.
An action a∗ is chosen during the simulation based on the Q
value, visit counts, and LLM policy (lines 28 and 29). The
observation and transition function, denoted as G (lines 15
and 30), predict the next state s′ given the selected action a∗

and the sampled state s, thus progressing to the subsequent
step in the simulation (lines 30 and 31). When encountering
leaf nodes in the tree, MCTS expands the tree and performs a
random rollout for the corresponding node (lines 23 to 26). A
uniform policy is employed to sample actions in the rollout,
and the discounted reward is then returned (lines 14 to 17).
Upon completing the task or reaching the maximum depth, the
accumulated rewards are backpropagated, updating each node’s
estimated Q value (lines 32 to 35). Following N simulations,
the output action is determined based on the estimated Q value
(lines 3 to 8).

C. Additional results and discussion

1) Ablation study: We conduct ablation studies to see the
individual contributions of different components within the
GPT3.5-MCTS framework. The No Heuristic Policy version
of GPT3.5-MCTS refers to the absence of PUCT guided by
the GPT3.5 Policy for action selection. Instead, it solely relies
on UCT with an initial commonsense belief derived from
LLM. The variant employing the Uniform State Prior utilizes
a uniform prior belief regarding states, in contrast to the LLM-
generated initial belief employed during the search process.
Lastly, the variant operating in a Fully Observable environment
aims to assess the accuracy of LLM’s knowledge in modeling
the world.

Table II presents the results of our ablation experiments.
The outcomes obtained under the No Heuristic Policy version
highlight the significance of heuristic policies in facilitating
MCTS to conduct efficient searches for complex and large-scale
planning tasks. Conversely, the results of the Uniform State
Prior row indicate that imperfect world models compromise
search performance. This is because the model of the world
determines the Q value. The wrong model results in an
inaccurate estimation of the Q value, misleading the search
process toward irrelevant locations. The Fully Observable
results demonstrate that GPT3.5-MCTS with perfect knowledge
of the environment only slightly outperforms its counterpart
without it, implying that the commonsense knowledge of LLM
regarding world modeling suffices for practical purposes.



Algorithm 1 LLM-MCTS

1: procedure SEARCH(h, b, T , N )
2: n← 0
3: while n < N do
4: s ∼ b(s)
5: SIMULATE(s, h,False, 0, T )
6: n← n+ 1
7: end while
8: return argmaxa∈A Q(h, a)
9: end procedure

10: procedure ROLLOUT(s, h,done, d)
11: if γd < ϵ or done = True then
12: return 0
13: end if
14: a ∼ πrollout(h, ·)
15: (s′, o, r,done) ∼ G(s, a)
16: h′ ← PUSHBACK(h, [a∗, o]), d′ ← d+ 1
17: return r + γ·ROLLOUT(s, h′,done, d′)
18: end procedure

19: procedure SIMULATE(s, h,done, d, T )
20: if γd < ϵ or done = True then
21: return 0
22: end if
23: if h is not in T then
24: T ← T ∪ h,N(h)← 0
25: ∀a ∈ A,N(h, a)← 0, Q(h, a)← 0
26: return ROLLOUT(s, h,done, d)
27: end if
28: π̂(a|h)←QUERYLLMPOLICY(h)

29: a∗←argmax
a∈A

Q(h, a) + cπ̂(a|h)
√

N(h)

N(h,a)+1

30: (s′, o, r, done) ∼ G(s, a∗)
31: h′ ← PUSHBACK(h, [a∗, o]), d′ ← d+ 1
32: R← r + γ·SIMULATE(s′, h′,done, d′, T )
33: N(h, a∗) += 1, N(h) += 1
34: Q(h, a∗)← Q(h, a∗) + R−Q(h,a∗)

N(h,a∗)
35: return R
36: end procedure

TABLE II
RESULTS ON ABLATION STUDY: MEAN ± STANDARD ERROR OF SUCCESS RATE (%)

Seen Apartment Unseen Apartment

Method Simple Comp. NovelSimple NovelComp.(2) Simple Comp. NovelSimple NovelComp.(2)

GPT3.5-MCTS (No Heuristic Policy) 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
GPT3.5-MCTS (Uniform State Prior) 3.2±1.1 0.0±0.0 1.1±0.4 0.0±0.0 1.1±0.2 0.0±0.0 0.0±0.0 0.0±0.0

GPT3.5-MCTS (Fully Observable) 94.0±2.1 80.7±3.3 94.3±2.4 78.5±4.0 85.1±5.0 77.5±3.2 82.2±3.3 76.6±3.1
GPT3.5-MCTS (Ours) 91.4±3.3 71.2±6.2 88.1±4.3 72.6±6.9 82.9±3.2 71.9±5.6 79.3±3.3 70.4±6.4

2) Failure analysis: Policy, model, and translation errors
are the primary causes of failures. Among these, policy errors
are responsible for the majority of the failures. Often time, the
policy produces unreasonable behaviors that mislead the search
procedure. For example, it usually outputs inadmissible actions,
such as “walk to the cutleryfork” where the “cutleryfork” is not
in the observation. It also produces back-and-forth behaviors,
resulting in an unreasonable heuristic and slowing the search
procedure. For example, when putting objects inside the
microwave, it is sometimes struck by repeatedly opening and
closing the microwave. For model error, the predicted positions
of objects are not always correct. Since a random rollout policy
is employed, incorrect object states can result in higher Q-
values than correct states, leading to misguided exploration.
The wrong translation also compromises the performance as we
translate the response from LLM to admissible action or object
names to ensure executability. This is caused in part by the
VirtualHome environments, as the policy might not understand
the underlying logic of the actions in VirtualHome, such as
you have to walk close to interact with the object. Thus, if
the LLM outputs “open fridge” but is not close enough to the
fridge, the action will be translated to other admissible actions
(“open fridge” is not inside the admissible actions for this case
as it is invalid due to the setting of VirtualHome).

3) Discussion: We analyze the complexity of the approaches
in terms of the description length of the world model and the
policy. Assume a house has n moveable objects, m containers,
and k rooms. We further assume that each of the n objects
and m containers can be positioned inside, at most, a constant
number of the m+k containers or rooms and that the positions
of each object and container are independent. Each nonzero
probability location of the m+ k containers or rooms requires
log(m+ k) bits to specify. We further assume that we use a
constant number of bits to represent each nonzero probability
coefficient. Overall the prior distribution of objects in the home
requires O((m+n) log(m+k)) bits to describe. For the policy,
we can use a pair of objects and containers to specify a task,
and a solution to a task involves a path where each edge
specifies an action with a target object, container, or room
(e.g., “grab the apple, walk to the kitchen, walk to the fridge,
open the fridge, put the apple inside the fridge”). To describe
all these paths for the mn pairs would require an order of
mn log(m+ n+ k) bits assuming all the policies have a short
bounded number of steps. These are open-loop policies but
can be modified into closed-loop ones by stopping the search
for the object once it has been found and starting to search
for the target location. The analysis suggests that learning
the model could be easier than learning the policies for this



domain. However, the model-based approach also requires a
goal test, which we assume to be similar to recognizing which
policy to take. Furthermore, clever decomposition and sharing
among the policies can reduce their complexity, e.g., policies
can be decomposed into searching for an object and a target
location, reducing its description complexity. Whether the LLM
successfully learned these shared policies is less clear.

Composing tasks increases the description complexity of
policies to O((mn)N log(m+n+k)), where N is the number
of composed tasks if done naively. The goal recognition
component of the model-based approach similarly becomes
more complex. The composed tasks can also be decomposed
into individual tasks done sequentially. How much the LLMs
can decompose the problems is unclear, although our exper-
iments on this problem show better results for the model-
based approach. Decomposition can help reduce the descriptive
complexity, and we expect it would accordingly reduce the
sample complexity of learning. Decomposition is automatically
done in the tree search at the expense of more computation,
although we still depend on the LLM to handle the goal test.
For the policy, the LLM must learn to do the decomposition,
which may make the learning problem computationally more
difficult.

D. Experimental environments

We use the VirtualHome simulator [28] to evaluate our
approach as well as the baseline methods. VirtualHome is
a 3D household environment with partial observation, large
action space, and long planning horizon. It contains hundreds
of interactive objects and containers, allowing it to perform
various household object rearrangement tasks. This section
introduces details of the tasks, the goal specifications, the
actions, and the observations in our experimental settings.

1) List of objects, containers, surfaces, and rooms in the
apartment: We list all the objects that are included in our
experimental environment. Here, we can put moveable objects
into the Containers or on the Surfaces. The Containers and
Surfaces are located at a Room in the apartment.

• Containers: bathroom cabinet, kitchen cabinet, bathroom
counter, fridge, oven, dishwasher, microwave, stove, bath-
room cabinet

• Surfaces: bed, bookshelf, cabinet, coffee table, cutting
board, floor, fryingpan, kitchen counter, kitchen table,
nightstand, sofa, stove

• moveable objects: alcohol, apple, banana, bar soap, bell
pepper, boardgame, book, box, bread slice, bucket, candle,
candy bar, carrot, cellphone, cereal, chicken, Chinese
food, chips, chocolate syrup, clock, clothes pants, clothes
pile, clothes shirt, coatrack, coffeepot, condiment bottle,
condiment shaker, cooking pot, crackers, crayons, creamy
buns, cupcake, cutlery fork, cutlery knife, cutlets, cutting
board, dish bowl, dishwashing liquid, face cream, folder,
fryingpan, glasses, globe, hair product, hanger, juice,
keyboard, lime, lotion bottle, magazine, milk, milkshake,
minced meat, mouse, mug, notes, oven tray, pancake,
paper, pear, pie, pillow, plate, plum, poundcake, pudding,

radio, remote control, salad, salmon, slippers, sports ball,
sundae, teddybear, toilet paper, toothbrush, toothpaste,
towel, towel rack, toy, washing sponge, water glass,
whipped cream, wine, wineglass

• Rooms: bedroom, bathroom, living room, kitchen.

2) Tasks: We use the object rearrangement tasks for eval-
uation. The task is to search for one or more objects in
the house and move them to the desired positions. We use
natural language as the interface to specify the tasks. Thus,
the agent should take as input the natural language instruction
and observations, and then output actions.

The tasks are randomly sampled from different distributions.
We define various types of object rearrangement tasks for
evaluation:

• Simple: this task is to move one object in the house to
the desired location. The combination of the object and
desired location has appeared in the training dataset.

• Novel Simple: this task is to move one object in the house
to the desired location. The combination of the object and
desired location hasnot appeared in the training dataset.

• Comp.: this task is composed of 2 Simple tasks, moving
more than one object in the house to their desired location.
This kind of task has a longer planning horizon as
it requires moving multiple objects to complete. The
combinations of Simple tasks have appeared in the training
dataset.

• Novel Comp. (2): this task is composed of 2 Simple
tasks, moving more than one object in the house to their
desired location. The combinations of Simple tasks have
not appeared in the training dataset.

• Novel Comp. (3): this task is composed of 3 Simple tasks,
moving more than one object in the house to their desired
location. This kind of task has the longest planning horizon.
The combinations of Simple tasks have not appeared in
the training dataset.

We also have different household environments:

• Seen Apartment: the map of the apartment is shown
in Figure 3. These household environments are the
same as the ones in the training set, while the object
positions are randomly initialized according to a pre-
defined commonsense distribution in VirtualHome [28].

• Unseen Apartment: the map of the apartment is shown in
Figure 4. These household environments are not the same
as the ones in the training set. The object positions are
also sampled from a different pre-defined commonsense
distribution in VirtualHome [28].

3) Goal specification: Similar to prior works [23], we define
the goal in the VirtualHome system by a set of predicates. For
instance, a goal can be defined by Inside(apple, fridge):2;
Inside(plate, dishwasher):1, meaning “put two apples inside
the fridge and put one plate inside the dishwasher.” For Simple
and Novel Simple tasks, it only requires moving one object,
while Comp. and Novel Comp. have more than one object to
move.



(a) (b)
Fig. 3. The map of the seen apartments in our setting. These household
environments are the same as the ones in the training set, while the object
positions are randomly initialized according to a commonsense distribution.

(a) (b)
Fig. 4. The map of the unseen apartments in our setting. These household
environments are not the same as the ones in the training set. The object
positions are also sampled from a different commonsense distribution.

4) Actions: In VirtualHome, the agent is able to navigate
in the environment, grab an object, put an object inside the
containers (e.g., fridge) or on the surfaces (e.g., table), open
and close the container, etc. The actions in VirtualHome are
grounded to moveable objects, containers, or rooms in the
environment. For example, Open(5) is to open an object
with index (5). The list of available actions in our setting are
listed below:

• Walk(<item>): walk to the <item>. The <item>
can be a moveable object, a container, or a room. The
precondition of this action is that the <item> is visible.
The effect of this action is that the agent is close to the
<item> if the <item> is an object or inside the <item>
if the <item> is a room. The action is translated into the
sentence “walk to the <name of item>” when feeding
into LLMs.

• Open(<item>): open the <item>. The <item> can
be a moveable object or a container. The precondition of
this action is that the agent should be close to <item>.
The effect of this action is that the <item> is opened.
The action is translated into the sentence “open the <name
of item>” when feeding into LLMs.

• Close(<item>): close the <item>. The <item> can
be a moveable object or a container. The precondition of
this action is that the agent should be close to <item>.
The effect of this action is that the <item> is closed. The
action is translated into the sentence “close the <name
of item>” when feeding into LLMs.

• Grab(<item>): grab the <item>. The <item>
should be a moveable object. The precondition of this
action is that the agent should be close to the <item>,
and the agent is not holding any objects. The effect of
this action is that the agent will hold the <item>. The
action is translated into the sentence “grab the <name

of item>” when feeding into LLMs.
• PutIn(<item1>, <item2>): put the moveable ob-

ject <item1> inside the container <item2>. The pre-
condition of this action is that the agent should be close to
the <item2> and holding <item1>. The effect of this
action is that the agent is not holding any objects, and the
<item1> is inside the <item2>. The action is translated
into the sentence “put the <name of item1> inside
the <name of item2>” when feeding into LLMs.

• PutBack(<item1>, <item2>): put the moveable
object <item1> on the surface <item2>. The precon-
dition of this action is that the agent should be close to
the <item2> and holding <item1>. The effect of this
action is that the agent is not holding any objects, and the
<item1> is on the <item2>. The action is translated
into the sentence “put the <name of item1> on the
<name of item2>” when feeding into LLMs.

5) Observations: We use the same representation as [23]
for partial observation. The observation is a list of visible
objects and relationships between those objects. Each object
or container has a state: open or close. The fine-tuned GPT2
policy [23] also uses the 3d coordinates of the object. We
also use relationships to connect different objects, such as
Inside(apple, fridge). Those relationships are trans-
lated to natural language descriptions when feeding into LLMs,
such as “an apple is inside the fridge.”

E. Data gathering

Similar to prior works [29, 23], we collect expert trajectories
in VirtualHome using regression planning with handcrafted
heuristics2. The expert has full observation of the environment.
Given the goal predicates and full observation, the agent will
use the handcrafted heuristics for each task to effectively search
for the solutions. The expert also has a handcrafted mechanism
for compositional tasks to decompose one task into subtasks
and finish them progressively. For each trajectory, we include
the goal predicates (used by the VirtualHome system and the
expert agent), the goal instruction (used by the agent), the
partial observation for each time step (not used by the expert
agent, the expert agent uses full observation), and the expert
actions.

F. Implementation details of belief in LLM-MCTS

This section introduces our implementation details for the
belief of states in GPT3.5-MCTS. We use GPT-3.5 as the
LLM. The temperature parameter is set to 0.6, and the top-p
parameter is 0.9. The sample number for querying the LLM
is M = 10, and the number of prompts is K = 1. The
mixture parameter for heuristic policy is λ = 0.5. We select
200 instances uniformly at random from the dataset as prompt
candidates for the LLM model and policy. The source code will
be released at https://llm-mcts.github.io before
the publication.

2Their implementation is available at the GitHub repository:
https://github.com/xavierpuigf/watch_and_help.git

https://llm-mcts.github.io
https://github.com/xavierpuigf/watch_and_help.git


1) State representation: We represent the states by a list
of objects and their relationships. Each object has a unique
name and id in the simulator, as well as the state of the
object. We use the same unique name and id in our state
representation. The relationships connect different objects,
containers, surfaces, and rooms. The VirtualHome contains
59 different types of relationships, including Inside, On,
Close, Facing, etc. We use the same type of relationships
in our state representation.

2) Belief: The belief of the state also contains a list of
objects and their relationships. However, we parameterize the
relationships by a vector, representing the probability that the
relationship is true. This vector is affiliated with the object
representation. For simplicity, we only include the relationships
Inside, On in our belief, as we only query LLM about the
object positions to build up the commonsense belief of the
state.
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Instruction: Put one plate inside the 
kitchen cabinet and one chicken 
inside microwave. 
1: Walk to kitchen 
2: Walk to plate 
3: Grab plate 
4: Walk to kitchen cabinet 
5: Open kitchen cabinet 
6: Put plate inside kitchen cabinet 
7: Move fridge 
8: Open fridge 
9: Grab chicken 
10: Walk to microwave 
11: Open microwave 
12: Put chicken inside microwave

Instruction: Put one apple on the 
kitchen table and one toothbrush 
inside the bathroom cabinet. 
1: Walk to fridge 
2: Open fridge 
3: Walk to apple 
4: Grab apple 
5: Walk to kitchen table 
6: Put apple on kitchen table 
7: Walk to bathroom 
8: Walk to toothbrush 
9: Grab toothbrush 
10: Open bathroom cabinet 
11: Put toothbrush inside bathroom 
cabinet

4

5

9

12

Instruction: Put one cutlery fork on 
the kitchen table and one apple to the 
fridge and one chips to the coffee 
table. 
1: Walk to kitchen 
2: Walk to kitchen cabinet 
3: Open kitchen cabinet 
4: Walk to dishwasher 
5: Open dishwasher 
6: Grab cutlery fork

7: Walk to kitchen table 
8: Put cutlery fork on kitchen table 
9: Walk to apple 
10: Grab apple 
11: Walk fridge 
12: Open fridge 
13: Put apple inside fridge 
14: Close fridge 
15: Walk to kitchen cabinet 
16: Open kitchen cabinet (Failed) 
17: Grab chips 
18: Walk to living room 
19: Walk to coffee table 
20: Put chips on coffee table 
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Fig. 5. Successful examples

When building up a state’s belief, we query LLM to
predict the position of each moveable object, container, and
surface. The position of a moveable object is specified by
the relationships (i.e., Inside or On) between itself and a
container or surface. The position of a container or a surface
is specified by its relationship (i.e., Inside) to the room. We
use sampling to approximate the distribution of the position.
The moveable objects’ belief of position is represented by a
vector whose dimension is the same as the total number of
containers and surfaces in the house. Each vector entry denotes
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4

Instruction: Put one cutlery fork on 
the coffee table 
1: Walk to kitchen 
2: Walk to cutlery knife 
3: Walk to cutlery knife 
4: Walk to cutlery knife 
…

(a)

(b)

Instruction: Put one apple inside the 
fridge 
1: Walk to living room 
2: Walk to coffee table 
3: Walk to bedroom 
4: Walk to nightstand 
5: Walk to kitchen 
6: Walk to kitchen cabinet 
7: Open kitchen cabinet 
…

1 23
4

567

Fig. 6. Failed examples. (a) Policy error and translation error. LLM outputs
walk to the cutlery fork, but the cutlery fork is not in observation. We use
embeddings to evaluate the most similar valid actions. Therefore it translates
the action to one similar action “walk to cutlery knife.” The action has an
incorrect semantic meaning and causes failure. (b) model error. The LLM
predicts the apple is on the nightstand in the bedroom and on the coffee table
in the living room. As we are using random rollout to get the estimation of the
reward, there will be situations when the incorrect actions result in a higher
estimated Q value, thereby misleading the exploration.

the probability that whether the object is inside a specific
container or on a specific surface is true. When asking LLM
to predict the object positions, we asked LLM for M times
and received multiple responses from LLM. We then count
each entry’s total number of predictions and normalize them
to become a probability distribution. We initialize the value
of other unsampled entries in the vector by a lower bound
of the probability 1× 10−3 to ensure that the model will not
eliminate other possibilities when the commonsense model is
wrong.

The agent will receive new observations to update their belief
when interacting with the environment. We will first predict
the next state of the agent by the transition function and then
update the belief of the object positions by new observations.
Suppose the object is inside the current observation. In that
case, the other entry of the relations between objects will
be masked out by zero, and the entry of the relationships in
observation will be replaced by the value of one. However, if
a relationship is not inside the observation, the value of the
corresponding entry will be replaced by zero, and the vector
will be normalized again.

G. Visualized examples

We provide a set of successful (shown in Figure 5) and failed
trajectories (shown in Figure 6) to give a better understanding of
the tasks and our method. Policy, model, and translation errors
are the primary causes of failures. Among these, policy errors
are responsible for the majority of the failures. Often time,



the policy produces unreasonable behaviors that mislead the
search procedure. For example, it usually outputs inadmissible
actions, such as “walk to the cutlery fork” where the “cutlery
fork” is not in the observation (shown in Figure 6 (a)). It also
produces back-and-forth behaviors, resulting in an unreasonable
heuristic and slowing the search procedure. For example, when
putting objects inside the microwave, it is sometimes struck
by repeatedly opening and closing the microwave. For model
error, the predicted positions of objects are not always correct.
Since a random rollout policy is employed, incorrect object
states can result in higher Q-values than correct states, leading
to misguided exploration (shown in Figure 6 (b)). The wrong
translation also compromises the performance as we translate
the response from LLM to admissible action or object names to
ensure executability. This is caused in part by the VirtualHome
environments, as the policy might not understand the underlying
logic of the actions in VirtualHome, such as you have to walk
close to interact with the object. Thus, if the LLM outputs
“open fridge” but is not close enough to the fridge, the action
will be translated to other admissible actions (“open fridge” is
not inside the admissible actions for this case as it is invalid
due to the setting of VirtualHome).

H. Prompts

One example prompt for the LLM policy is shown in Listing
1. The exact prompt we used for building up the commonsense
belief is shown in Listing 2. Please note that the final question
in Lising 2 is one example of the questions for demonstration.



Listing 1 Example prompt for the heuristic policy
You need to generate a high-level plan for completing a household task using the allowed actions and

visible objects.

Allowed actions: walk to <object>, walk to <room>, walk to <container>, walk to <surface>, grab <object>,

open <container>, close <container>, put <object> on <surface>, put <object> inside <container>.

Rooms in the house: bedroom, bathroom, living room, kitchen

You need to strictly follow the format in the following examples:

Goal: Put one apple inside the fridge

Completed actions: walk to the kitchen, walk to the apple

Current Observation: a kitchen table is inside the kitchen, a kitchen counter is inside the kitchen, an

apple is on the kitchen counter, a plate is on the kitchen table, a banana is on the kitchen counter, a

fridge is inside the kitchen and fridge is closed, a kitchen cabinet is inside the kitchen and kitchen

cabinet is closed, a cutlery knife is on the kitchen table, a microwave is inside the kitchen and microwave

is closed, a dishwasher is inside the kitchen and dishwasher is closed.

Next actions: grab the apple, walk to the fridge, open the fridge, put the apple inside the fridge, close

the fridge, done.

Now, finish the next following task.

Goal: Put one apple on the kitchen table

Completed actions: walk to the kitchen

Current observation: a kitchen table is inside the kitchen, an apple is on the kitchen table, a kitchen

counter is inside the kitchen, an apple is on the kitchen counter, a cutlery knife is on the kitchen

counter, a fridge is inside the kitchen and fridge is closed, a kitchen cabinet is inside the kitchen

and kitchen cabinet is closed, a kitchen table is inside the kitchen, a plate is on the kitchen table,

a pounding cake is on the kitchen table, a microwave is inside the kitchen and microwave is closed, a

dishwasher is inside the kitchen and dishwasher is closed.

Next actions:

Listing 2 Example prompt for the commonsense world model
You need to predict the positions of the moveable objects, containers, and surfaces in the apartment

according to the commonsense.

Rooms in the apartment: bedroom, bathroom, living room, kitchen.

Containers in the apartment: bathroom cabinet, kitchen cabinet, bathroom counter, fridge, oven, dishwasher,

microwave, stove, bathroom cabinet.

Surfaces in the apartment: bed, bookshelf, cabinet, coffee table, cutting board, floor, fryingpan, kitchen

counter, kitchen table, nightstand, sofa, stove.

You need to strictly follow the format in the following examples:

Question: what are the possible positions of strawberry?

Answer: Inside fridge, On kitchen table.

Question: what are the possible positions of soap?

Answer: On bathroom counter.

Question: what are the possible positions of water cup?

Answer: On kitchen table, Inside dishwasher.

Now, answer the next following question.

Question: what are the possible positions of apple?

Answer:


