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ABSTRACT

A canonical desideratum for prediction problems is that performance guarantees should hold not
just on average over the population, but also for meaningful subpopulations within the overall
population. But what constitutes a meaningful subpopulation? In this work, we take the perspective
that relevant subpopulations should be defined with respect to the clusters that naturally emerge from
the distribution of individuals for which predictions are being made. In this perspective, a population
refers to a mixture model whose components constitute the relevant subpopulations. We suggest
two formalisms for capturing per-subgroup guarantees: first, by attributing each individual to the
component from which they were most likely drawn, given their features; and second, by attributing
each individual to all components in proportion to their relative likelihood of having been drawn
from each component. Using online calibration for Gaussian mixture models as a case study, we
study a multi-objective algorithm that provides guarantees for each of these formalisms by handling
all plausible underlying subpopulation structures simultaneously, and achieve an O(T 1/2) rate even
when the subpopulations are not well-separated. In comparison, the more natural cluster-then-predict
approach that first recovers the structure of the subpopulations and then makes predictions suffers
from a O(T 2/3) rate and requires the subpopulations to be separable. Along the way, we prove that
providing per-subgroup calibration guarantees for underlying clusters can be easier than learning the
clusters: separation between median subgroup features is required for the latter but not the former.

1 INTRODUCTION

For systems that make predictions about individuals, it is well-understood that good performance on average across
the population may not imply good performance at an individual level. On the other hand, while the ideal system
might be one that can provide per-individual performance guarantees, such a system may be intractable to learn from
data, if it exists at all. To address these challenges, per-subpopulation guarantees have emerged as a widely-accepted
approach that balances tractability with ensuring good performance across subpopulations (e.g., Blum et al. (2017);
Hébert-Johnson et al. (2018); Hashimoto et al. (2018); Lahoti et al. (2020); Wang et al. (2020); Haghtalab et al. (2022)).
Such guarantees may also be desirable for normative or regulatory reasons to capture notions of fairness, or because
domain shift often involves changes in the proportions of subgroups. Therefore, the subpopulations for which guarantees
are provided should be those that are deemed especially significant, salient, or relevant.

What, then, defines a relevant subpopulation? One influential perspective considers a subpopulation as a predefined
combination of feature values, where individuals are represented as feature vectors (e.g., Hébert-Johnson et al. (2018)).
In our work, we take an alternative view on what constitutes a subpopulation of interest. We propose that the relevant
subgroups for a particular prediction task should be exactly those subgroups that emerge endogenously within the
distribution of the individuals being considered for that task. This means that the group membership(s) of any individual
cannot be determined through their features alone; instead, their group identity can be understood only by placing
their individual features in the context of the rest of the population. In effect, rather than being defined a priori, these
subgroups must be learned about from data in an unsupervised sense. We discuss further motivations for such an
approach in Appendix A.
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To operationalize our approach, our measures of per-group performance must handle the fact that any individual’s group
membership can be at best approximately inferred, e.g. as probabilities representing the likelihood that that individual
belonged to each group. Accordingly, we study two natural approaches to measuring per-group error. The first, which
we refer to as discriminant error, attributes the error an individual experiences only to the group that the individual
most likely belongs to. This corresponds to typical notions of clustering error and is often used in existing approaches
to handling uncertainty in group membership, which is effectively to ignore it (see, for example, discussion in Dong
et al. (2024)). We also study a probabilistic alternative, which we term likelihood error, where we attribute the error an
individual experiences to every group, but weighted according to the likelihoods of membership in each group. This
likelihood-based notion of per-group error explicitly acknowledges the existence of meaningful uncertainty in group
membership. As a consequence, likelihood error also provides some reasonable robustness properties (e.g., to changes
in the relative proportions of subgroups), and, relative to discriminant error, improves guarantees for subgroups that
comprise a smaller proportion of the total population.

Both of these measures, however, require knowledge of the subgroup distributions—that is, the likelihood that any
particular individual (feature vector) belongs to (was drawn from) any particular group—which depends on the
population distribution for the prediction task, and are therefore initially unknown. The natural strategy for addressing
the problems of unknown subgroups and unknown labels is to first complete the unsupervised task of learning the
subgroups, then for each of the learned distributions complete the supervised task of learning to predict; we call this
the cluster-then-predict approach. The overall prediction quality of this approach critically depends on how well the
“clustering” stage can be performed—a task that often requires a large number of observations and separation between
subpopulations. We circumvent this problem through a multi-objective approach where, instead of learning the exact
underlying clustering, we construct a class of plausible clusterings and provide high-quality per-group predictions for
all of them simultaneously. What clusterings are “plausible,” and how can we provide a solution that works for all of
them? These constitute the central technical thrusts of our work, which we outline below.

1) Understanding the structure of subpopulations. We instantiate our model of subpopulations for Gaussian
mixture models and consider the class of all plausible group membership functions corresponding to the two formalisms
of discriminant error and likelihood error. We give upper bounds on the covering number of these classes for Gaussian
mixture models, which we expect to be useful for the broader community and beyond multi-group learning.

2) Multi-objective algorithms for per-subgroup guarantees. Using calibration as a case study, we derive algorithms
providing per-subgroup guarantees in our model. We leverage recent results connecting online multicalibration to online
min-max optimization to minimize calibration error simultaneously over all clusters in a cover of the entire function
class. For both discriminant and likelihood calibration error, our multi-objective approach achieves O(T 1/2) online error
without requiring separability in the underlying clusters. This is in contrast to the error rates of the cluster-then-predict
approach, for which we demonstrate O(T 2/3) error rates even under separability assumptions.

3) Towards statistically-identifiable subpopulations. Beyond the technical approach, we view our work as an
important step towards reasoning about group membership in context of the actual population on which predictions
are being made. Our work argues that subpopulations should be defined endogenously, rather than characterized by
explicit combinations of feature values. In Appendix A, we further discuss the normative implications of viewing
subpopulations as such. Our framework also provides a language for formalizing the relationship between explicitly
learning subgroups, as opposed to providing high quality predictions for them: in fact, the former (which often requires
separation between subpopulation means) is not necessary for the latter.

1.1 RELATED WORK

Fair machine learning. The fair machine literature has developed various approaches to handling uncertainty in
group membership. One strategy is to avoid enumerating subgroups entirely, and instead focus on identifying subsets
of the domain where prediction error is high (Hashimoto et al., 2018; Lahoti et al., 2020). A separate line of work
considers learning when demographic labels are available but noisy (Awasthi et al., 2020; Wang et al., 2020). Yet
another approach is to use a separate estimator for group membership (Chen et al., 2019; Awasthi et al., 2021; Kallus
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et al., 2022); we note that our notions of per-group performance could be applicable to these methods as well, even
if our definitions of “group” are different. Liu et al. (2023) also propose a means of understanding group identity in
context with the rest of the population, in this case through social networks.

Multicalibration. Calibration is a well-studied objective in online forecasting (Dawid, 1982; Hart, 2022), with
classical literature having studied calibration across multiple sub-populations (Foster & Kakade, 2006) and recent
literature having studied calibration across computationally-identifiable feature groups (Hébert-Johnson et al., 2018).
The latter thread of work, known as multicalibration, has found a wide range of connections to Bayes optimality,
conformal predictions, and computational indistinguishability (Hébert-Johnson et al., 2018; Jung et al., 2021; Gopalan
et al., 2022; Gupta et al., 2022; Dwork et al., 2021; Jung et al., 2023). We use online multicalibration algorithms (Gupta
et al., 2021; Haghtalab et al., 2023) as a building block for efficiently obtaining per-group guarantees in our model.

2 PRELIMINARIES

Our generative model. Let X ∈ Rd denote a d-dimensional instance space and Y = {0, 1} denote the label or
outcome space. We consider a generative model over X × Y , where instances are generated from a mixture of k
distributions and the conditional outcome distribution is independent of the component from which the instance is
generated. Formally, we define a discrete hidden-state endogenous subgroups generative model f , such that

f(x, y) ∝ f(y | x)f(x | g)f(g),

where f(g) = wg is the distribution over [k] corresponding to mixing weights wg ∈ [0, 1] with
∑

g∈[k] wg = 1; f(x | g)
is the density of component g, and f(y | x) is a conditional label distribution that is independent of g. In this work, we
focus on the case where f(x | g) corresponds to Gaussian distribution N (µg,Σg). That is, (x, y) is generated by first
sampling integer g ∈ [k] according to weights (w1, . . . , wk), then sampling x ∼ N (µg,Σg), and finally sampling y
according to f(y | x). For clarity, we will often suppress wg in the following exposition, but our results follow without
loss of generality as long as all wg are bounded below by a constant.

Online prediction. Our high level goal is to take high-quality actions for instances that are generated from an
unknown endogenous subgroups model. Let A denote the action space. Examples of action spaces for prediction tasks
include A = {0, 1} where an action refers to a predicted label, or A = [0, 1] where an action refers to predicting the
probability that the label is 1. We consider an online prediction problem where a sequence of instance-outcome pairs
(x1, y1), . . . , (xT , yT ) is generated i.i.d. from an unknown generative model f supported on X × Y . At time t, the
learner must take an irrevocable action at ∈ A having seen only x1:t and y1:t−1. Equivalently, a learner can be thought
of as choosing a function pt : X → A that maps any feature x to an action a. From this perspective, at time t the learner
chooses pt having only observed x1:t−1 and y1:t−1, after which (xt, yt) is observed and the learner takes action pt(xt).

Performance on subpopulations. We evaluate the quality of the learner’s actions using a vector-valued loss function
ℓ : A× Y → E where E is some Euclidean space. Examples of loss functions include the scalar binary loss function
ℓ(a, y) := 1[a ̸= y] and the vector-based calibration loss ℓ(a, y)v = 1[a = v](a− y).

In the style of Blackwell approachability (Blackwell, 1956), the learner’s overall goal is to produce actions that lead to
small cumulative loss on all the relevant subpopulations in the sequence (x1, y1), . . . , (xT , yT ), as measured by a norm
∥·∥. We envision relevant subpopulations to be exactly the mixture components of our generative model. However, it is
not possible to determine the component that generates an instance (x, y) in a mixture model. Instead, we consider
two notions of performing well on subpopulations. In the first, we purely attribute each (x, y) to the component
g = argmaxj∈[k] f(j | x, y) that was most likely responsible for producing (x, y); that is, we aim to minimize

max
g∈[k]

∥∥∥∥∥
T∑

t=1

1
[
g = argmax

j∈[k]

f(j | xt, yt)
]
· ℓ(at, yt)

∥∥∥∥∥ .
The attribution of (x, y) to the most likely component corresponds to the usual task of clustering as is done in practice.
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In the second, we attribute each (x, y) to a subpopulation g with probability f(g | x, y); that is, we aim to minimize

max
g∈[k]

∥∥∥ T∑
t=1

f(g | xt, yt) · ℓ(at, yt)
∥∥∥.

Note that by definition, f(g | x, y) = f(x|g)wg∑
j∈[k] f(x|j)wj

is the probability g was indeed responsible for producing (x, y).
This objective considers the contribution of an individual to subgroup error in proportion to the uncertainty of that
individual’s “group membership.” Additionally, note that this objective is robust to reweightings of subpopulations, as
E [f(g | xt, yt)ℓ(at, yt)] = f(g)E [ℓ(at, yt) |g ].

2.1 MODEL INSTANTIATION FOR CALIBRATION LOSS

For concreteness, this paper focuses on studying an instantiation of our model for the task of producing predictions
that are calibrated with respect to clusterable subpopulations. However, our approach extends beyond calibration to
a number of other settings that can be studied under online approachability, such as online conformal prediction and
calibeating (Jung et al., 2023; Lee et al., 2022).

For studying calibrated predictions, we work with action space A = [0, 1] and let ŷ ∈ A correspond to the predicted
probability that y = 1. Calibration is a common requirement on predictors, necessitating their predictions to be unbiased
conditioned on the predicted value. For technical reasons such as dealing with the fact that predicted values can take
any real values, calibration is more conveniently defined by considering buckets of predicted values. Formally, we
define a set of buckets Vλ = {0, 1/λ, 2/λ, . . . , 1} and say that prediction ŷ belongs to bucket v (denoted by ŷ ∈ v)
when |ŷ − v| ≤ 1/2λ. Then, the calibration error of a sequence of predictors p1, . . . , pT on instance-outcome pairs
(x1, y1), . . . , (xT , yT ) is defined by maxv∈Vλ

∣∣∑T
t=1 1

[
pt(xt) ∈ v

]
· (pt(xt)− yt)

∣∣. In other words, calibration loss is
the cumulative ℓ∞ norm of the objective ℓ(a, y) = [1[a ∈ v] · (a− y)]v∈Vλ

.

We can accordingly define two variants of the calibration error that account for miscalibration as experienced by each
component. In these definitions, we take λ > 0 to be fixed and clear from the context and suppress it in the notations.

In our first definition, called the discriminant calibration error, an instance (x, y) is purely attributed to the component
g = argmaxj∈[k] f(j | x, y) that was most likely responsible for producing (x, y).

Definition 1 (Discriminant Calibration Error). Given a sequence of instance-outcome pairs (x1, y1), · · · , (xT , yT ), the
discriminant calibration error of predicted probabilities ŷ1, . . . , ŷT with respect to the endogenous subgroups model f —
as specified by distributions f(y|x), f(x|g), and f(g) — is defined as

DCEf (ŷ1:T , x1:T , y1:T ) := max
g∈[k]

max
v∈Vλ

∣∣∣∣∣
T∑

t=1

1
[
g = argmax

j∈[k]

f(j | xt, yt)
]
· 1 [ŷt ∈ v] · (ŷt − yt)

∣∣∣∣∣ ,
When predictors p1, . . . , pT are used for making predictions ŷt = pt(xt), we denote the corresponding discriminant
calibration error by DCEf (p1:T , x1:T , y1:T ).

In our second approach, likelihood calibration error, (x, y) is attributed to any component g with likelihood f(g | x, y).
Definition 2 (Likelihood Calibration Error). Given a sequence of instance-outcome pairs (x1, y1), · · · , (xT , yT ), the
likelihood calibration error of predicted probabilities ŷ1, . . . , ŷT with respect to the endogenous subgroups model f —
as specified by distributions f(y|x), f(x|g), and f(g)) — is defined as

LCEf (ŷ1:T , x1:T , y1:T ) := max
g∈[k]

max
v∈Vλ

∣∣∣∣∣
T∑

t=1

f(g | xt, yt) · 1 [ŷt ∈ v] · (ŷt − yt)

∣∣∣∣∣ .
When predictors p1, . . . , pT are used for making predictions ŷt = pt(xt), we denote the corresponding likelihood
calibration error by LCEf (p1:T , x1:T , y1:T ).
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3 A FIRST ATTEMPT: CLUSTER-THEN-PREDICT

As a warmup, we consider the natural algorithmic approach: to first spend some timesteps to estimate the underlying
group structure, and then provide guarantees for the estimated groups. We will focus on minimizing discriminant
calibration error for a simplified problem setting, then highlight some challenges involved in extending the approach to
(a) more general problem settings and (b) to minimizing likelihood calibration error.

Minimizing discriminant calibration error via cluster-then-predict. To instantiate cluster-then-predict for dis-
criminant calibration error, we leverage two common types of algorithms. For the first phase, we use a clustering
algorithm that, given a Gaussian mixture model, outputs a mapping F : X → {1, 2} indicating the group memberships.
In particular, we use the algorithm of Azizyan et al. (2013) to obtain F for which F (x) = argmaxj∈{1,2} f(j | x) for
all but an ε fraction of the underlying distribution, after having made O(1/ε2) observations. For the second phase, we
can instantiate one (online) calibration algorithm that provides marginal calibration guarantees for its predictions on
each of the two clusters. For example, Foster & Vohra (1998) guarantees at most T 1/2 calibration error.1

Cluster-Then-Predict Algorithm for Minimizing DCE

For the first T ′ < T timesteps, make arbitrary predictions and collect observed features x1, . . . , xT ′ . Apply a
clustering algorithm, such as the Azizyan et al. (2013) estimator, to the observed features to partition the domain
into cluster assignments F : X → {1, 2}.

Then, instantiate two calibrated prediction algorithms (e.g., the Foster & Vohra (1998) algorithm), one for each
cluster. For every subsequent timestep t = T ′+1, . . . , T , observe xt and predict ŷt by applying a calibrated online
forecasting algorithm to the transcript {(xτ , yτ ) | T ′ < τ < t, F (xτ ) = F (xt)} consisting only of datapoints with
the same predicted cluster assignment.

We formalize the guarantees of this approach in Proposition 3.1.
Proposition 3.1. Let f be an unknown endogenous subgroups model whose Gaussian components are isotropic with
∥µ1 − µ2∥ ≥ γ. Then, with probability 1− δ, the Cluster-Then-Predict algorithm attains discriminant calibration error
of O(d1/3T 2/3γ−4/3 +

√
T log(1/δ)), when it is run with an appropriate choice of T ′ = Θ(d1/3T 2/3γ−4/3).

Proof Sketch. This T 2/3 rate is typical for two-stage online algorithms, such as explore-then-commit, and its proof
is also similar. By Azizyan et al. (2013) (see Theorem C.1), learning a cluster assignment F that has ε error takes
T ′ = Θ(d/γε2) samples. Note that, the DCE of this algorithm is at most T ′ + εT +

√
T ln(1/δ), where the second

term accounts for the clustering mistakes and the third term accounts for the calibration error of the “predict” stage.
Setting T ′ = Θ(d1/3T 2/3γ−4/3) gives the desired bound.

Remark 3.2. In addition to the upper bound, the result of Azizyan et al. (2013) also implies that, for this class of
cluster-then-predict algorithms, the O(T 2/3) rate is in fact minimax optimal: it is impossible to learn F to any higher
accuracy with any fewer samples.

Remark 3.3. Another consequence of the cluster-then-predict approach is that any hardness in learning cluster
membership is inherited. For example, the γ-separation dependence of Proposition 3.1 is unavoidable in the task of
learning cluster assignments, and by extension any instantiation of the cluster-then-predict approach.

Beyond 2-component isotropic mixtures. For discriminant calibration error, extending these results beyond 2
components to general k-component mixtures complicates the analysis in two ways. First, the ground-truth cluster

1The guarantees of Foster & Vohra (1998) hold even when xt are adversarial; an even simpler algorithm would suffice for our i.i.d
case. For example, one could take the naive approach of using some additional timesteps to estimate E[y | g] to sufficient accuracy
and use those estimated means for the remainder of time.



240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

6

assignment functions x 7→ argmaxi∈[k] f(i | x) are no longer halfspaces but rather Voronoi diagrams for k > 2.
Second, the minimax optimal accuracy rate for estimating the cluster assignment function of a k-component isotropic
Gaussian mixture model is not known exactly, aside from being polynomial (Belkin & Sinha, 2015). Extending these
results to mixtures of non-isotropic Gaussians or to non-uniform mixtures is also non-trivial, even for k = 2; minimax
optimal rates are similarly unknown for these generalizations. One challenge for proving such a result is that the cluster
assignment functions are no longer halfspaces, but rather non-linear boundaries, as illustrated in Figure 1.

Figure 1: Illustration of the non-linear boundaries that arise in the cluster assignment functions of non-isotropic
Gaussian mixtures for k = 2. Means of each component are marked with red stars.

Extension to likelihood calibration error. Applying the cluster-then-predict approach to minimize likelihood
calibration error again provides a T 2/3 rate.
Proposition 3.4. Let f be an unknown endogenous subgroups model whose Gaussian components are isotropic, and
where µ1 and µ2 are separated by a constant in every dimension. Then, with probability 1− δ, a Cluster-Then-Predict
Algorithm for Minimizing LCE, setting T ′ = O(T 2/3), incurs likelihood calibration error of Õ

(
T 2/3

√
d log(d/δ)

)
.

We defer the proof of Proposition 3.4, and the statement of the corresponding algorithm, to Appendix C.

Implementing this approach requires some additional care. In the first phase, we must learn a good likelihood function
for each cluster (i.e., f(g | x)), rather than a cluster assignment function. This can be done by estimating the parameters
of each component, then using those estimates to construct likelihood functions; to that end, we can apply existing
parameter learning algorithms (e.g. Hardt & Price (2015)). A more significant challenge is that even if a good estimator
f̂(g | x) is known, the fact that group membership is real-valued means that we can no longer partition the space
and independently calibrate predictions in each partition. Instead, our predictions must handle the fact that each xt

belongs to multiple groups; this motivates the use of online calibration algorithms with multi-group guarantees, called
multicalibration. For similar reasons, we apply multicalibration algorithms in our multi-objective approach, which we
discuss in the following section.

4 IMPROVED BOUNDS: A MULTI-OBJECTIVE APPROACH

The cluster-then-predict approach studied in Section 3 necessitates learning the exact subpopulation/cluster structure
that underlies the data distribution—that is, learning the binary functions x 7→ argmaxg f(g | x) or the conditional
likelihoods f(g | x) to high accuracy. As an alternative to resolving the underlying structure explicitly, we consider a
multi-objective approach where we aim to simultaneously provide subgroup guarantees for a representative uncertainty
set—specifically a covering—of all possible subpopulation structures.

Building a covering of possible underlying cluster structures is significantly easier in a statistical sense than learning
the true structure directly, which offers two benefits. First, rather than paying the T 2/3 error rate typical of cluster-
then-predict methods, the multi-objective approach provides an optimal T 1/2 error rate. Second, rather than paying the
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inevitable mean separation dependence involved in learning discriminant or likelihood functions, the multi-objective
approach provides error rates independent of separation.

In Section 4.2, we demonstrate the key technical result enabling the multi-objective approach for likelihood calibration
error: an upper bound on the covering number of cluster likelihood functions. In Section 4.3, we extend the result by
showing how to convert a covering of the likelihood functions to a covering of the discriminant functions.

4.1 SIMULTANEOUS GUARANTEES UNDER MULTIPLE CLUSTERING SCHEMES

In this section, we use multicalibration algorithms to simultaneously provide per-subgroup guarantees for multiple
hypothetical clustering schemes, a multi-objective approach that does not require resolving the underlying clustering
scheme. Multicalibration is a refinement of calibration that requires unbiasedness of predictions not only on distinguish-
ers resolving the level sets of one’s predictors, i.e. {1[pt(xt) ∈ v]}v∈Vλ

, but also on distinguishers that identify parts of
the domain. We use an adaptation of the original multicalibration definition for real-valued distinguishers of the domain.
Definition 3 (Multicalibration Error). Given a sequence of instance-outcome pairs (x1, y1), . . . , (xT , yT ) and class of
distinguishers G ⊂ [0, 1]X , the multicalibration error of predicted probabilities ŷ1, . . . , ŷT with respect to G is

MCE(ŷ1:T , x1:T , y1:T ;G) := max
g∈G

max
v∈Vλ

∣∣∣∣∣∣
∑
t∈[T ]

g(xt) · 1[ŷt ∈ v] · (ŷt − yt)

∣∣∣∣∣∣ .
When predictors p1, . . . , pT are used for making predictions ŷt = pt(xt), we denote the corresponding multicalibration
error by MCE(p1:T , x1:T , y1:T ;G).

To show how multicalibration can be useful, we first establish that we can upper bound likelihood calibration error and
discriminant calibration error in terms of multicalibration error for carefully-designed classes of distinguishers.
Fact 4.1. Let F be the class of all endogenous subgroups models considered in our setting. Take f ∈ F to
be an arbitrary endogenous subgroups model and p1, . . . , pT to be an arbitrary sequence of predictors. Then,
DCEf (p1:T , x1:T , y1:T ) ≤ MCE(p1:T , x1:T , y1:T ;G) defined for any set of distinguishers G where G ⊇ {x 7→ 1[g =
argmaxj f(j | x)] | g ∈ [k]}. One such choice of G is

G = {x 7→ 1[g = argmax
j

f ′(j | x)] | g ∈ [k], f ′ ∈ F}. (1)

Similarly, LCEf (p1:T , x1:T , y1:T ) ≤ MCE(p1:T , x1:T , y1:T ;G), for any set of distinguishers G where G ⊇
{x 7→ f(g | x) | g ∈ [k]}. One such choice of G is

G = {x 7→ f ′(g | x) | g ∈ [k], f ′ ∈ F}. (2)

For any (potentially infinite) set of real-valued distinguishers G with finite covering number, the following algorithm
achieves O(

√
T ) multicalibration error (Proposition 4.2): efficiently cover the space of distinguishers and run a standard

online multicalibration algorithm on the cover. In Appendix D, we give explicit example algorithms for each stage—the
covering stage (Algorithm 1) and the calibration stage (Algorithm 2).

Online Multicalibration Algorithm for Coverable Distinguishers

For the first T ′ =
√
T log(N1(ε/8,G, 2T )) timesteps, make arbitrary predictions and collect observed features

x1, . . . , xT ′ and compute a small ε-covering G′ of the set G on x1, . . . , xT ′ , e.g. using Alg. 1.

For the remaining timesteps t = T ′ + 1, . . . , T , observe xt and predict yt by applying any online multicalibration
algorithm, e.g. Alg. 2, to the transcript of previously seen datapoints {(xτ , yτ ) | τ < t} and distinguishers G′.

In this section, we use N1(ε,G,m) to denote the covering number of G on m datapoints in ℓ1-norm with distance ε.
Proposition 4.2 bounds the error incurred by the Online Multicalibration Algorithm for Coverable Distinguishers.
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Proposition 4.2. For any real-valued function class G whose covering number grows sub-square root exponentially, i.e.

N1(1/96T,F , 2T ) ≤
√

1
8 exp(1/32T ), with probability 1−δ, the predictions p1:T made by the Online Multicalibration

Algorithm for Coverable Distinguishers satisfy MCE(p1:T , x1:T , y1:T ;G) ≤ Õ
(√

T log(N1(ε,G, T )λ/δ)
)
.

The key technical ingredient in the proof of Proposition 4.2 is the following lemma, which states that an empirical cover
computed on a finite number of samples is a true ε-cover with high probability. We defer its proof to Appendix D.2.

Lemma 4.3. Given ε, δ, T > 0 and a real-valued function class F where N1(ε/96,F , 2T ) ≤
√

1
8 exp(Tε

2/32),
consider any ε-cover F ′ of F computed on T random datapoints. Then F ′ is a 4ε-cover of F with probability at least
1−O(N1

(
ε
8 ,F , 2T

)2
exp(−Tε)).

Proof of Proposition 4.2. We will begin by analyzing the multicalibration error incurred on timesteps T ′ + 1 . . . T .
Abusing notation, for any g ∈ G, let g′ := arg inf∈G

1
T ′

∑
t∈[T ′] |g′(xt)−g(xt)|. Such a g′ always exists, because G′ was

computed using x1:T ′ . Then, by the triangle inequality, we have that for transcript H = (pT ′+1:T , xT ′+1:T , yT ′+1:T ):

MCE(H;G) ≤ sup
g∈G

max
v∈Vλ

∑
t∈[T ′:T ]

|g(xt)− g′(xt)| · 1[ŷt ∈ v] · |ŷt − yt|︸ ︷︷ ︸
(A)

+MCE(H;G′)︸ ︷︷ ︸
(B)

. (3)

For (B), since the distinguisher class covering is small, specifically |G′| ≤ N1(ε,G, T ′), standard multicalibration
algorithm analysis gives that with probability 1− δ1, we have (B) ≤

√
log(N1(ε,G, T ′)λ/δ1)(T − T ′) (Haghtalab

et al. (2023) Theorem 4.3; see Theorem D.1).

To bound (A), we would like to apply Lemma 4.3; to do so, we will apply Hoeffding’s inequality on the random
variables |g(xt)− g′(xt)|. In particular, note that we can trivially bound 1[ŷt ∈ v] · |ŷt − yt| ≤ 1 for all t; therefore,
(A) ≤ supg∈G

∑
t∈[T ′:T ] |g(xt)− g′(xt)|, and Hoeffding’s inequality gives us that with probability 1− δ2,

sup
g∈G

∑
t∈[T ′:T ]

|g(xt)− g′(xt)| ≤ (T − T ′) sup
g∈G

E[|g(x)− g′(x)|] +O(
√
(T − T ′) log(1/δ2)).

Now, by Lemma 4.3, we have that with probability 1− δ2,
sup
g∈G

E[|g(x)− g′(x)|] ≤ 8
T ′ log

(
N1(

ε
8 ,G, 2T

′)/δ3)
)
.

Therefore, with probability 1− δ2 − δ3,

sup
g∈G

∑
t∈[T ′:T ]

|g(xt)− g′(xt)| ≤ 4(T−T ′)
T ′ log

(
N1(

ε
8 ,G, 2T

′)
)
+O(

√
(T − T ′) log(1/δ2)).

Combining this with (3) and choosing δ1, δ2, δ3 = Θ(δ), we have that with sufficiently large T ′, with probability 1− δ,

MCE(pT ′:T , xT ′:T , yT ′:T ;G) ≤ O
(

T
T ′ log

(
N1(

ε
8 ,G, 2T

′)/δ
)
+
√
T log(N1(ε,G, T ′)λ/δ)

)
.

The statement follows from noting that MCE(p1:T ′ , x1:T ′ , y1:T ′ ;G) ≤ T ′ and choosing T ′ =
√
T log

(
N1(

ε
8 ,G, 2T )

)
.

4.2 MINIMIZING LIKELIHOOD CALIBRATION ERROR

We now turn to instantiating our multi-objective approach for minimizing likelihood calibration error: run the online
multicalibration algorithm on the distinguisher class G as defined in Eq. 2, which consists of the group likelihood
functions for all possible underlying cluster structures. The online multicalibration algorithm obtains a covering of
the distinguisher class—selecting a small uncertainty set of cluster structures to simultaneously provide guarantees
for—then runs a standard multicalibration algorithm.
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Theorem 4.4. With probability 1− δ, the Online Multicalibration Algorithm for Coverable Distinguishers, run with G
as defined in Eq. 2, attains likelihood calibration error of O

(√
T (d2k log(T ) log3(d2k) + log(λ/δ))

)
.

The multi-objective algorithm thus evades the separation dependence of cluster-then-predict (Proposition 3.4) while also
obtaining the optimal Õ(

√
T ) rate. Notably, this error rate is significantly better than the best known rates for learning

multivariate Gaussian likelihood functions: Hardt & Price (2015) prove an ε−12 lower bound for learning a mixture of
two Gaussians, which would suggest a corresponding T 11/12 rate; a T 1/2 rate would have only been achievable under
the separation assumption of Proposition 3.4. The key technical fact that our analysis relies on is that the combinatorial
complexity of Gaussian clustering schemes is bounded and small. This is summarized by the following lemma, which
bounds the pseudodimension of G.

Lemma 4.5. Let F be the set of possible generative models in our class. The real-valued hypothesis class
G = {x 7→ f ′(g | x) | g ∈ [k], f ′ ∈ F} has a pseudodimension of at most (kd(d+ 1) + k) log2(kd(d+ 1) + k).

Proof. Without loss of generality, fix g = 1. For any f ∈ F , we can write f(1 | x) as:

f(1 | x) = f(x | 1)∑
j∈[k] f(x | j)

=
1∑

j∈[k] exp(−(x− µj)⊤Σj(x− µj) + (x− µ1)⊤Σ1(x− µ1))
.

To bound the cover size of G, we will analyze the building blocks of this function one at a time, and utilize convenient
properties of composition for pseudodimension and covering numbers.

Fix any x ∈ Rd. Consider the set of d(d + 1) elements S := {xixj}i,j∈[d]

⋃
{xi}i∈[d] and corresponding function

class H := {x⊤(Σ− Σ′)x− x⊤Σµ+ x⊤Σ′µ′ + µ⊤Σµ− µ′⊤Σ′µ′ | Σ,Σ′ ∈ Rd×d, µ, µ′ ∈ Rd}. Then, Pdim(H) ≤
d(d + 1) + 1 (Fact B.2). Furthermore, monotonic functions preserve pseudodimension (Fact B.3); since the exp
function is monotonic, Pdim({exp(h) | h ∈ H}) ≤ d(d + 1) + 1. Similarly, since x 7→ 1/x is also monotonic,
Pdim({1/ exp(h) | h ∈ H}) ≤ d(d + 1) + 1. Finally, we also have that the sum of bounded pseudodimension
classes enjoy an almost linear bound in pseudodimension (Attias & Kontorovich (2024) Thm. 1; Fact B.4); thus,
Pdim({

∑
i∈[k] 1/ exp(hi) | h1, . . . , hk ∈ H}) ≤ (kd(d+ 1) + k) log2(kd(d+ 1) + k).

Proof of Theorem 4.4. By Lemma 4.5, Pdim(G) ≤ (kd(d+ 1) + k) log2(kd(d+ 1) + k). Therefore, N1(ε,G, T ) ≤
O
(
Pdim(G)(1/ε)Pdim(G)) ≤ O(d2k log2(d2k)(1/ε)d

2k log2(d2k)) (Anthony & Bartlett (1999) Thm. 18.4; see Fact B.1).
The statement of the theorem follows from Proposition 4.2 combined with Fact 4.1, and choosing ε = 1/T .

4.3 MINIMIZING DISCRIMINANT CALIBRATION ERROR

We can also instantiate the multi-objective approach for minimizing discriminant calibration error to realize a similar
O(

√
T ) rate. In this case, we apply online multicalibration to the class of distinguishers G as defined in Eq. 1 to consist

of the group discriminant functions for all possible underlying cluster structures.

Theorem 4.6 formalizes the guarantee of this approach when cluster centers are well-separated. In contrast to the
Cluster-then-Predict guarantee of Proposition 3.1, Theorem 4.6 obtains an improved error rate of Õ(

√
T ) versus

Õ(T 2/3) and does not require isotropic assumptions.

Within this section, we will call a set of likelihood functions {f ′(g | x) | g ∈ [k]} legal if there exists a Gaussian
mixture model giving rise to the likelihood functions, i.e., for all x ∈ X , we have

∑
g∈[k] f

′(g | x) = 1 and
f ′(g | x) ∈ [0, 1]. Then, given a legal combination of functions of form {f ′(g | x) | g ∈ [k]}, we write Ff ′(x) =
1[1 = argmaxi∈[k] f

′(i | x)] to denote the corresponding arg-max function for g = 1.

Theorem 4.6. Assume covariance matrices Σ1, . . . ,Σk have constant eigenvalues and that, for all i ̸=
j, ∥µi − µj∥ ≥ γ = Ω(

√
d+ log(k + T )). Then, with probability 1 − δ, the Online Multicalibra-
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tion Algorithm for Coverable Distinguishers, with G as in Eq. 1, attains discriminant calibration error of

O(
√
T (exp(−γ)d2k2 log3(d2k) log(T ) + log(λ/δ))).

The statement of Theorem 4.6 follows from Proposition 4.2, choosing ε = 1/T , and the following bound on the
covering number of discriminant functions.
Lemma 4.7. Let F be the set of possible generative models in our class. The binary-valued hypothesis class
G = {x 7→ 1[g = argmaxg′∈[k] f

′(g′ | x)] | g ∈ [k], f ′ ∈ F} has a covering number of N1(ε,G,m) ∈
O((d2k log2(d2k)(k/γε)d

2k log2(d2k))k) under the assumptions of Theorem 4.6.

When cluster centers are not well-separated, we can still obtain a similar rate under isotropic assumptions.
Theorem 4.8. Let f be an unknown discrete hidden-state generative model whose Gaussian components are isotropic
and equally weighted. With probability 1− δ, the Online Multicalibration Algorithm for Coverable Distinguishers, run
with G as defined in Eq. 1, attains discriminant calibration error of O

(√
T (dk2 log(T ) log(k) + log(λ/δ))

)
.

Gap between learning sub-group guarantees and learning subgroups. Theorem 4.8 provides an O(
√
T ) bound

independent of component mean separation, even though learning the subgroup discriminator function requires sample
complexity that scales with component mean separation.
Theorem 4.9 (Azizyan et al. (2013), Theorem 2). Let f be an unknown endogenous subgroups model with two isotropic
Gaussian components with d ≥ 9. The sample complexity of learning the cluster assignment function is Ω( d

ε2γ6 ).

Notably, this lower bound holds even for the case of having two equal weight isotropic Gaussians. This sample
complexity is paid for, for example, in the first stage of the Cluster-then-Predict approach. That Theorem 4.8 obtains a
better bound highlights the surprising fact that providing clusterable group guarantees can be easier than clustering,
lending further motivation to multi-objective approaches over cluster-then-predict.

5 DISCUSSION

This work has focused on a particular instantiation of our model—for (online) calibration as the objective, and
Gaussian mixtures as the subgroup structure underlying our endogenous subgroups model. However, as discussed in
Section 2, the results presented in this paper for calibration extend to other problems that can be formalized in the
language of Blackwell approachability, such as online conformal prediction. Another extension is to handle other
families of subgroup structures beyond Gaussian mixture models. Many of our results rely on known analyses of
Gaussian densities, but in principle, similar technical analysis can be performed for other unsupervised learning models
of bounded combinatorial complexity. In fact, our approaches—and notions of discriminant calibration error and
likelihood calibration error—can apply to any setting where group membership can at best be estimated.

More generally, our formalization of an unsupervised notion of multi-group guarantees provides a language for
understanding an important downstream application of clustering. Our results demonstrate that being intentional about
how learned clusters will be used, rather than treating clustering and learning as distinct stages, is significant both
conceptually and for attaining optimal theoretical rates. First, resolving the exact clustering structure of one’s data is
inefficient, and results in the same theoretical sub-optimality as explore-then-commit algorithms in bandit/reinforcement
learning literature—namely, O(T 2/3) rather than O(T 1/2) rates. Second, the task of learning with guarantees for
subgroups can be surprisingly easier than learning the subgroups themselves. The most striking example of this appears
in our results for discriminant calibration error, for which we show that learning cluster assignment functions has an
inevitable dependence on cluster separation, whereas separation can be ignored when pursuing per-cluster guarantees.
Moreover, as our improved rates for the multi-objective approach suggest, it is not just that learning subgroups may be
harder: it is also not necessary to learn the subgroups exactly if the ultimate goal is to provide guarantees across them.
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A ADDITIONAL MOTIVATION AND RELATED WORK

One reason to think of group membership in context of the population rather than as deterministic functions of individual
features is a normative provocation. From a modeling perspective, one common critique of standard practice is that
observable (demographic) features are only approximations of more complex phenomena that are related to—but not
directly causal of—shared life experience. Therefore, demanding “equal performance” across rigid (demographic)
categories does not necessarily imply “fairness” in a normative sense (see e.g. Benthall & Haynes (2019); Hu &
Kohler-Hausmann (2020); Hu (2023) for more extended discussion). In some sense, our approach can be seen as an
attempt to develop a more constructivist perspective on defining subpopulations—placing individuals in context with
others for whom those predictions are made, and allowing group definitions to vary based on the particular prediction
task—as opposed to an essentialist one. Therefore, while the (U.S.) legal system relies on such categories to instantiate
concrete discussions of discrimination, those categories are not necessarily the only or most salient ways to understand
a population. Of course, we cannot claim to fully resolve these normative challenges or realize these goals; at the very
least, however, we think of them as a reason to explore different ways of understanding the relationship between groups
and individuals.

On the other hand, we argue that the subgroups we consider have a natural correspondence to those subgroups which
have practical significance. Because we cannot determine group membership solely based on an individual’s feature
vector, our problem setting requires some structure on the domain; in particular, features must be clusterable. Then, if
all one initially knows about the population is that it is comprised of multiple subpopulations where group membership
affects feature realizations, determining subgroup membership based only on those realizations is the best one can expect
to do. Our focus on statistically identifiable groups is in contrast with the computationally-identifiable groups studied
when subpopulations are defined as combinations of feature values. In those settings, it is necessary to ensure that
membership can be distinguished as efficiently as possible (e.g., through low circuit complexity, as multicalibration was
initially described in Hébert-Johnson et al. (2018)); in our setting, the key challenge is to instead identify membership
as accurately as possible, because group membership itself is uncertain.

Of course, for our setting, accuracy in our model can be formalized either in the “discriminant” sense or the “likelihood”
sense. When might one prefer one over another? It is clear that, when all groups are well-separated, discriminant
calibration error and likelihood calibration error are approximately equivalent; furthermore, in these cases, there is
no meaningful uncertainty in group membership. Our model is therefore most salient exactly when the Gaussian
components of the endogenous subgroups model are not always well-separated. In this case, likelihood calibration error
is advantageous over discriminant calibration error for several reasons. For one, likelihood calibration error handles
underrepresented groups more gracefully than discriminant calibration error; more generally, likelihood calibration
error captures uncertainty in group membership at a more granular level than discriminant calibration error which is
necessarily coarser. Our technical results also point to preferring likelihood calibration error—Theorem 4.4 does not
require the same assumptions as 4.6 (separation) and 4.8 (isotropic).

We also note that finding statistically identifiable subpopulations from data (in the sense of learning membership
likelihoods), and using those subgroups downstream, is not a new idea. When true subgroup labels are unknown,
inferring or estimating group membership is a natural (and sometimes even necessary) approach. For example, it is
well-known that names are often associated with demographic identity (Elder & Hayes, 2023), and audits of resume
screening systems in practice often use those assumed associations rather than explicitly-stated demographic identity
(e.g. Kang et al. (2016); Wilson & Caliskan (2024)). More generally, an extensive literature discusses how demographic
labels might be imputed from data—e.g., name and census tract, in the well-known “BISG” (Bayesian Improved
Surname Geocoding) approach (Elliott et al., 2009) and its variants; how those labels might be used for downstream
purposes (e.g. auditing lending decisions (Zhang, 2018)); and how those estimates ought to be incorporated in a
mathematical sense to those downstream applications (e.g., (Dong et al., 2024) and others).

Finally, though intersectionality per se is not the focus of our work, our model of subpopulations raises interesting
questions in this direction. For instance, one suggestion in Wang et al. (2022) is to explicitly consider intrinsic structure
in covariates across groups. More generally, to the extent that the notion of power is central to what “defines” a group
(Ovalle et al., 2023), this appears more clearly in our model of subgroups.
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B FACTS, REFERENCES, AND RESTATEMENTS

Fact B.1 (Anthony & Bartlett (1999), Theorem 18.4). Let G be a real-valued function class. Then N1(ε,G,m) ≤
O
(
Pdim(G)(1/ε)Pdim(G)). Note that, if G is a binary function, the bound holds for VC(G).

Fact B.2 (Anthony & Bartlett (1999), Theorem 11.4). The pseudodimension of a k-dimensional vector space of real
valued functions is k + 1.
Fact B.3 (Anthony & Bartlett (1999), Theorem 11.3). Let f be a monotonic function and G be a real-valued function
class with pseudodimension d. Then the pseudodimension of {f ◦ g | g ∈ G} is d.
Fact B.4 (Attias & Kontorovich (2024), Theorem 1). Let F1, . . . ,Fk be real-valued function classes each with a
pseudodimension of d. Then the pseudodimension of {

∑
i fi | f1 ∈ F1, . . . , fk ∈ Fk} is kd log2(kd).

Fact B.5 (Devroye et al. (2013), Theorem 21.5). The VC dimension of the class of k-cell Voronoi diagrams in Rd is
upper bounded by k + (d+ 1)k2 log k.

C PROOFS FOR SECTION 3

C.1 PROPOSITION 3.1

Let Ψγ = {µ1, µ2 ∈ X | ∥µ1 − µ2∥ ≥ γ} denote the space of possible component means with at least γ separation.
Let Fn be the class of all mixture model estimators; formally, we define Fn as the set of all functions mapping from
n-length datasets (X )n to functions {1, 2}X . Azizyan et al. (2013) provides an estimator for the Gaussian mixture
model that achieves the minimax optimal error rate, with a guarantee as follows.
Theorem C.1 (Minimax Gaussian clustering rates (Azizyan et al., 2013)). For n ≥ max{68, 4d}, the minimax optimal
accuracy for the estimator of a two-component isotropic Gaussian mixture model with separation γ is

inf
F∈Fn

sup
θ∈Ψγ

E
{x1,...,xn}∼Dn

θ

[
Pr

x∼Dθ

[
F (x1, . . . , xn)(x) ̸= argmax

i∈{1,2}
f(g = i | x)

]]
∈ Θ̃

(
1

γ2

√
d

n

)
where Θ̃ suppresses logarithmic factors, Dµ1,µ2

denotes the uniform mixture of N (µ1, Id) and N (µ2, Id), and Dn
µ1,µ2

denotes n i.i.d. samples from Dµ1,µ2 .

Proof of Proposition 3.1. We instantiate the cluster-then-predict algorithm with the Gaussian mixture model estimator
of (Azizyan et al., 2013) for the first phase. For the second phase, we use the multicalibration algorithm of Algorithm 2;
we will instantiate Algorithm 2 with the trivial distinguisher set G1 = {x → 1} because we only need calibration with
marginal guarantees within each bucket. By Theorem C.1, the expected clustering error attained by the (Azizyan et al.,

2013) estimator learned with T ′ samples is O
(

1
γ2

√
d
T ′

)
. Let the resulting cluster assignment function be denoted F .

Using Hoeffding’s inequality, this implies that with probability at least 1− δ,
T∑

t=T ′

1
[
F (xt) ̸= argmax

j∈[k]

f(j | xt, yt)
]
≤ E

[
T∑

t=T ′

1
[
F (xt) ̸= argmax

j∈[k]

f(j | xt, yt)
]]

+
√

(T − T ′) log(1/δ)

≤ O
(

1
γ2

√
d
T ′ (T − T ′) +

√
(T − T ′) log(1/δ)

)
. (4)

With a slight abuse of notation, let us define the quantity DCEF (ŷT ′:T , xT ′:T , yT ′:T ) as the discriminant calibration
error that would have been incurred had F : X → {1, 2} been the true discriminant with respect to f , that is,2

DCEF (ŷT ′:T , xT ′:T , yT ′:T ) := max
g∈[k]

max
v∈Vλ

∣∣∣∣∣
T∑

t=1

1
[
g = F (xt)

]
· 1 [ŷt∈v] · (ŷt − yt)

∣∣∣∣∣ .
2Note that the in the usual definition of DCE, the only information needed about the endogenous subgroups model f is the

corresponding discriminant function argmaxj f(j|x, y), and f(j|x, y) is independent of y given x.
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By Theorem D.1, the calibration error on timesteps t > T ′ where cluster 1 is predicted, i.e. F (xt) = 1, is bounded
with probability at least 1− δ by O(

√
T1 log(1/δ)) where T1 =

∑T
τ=T ′+1 1[F (xt) = 1] is the number of timesteps

where cluster 1 is predicted. With a similar bound holding for cluster 2, by union bound, we have that

DCEF (ŷT ′:T , xT ′:T , yT ′:T ) ∈ O(
√
(T − T ′) log(1/δ)). (5)

By triangle inequality and an additional union bound, combining (4) and (5) gives

DCEf (ŷ1:T , x1:T , y1:T ) ≤ O

(
T ′ + 1

γ2

√
d
T ′ (T − T ′) +

√
(T − T ′) log(1/δ)

)
.

Choosing T ′ = Θ(d1/3T 2/3γ−4/3) gives the desired upper bound of

DCEf (ŷ1:T , x1:T , y1:T ) ≤ O
(
d1/3T 2/3γ−4/3 +

√
T log(1/δ)

)
.

C.2 PROPOSITION 3.4

In this section, we prove a generalization of Proposition 3.4: Theorem C.2.

Cluster-Then-Predict Algorithm for Minimizing LCE

For the first T ′ < T timesteps, make arbitrary predictions and collect observed features x1, . . . , xT ′ . Apply
a parameter-learning algorithm, such as the (Hardt & Price, 2015) method, to the observed features to obtain
estimates of the per-component likelihoods f̂(x | g) for each g ∈ [k].

Then, instantiate Algorithm 2 with distinguishers G =
{
x 7→ f̂(g | x) | g ∈ [k]

}
. For each timestep t = T ′ +

1, . . . , T , observe xt and predict yt by applying Algorithm 2 to the transcript of previously seen datapoints
{(xτ , yτ ) | T ′ < τ < t}.

While the algorithm is written for general k and f , we focus on the case where k = 2 and w1 = w2 = 1/2.
Theorem C.2. Let k = 2 and w1 = w2 = 1/2. Define σ = ∥µ1 − µ2∥2∞ + ∥Σ1∥∞ + ∥Σ2∥∞. If we have that
minj∈[d] |µ1,j − µ2,j | ≥ Ω(σ), then, with probability 1− δ, the Cluster-Then-Predict Algorithm for Minimizing LCE,
setting T ′ = O(T 2/3), incurs

LCEf (p1:T , x1:T , y1:T ) ≤ Õ
(
T 2/3

√
d log1/2(d/δ)

)
.

On the other hand, without separation, we must set T ′ = O(T 12/13) and incur

LCEf (p1:T , x1:T , y1:T ) ≤ Õ(T 12/13
√
d log1/2(d/δ)).

To prove Theorem C.2, we will need some facts relating parameter estimation to errors in estimating group membership
are bounded by O(ε).

Fact C.3. When parameters (µi,Σi) of mixture component i are ε, δ-learned in the sense of (Hardt & Price, 2015), we

have that with probability 1− δ, TV
(
f(x | gi), f̂(x | gi)

)
≤ O(ε

√
d).

Proof of Fact C.3. To see this, note that ε, δ-learning in (Hardt & Price, 2015) is defined in terms of ℓ∞-norm on the
estimated parameters relative to the variance of the mixture, i.e.

max
i={1,2}

max
(
∥µi − µ̂i∥2∞, ∥Σi − Σ̂i∥∞

)
≤ ε2

(
∥µ1 − µ2∥2∞ + ∥Σ1∥∞ + ∥Σ2∥∞

)
.
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Theorem 1.8 of (Arbas et al., 2023) shows that TV
(
N (µ,Σ),N (µ̂, Σ̂)

)
= Θ(∆) where ∆ is parameter distance in

ℓ2; specifically,

∆ = max
(
∥Σ−1/2Σ̂Σ−1/2 − Id∥F , ∥Σ−1/2(µ− µ̂)∥2

)
.

Translating between the ℓ2 and ℓ∞ norms incurs a O(
√
d) penalty.

Fact C.4. Suppose that for each component gi, we have estimates of the density of x conditioned on membership
in gi, i.e. f̂(x | gi), such that TV

(
f(x | gi), f̂(x | gi)

)
≤ ε. Then, mistakes in estimating group membership can

be bounded as Ex∼f

[∣∣∣f(gi | x)− f̂(gi | x)
∣∣∣] ≤ 3ε, and the overall TV distance between the true mixture and the

estimated mixture can be bounded as TV(f(x), f̂(x)) ≤ ε.

Proof of Fact C.4. By the definition of conditional probability, we have f(gi | x) = f(x,gi)
f(x) for every gi. Then, we can

write

E
[∣∣∣f(gi | x)− f̂(gi | x)

∣∣∣] = ∫ ∣∣∣f(gi | x)− f̂(gi | x)
∣∣∣ f(x)dx

=

∫ ∣∣∣∣∣f(x, gi)− f̂(x, gi)−

(
f(x)

f̂(x)
− 1

)
f̂(x, gi)

∣∣∣∣∣ dx
≤
∫ ∣∣∣f(x, gi)− f̂(x, gi)

∣∣∣ dx︸ ︷︷ ︸
(A)

+

∫ ∣∣∣∣∣
(
f(x)

f̂(x)
− 1

)
f̂(x, gi)

∣∣∣∣∣ dx︸ ︷︷ ︸
(B)

.

Again by the definition of conditional probability, f(x, gi) = f(x | gi) · f(gi), and likewise for the estimated
quantity. Recall that the marginal likelihood of gi (i.e. its mixing weight) is f(gi) = 1

2 . Then, (A) reduces to

2 · 1
2 · TV

(
f(x | gi), f̂(x | gi)

)
≤ ε. For (B), noting that f̂(gi | x) ≤ 1 for all x, we have

∫ ∣∣∣∣∣
(
f(x)

f̂(x)
− 1

)
f̂(x, gi)

∣∣∣∣∣ dx =

∫ ∣∣∣f(x)− f̂(x)
∣∣∣ f̂(x, gi)

f̂(x)
dx

=

∫ ∣∣∣f(x)− f̂(x)
∣∣∣ f̂(gi | x)dx

≤
∫ ∣∣∣f(x)− f̂(x)

∣∣∣ dx.
Recalling that f(x) =

∑
i∈[k] f(x | gi) · f(gi) and k = 2, we can bound the final quantity in the above display by

2ε.

A direct consequence of Fact C.4 is that the LCE incurred by a sequence of predictors p1, . . . , pT on samples (x, y)
from the true distribution is close to the LCE that would have been incurred had each (x, y) been sampled from the
estimated distribution.

Lemma C.5. Suppose that for each component gi, we have estimates of the density of x conditioned on membership in
gi, i.e. f̂(x | gi), such that TV

(
f(x | gi), f̂(x | gi)

)
≤ ε. Then, with probability 1− δ, the LCE incurred by a fixed

sequence of predictors p1, . . . , pT on datapoints (x, y) ∼ f can be bounded as

LCEf (p1:T , x1:T , y1:T ) ≤ Ef̂ [LCEf̂ (p1:T , x1:T , y1:T )] +O(
√
T ) ln(1/δ) + 5Tε.
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Proof. First, by definition, we have

LCE(p1, . . . , pT ) = max
g∈[k]

max
v∈Vλ

∣∣∣∣∣∣
∑
t∈[T ]

f(g | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣.
Note that at each timestep t, and for every g and v, the quantity f(g | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt) is a random
variable bounded in [0, 1]. Therefore, for any g and v, we can relate the realized sum to its expected sum; in particular,
with probability 1− δ,∣∣∣∣∣∣
∑
t∈[T ]

f(g | xt) · 1[ŷt ∈ v] · (ŷt − yt)

∣∣∣∣∣∣ ≤ O(
√
T ) ln(1/δ) +

∣∣∣∣∣∣E
∑
t∈[T ]

f(g | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣
= O(

√
T ) ln(1/δ) +

∣∣∣∣∣∣
∑
t∈[T ]

∫
f(g | x) · 1[pt(x) ∈ v] · (pt(x)− y)f(x)dx

∣∣∣∣∣∣
≤ O(

√
T ) ln(1/δ)

+ T

∫ ∣∣∣f(gi | x)− f̂(gi | x)
∣∣∣ · 1[pt(x) ∈ v] · |pt(x)− y|f(x)dx

+

∣∣∣∣∣∣
∑
t∈[T ]

∫
f̂(gi | x) · 1[pt(x) ∈ v] · (pt(x)− y) · f(x)dx

∣∣∣∣∣∣, (6)

where Eq. 6 is due to the triangle inequality. Now, we can express the first term in terms of the TV distance between
the true and the estimated group-conditional densities. Combining Fact C.4 (for the first term of (6)) and the triangle
inequality (for the second term of (6)), we have

(6) ≤ O(
√
T ) ln(1/δ) + 3Tε+

∣∣∣∣∣∣
∑
t∈[T ]

∫
f̂(g | x) · 1[pt(x) ∈ v] · (pt(x)− y) · f̂(x)dx

∣∣∣∣∣∣
+
∑
t∈[T ]

∫
f̂(g | x) · 1[pt(x) ∈ v] · |pt(x)− y| ·

∣∣∣f(x)− f̂(x)
∣∣∣ dx

≤ O(
√
T ) ln(1/δ) + 5Tε+

∣∣∣∣∣∣
∑
t∈[T ]

∫
f̂(g | x) · 1[pt(x) ∈ v] · (pt(x)− y) · f̂(x)dx

∣∣∣∣∣∣ (7)

= O(
√
T ) ln(1/δ) + 5Tε+

∣∣∣∣∣∣Ef̂

∑
t∈[T ]

f̂(g | x) · 1[pt(x) ∈ v] · (pt(x)− y)

∣∣∣∣∣∣
≤ O(

√
T ) ln(1/δ) + 5Tε+ Ef̂

∣∣∣∣∣∣
∑
t∈[T ]

f̂(g | x) · 1[pt(x) ∈ v] · (pt(x)− y)

∣∣∣∣∣∣
 , (8)

where Eq. (7) again comes from combining Fact C.4 with the triangle inequality and Eq. (8) is due to Jensen’s inequality.
The statement of the lemma follows by noting that, because this held for any g and v, it also holds for the max g and v;
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furthermore, by another application of Jensen’s inequality,

max
g∈[k]

max
v∈Vλ

Ef̂

∣∣∣∣∣∣
∑
t∈[T ]

∫
f̂(g | xt, yt) · 1[ŷt ∈ v] · (ŷt − yt)

∣∣∣∣∣∣


≤ Ef̂

max
g∈[k]

max
v∈Vλ

∣∣∣∣∣∣
∑
t∈[T ]

∫
f̂(g | xt, yt) · 1[ŷt ∈ v] · (ŷt − yt)

∣∣∣∣∣∣


= Ef̂ [LCEf̂ (p1:T , x1:T , y1:T )].

We conclude this section with the proof of Theorem C.2.

Proof of Theorem C.2. The proof of Theorem C.2 proceeds in three steps. In Step 1, we analyze the estimation phase
and show that spending T ′ samples allows us to estimate f̂(·) with sufficiently small error. In Step 2, we analyze the
calibration phase and relate the error incurred when using f̂(·) to the true error. Step 3 completes the argument.

Step 1: Analyzing the estimation phase. In the clustering phase of Cluster-Then-Predict Algorithm for Minimizing
LCE, T ′ samples are used to learn f̂(x | gi) for i ∈ {1, 2}. Let δ1 be the likelihood that parameters are successfully
learned in this step.

Let σ = ∥µ1 − µ2∥2∞ + ∥Σ1∥∞ + ∥Σ2∥∞. If we have that minj∈[d] |µ1,j − µ2,j | ≥ Ω(σ), i.e., that µ1 and µ2 are
sufficiently separated in all dimensions, then set T ′ = ⌈T 2/3⌉ and the algorithm of (Hardt & Price, 2015) will ε, δ1-learn
the parameters (µ1,Σ1) and (µ2,Σ2) with Õ(ε−2 log(d/δ)) samples (where the Õ suppresses a log log(1/ε) term).
Setting T 2/3 = Õ

(
ε−2 log(d/δ1)

)
, we have ε = Õ

(
T−1/3 log1/2(d/δ1)

)
.

On the other hand, when µ1 and µ2 are not separated, we need Õ(ε−12 log(d/δ1)) samples to learn parameters. We set
T ′ = ⌈T 12/13⌉ and instead have ε = Õ(T−1/13 log1/12(d/δ1)).

Finally, to analyze the error incurred in this phase, note that since the predictor pt(xt) =
1
2 for each t ≤ T1,∣∣∣∣∣∣

∑
t∈[T ′]

f(gi | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣ ≤ 1
2T

2/3

for any i and v.

Step 2: Analyzing error incurred in the calibration phase when using f̂(·). In the calibration phase of Cluster-
Then-Predict Algorithm for Minimizing LCE, the predictor pt is updated using the estimated densities f̂(·). Note that
ε error in parameter learning translates to ε

√
d error in TV distance between the estimated f̂(x | gi) and the true

f(x | gi), by Fact C.3. Therefore, in the event that all parameters are learned within additive error of ε (which occurs
with probability 1− δ1), Lemma C.5 combined with Fact C.3 gives us that, with probability 1− δ2, the error incurred
from t = T ′ + 1 . . . T is at most∣∣∣∣∣∣

∑
t=T ′,...,T

f(g | xt) · 1[ŷt ∈ v] · (ŷt − yt)

∣∣∣∣∣∣ ≤ E[LCEf̂ (pT ′:T , xT ′:T , yT ′:T )] + 5Tε
√
d+O(log(1/δ2)

√
T − T ′).

Recall that we have defined G =
{
x 7→ f̂(g | x) | g ∈ [k]

}
; note that |G| = k. Then, by definition,

E[LCEf̂ (pT ′:T , xT ′:T , yT ′:T )] = E[MCE(pT ′:T , xT ′:T , yT ′:T ;G)].
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We will now extend Theorem D.1 to hold for expected multicalibration error, i.e. E[MCE(pT ′:T , xT ′:T , yT ′:T ;G)],
rather than for specific realizations of xt, yt. In particular, integrating over δ ∈ (0, 1), we have that
E[MCE(pT ′:T , xT ′:T , yT ′:T ;G)] ≤ O(η

√
T − T ′ log(k)) for T − T ′ ≥ Cη−2 log(kλ). Solving for η gives

η ≤ C log1/2(kλδ3)T
−1/2.

Therefore, E[LCEf̂ (pT ′:T , xT ′:T , yT ′:T )] ≤ O(T 1/2 log1/2(kλ/δ)), and when µ1 and µ2 are sufficiently separated,∣∣∣∣∣∣
∑

t=T ′,...,T

f(gi | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣ ≤ Õ
(
T 1/2(log(1/δ2) + log1/2(kλ/δ))

)
+ Õ

(
T 2/3

√
d log1/2(d/δ1)

)
.

Otherwise, without separation, we have∣∣∣∣∣∣
∑

t=T ′,...,T

f(gi | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣ ≤ Õ
(
T 1/2(log(1/δ2) + log1/2(kλ/δ))

)
+ Õ

(
T 12/13

√
d log1/2(d/δ1)

)
.

Step 3: Combining Steps 1 and 2. We now have that with probability 1− δ1, all parameters are learned within additive
error (from step 1); and conditioning on that event, with probability 1 − δ2 that the error incurred in the prediction
phase can be bounded as argued in Step 2. We can therefore write the total error incurred over all T samples for any gi
and v when means are separated as, with probability (1− δ1)(1− δ2) ≥ 1− δ1 − δ2,∣∣∣∣∣∣

∑
t∈[T ]

f(gi | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
t∈[T ′]

f(gi | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

t=T ′,...,T

f(gi | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣
≤ O

(
T 2/3

)
+ Õ

(
T 2/3

√
d log1/2(d/δ1)

)
,

and without separation as∣∣∣∣∣∣
∑
t∈[T ]

f(gi | xt) · 1[pt(xt) ∈ v] · (pt(xt)− yt)

∣∣∣∣∣∣ ≤ O
(
T 2/3

)
+ Õ

(
T 12/13

√
d log1/2(d/δ1)

)
.

The statement of the theorem follows from noting that this holds for any gi and v, and therefore also holds for the
maximum gi and v.

D SUPPLEMENTAL MATERIAL FOR SECTION 4

D.1 ALGORITHMS 1 AND 2

Here, we give example algorithms that can be used to instantiate a version of the Online Multicalibration Algorithm for
Coverable Distinguishers.

Algorithm 1 computes an empirical cover on samples x1, . . . , xT , inspired by the classical approach (for binary-valued
functions) of Haussler & Welzl (1986).
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Algorithm 1: Algorithm for computing a cover

1: Input: function class G ⊂ [0, 1]X , ε ∈ (0, 1), samples x1:T ;
2: Initialize empty class G′;
3: For every possible labeling y1:T ∈ V T

ε , add to G′ any g ∈ G where g(xt) ∈ yt for all t ∈ [T ];
4: return G′

We also give Algorithm 2, the online multicalibration algorithm of Haghtalab et al. (2023).

Algorithm 2: Online multicalibration algorithm

1: Input: G ⊂ [0, 1]X , ε ∈ (0, 1), λ, T ∈ Z+;
2: Initialize Hedge iterate ℓ(1) = Uniform({±1} × G × Vλ);
3: for t = 1 to T do

4: Compute p(t)(x) := min
p∗(x)∈∆([0,ε/4λ,...,1])

max
y∈[0,1]

E
ŷ∼p∗(x)

[
E

ℓi,g,v∼ℓ(t)
[i · g(x) · 1[y ∈ v] · (ŷ − y)]

]
;

5: Announce predictor p(t) to Nature and observe Nature’s choice (x(t), y(t));
6: Update ℓ(t+1) := Hedge(ℓ̃(1:t)) where ℓ̃(t)(i, g, v) := 1− 1

2
E

ŷ∼pt(xt)
[1 + i · g(xt) · 1[yt ∈ v] · (ŷ − yt)];

7: end for

Algorithm 2 enjoys the following guarantee on multicalibration error.
Theorem D.1 (Haghtalab et al. (2023) Theorem 4.3). Fix ε > 0, λ ∈ Z+, and distinguishers G ⊂ [0, 1]X . With
probability 1− δ, Algorithm 2 guarantees MCE(p1:T , x1:T , y1:T ;G) ≤ εT for T ≥ O(ε−2 ln(|G|λ/δ)).

D.2 PROOF OF LEMMA 4.3

We first recall the following one-sided testing form of Bernstein’s inequality.
Fact D.2. Let X1, . . . , XT be i.i.d. random variables supported on [0, 1] with mean µ = E[Xi], and let µ̂ = 1

T

∑T
i=1 Xi

be the sample mean. Then, for any ε > 0, we have:

If µ > 3ε, then Pr(µ̂ ≤ 2ε) ≤ exp

(
−Tε

8

)
.

Proof of Fact D.2. Applying Bernstein’s inequality with deviation t = µ− 2ε ≥ µ/3 ≥ ε gives:

Pr(µ̂ ≤ 2ε) = Pr(µ− µ̂ ≥ t) ≤ exp

(
−Tt2

2(µ+ t
3 )

)
≤ exp

( − 1
3Tµε

2( 43µ− 2
3ε)

)
= exp

(
−Tµε

4(2µ− ε)

)
≤ exp

(
−Tε

8

)
.

We now turn to proving Lemma 4.3, which states that a small covering can be easily obtained via random sampling for
any real-valued function class with small covering number; this follows a similar approach to Haussler & Welzl (1986).

Lemma 4.3. Given ε, δ, T > 0 and a real-valued function class F where N1(ε/96,F , 2T ) ≤
√

1
8 exp(Tε

2/32),
consider any ε-cover F ′ of F computed on T random datapoints. Then F ′ is a 4ε-cover of F with probability at least
1−O(N1

(
ε
8 ,F , 2T

)2
exp(−Tε)).

Proof of Lemma 4.3. Existence of covering points.

First, note that for any ε and m, N1(ε, {f(x)− g(x) | f, g ∈ F},m) ≤ N1(ε,F ,m)2. Then, recalling that bounded
covering number implies uniform convergence,

Pr

(
sup

f,g∈F
E [|f(x)− g(x)|]− 1

T

T∑
t=1

|f(x′
t)− g(x′

t)| ≥ ε/8

)
≤ 4N1(ε/(16 · 8),F , 2T )2 exp

(
−Tε2/32

)
.
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Since 8N1(ε/(16 · 8),F , 2T )2 ≤ exp
(
Tε2/32

)
:

Pr

 sup
f,g∈F

E [|f(x)− g(x)|]− 1
T ′

T ′∑
t=1

|f(x′
t)− g(x′

t)| ≥ ε/8

 ≤ 1
2 .

Thus, by the probabilistic method, there exists some sequence of datapoints x1, . . . , x
′
T such that

sup
f,g∈F

E [|f(x)− g(x)|]− 1
T

T∑
t=1

|f(x′
t)− g(x′

t)| ≤ ε/8. (9)

Covering failure events. Let x1, . . . , xT denote i.i.d. samples from distribution D. By definition, there is a subset
F ′ ⊂ F of size N1(ε,F , T ) such that for all f ∈ F , there is a f ′ ∈ F ′ such that 1T

∑T
t=1 |f(xt)− f ′(xt)| ≤ ε. Note

that this subset F ′ is not dependent on D and can be computed from x1, . . . , xT .

We next define, for any f, g ∈ F , the event Ef,g to be the event that both E [|f(x)− g(x)|] ≥ 4ε and
1
T

∑T
t=1 |f(xt)− g(xt)| ≤ ε.

Condition on none of the events in {Ef,g | f, g ∈ F} occurring. Fix any f ∈ F . Since we covered F on x1, . . . , xT

with a tolerance of ε, there is a g ∈ F ′ such that 1
T

∑T
t=1 |f(xt)− g(xt)| ≤ ε. Since Ef,g did not occur, we know that

E [|f(x)− g(x)|] ≤ 4ε. This implies that F ′ is a 4ε-net as desired.

It thus suffices to upper bound Pr
[⋃

f,g∈F Ef,g

]
.

Bounding
⋃
Pr[Ef,g] by covering F . We now define, for any f, g ∈ F , the event Ẽf,g to be the event that both

E [|f(x)− g(x)|] ≥ 3ε and 1
T

∑T
t=1 |f(xt)− g(xt)| ≤ 2ε.

Let F̂ be a
(
ε
4

)
-covering of F on the datapoints x′

1, . . . , x
′
T , [x1, . . . , xT ]M . Therefore, F̂ is a cover of size

N1(
ε
8 ,F , 2T ). This means for every f ∈ F there is a f̂ ∈ F̂ such that

1
2T

(
T∑

t=1

∣∣∣f(x′
t)− f̂(x′

t)
∣∣∣+ T∑

t=1

∣∣∣f(xt)− f̂(xt)
∣∣∣) ≤ ε

8 .

We now proceed to show that
⋃

f,g∈F Ef,g ⊆
⋃

f̂ ,ĝ∈F̂ Ef̂ ,ĝ .

First, by the triangle inequality,

1
T

T∑
t=1

∣∣∣f̂(xt)− ĝ(xt)
∣∣∣ ≤ 1

T

T∑
t=1

|f(xt)− g(xt)|+

∣∣∣∣∣ 1T
T∑

t=1

|f(xt)− g(xt)| − 1
T

T∑
t=1

∣∣∣f̂(xt)− ĝ(xt)
∣∣∣∣∣∣∣∣

≤ 1
T

T∑
t=1

|f(xt)− g(xt)|+ ε.

Therefore, { 1
T

∑T
t=1 |f(xt)− g(xt)| ≤ ε} only if { 1

T

∑T
t=1

∣∣∣f̂(xt)− ĝ(xt)
∣∣∣ ≤ 2ε.}

Next, by the definition of F̂ , we have

1
T

T∑
t=1

∣∣∣f(x′
t)− f̂(x′

t)
∣∣∣ ≤ ε/4 and 1

T

T∑
t=1

∣∣∣f(xt)− f̂(xt)
∣∣∣ ≤ ε/4.
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By the triangle inequality, for every f, g ∈ F and their matching f̂ , ĝ ∈ F̂ , we have∣∣∣∣∣ 1T
T∑

t=1

|f(x′
t)− g(x′

t)| − 1
T

T∑
t=1

∣∣∣f̂(x′
t)− ĝ(x′

t)
∣∣∣∣∣∣∣∣ ≤ ε

2 and

∣∣∣∣∣ 1T
T∑

t=1

|f(xt)− g(xt)| − 1
T

T∑
t=1

∣∣∣f̂(xt)− ĝ(xt)
∣∣∣∣∣∣∣∣ ≤ ε

2 .

(10)

Thus, repeatedly applying the triangle inequality (first, third, and fifth transitions below),

E [|f(x)− g(x)|] ≤ 1
T

T∑
t=1

|f(x′
t)− g(x′

t)|+

∣∣∣∣∣E [|f(x)− g(x)|]− 1
T

T∑
t=1

|f(x′
t)− g(x′

t)|

∣∣∣∣∣
≤ 1

T

T∑
t=1

|f(x′
t)− g(x′

t)|+ ε
4

≤ 1
T

T∑
t=1

∣∣∣f̂(x′
t)− ĝ(x′

t)
∣∣∣+ ∣∣∣∣∣ 1T

T∑
t=1

|f(x′
t)− g(x′

t)| − 1
T

T∑
t=1

∣∣∣f̂(x′
t)− ĝ(x′

t)
∣∣∣∣∣∣∣∣+ ε

4

≤ 1
T

T∑
t=1

∣∣∣f̂(x′
t)− ĝ(x′

t)
∣∣∣+ 3ε

4

≤ E
[∣∣∣f̂(x)− ĝ(x)

∣∣∣]+ ∣∣∣∣∣E [∣∣∣f̂(x)− ĝ(x)
∣∣∣]− 1

T

T∑
t=1

∣∣∣f̂(x′
t)− ĝ(x′

t)
∣∣∣∣∣∣∣∣+ 3ε

4

≤ ε+ E
[∣∣∣f̂(x)− ĝ(x)

∣∣∣] ,
where the second and final transitions are due to (9) and the fourth is due to (10).

Thus, for any f, g ∈ F , E [|f(x)− g(x)|] ≥ 4ε only if the corresponding f̂ , ĝ ∈ F satisfies E
[∣∣∣f̂(x)− ĝ(x)

∣∣∣] ≥ 3ε.

It follows that Pr
(⋃

f,g∈F Ef,g

)
≤ Pr

(⋃
f̂ ,ĝ∈F̂ Ẽf̂ ,ĝ

)
.

Finally, for any fixed choice of f and g, we have by Fact D.2 that Pr
[
Ẽf,g

]
≤ exp

(
−Tε

8

)
. Thus, union bounding over

all pairs f̂ , ĝ ∈ F̂ , we have

Pr

 ⋃
f,g∈F

Ẽf,g

 ≤
∣∣∣F̂∣∣∣2 exp(−Tε

8

)
≤ O(N1(

ε
8 ,F , 2T )2 exp(−Tε)).

D.3 PROOF OF LEMMA 4.7

Proof of Lemma 4.7. Let GLCE be defined as in (2), and let Ĝ denote an ε′-cover of GLCE for some value of ε′. Now,
construct the set G′ = {Ff ′ | f ′

1, . . . , f
′
k ∈ Ĝ and {f ′

i}i∈[k] is legal}. Because G′ is constructed from Ĝ, we have by
Lemma 4.5 and Fact B.1 that |G′| ≤ |Ĝ| ≤ O(d2k log2(d2k)(1/ε′)d

2k log2(d2k)).

We now show that G′ is indeed an ε-net for the distinguishers in (1). Recall that f denotes the true likelihoods f(g | x)
in the underlying endogenous subgroups model. Consider a set of legal likelihoods {f ′(g | x)}g∈[k] and an x where
i = argmaxi∈[k] f(i | x). If f(i | x) > f(j | x) + 2ε′ for all j ̸= i and |f(j;x)− f ′(j;x)| ≤ ε′ for all j, then
Ff (x) = Ff ′(x). Since G′ is an ε′-cover of the legal likelihoods, there must exist a set of legal likelihoods f ′ such that
|f(j;x)− f ′(j;x)| ≤ ε′ for all j and x. We also have by Lemma D.3 that, this property is satisfied with probability
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1− ε if γ ≥ Ω(
√
d+ log((kε′ + 1)/ε)). Thus, for ε, ε′ ≤ 1/T , we have Pr[Ff (x) ̸= Ff ′(x)] ≤ ε and G′ is an ε-net

for the distinguishers in (1).

Thus, there is an ε-net of size O((d2k log2(d2k)(1/ε′)d
2k log2(d2k))k) for ε′ < O(ε(exp

(
γ2 − d

)
− 1)/k). This means

that the distinguishers G have a covering number of N1(ε,G,m) ∈ O((d2k log2(d2k)(k/γε)d
2k log2(d2k))k).

Lemma D.3. Suppose covariance matrices Σ1, . . . ,Σk have constant eigenvalues and that, for all i ̸= j, ∥µi − µj∥ ≥
Ω(
√
d+ log((kε+ 1)/δ)). Then given a random sample x from their uniform mixture, with probability at least 1− δ

there is some i ∈ [k] such that for all j ̸= i, f(i;x) ≥ f(j;x) + ε.

Proof. In this proof, let ∥M∥ denote the spectral norm of a matrix M . Fix i ∈ [k]. We first will apply a change of basis
W so that the ith component of the Gaussian mixture is standardized. Note that spectral norm of a transformed matrix
can be bounded as ∥WM∥ ≤

√
∥W∥∥W−1∥∥M∥, whereas the determinant is wholly invariant as |WM | = |M |.

By Fact D.4 and Fact D.5, if

∥µi − µj∥ ≥
√
max

{
0, 2∥WΣj∥(r2 + log(w)− 1

2 log(|WΣj |))
}

=

√
max

{
0, 2∥Σj∥

√
∥Σi∥∥Σ−1

i ∥(r2 + log(w)− 1
2 log(|Σj |))

}

≥

√
max

{
0, 2∥Σj∥

√
∥Σi∥∥Σ−1

i ∥(2d+ 8log
(
1
δ

)
+ log(w)− 1

2 log(|Σj |))
}

then with probability at least 1 − δ on a sample x ∼ f(x; i), for any j: f(i;x)/f(j;x) ≥ w. Thus, for all j ̸= i,
f(i;x) ≥ f(j;x) + w−1

w+k−1 . Thus, if

∥µi − µj∥ ≥

√
max

{
0, 2∥Σj∥

√
∥Σi∥∥Σ−1

i ∥(2d+ 8log
(
1
δ

)
+ log

(
1+εk−ε

1−ε

)
− 1

2 log(|Σj |))
}

≥ Ω(
√
max {0, d+ log((1 + εk)/δ)− c})

for all i ̸= j, with probability at least 1− δ, there is some i ∈ [k] such that for all j ̸= i, f(i;x) ≥ f(j;x) + ε.

Fact D.4. Let N (0, I) be Gaussian. Then, for any ε > 0, there is r =
√
d+ 2

√
log 1

ε such that Prx∼N (0,I)(∥x∥ ≥
r) < ε.

Fact D.5. Let N (0, I) and N (µ,Σ) be two non-isotropic Gaussian distributions, and let ∥Σ∥ denote the spectral

norm of covariance matrix Σ > 0. Suppose ∥µ∥ ≥
√
max

{
0, 2∥Σ∥(r2 + log(w)− 1

2 log(|Σ|))
}

. Then, the PDF of
N (0, I) is a factor of w > 1 larger than the PDF of N (µ,Σ) at every point within a radius r ball around the origin.

Proof of Fact D.5. The PDF ratio of N (µ,Σ) and N (0, I) at a point x is:

p2(x)

p1(x)
=

1

|Σ|1/2
exp

(
−1

2

[
(x− µ)⊤Σ−1(x− µ)− ∥x∥2

])
.

We can lower bound
(x− µ)TΣ−1(x− µ)− ∥x∥ ≥ ∥x− µ∥2∥Σ∥−1 − r2.

Thus, if ∥x− µ∥2 ≥ 2∥Σ∥(r2 + log
(
w/|Σ|1/2

)
), then p2(x)

p1(x)
≤ 1

w .
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D.4 PROOF OF THEOREM 4.8

The main technical tool for overcoming separation dependence is that, for the uniform and isotropic setting, the
combinatorial complexity of discriminant functions can be directly bounded.
Fact D.6. For a uniform mixture of k isotropic Gaussians, the optimal discriminant function is always a Voronoi
diagram, i.e. argmaxj∈{1,...,k} f(j | x) = 1[∥x− cj∥ ≤ ∥x− ci∥ for all i ̸= j] for some centers c1, c2, . . . , ck ∈ Rd.

Proof. Since the components are uniformly weighted, to find the component j that maximizes f(j | x), we can
equivalently maximize f(x | j). Since the exponential function is monotonically increasing, maximizing f(x | j) is
equivalent to minimizing ∥x− µj∥2, which is a Voronoi diagram.

Proof of Theorem 4.8. By Fact D.6, G consists solely of functions that can be expressed as membership in a cell of
a Voronoi diagram. Since Voronoi diagrams are of VC dimension ≤ n := (d + 1)k2 log(k) + k (Fact B.5), the
covering number of G is bounded by N1(ε,G, T ) ≤ O (n(1/ε)n) (Fact B.1). The statement of the theorem follows
from Proposition 4.2 combined with Fact 4.1, and choosing ε = 1/T .
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