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Abstract

This paper proposes a data-driven learning framework for identifying governing
laws of generalized diffusions with non-gradient components. By combining en-
ergy dissipation laws with a physically consistent penalty and first-moment evo-
lution, we design a two-stage method to recover the pseudo-potential and rotation
in the pointwise orthogonal decomposition of a class of non-gradient drifts in
generalized diffusions. Our two-stage method is applied to complex generalized
diffusions including dissipation-rotation dynamics, rough pseudo-potentials and
noisy data. Representative numerical experiments demonstrate the effectiveness
of our approach for learning physical laws in non-gradient generalized diffusions.

1 Introduction

Over the past several decades, numerous studies have been devoted to nonlinear stochastic dynamics,
particularly with regard to entropy production Esposito (2012); Crooks (1999); Qian et al. (1991),
fluctuation Kurchan (1998); Marconi et al. (2008); Esposito & den Broeck (2010), power dissipa-
tion Ge & Qian (2010), circulation Qian & Qian (1982); Qian & Wang (1999), and non-equilibrium
steady states Dorfman (1999); Jiang & Jiang (2004). Through sustained investigation, researchers
have gradually come to recognize that the violation of detailed balance plays a key role in reveal-
ing the aforementioned fundamental phenomena. Non-detailed balance as an inherent property of
diffusion processes underlies the emergence of Hamiltonian conservative dynamics and entropy pro-
duction. These mechanisms are central to the behavior of living systems in biology and chemistry, as
illustrated by models such as the human stem-cell network Li & Wang (2013) and cell-fate decision
dynamics Chen et al. (2023). They also appear in broader physical systems, including ocean-current
transport models Petrović et al. (2025).

The incorporation of non-gradient structures into SDEs provides a prototypical framework for mod-
eling non-equilibrium dynamics without detailed balance. Such systems are mathematically charac-
terized by irreversible Markov processes. The study of stochastic dynamics without detailed balance
often relies on decomposing the generator of the Markov process into symmetric and anti-symmetric
parts Qian et al. (1991); Jiang & Jiang (2004); Qian (2013); Qian & Wang (1999). From a partial
differential equation (PDE) perspective, especially through the Fokker-Planck (FP) equation, Qian
(2013) shows that general diffusions without detailed balance can be systematically decomposed
into a reversible stochastic process with detailed balance and a canonical conservative dynamics.
According to the Helmholtz decomposition, a vector field can typically be decomposed into two L2-
orthogonal components: a gradient component and a rotational component. When these two com-
ponents are pointwise orthogonal, the gradient part governs the behavior of (non)equilibrium steady
states, while the rotational part influences the dynamics through which the system approaches these
steady states. This highlights that both the gradient and rotational components play essential roles
in the system’s evolution. In particular, the rotational component is key to understanding the overall
dynamical behavior. Such a decomposition, in the context of the FP equation, is also closely related
to large deviation theory. We refer readers to results on the Wentzel-Kramers–Brillouin (WKB)
ansatz and the Hamilton-Jacobi equation Graham & Haken (1971); Graham (1973).

One active area of research in the study of SDEs is the discovery of underlying physical laws from
observational data. The main idea is to train neural networks or models based on parametric or
nonparametric techniques by minimizing a suitable loss function. This loss is often constructed
using, for example, probabilistic methods Dietrich et al. (2023); Chen & Xiu (2024); Churchill
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& Xiu (2023); Liu et al. (2024); Yang et al. (2020), strong- Brunton et al. (2016); Raissi et al.
(2019); Chen et al. (2021a) and weak-forms Zang et al. (2020); Messenger et al. (2024); Ryck et al.
(2022); Messenger & Bortz (2022; 2021); Gao et al. (2022) of differential equations or variational
structures Huang et al. (2024b); Gruber et al. (2023); Lee et al. (2021); Gruber et al. (2025); Yu et al.
(2021); Chen et al. (2024); Huang et al. (2022); Zhang et al. (2022); Kharazmi et al. (2021); Gao
et al. (2024); Lu et al. (2024). In Lu et al. (2024), the authors propose a loss function based on a
variational structure derived from energy laws, and the proposed algorithm performs effectively in
learning potential-driven dissipative systems. However, their framework does not address diffusion
processes that include rotational components.

Recent efforts have explored data-driven methods for learning quasi-potentials associated with non-
gradient stochastic dynamics. As shown in Lin et al. (2022); Li et al. (2022); Grigorio & Alqahtani
(2024), the learning of quasi-potential in the pointwise orthogonal decomposition of drift within FP
equations has rich applications in engineering, biology, etc. The computational method proposed
in Lin et al. (2022); Li et al. (2022); Grigorio & Alqahtani (2024) for learning the quasi-potential
is to minimize the loss function generated by the governing differential equations. In large devia-
tion theory, the computation of the quasi-potential also involves non-gradient structures. However,
such analyses primarily focus on small perturbations around (meta)steady states, rather than the
global behavior of the entire system. This is subtly but fundamentally different from the goal of
the present work, which is to investigate the global dynamics of generalized diffusions with non-
gradient structures. Extending our methodology to compute quasi-potentials remains an interesting
and promising direction for future research.

In this paper, we focus on the learning of governing laws in generalized diffusions with non-gradient
structures. Motivated by the learning framework established in Lu et al. (2024), without relying
on governing FP equations, we learn the drift and pseudo-potential by combining first-moment and
energy laws. Here the pseudo-potential is defined as the rate function of the stationary distribution
satisfying the WKB ansatz form. Concerning a class of drift terms with rotation components satisfy-
ing pointwise orthogonal decomposition in stochastic processes, we perform numerical experiments
in dimension two. Our two-stage learning framework is an extension of that shown in Lu et al.
(2024) and has contributed to the following aspects

• We develop a novel two-stage framework consisting of first-moment evolution and an en-
ergy dissipation law for learning the decomposition of a general class of drifts with rota-
tion components in nonlinear stochastic dynamics. One of the most significant advantages
is that the loss functions are formulated as integral forms, which require low regularity of
drifts and data observation.
• In the loss function based on the energy dissipation law, we propose a physically consistent

penalty, derived via dimensional analysis, that aims to orthogonally decompose the non-
gradient drift into pseudo-potential and rotational components pointwise.
• We investigate the effectiveness of our algorithm for learning physical laws including drifts,

pseudo-potentials and rotations over various representative generalized diffusions with dif-
ferent hyperparameters.
• We showcase the effectiveness of learning rough pseudo-potentials and robustness to noisy

data observation.

The objective of this paper is to propose an alternative (weak-form) learning approach that comple-
ments existing PDE-based (strong-form) methods. Weak-form loss functions generally offer greater
robustness against noisy observations compared to their strong-form counterparts. On the other
hand, strong-form formulations are better suited to capturing local information. Therefore, inte-
grating these two approaches has the potential to create a more effective loss function for learning
physical laws. These possibilities will be explored in future research.

This paper is organized as follows. In Section 2, we introduce the mathematical formulation under-
lying our learning algorithm. Section 3 presents the learning framework of our two-stage method:
in Stage 1, we parameterize the loss function using the first-moment evolution; in Stage 2, we adopt
the learning strategy of Lu et al. (2024) to minimize the loss function based on the energy law and
recover the potential. Section 4 provides several numerical examples to illustrate the effectiveness
and robustness of our approach. It also includes ablation studies comparing (a) the proposed two-
stage method with direct approaches, and (b) the proposed weighted penalty with the standard L2

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

penalty. Section 5 discusses related works, including strong-form-based methods and variational-
or weak-form-based approaches. Finally, Section 6 summarizes our main findings and discusses
several open problems for future research.

2 Formulation

We consider a dynamical system with some white noise perturbation. The corresponding evolution
of the state variable Xt is described by the following SDE:

dXt = b(Xt)dt + σ(Xt)dWt, Xt = (xt
1, · · · , x

t
d) ∈ Rd, (1)

where time t ≥ 0, drift b : Rd → Rd is a continuously differentiable vector field, Wt is a standard
d-dimensional Brownian motion and the noise intensity σ : Rd → R is a scalar function. We restrict
attention to a scalar noise coefficient σ in order to exclude correlated noise effects. This allows us
to focus solely on learning the drift decomposition in non-gradient dynamical systems. For related
work on stochastic dynamics driven by correlated noise and their learning via neural network–based
approaches, we refer the reader to Guo et al. (2025).

Applying the classical Itô integral formula on (1), one has the associated FP equation is

∂t f + ∇ · (b f ) =
1
2
∆(σ2 f ), (2)

where f (x, t) is the probability density function of Xt at time t. Here we assume f0 := f (x, 0) is the
density of initial state X0. Next, we derive the loss function from the underlying energy law; the
detailed derivation is given in Appendix A.

Multiplying (2) by xi, i = 1, · · · , d, we use integration by parts to get (2) admits the following
first-moment evolution:

d
dt

∫
Rd

f xidx =
∫
Rd

b · e(i) f dx −
1
2

∫
Rd
∂xi (σ

2 f )dx =
∫
Rd

b · e(i) f dx. (3)

Since our goal is to extract both pseudo-potential and rotation component in generalized diffusions,
the information provided by (3) alone is insufficient. Next, we formulate the energy laws satisfied
by the FP equations without detailed balance.

We consider that the drift b has the following form:

b = −
1
2
σ2∇ψ +

1
2
σ2R, (4)

where ψ is the potential function, σ is the noise intensity and R is the rotation part. Adopting the
following free energy possessed by potential FP equations Lu et al. (2024), we have

F (t) =
∫
Rd

[
f ln

(1
2
σ2 f

)
+ ψ f

]
dx, (5)

and its evolution satisfies

dF
dt
= −

∫
Rd

2 f
σ2 |u|

2 dx +
1
2

∫
Rd

[
R · ∇(σ2 f ) + σ2 f R · ∇ψ

]
dx, (6)

where u := −
[σ2

2 ∇ ln(σ2 f ) + σ2

2 ∇ψ
]

denotes the average velocity. Moreover, similarly as the defini-
tion of quasi-potential shown in Lin et al. (2022), we suppose ψ and R satisfy

∇ψ · R = 0, (7)

where R is the rotational component. It follows from (6) that

dF
dt
= −

∫
Rd

2 f
σ2

∣∣∣∣∣∣σ2

2
∇ ln(σ2 f ) +

σ2

2
∇ψ

∣∣∣∣∣∣2 dx ≤ 0, (8)

which is dissipative in time t. In other words, with the pointwise orthogonality condition ∇ψ ·R = 0,
we can minimize the (8) in a weak form to learn the pseudo-potential and the rotation part. More
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precisely, since the dissipation law (8) holds for a given density function f satisfying FP equation
(2), we determine the pseudo-potential ψ by minimizing∣∣∣∣∣∣dFdt

+

∫
Rd

2 f
σ2 |u|

2 dx
∣∣∣∣∣∣2, (9)

taking advantage of the fact that ψ is time-independent. Here, f is treated as known data, σ is given,
and F is defined in (5). It is worth noting that ψ is the sole unknown in (9). Subsequently, if b is
learned from (3), the rotational component R can then be determined via the decomposition (4).

To determine the form of penalty P associated with the orthogonality constraint in the learning
process, we apply the dimensional analysis outlined in Appendix B.2, which yields

P :=
[∫
Rd
σ2 f |∇ψ · R| dx

]2

. (10)

3 LearningMethods

In the context of FP equations with non-gradient structures, our study introduces a two-stage ap-
proach for learning the underlying physical laws. Suppose a generalized form of fluctuation-
dissipation relation (4) holds and continuous data observation is available, our objective is to identify
the pseudo-potential and the rotation component. We shall propose the learning framework and in-
vestigate the effect of data property on the learning results.

We take advantage of the approach proposed in Lu et al. (2024) and shall utilize the energy law (8)
to construct the loss function. Whereas, due to the presence of rotation component, we are not able
to learn the pseudo-potential by only leveraging the energy law. To this end, we first construct the
loss function based on first-moment evolution (3) and learn the general drift b, then formulate the
second loss function by the energy law and investigate the pseudo-potential.

Assuming the continuous data observation is available, we implement our approach by learning the
pseudo-potential ψ with known noise intensity σ2. Here we consider the unknown pseudo-potential
function ψ(x) is approximated by a neural network ψNN(x; θ). Before introducing our two-stage
method, we discuss the choice of training data in detail as follows.

Let f j(x, t) be the solution to the FP equation evolving from Gaussian-type initial data ( f0) j(x) with
mean µ0

j and variance σ2
0, for j = 1, . . . ,M, where M is the number of datasets. Let ∆xk, k =

1, . . . , d, be the uniform spatial mesh size and ∆t be the time step used in the FP solver. Our training
data consist of the observation dataset { f j(xi, t1), f j(xi, t2), f j(xi,T1), f j(xi,T2)}N,Mi, j , where t2 = t1 + δt
and T2 = T1 + δt. Here, δt = m∆t is a prescribed observation time step size, t1 ≪ 1 is the short
(transient) timescale for the first stage, and T1 > t1 corresponds to a longer, intermediate timescale
for the second stage. The spatial points {xi} form a uniform mesh of size δxk = n∆xk (observation
spatial grid size). Now, we outline our two-stage approach as follows.

3.1 Stage 1: Moment Estimate

Define µ j = ((µ j)1, . . . , (µ j)d) as the centroid of density function f to (2), which can be approximated
by (µ j)k(t) = |δx|

∑N
i=1(xi)k f j(xi, t), j = 1, . . . ,M, k = 1, . . . , d, where the spatial variable xi

satisfying xi = ((xi)1, . . . , (xi)d) and δx = (δx1, . . . , δxd). Define drift as b = (b1, . . . , bd) and

θ∗b = argmin
θ

Ldyn
b (θ), (11)

where Ldyn
b (θ) =

∑d
k=1 Ldyn

bk
(θ) and

Ldyn
bk

(θ) =
M∑
j=1

∥∥∥∥∥∥∥ (µ j)k(t2) − (µ j)k(t1)
t2 − t1

− |δx|
N∑

i=1

(bk)NN(xi; θ) f j(xi, t1)

∥∥∥∥∥∥∥
2

, k = 1, . . . , d. (12)

Here Ldyn
bk

is obtained by approximating (3) in terms of the Riemann sum. We remark that (12) is
convex in (bk)NN, which implies (11) is unique and the convex problem performs well numerically.

After learning (bk)NN by (11), we next learn the pseudo-potential ψ based on energy laws, which is
shown as follows.
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3.2 Stage 2: Energy Dissipation Laws

We use the Riemann sum to approximate free energy (5) and obtain F j(t; θ) =

|δx|
∑N

i=1

[
f j(xi, t) ln

(
1
2σ

2(xi) f j(xi, t)
)
+ ψNN(xi; θ) f j(xi, t)

]
. Based on this, we discretize (6) to get

the following loss function Ldyn
ψ (θ)

Ldyn
ψ (θ) =

M∑
j=1

∥∥∥∥∥∥∥F j(T2; θ) − F j(T1; θ)
T2 − T1

+ |δx|
N∑

i=1

1
2
σ2(xi) f j(xi,T1)

∣∣∣∇̃ ln(σ2(xi) f j(xi,T1)) + ∇ψNN(xi; θ)
∣∣∣2∥∥∥∥∥∥∥

2

,

(13)

where ∇̃ is the numerical gradient computed using data. Due to the orthogonality condition shown
in (7), we define the penalty as

Lorth
ψ (θ; b∗) =

M∑
j=1

∥∥∥∥∥∥∥|δx|
N∑

i=1

σ2(xi) f j(xi,T1)

∣∣∣∣∣∣∇ψNN(xi; θ) ·
(

2
σ2(xi)

b∗(xi) + ∇ψNN(xi; θ)
)∣∣∣∣∣∣

∥∥∥∥∥∥∥
2

, (14)

where b∗(xi) := bNN(xi; θ∗b) in which θ∗b is given by (11) in Stage 1. Combining (13) and (10), we
formulate the following optimization problem for learning pseudo-potential ψ:

θ∗ψ = argmin
θ
{Ldyn

ψ (θ) + λLorth
ψ (θ; b∗)} := argmin

θ
Lλ(θ),where λ is a multiplier. (15)

We summarize the learning framework shown in Subsections 3.1 and 3.2 as the following diagram:

Algorithm 1 Learning non-gradient diffusions using the two-stage method
• Given probability density functions of four time steps
{( f j(xi, t1), f j(xi, t2), f j(xi,T1), f j(xi,T2))}N,Mi, j=1 for training.

• Stage 1: Learn the general drift b by optimizing the loss function (12) and find the “best”
parameters of the neural networks to reconstruct bNN.
• Stage 2: Learn the pseudo-potential ψ by optimizing the loss function Lλ given in (15)

and find the “best” parameters of the neural networks to reconstruct ψNN.

In addition, we present the following flowchart to provide a depiction of our learning framework:

{𝑓 𝑡! , 𝑓 𝑡" }

{𝑓 𝑇! , 𝑓 𝑇" }

𝒃## 𝜓##, 𝑹##

Short Time Data Drift Potential & Rotation

Intermediate Time Data

Stage 1 Stage 2

First Moment Energy Law & 
Penalty

Figure 1: The flowchart of the two-stage method.

We remark that in our two-stage learning framework for nonlinear stochastic dynamics, we consider
two temporal steps: in Stage 1, the short time is chosen for training to capture the drift b, while in
Stage 2, we choose the intermediate time to learn the pseudo-potential ψ. The reason is that, in Stage
1, short-time data remain distinct enough to be a family of effective test functions, allowing for a
better identification of the drift compared to long-term data. In addition, the intermediate temporal
data in Stage 2 can reduce the non-convexity of (13) significantly based on the free energy since as
t large enough, (13) has a unique solution ψNN = − ln(σ2 f ).
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4 Numerical Examples

In this section, we show several representative numerical examples and focus on two- and three-
dimensional cases, i.e. d = 2, 3. Noting that the equation (2) is posed on the whole space R2, we
solve the FP equation on a sufficiently large computational domain, e.g. [−4, 4]2 for the 2D cases,
to achieve an accurate approximation. To generate continuous data observations, we simulate M
different initial distributions ofN(µ0, σ2

0I), where the M mean vectors µ0 are uniformly spaced in a
smaller domain, e.g.[−2, 2]2 in the 2D cases, σ2

0 = 0.01, and I is the identity matrix. We remark that
in stage 2, while learning pseudo-potentials based on energy laws, there are singularities caused by
ln f and |∇ f |2/ f when the density f vanishes in (13). To tackle this numerical issue, we approximate
f by using f̄ = max( f , 5 × 10−4).

Note that the pseudo-potential ψ is uniquely determined up to an additive constant. To compare the
neural network approximation ψNN with the ground truth ψ, we shift ψNN so that the average of ψNN
is the same as that of ground truth ψ: ψNN(x)→ ψNN(x) + 1

N
∑N

i=1 (ψ(xi) − ψNN(xi)).

For training in both stages, we use a four-layer fully connected neural network with two 50-node
hidden layers and Tanh() activation. Training uses the Adam optimizer (learning rate 10−4), batch
size 5, for 10, 000 epochs.

We evaluate the performance of each step of our method using the following relative

root mean square errors (rRMSE): rRMSEb =

√∑N
i=1 |b(xi) − bNN(xi; θ∗b)|2/

√∑N
i=1 |b(xi)|2,

rRMSEψ =
√∑N

i=1 (ψ(xi) − ψNN(xi; θ∗ψ))2/
√∑N

i=1(ψ(xi))2, rRMSER =

√∑N
i=1 |R(xi) − RNN(xi)|2

/
√∑N

i=1 |R(xi)|2, where RNN := 2
σ2 bNN + ∇ψNN.

4.1 An illustrative example

To demonstrate the effectiveness of our two-stage method, we begin with a basic two-dimensional
example in which the potential is a double-well, and the rotational component is the orthogonal
complement of the potential’s gradient (i.e., the canonical form).

Double-well Potential & Canonical Rotation. Consider the potential function ψ(x, y) = 1
4 (x2−1)2+

1
2 y2, the rotation R(x, y) = ∇ψ⊥ =

[
y,−(x3 − x)

]T
, and the noise intensity σ2(x, y) = 1/(1 + x2 + y2).

Then, the ground truth drift is given by b(x, y) = 1
2(1+x2+y2)

[
−(x3 − x) + y,−y − (x3 − x)

]T
.

The training data { f j(xi, yi, t1), f j(xi, yi, t2), f j(xi, yi,T1), f j(xi, yi,T2)}N,Mi, j=1 are generated by solving
the FP equation using a spatial grid size of ∆x = ∆y = 0.1 and a time step size of ∆t = 0.0001.
For the baseline experiment, we simulate 40 different initial distributions and select snapshots at
t1 = 0.015, t2 = 0.016, T1 = 2 and T2 = 2.001 as our training data. We set the weight λ = 10 for the
orthogonality penalty in (15). Applying the two-stage method yields a learned drift vector field and
a learned pseudo-potential, correspondingly a learned rotation field (Figures 3,4,5).

Table 1 summarizes a series of experiments with varying hyperparameters, including the sample size
M, observation grid size δx and δy, observation time step size δt, timescales t1 and T1 for the first
and second stages respectively, and the weight λ for the orthogonality penalty.

As shown in Table 1, λ = 10 leads to a relatively small error in learning the pseudo-potential and
rotation term compared to λ = 1 and λ = 100. Furthermore, learning drifts and pseudo-potentials are
robust to the increment of δt and t1. Whereas, an increase in δx adversely affects the ability to learn
the drift. It should be noted, however, that δx = 0.1 is already a relatively coarse grid size. Similarly,
decreasing T1 leads to a worse learning of pseudo-potentials, as it results in a more severely non-
convex loss function, as discussed in Lu et al. (2024). In particular, Experiment 2 shown in Table
1 implies that the sparseness of data observation (the number M of the initial distributions is small)
significantly reduces the accuracy of learning.
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Table 1: Experiments of the basic example using different hyperparameters, along with their corresponding
relative root mean square errors.

Experiment M δx (δy) δt t1 T1 λ rRMSEb rRMSEψ rRMSER
1 (baseline) 40 0.1 0.001 0.015 2 10 2.266e-02 1.929e-02 3.495e-02

2 20 0.1 0.001 0.015 2 10 3.702e-01 3.007e-01 6.286e-01
3 40 0.2 0.001 0.015 2 10 4.610e-02 1.968e-02 5.837e-02
4 40 0.1 0.01 0.015 2 10 1.784e-02 1.605e-02 3.101e-02
5 40 0.1 0.001 0.5 2 10 2.633e-02 1.345e-02 3.435e-02
6 40 0.1 0.001 0.015 1 10 2.230e-02 2.552e-02 4.661e-02
7 40 0.1 0.001 0.015 2 1 1.551e-02 6.259e-02 8.778e-02
8 40 0.1 0.001 0.015 2 100 1.838e-02 5.807e-01 9.840e-01

4.2 Further analysis

We now present several examples to test the robustness of our two-stage method. The first example
uses the same double-well potential as in Section 4.1, but incorporates a non-canonical rotation. The
second example involves a quadruple-well potential combined with the canonical rotation, along
with an oscillatory noise intensity. The third example examines a rough double-well potential. The
fourth example revisits the original double-well potential and canonical rotation from Section 4.1,
but with training data contaminated by Gaussian noise. In the fifth example, we consider a three-
dimensional problem with a double-well potential and a canonical rotation to show the effectiveness
of our two-stage method in higher-dimensional problems. In the sixth example, we examine the
impact of different choices of training-data time stamps, which quantifies how close the training
data are to the steady state(s), on obtaining reasonable learning results. In the seventh example, we
validate our method on particle data, which are more readily available in real-world applications.
Finally, we compare our two-stage method with a PDE-based approach on a simple example to
demonstrate the necessity of the two-stage framework for learning non-gradient systems.

Double-well Potential & Non-canonical Rotation. This example demonstrates that the two-stage
method remains effective for rotational fields R that are not of the form R = ∇ψ⊥.

Let ψ, R, and σ2 be the same as in the example of Section 4.1. We define ψ = ψ, R = ψ
4 R, where the

factor 1
4 is introduced to avoid numerical overflow near the boundary. Note that ∇ψ ·R = ψ

4 (∇ψ ·R) =
0 and ∇ · R = ∇ψ4 · R +

ψ
4∇ · R = 0 since ∇ψ · R = 0 and ∇ · R = 0.

In other words, without ambiguity in notation, we consider the potential function ψ(x, y) = 1
4 (x2 −

1)2 + 1
2 y2, the rotation R(x, y) =

(
1
16 (x2 − 1)2 + 1

8 y2
) [

y,−(x3 − x)
]T

. Thus, the ground truth drift is

given by b(x, y) = 1
2(1+x2+y2)

[
−(x3 − x) +

(
1
16 (x2 − 1)2 + 1

8 y2
)

y,−y −
(

1
16 (x2 − 1)2 + 1

8 y2
)

(x3 − x)
]T

.

We first adopt the same hyperparameter setting as in the baseline of the example in Section 4.1, with
a sample size of M = 40. We observe that while the learned drift bNN and potential ψNN closely
match the ground truth (rRMSEb = 1.232 × 10−1 and rRMSEψ = 6.287 × 10−2), the reconstructed
rotational field RNN deviates more significantly from the true R (rRMSER = 5.290 × 10−1). To
accurately capture the complex structure of R, a larger sample size is needed. We increase M to 80,
and the resulting learned field RNN is shown in Figure 6. The relative root mean square errors are
rRMSEb = 3.640 × 10−2, rRMSEψ = 4.337 × 10−2, and rRMSER = 1.692 × 10−1.

Quadruple-well Potential & Canonical Rotation. In this example, we consider a sym-
metric quadruple-well potential, ψ(x, y) = 1

8 (x2 − 1)2 + 1
8 (y2 − 1)2, paired with the rota-

tional field R(x, y) = 1
2

[
y3 − y,−(x3 − x)

]T
, and an oscillatory noise intensity σ2(x, y) =

1 + 1
2 cos((x + 1

2 )2 + y2). The corresponding ground truth drift field is given by b(x, y) =(
1
4 +

1
8 cos((x + 1

2 )2 + y2)
) [
−(x3 − x) + (y3 − y),−(y3 − y) − (x3 − x)

]T
.

We use the same hyperparameter settings as in the baseline of example in Section 4.1 with M =
80. The learned pseudo-potential is shown in Figure 7. The relative root mean square errors are
rRMSEb = 1.441 × 10−1, rRMSEψ = 1.513 × 10−1, and rRMSER = 2.265 × 10−2.
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Rough Double-well Potential & Canonical Rotation. In this example, we consider the poten-
tial function ψ(x) = 1

4 (x2 − 1)2 + 1
2 y2 + ε4 sin( 2πx

ε
) sin( 2πy

ε
) with a parameter ε. The param-

eter ε controls the oscillatory behavior of the potential function and its derivatives — smaller
values of ε lead to stronger oscillations. Moreover, the oscillations become more prominent
in higher-order derivatives compared to lower-order ones. In other words, under a given res-
olution, higher-order derivatives are more difficult to estimate accurately compared to lower-
order ones. For the reader’s convenience, we also list the gradient of the potential function
∇ψ(x, y) =

[
x + 2πε3 cos( 2πx

ε
) sin( 2πy

ε
), y + 2πε3 sin( 2πx

ε
) cos( 2πy

ε
)
]T

, the rotation term R(x, y) =[
−y − 2πε3 sin( 2πx

ε
) cos( 2πy

ε
), x + 2πε3 cos( 2πx

ε
) sin( 2πy

ε
)
]T

, and the noise intensity σ2 = 2 here.

In this example, we choose ε = 0.4, the corresponding first and second partial derivatives of the
potential function are shown in Figure 2. We use the same hyperparameter setting as in the example
in Section 4.1, except we use a lower resolution δx = δy = 0.2 for training. The learned pseudo-
potential is shown in Figure 8. The relative root mean square errors are rRMSEb = 5.670 × 10−2,
rRMSEψ = 3.539 × 10−2, and rRMSER = 9.690 × 10−2.

The Impacts of Noisy Data. This example aims to test the robustness of our proposed two-stage
method for noisy training data. For comparison and convenience, we follow the same potential
function and rotation term as in the example in Section 4.1.

The training data { f j(xi, yi, t1), f j(xi, yi, t2), f j(xi, yi,T1), f j(xi, yi,T2)}N,Mi, j=1 are generated by solving
the FP equation as in the example in Section 4.1. To construct noisy training data, the numerical
solution f is convoluted with a Gaussian distributionN(0, γI), where I is the identity matrix and the
parameter γ is referred to as the noise level.

We use the same hyperparameters as in the first row of Table 1, except for the noise level. For the
reader’s convenience, we reproduce the baseline result in the first row of Table 2. As shown in Table
2, although the accuracy of the learned model gradually decreases as the noise intensity increases,
our method yields reasonably reliable results, with all errors remaining below 35%, even when the
noise level reaches as high as γ = 0.3. This robustness primarily arises from the fact that our loss
function is formulated in an integral form. Moreover, the presence of an underlying variational
structure allows us to avoid the challenges associated with approximating higher-order derivatives.
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Figure 2: Rough po-
tential. Upper row:
The first derivatives.
Lower row: The sec-
ond derivatives.

Table 2: The Impacts of Noisy Data.

Experiment Noise level rRMSEb rRMSEψ rRMSER
1 0.0 2.266e-02 1.929e-02 3.495e-02
2 0.1 3.541e-02 3.320e-02 4.226e-02
3 0.2 9.468e-02 7.521e-02 8.616e-02
4 0.3 2.235e-01 2.057e-01 3.404e-01
5 0.4 4.426e-01 2.163e-01 7.200e-01

Three-dimensional problem. Consider ψ(x, y, z) = (1 − x2)2 + y2 + z2 and R(x, y, z) =[
−(y + z), 2(x3 − x), 2(x3 − x)

]T
. We solve the Fokker-Planck equation on [−3, 3] × [−1.5, 1.5]2,

simulate M = 80 initial distributions in [−2, 2] × [−1, 1]2 for generating training data, and adopt the
same hyperparameter setting as in the baseline of the example in Section 4.1 (∆x = ∆y = ∆z = 0.1,
∆t = 0.0001, t1 = 0.015, t2 = 0.016, T1 = 2 and T2 = 2.001). The relative root mean square errors
are rRMSEb = 1.568 × 10−1, rRMSEψ = 5.991 × 10−2, and rRMSER = 1.596 × 10−1. This example
demonstrates the robustness of the two-stage method in higher-dimensional problems.

The impact of different choices of T1. In our two-stage method, training data at t1 and T1 are
used to accommodate the first-moment loss and the EnVarA loss. As noted in Lu et al. (2024),
closer second-stage data to the steady state generally improve learning performance. To assess

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

proximity to steady state, we use the absolute value of free-energy dissipation dF
dt , which vanishes

at equilibrium. This example uses the same setup as Section 4.1 but varies T1. As shown in Table 5,
choosing T1 ≥ 1.0 yields good learning results, consistent with Lu et al. (2024).

Particle-to-density method. We evaluate our method on particle data, which are more accessible
than probability density data. Consider the same system as in Section 4.1. We solve the SDE
with ∆t = 0.001 and simulate M = 40 initial distributions with means in [−1.5, 1.5]2 and fixed
variance 0.04 for generating training data, where each distribution is approximated by the kernel
density estimation method using 104 particles. The training data are chosen at t1 = 0.5, t2 = 0.7
and T1 = 2.0, T2 = 2.2. Therefore, the observational time step size is 0.2. In this particle-to-density
setting, as shown in Figures 9, 10, and 11, our method yields reasonable learning results.

Comparison to a PDE-based method. To compare our two-stage method with existing PDE-based
methods Schaeffer (2017); Lu et al. (2024), which are widely used in science and engineering, we
consider a 2D single-well potential ψ(x, y) = 1

2 (x2 + y2). We then minimize a PDE-based loss
function aiming to learn the gradient (without rotation) and non-gradient drifts (with a canonical
rotation R(x, y) = [y,−x]T ), respectively; the explicit form of this loss is given in Appendix D. The
learning results show that the PDE-based method can successfully recover the potential for gradient
systems from data, but fails to do so for non-gradient systems. See Figures 12 and 13 in Appendix C.

4.3 Ablation studies

Direct Methods vs Two-stage Method. We compare the performance of the two-stage method
proposed in Section 3 with two direct methods described in Appendix B.1, which aim to jointly
learn the potential component ψ and the rotation component R from data.

To illustrate, we consider the basic example in Section 4.1 while the noise intensity is set to a
constant value σ2 ≡ 2. For simulation, we adopt the baseline’s hyperparameters in Table 1. The
results in Table 3 demonstrate that the two-stage method achieves the most stable and accurate
performance in learning all the drift, pseudo-potentials, and rotational components. In particular,
although the energy-based direct method performs well in learning the pseudo-potential ψ, it exhibits
deficient performance in capturing the rotational component. This limitation arises because the long
temporal data adversely affects the accurate learning of the drift by solely using an energy law-based
loss function. Similarly, first-moment direct method can not achieve the decent approximation of ψ
due to the short-time data observation.

The Impacts of Different Penalties. We test the effectiveness of our proposed penalty term based on
the dimensional analysis mentioned in Appendix B.2. For comparison, we follow the same setting as
in the example in Section 4.1 except the penalty term. A comparison between the weighted penalty
given by (10) and the standard L2 penalty is provided in Appendix B.2.

As shown in Table 4, the accuracies of the drift term for both penalty types are nearly identical. In
fact, they would be exactly the same in the absence of randomness in neural network training, since
the first stage of the method does not involve the penalty term. However, the standard penalty fails
to properly decompose the gradient and rotational components, as its loss function generally lacks
the ability to effectively control behaviors across different scales of energy loss and penalty loss.

Table 3: The relative root mean squared error
(rRMSE) for the total drift b, the pseudo-potential
ψ, and the rotational field R, as recovered by each
method.

Method rRMSEb rRMSEψ rRMSER
First-moment 2.724e-03 5.339e-01 9.987e-01
Free-energy 7.115e-01 4.823e-02 1.005e+00
Two-stage 2.607e-03 2.220e-03 3.569e-03

Table 4: The relative root mean squared error
(rRMSE) for the total drift b, the pseudo-potential ψ,
and the rotational field R, as recovered by the pro-
posed two-stage method with different penalties.

Penalty rRMSEb rRMSEψ rRMSER
Proposed 2.266e-02 1.929e-02 3.495e-02
L2-norm 2.176e-02 5.699e-01 9.946e-01

5 RelatedWorks

Strong-form based learning. Over the last several decades, various methods have been formulated
and developed for learning deterministic/sotchasitc dynamics, e.g. sparse identification of nonlinear

9
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dynamical systems (SINDy) Brunton et al. (2016), physics-informed neural network (PINN) Raissi
et al. (2019), Koopman operator theory Williams et al. (2015), to name a few. On the other hand,
statistical methods including maximum likelihood methods Dietrich et al. (2023); Opper (2019);
Chen et al. (2024), Gaussian processes Chen et al. (2021b); Batlle et al. (2025), kernel methods
Xu et al. (2025), Wasserstein distances Ma et al. (2021), nonparametric regression techniques Lu
et al. (2019; 2023); Lang & Lu (2022); Feng et al. (2024); Miller et al. (2023); Lu et al. (2022);
Ding et al. (2022), etc. are introduced for learning physical laws. We remark that the existing
learning frameworks are typically formulated based on the strong form of the underlying governing
equations, such as (stochastic) ordinary differential equations (ODEs/SDEs) and PDEs. Different
to the methods we have mentioned and some more methods in the references therein, there are
some variational-form based learning frameworks are proposed aiming to enhance interpretability
in learning. We refer the reader to Yu et al. (2021); Chen et al. (2024); Jin et al. (2020); Huang et al.
(2024a); Chen & Tao (2021); Mattheakis et al. (2022); Bertalan et al. (2019); Finzi et al. (2020);
Greydanus et al. (2019); Hu et al. (2025); Chen et al. (2020), and the references therein. This is
related to the variational and weak-form based learning framework discussed below, although their
loss functions are constructed based on the strong form of the differential equations.

Variational- and weak-form based learning. Motivated by the strong-form based learning frame-
work, and aiming to avoid the approximation of high-order derivatives while enhancing robustness
to noisy data, recent years have seen growing interest in learning frameworks based on variational
and weak formulations. For example, the weak-form variant of SINDy has been proposed to learn
PDEs Messenger & Bortz (2021), Hamiltonian systems Messenger et al. (2024), and mean-field
equations Messenger & Bortz (2022). Similarly, numerous methods related to PINNs have been de-
veloped, such as the weak-form PINN Ryck et al. (2022), variational PINN Kharazmi et al. (2021),
Physics-Informed Graph Neural Galerkin Networks Gao et al. (2022), and Weak Adversarial Net-
works Zang et al. (2020), to name a few. These approaches formulate the loss function based on
the weak formulation of the underlying PDEs, which requires constructing a suitable class of test
functions to infer the target unknown function. To avoid the explicit construction of test functions,
Gao et al. (2024) proposed a self-test loss function that leverages data itself as a test function to
learn Wasserstein gradient flows. Interestingly, they also observed that their loss function is closely
related to the underlying energy dissipation law. In contrast to weak formulation-based approaches,
several learning frameworks have been developed that are directly connected to energy structures
aiming to preserve more physical structures during the learning process—whether for conservative
or dissipative systems Lu et al. (2024); Lee et al. (2021); Hu et al. (2024); Zhang et al. (2024); Huang
et al. (2024b); Gruber et al. (2023; 2025).

6 Conclusion

We have developed a learning framework for generalized diffusions with non-gradient structures.
Focusing on the FP equation, our method learns both the pseudo-potential and rotational components
by combining the first-moment evolution with the energy dissipation law. The proposed two-stage
framework demonstrates strong flexibility and effectiveness in handling both gradient-driven diffu-
sion and processes with rotational dynamics. Our approach offers several advantages: it is robust
to noisy data, applicable to diffusion processes without detailed balance, and potentially extend-
able to high-dimensional settings. To enforce the pointwise orthogonality constraint, we introduce
a weighted penalty derived via dimensional analysis. We validate our method through a series of
representative numerical experiments, including ablation studies comparing the two-stage method
with direct methods and evaluating the proposed weighted penalty against the standard L2 penalty.

Several open problems remain for future exploration. First, applying energy laws to the learning of
pseudo-potentials in general drifts without the pointwise orthogonal constraint is challenging due to
the severe non-convexity of the energy-based loss. Second, extending the learning framework to the
case of time-dependent pseudo-potentials via energy laws deserves future investigation. Identifying
the pseudo-potential in the presence of a time-dependent drift is particularly significant, given its
relevance to transformer architectures and large language models (LLMs) Bertozzi et al. (2025).
However, the corresponding Fokker–Planck equation may fail to admit an energy dissipation law
since the drift is time dependent, making it difficult to determine the drift and pseudo-potential at
each time. Third, learning physical laws in nonlinear stochastic dynamics with nonlocal effects
represents a promising direction for further research.
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A Computation of the Energy-Dissipation Law

In this appendix, we compute the functional derivative of the energy F [ f ] defined in (5). To begin
with, we define v ∈ C∞c (Rd) as an arbitrary test function. Noting that F [ f + εv] is continuously
differentiable in ε, one computes the Gateaux derivative, which is

d
dε

∣∣∣∣
ε=0
F [ f + εv] =

〈δF
δ f

, v
〉

L2

=

∫
Rd

d
dε

∣∣∣∣
ε=0

[
( f + εv) ln

[ 1
2σ

2( f + εv)
]
+ ψ( f + εv)

]
dx =

∫
Rd

v[ ln
( 1

2σ
2 f

)
+ 1] + ψv dx, (A.1)

which implies Fréchet derivative of F [ f ] is

δF

δ f
= ln

( 1
2σ

2 f
)
+ 1 + ψ.

It follows that

∇

(
δF

δ f

)
= ∇[ln

(
σ2 f

)
+ ψ] = −

2
σ2 u, (A.2)
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where u := −
[σ2

2 ∇ ln(σ2 f ) + σ2

2 ∇ψ
]
. In light of the FP equation (2), one finds

∂t f = ∇ · [
(
∇(
σ2

2
f ) − b f

)]
=∇ · [(∇(

σ2

2
f ) +

σ2

2
∇ψ f ) −

1
2
σ2R f ]

=∇ · [
fσ2

2
∇(ln(σ2 f ) + ψ) −

1
2
σ2R f ]

= − ∇ · [u f ] −
1
2
∇ · (σ2R f ). (A.3)

Now, we are ready to compute dF
dt with F defined in (5). Indeed, denoting ⟨·, ·⟩L2 the L2-inner

product, one has from (A.2) and (A.3) that

dF
dt
=

〈δF
δ f

, ft
〉

L2 =

∫
Rd

δF

δ f
ft dx

= −

∫
Rd

δF

δ f
∇·

[
f (σ2R + u)

]
dx

=

∫
Rd
∇

(
δF

δ f

)
· f (σ2R + u) dx

= −

∫
Rd

2 f
σ2 |u|

2 dx +
1
2

∫
Rd

[
R · ∇(σ2 f ) + σ2 f R · ∇ψ

]
dx,

proving the energy evolutionary equation (6).

Moreover, by using the pointwise orthogonality condition (7) and the divergence-free condition
∇ · R = 0, since R is the rotation component, one finds from the integration by parts that

dF
dt
= −

∫
Rd

2 f
σ2 |u|

2 dx +
1
2

∫
Rd

[
R · ∇(σ2 f ) + σ2 f R · ∇ψ

]
dx,

= −

∫
Rd

2 f
σ2 |u|

2 dx −
1
2

∫
Rd

[
∇ · R(σ2 f )

]
dx

= −

∫
Rd

2 f
σ2 |u|

2 dx ≤ 0,

which establishes the energy-dissipation law (8).

B Ablation Studies

B.1 DirectMethods vs Two-stageMethod

First-moment direct method: This method learns ψ and R by minimizing a dynamical loss derived
from the evolution of empirical first moments. Specifically, we optimize the parameters θ of the
neural networks ψNN and RNN according to the following objective:

θ∗ψ,R = argmin
θ

Ldyn
ψ,R(θ), (B.1)

where Ldyn
ψ,R(θ) =

∑d
k=1 Ldyn

ψ,Rk
(θ) and for k = 1, . . . , d,

Ldyn
ψ,Rk

(θ) =
M∑
j=1

∥∥∥∥∥∥∥ (µ j)k(t2) − (µ j)k(t1)
t2 − t1

+ |δx|
N∑

i=1

1
2
σ2(xi)

[
∂xkψNN(xi; θ) − (Rk)NN(xi; θ)

]
f j(xi, t1)

∥∥∥∥∥∥∥
2

.

(B.2)

Free-energy direct method: Alternatively, we may attempt to directly learn ψ and R by using
energy dissipation law:
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θ∗ψ,R = argmin
θ
{Ldyn

ψ (θ) + λLorth
ψ,R(θ)}, (B.3)

where Ldyn
ψ is defined in (13) and

Lorth
ψ,R(θ) =

M∑
j=1

∥∥∥∥∥∥∥|δx|
N∑

i=1

σ2(xi) f j(xi,T1) |∇ψNN(xi; θ) · RNN(xi; θ)|

∥∥∥∥∥∥∥
2

. (B.4)

B.2 Dimensional Analysis: Penalty in Energy Laws

In this appendix, we discuss our choice of penalty given by (10). The method we shall use is
dimensional analysis, and we refer the reader to Drobot (1953). In detail, for any function g, we
denote [g] as the dimension of g. With the aid of (2), (4) and (5), we have [σ2][t] = [x]2, [∇ψ] =
[R] = 1

[x] and [ψ] = [ln( 1
2σ

2 f )] = 1. Moreover, one finds[
dF
dt

]
=

[∫
Rd

∂ f
∂t

dx
]
=

[∫
Rd

[σ]2[ f ]
[x]2 dx

]
,

which implies([
dF
dt

]
+

∫
Rd

[
1
2
|∇(σ2 f )|2

σ2 f
+ ∇(σ2 f ) · ∇ψ +

1
2
σ2 f |∇ψ|2

]
dx

)2

=

([∫
Rd

[σ2][ f ]
[x]2 dx

])2

= [σ2]2[ f ]2[x]2d−4,

(B.5)

where we have used
[∫
Rd

1
[x]2 dx

]
= [x]d−2. Noting that the orthogonality penalty is given by (10), we

have [∫
Rd
σ2 f |∇ψ · R| dx

]2

=

[∫
Rd

[σ2][ f ]
1

[x]2 dx
]2

= [σ2]2[ f ]2[x]2d−4.

Otherwise, if we use the standard L2 penalty, one finds the corresponding dimension is[∫
Rd
|∇ψ · R|2 dx

]
=

[∫
Rd

1
[x]4 dx

]
= [x]d−4,

which does not match the dimension of energy dissipation rate shown in (B.5).

C Figures and Tables

This appendix presents all the figures and some tables mentioned in Section 4.
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Figure 3: Comparison of the learned drift (left) bNN with the ground truth (right) b(x, y) =

1
2(1+x2+y2)

[
−(x3 − x) + y
−y − (x3 − x)

]
. The relative root mean square error is 2.266 × 10−2.
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Figure 4: Comparison of the learned potential function ψNN with the ground truth ψ(x, y) = 1
4 (x2 − 1)2 + 1

2 y2.
The heatmaps, shown from left to right, correspond to ψNN, the ground truth, and their pointwise difference.
The relative root mean square error is 1.929 × 10−2.
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Figure 5: Comparison of the learned rotation (left) RNN with the ground truth (right) R(x, y) = ∇ψ⊥ =[
y

−(x3 − x)

]
. The relative root mean square error is 3.495 × 10−2.
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Figure 6: Comparison of the learned rotation (left) RNN with the ground truth (right) R(x, y) =(
1
16 (x2 − 1)2 + 1

8 y2
) [ y
−(x3 − x)

]
, using M = 80. The relative root mean square error is 1.692 × 10−1.
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Figure 7: Comparison of the learned potential function ψNN with the ground truth ψ(x, y) = 1
8 (x2 − 1)2 +

1
8 (y2 − 1)2. The heatmaps, shown from left to right, correspond to ψNN, the ground truth, and their pointwise
difference. The relative root mean square error is 1.513 × 10−1.
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Figure 8: Comparison of the learned potential function ψNN with the ground truth ψ(x, y) = 1
4 (x2 − 1)2 + 1

2 y2 +

ε4 sin( 2πx
ε

) sin( 2πy
ε

). The heatmaps, shown from left to right, correspond to ψNN, the ground truth, and their
pointwise difference. The relative root mean square error is 3.539 × 10−2.

Table 5: The Impacts of T1.∣∣∣ dF
dt

∣∣∣ T1 rRMSEψ rRMSER
0.350 0.2 3.259e-01 5.982e-01
0.125 0.5 3.159e-01 5.365e-01
0.055 1.0 1.625e-02 2.657e-02
0.030 1.5 9.433e-03 2.343e-02
0.017 2.0 8.577e-03 2.367e-02
0.011 2.5 8.686e-03 2.443e-02
0.007 3.0 8.466e-03 2.350e-02
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Figure 9: Comparison of the learned drift (left) bNN with the ground truth (right) b(x, y) =

1
2(1+x2+y2)

[
−(x3 − x) + y
−y − (x3 − x)

]
. The relative root mean square error is 2.024 × 10−1.
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Figure 10: Comparison of the learned potential function ψNN with the ground truth ψ(x, y) = 1
4 (x2 − 1)2 + 1

2 y2.
The heatmaps, shown from left to right, correspond to ψNN, the ground truth, and their pointwise difference.
The relative root mean square error is 1.216 × 10−1.
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Figure 11: Comparison of the learned rotation (left) RNN with the ground truth (right) R(x, y) = ∇ψ⊥ =[
y

−(x3 − x)

]
. The relative root mean square error is 3.495 × 10−2.
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Figure 12: Comparison of the learned potential function ψNN for a gradient system with the ground truth
ψ(x, y) = 1

2 x2 + 1
2 y2. The heatmaps, shown from left to right, correspond to ψNN, the ground truth, and their

pointwise difference. The relative root mean square error is 1.404 × 10−3.
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Figure 13: Comparison of the learned potential function ψNN for a non-gradient system with the ground truth
ψ(x, y) = 1

2 x2 + 1
2 y2. The heatmaps, shown from left to right, correspond to ψNN, the ground truth, and their

pointwise difference. The relative root mean square error is 5.344 × 10−1.

D Formulation of a PDE-based loss

We minimize the loss function LPDE−total
ψ (θ) below, with the aim of learn the potential for gradient

and non-gradient systems.

LPDE−total
ψ (θ) = LPDE

ψ (θ) + λLPDE−penalty
ψ (θ), (D.1)

where

LPDE
ψ (θ) =

N,M∑
i, j=1

∣∣∣∣∣∂t f j(xi, t1) + ∇̃ · (b f j(xi, t1)) −
1
2
∆̃(σ2 f j(xi, t1))

∣∣∣∣∣2 |δx|
+

N,M∑
i, j=1

∣∣∣∣∣∂t f j(xi,T1) + ∇̃ · (b f j(xi,T1)) −
1
2
∆̃(σ2 f j(xi,T1))

∣∣∣∣∣2 |δx|, (D.2)

and

LPDE−penalty
ψ (θ) =

N,M∑
i, j=1

σ4 f 2
j (x, t1)|∇ψ · R||δx| +

N,M∑
i, j=1

σ4 f 2
j (xi,T1)|∇ψ · R||δx|. (D.3)

The penalty term LPDE−penalty
ψ is derived using the dimensional analysis discussed in Appendix B.2.
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