

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING NON-GRADIENT DIFFUSION SYSTEMS VIA MOMENT- EVOLUTION AND ENERGETIC VARIATIONAL APPROACHES

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper proposes a data-driven learning framework for identifying governing laws of generalized diffusions with non-gradient components. By combining energy dissipation laws with a physically consistent penalty and first-moment evolution, we design a two-stage method to recover the pseudo-potential and rotation in the pointwise orthogonal decomposition of a class of non-gradient drifts in generalized diffusions. Our two-stage method is applied to complex generalized diffusions including dissipation-rotation dynamics, rough pseudo-potentials and noisy data. Representative numerical experiments demonstrate the effectiveness of our approach for learning physical laws in non-gradient generalized diffusions.

1 INTRODUCTION

Over the past several decades, numerous studies have been devoted to nonlinear stochastic dynamics, particularly with regard to entropy production Esposito (2012); Crooks (1999); Qian et al. (1991), fluctuation Kurchan (1998); Marconi et al. (2008); Esposito & den Broeck (2010), power dissipation Ge & Qian (2010), circulation Qian & Qian (1982); Qian & Wang (1999), and non-equilibrium steady states Dorfman (1999); Jiang & Jiang (2004). Through sustained investigation, researchers have gradually come to recognize that the violation of detailed balance plays a key role in revealing the aforementioned fundamental phenomena. Non-detailed balance as an inherent property of diffusion processes underlies the emergence of Hamiltonian conservative dynamics and entropy production. These mechanisms are central to the behavior of living systems in biology and chemistry, as illustrated by models such as the human stem-cell network Li & Wang (2013) and cell-fate decision dynamics Chen et al. (2023). They also appear in broader physical systems, including ocean-current transport models Petrović et al. (2025).

The incorporation of non-gradient structures into SDEs provides a prototypical framework for modeling non-equilibrium dynamics without detailed balance. Such systems are mathematically characterized by irreversible Markov processes. The study of stochastic dynamics without detailed balance often relies on decomposing the generator of the Markov process into symmetric and anti-symmetric parts Qian et al. (1991); Jiang & Jiang (2004); Qian (2013); Qian & Wang (1999). From a partial differential equation (PDE) perspective, especially through the Fokker-Planck (FP) equation, Qian (2013) shows that general diffusions without detailed balance can be systematically decomposed into a reversible stochastic process with detailed balance and a canonical conservative dynamics. According to the Helmholtz decomposition, a vector field can typically be decomposed into two L^2 -orthogonal components: a gradient component and a rotational component. When these two components are pointwise orthogonal, the gradient part governs the behavior of (non)equilibrium steady states, while the rotational part influences the dynamics through which the system approaches these steady states. This highlights that both the gradient and rotational components play essential roles in the system's evolution. In particular, the rotational component is key to understanding the overall dynamical behavior. Such a decomposition, in the context of the FP equation, is also closely related to large deviation theory. We refer readers to results on the Wentzel-Kramers-Brillouin (WKB) ansatz and the Hamilton-Jacobi equation Graham & Haken (1971); Graham (1973).

One active area of research in the study of SDEs is the discovery of underlying physical laws from observational data. The main idea is to train neural networks or models based on parametric or nonparametric techniques by minimizing a suitable loss function. This loss is often constructed using, for example, probabilistic methods Dietrich et al. (2023); Chen & Xiu (2024); Churchill

& Xiu (2023); Liu et al. (2024); Yang et al. (2020), strong- Brunton et al. (2016); Raissi et al. (2019); Chen et al. (2021a) and weak-forms Zang et al. (2020); Messenger et al. (2024); Ryck et al. (2022); Messenger & Bortz (2022; 2021); Gao et al. (2022) of differential equations or variational structures Huang et al. (2024b); Gruber et al. (2023); Lee et al. (2021); Gruber et al. (2025); Yu et al. (2021); Chen et al. (2024); Huang et al. (2022); Zhang et al. (2022); Kharazmi et al. (2021); Gao et al. (2024); Lu et al. (2024). In Lu et al. (2024), the authors propose a loss function based on a variational structure derived from energy laws, and the proposed algorithm performs effectively in learning potential-driven dissipative systems. However, their framework does not address diffusion processes that include rotational components.

Recent efforts have explored data-driven methods for learning quasi-potentials associated with non-gradient stochastic dynamics. As shown in Lin et al. (2022); Li et al. (2022); Grigorio & Alqahtani (2024), the learning of quasi-potential in the pointwise orthogonal decomposition of drift within FP equations has rich applications in engineering, biology, etc. The computational method proposed in Lin et al. (2022); Li et al. (2022); Grigorio & Alqahtani (2024) for learning the quasi-potential is to minimize the loss function generated by the governing differential equations. In large deviation theory, the computation of the quasi-potential also involves non-gradient structures. However, such analyses primarily focus on small perturbations around (meta)steady states, rather than the global behavior of the entire system. This is subtly but fundamentally different from the goal of the present work, which is to investigate the global dynamics of generalized diffusions with non-gradient structures. Extending our methodology to compute quasi-potentials remains an interesting and promising direction for future research.

In this paper, we focus on the learning of governing laws in generalized diffusions with non-gradient structures. Motivated by the learning framework established in Lu et al. (2024), without relying on governing FP equations, we learn the drift and pseudo-potential by combining first-moment and energy laws. *Here the pseudo-potential is defined as the rate function of the stationary distribution satisfying the WKB ansatz form.* Concerning a class of drift terms with rotation components satisfying pointwise orthogonal decomposition in stochastic processes, we perform numerical experiments in dimension two. Our two-stage learning framework is an extension of that shown in Lu et al. (2024) and has contributed to the following aspects

- We develop a novel two-stage framework consisting of first-moment evolution and an energy dissipation law for learning the decomposition of a general class of drifts with rotation components in nonlinear stochastic dynamics. One of the most significant advantages is that the loss functions are formulated as integral forms, which require low regularity of drifts and data observation.
- In the loss function based on the energy dissipation law, we propose a physically consistent penalty, derived via dimensional analysis, that aims to orthogonally decompose the non-gradient drift into pseudo-potential and rotational components pointwise.
- We investigate the effectiveness of our algorithm for learning physical laws including drifts, pseudo-potentials and rotations over various representative generalized diffusions with different hyperparameters.
- We showcase the effectiveness of learning rough pseudo-potentials and robustness to noisy data observation.

The objective of this paper is to propose an alternative (weak-form) learning approach that complements existing PDE-based (strong-form) methods. Weak-form loss functions generally offer greater robustness against noisy observations compared to their strong-form counterparts. On the other hand, strong-form formulations are better suited to capturing local information. Therefore, integrating these two approaches has the potential to create a more effective loss function for learning physical laws. These possibilities will be explored in future research.

This paper is organized as follows. In Section 2, we introduce the mathematical formulation underlying our learning algorithm. Section 3 presents the learning framework of our two-stage method: in Stage 1, we parameterize the loss function using the first-moment evolution; in Stage 2, we adopt the learning strategy of Lu et al. (2024) to minimize the loss function based on the energy law and recover the potential. Section 4 provides several numerical examples to illustrate the effectiveness and robustness of our approach. It also includes ablation studies comparing (a) the proposed two-stage method with direct approaches, and (b) the proposed weighted penalty with the standard L_2

penalty. Section 5 discusses related works, including strong-form-based methods and variational- or weak-form-based approaches. Finally, Section 6 summarizes our main findings and discusses several open problems for future research.

2 FORMULATION

We consider a dynamical system with some white noise perturbation. The corresponding evolution of the state variable \mathbf{X}_t is described by the following SDE:

$$d\mathbf{X}_t = \mathbf{b}(\mathbf{X}_t)dt + \sigma(\mathbf{X}_t)d\mathbf{W}_t, \quad \mathbf{X}_t = (x_1^t, \dots, x_d^t) \in \mathbb{R}^d, \quad (1)$$

where time $t \geq 0$, drift $\mathbf{b} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a continuously differentiable vector field, \mathbf{W}_t is a standard d -dimensional Brownian motion and the noise intensity $\sigma : \mathbb{R}^d \rightarrow \mathbb{R}$ is a scalar function. We restrict attention to a scalar noise coefficient σ in order to exclude correlated noise effects. This allows us to focus solely on learning the drift decomposition in non-gradient dynamical systems. For related work on stochastic dynamics driven by correlated noise and their learning via neural network-based approaches, we refer the reader to Guo et al. (2025).

Applying the classical Itô integral formula on (1), one has the associated FP equation is

$$\partial_t f + \nabla \cdot (\mathbf{b}f) = \frac{1}{2} \Delta(\sigma^2 f), \quad (2)$$

where $f(\mathbf{x}, t)$ is the probability density function of \mathbf{X}_t at time t . Here we assume $f_0 := f(\mathbf{x}, 0)$ is the density of initial state \mathbf{X}_0 . Next, we derive the loss function from the underlying energy law; the detailed derivation is given in Appendix A.

Multiplying (2) by x_i , $i = 1, \dots, d$, we use integration by parts to get (2) admits the following first-moment evolution:

$$\frac{d}{dt} \int_{\mathbb{R}^d} f x_i d\mathbf{x} = \int_{\mathbb{R}^d} \mathbf{b} \cdot \mathbf{e}^{(i)} f d\mathbf{x} - \frac{1}{2} \int_{\mathbb{R}^d} \partial_{x_i}(\sigma^2 f) d\mathbf{x} = \int_{\mathbb{R}^d} \mathbf{b} \cdot \mathbf{e}^{(i)} f d\mathbf{x}. \quad (3)$$

Since our goal is to extract both pseudo-potential and rotation component in generalized diffusions, the information provided by (3) alone is insufficient. Next, we formulate the energy laws satisfied by the FP equations without detailed balance.

We consider that the drift \mathbf{b} has the following form:

$$\mathbf{b} = -\frac{1}{2} \sigma^2 \nabla \psi + \frac{1}{2} \sigma^2 \mathbf{R}, \quad (4)$$

where ψ is the potential function, σ is the noise intensity and \mathbf{R} is the rotation part. Adopting the following free energy possessed by potential FP equations Lu et al. (2024), we have

$$\mathcal{F}(t) = \int_{\mathbb{R}^d} \left[f \ln \left(\frac{1}{2} \sigma^2 f \right) + \psi f \right] d\mathbf{x}, \quad (5)$$

and its evolution satisfies

$$\frac{d\mathcal{F}}{dt} = - \int_{\mathbb{R}^d} \frac{2f}{\sigma^2} |\mathbf{u}|^2 d\mathbf{x} + \frac{1}{2} \int_{\mathbb{R}^d} [\mathbf{R} \cdot \nabla(\sigma^2 f) + \sigma^2 f \mathbf{R} \cdot \nabla \psi] d\mathbf{x}, \quad (6)$$

where $\mathbf{u} := -[\frac{\sigma^2}{2} \nabla \ln(\sigma^2 f) + \frac{\sigma^2}{2} \nabla \psi]$ denotes the average velocity. Moreover, similarly as the definition of quasi-potential shown in Lin et al. (2022), we suppose ψ and \mathbf{R} satisfy

$$\nabla \psi \cdot \mathbf{R} = 0, \quad (7)$$

where \mathbf{R} is the rotational component. It follows from (6) that

$$\frac{d\mathcal{F}}{dt} = - \int_{\mathbb{R}^d} \frac{2f}{\sigma^2} \left| \frac{\sigma^2}{2} \nabla \ln(\sigma^2 f) + \frac{\sigma^2}{2} \nabla \psi \right|^2 d\mathbf{x} \leq 0, \quad (8)$$

which is dissipative in time t . In other words, with the pointwise orthogonality condition $\nabla \psi \cdot \mathbf{R} = 0$, we can minimize the (8) in a weak form to learn the pseudo-potential and the rotation part. More

162 precisely, since the dissipation law (8) holds for a given density function f satisfying FP equation
 163 (2), we determine the pseudo-potential ψ by minimizing
 164

$$165 \quad \left| \frac{d\mathcal{F}}{dt} + \int_{\mathbb{R}^d} \frac{2f}{\sigma^2} |\mathbf{u}|^2 d\mathbf{x} \right|^2, \quad (9)$$

167 taking advantage of the fact that ψ is time-independent. Here, f is treated as known data, σ is given,
 168 and \mathcal{F} is defined in (5). It is worth noting that ψ is the sole unknown in (9). Subsequently, if \mathbf{b} is
 169 learned from (3), the rotational component \mathbf{R} can then be determined via the decomposition (4).

170 To determine the form of penalty \mathcal{P} associated with the orthogonality constraint in the learning
 171 process, we apply the dimensional analysis outlined in Appendix B.2, which yields
 172

$$173 \quad \mathcal{P} := \left[\int_{\mathbb{R}^d} \sigma^2 f |\nabla \psi \cdot \mathbf{R}| d\mathbf{x} \right]^2. \quad (10)$$

175 3 LEARNING METHODS

177 In the context of FP equations with non-gradient structures, our study introduces a two-stage ap-
 178 proach for learning the underlying physical laws. Suppose a generalized form of fluctuation-
 179 dissipation relation (4) holds and continuous data observation is available, our objective is to identify
 180 the pseudo-potential and the rotation component. We shall propose the learning framework and in-
 181 vestigate the effect of data property on the learning results.
 182

183 We take advantage of the approach proposed in Lu et al. (2024) and shall utilize the energy law (8)
 184 to construct the loss function. Whereas, due to the presence of rotation component, we are not able
 185 to learn the pseudo-potential by only leveraging the energy law. To this end, we first construct the
 186 loss function based on first-moment evolution (3) and learn the general drift \mathbf{b} , then formulate the
 187 second loss function by the energy law and investigate the pseudo-potential.
 188

189 Assuming the continuous data observation is available, we implement our approach by learning the
 190 pseudo-potential ψ with known noise intensity σ^2 . Here we consider the unknown pseudo-potential
 191 function $\psi(x)$ is approximated by a neural network $\psi_{NN}(x; \theta)$. Before introducing our two-stage
 192 method, we discuss the choice of training data in detail as follows.
 193

194 Let $f_j(\mathbf{x}, t)$ be the solution to the FP equation evolving from Gaussian-type initial data $(f_0)_j(\mathbf{x})$ with
 195 mean μ_j^0 and variance σ_0^2 , for $j = 1, \dots, M$, where M is the number of datasets. Let Δx_k , $k =$
 196 $1, \dots, d$, be the uniform spatial mesh size and Δt be the time step used in the FP solver. Our training
 197 data consist of the observation dataset $\{f_j(\mathbf{x}_i, t_1), f_j(\mathbf{x}_i, t_2), f_j(\mathbf{x}_i, T_1), f_j(\mathbf{x}_i, T_2)\}_{i,j}^{N,M}$, where $t_2 = t_1 + \delta t$
 198 and $T_2 = T_1 + \delta t$. Here, $\delta t = m\Delta t$ is a prescribed observation time step size, $t_1 \ll 1$ is the short
 199 (transient) timescale for the first stage, and $T_1 > t_1$ corresponds to a longer, intermediate timescale
 200 for the second stage. The spatial points $\{\mathbf{x}_i\}$ form a uniform mesh of size $\delta x_k = n\Delta x_k$ (observation
 201 spatial grid size). Now, we outline our two-stage approach as follows.
 202

203 3.1 STAGE 1: MOMENT ESTIMATE

204 Define $\mu_j = ((\mu_j)_1, \dots, (\mu_j)_d)$ as the centroid of density function f to (2), which can be approximated
 205 by $(\mu_j)_k(t) = |\delta \mathbf{x}| \sum_{i=1}^N (x_i)_k f_j(\mathbf{x}_i, t)$, $j = 1, \dots, M$, $k = 1, \dots, d$, where the spatial variable \mathbf{x}_i
 206 satisfying $\mathbf{x}_i = ((x_i)_1, \dots, (x_i)_d)$ and $\delta \mathbf{x} = (\delta x_1, \dots, \delta x_d)$. Define drift as $\mathbf{b} = (b_1, \dots, b_d)$ and
 207

$$208 \quad \theta_{\mathbf{b}}^* = \operatorname{argmin}_{\theta} L_{\mathbf{b}}^{\text{dyn}}(\theta), \quad (11)$$

209 where $L_{\mathbf{b}}^{\text{dyn}}(\theta) = \sum_{k=1}^d L_{b_k}^{\text{dyn}}(\theta)$ and
 210

$$211 \quad L_{b_k}^{\text{dyn}}(\theta) = \sum_{j=1}^M \left\| \frac{(\mu_j)_k(t_2) - (\mu_j)_k(t_1)}{t_2 - t_1} - |\delta \mathbf{x}| \sum_{i=1}^N (b_k)_{\text{NN}}(\mathbf{x}_i; \theta) f_j(\mathbf{x}_i, t_1) \right\|^2, \quad k = 1, \dots, d. \quad (12)$$

212 Here $L_{b_k}^{\text{dyn}}$ is obtained by approximating (3) in terms of the Riemann sum. We remark that (12) is
 213 convex in $(b_k)_{\text{NN}}$, which implies (11) is unique and the convex problem performs well numerically.
 214

215 After learning $(b_k)_{\text{NN}}$ by (11), we next learn the pseudo-potential ψ based on energy laws, which is
 216 shown as follows.
 217

216 3.2 STAGE 2: ENERGY DISSIPATION LAWS
217

218 We use the Riemann sum to approximate free energy (5) and obtain $\mathcal{F}_j(t; \theta) =$
219 $|\delta \mathbf{x}| \sum_{i=1}^N \left[f_j(\mathbf{x}_i, t) \ln \left(\frac{1}{2} \sigma^2(\mathbf{x}_i) f_j(\mathbf{x}_i, t) \right) + \psi_{\text{NN}}(\mathbf{x}_i; \theta) f_j(\mathbf{x}_i, t) \right]$. Based on this, we discretize (6) to get
220 the following loss function $L_{\psi}^{\text{dyn}}(\theta)$
221

$$222 L_{\psi}^{\text{dyn}}(\theta) = \sum_{j=1}^M \left\| \frac{\mathcal{F}_j(T_2; \theta) - \mathcal{F}_j(T_1; \theta)}{T_2 - T_1} + |\delta \mathbf{x}| \sum_{i=1}^N \frac{1}{2} \sigma^2(\mathbf{x}_i) f_j(\mathbf{x}_i, T_1) \left[\tilde{\nabla} \ln(\sigma^2(\mathbf{x}_i) f_j(\mathbf{x}_i, T_1)) + \nabla \psi_{\text{NN}}(\mathbf{x}_i; \theta) \right] \right\|^2, \quad (13)$$

226 where $\tilde{\nabla}$ is the numerical gradient computed using data. Due to the orthogonality condition shown
227 in (7), we define the penalty as
228

$$229 L_{\psi}^{\text{orth}}(\theta; \mathbf{b}^*) = \sum_{j=1}^M \left\| |\delta \mathbf{x}| \sum_{i=1}^N \sigma^2(\mathbf{x}_i) f_j(\mathbf{x}_i, T_1) \left[\nabla \psi_{\text{NN}}(\mathbf{x}_i; \theta) \cdot \left(\frac{2}{\sigma^2(\mathbf{x}_i)} \mathbf{b}^*(\mathbf{x}_i) + \nabla \psi_{\text{NN}}(\mathbf{x}_i; \theta) \right) \right] \right\|^2, \quad (14)$$

232 where $\mathbf{b}^*(\mathbf{x}_i) := \mathbf{b}_{\text{NN}}(\mathbf{x}_i; \theta_{\mathbf{b}}^*)$ in which $\theta_{\mathbf{b}}^*$ is given by (11) in Stage 1. Combining (13) and (10), we
233 formulate the following optimization problem for learning pseudo-potential ψ :
234

$$235 \theta_{\psi}^* = \operatorname{argmin}_{\theta} \{ L_{\psi}^{\text{dyn}}(\theta) + \lambda L_{\psi}^{\text{orth}}(\theta; \mathbf{b}^*) \} := \operatorname{argmin}_{\theta} \mathcal{L}_{\lambda}(\theta), \text{ where } \lambda \text{ is a multiplier.} \quad (15)$$

237 We summarize the learning framework shown in Subsections 3.1 and 3.2 as the following diagram:
238

239 **Algorithm 1** Learning non-gradient diffusions using the two-stage method

240

- 241 Given probability density functions of four time steps
242 $\{(f_j(\mathbf{x}_i, t_1), f_j(\mathbf{x}_i, t_2), f_j(\mathbf{x}_i, T_1), f_j(\mathbf{x}_i, T_2))\}_{i,j=1}^{N,M}$ for training.
- 243 Stage 1: Learn the general drift \mathbf{b} by optimizing the loss function (12) and find the “best”
244 parameters of the neural networks to reconstruct \mathbf{b}_{NN} .
- 245 Stage 2: Learn the pseudo-potential ψ by optimizing the loss function \mathcal{L}_{λ} given in (15)
246 and find the “best” parameters of the neural networks to reconstruct ψ_{NN} .

248 In addition, we present the following flowchart to provide a depiction of our learning framework:
249

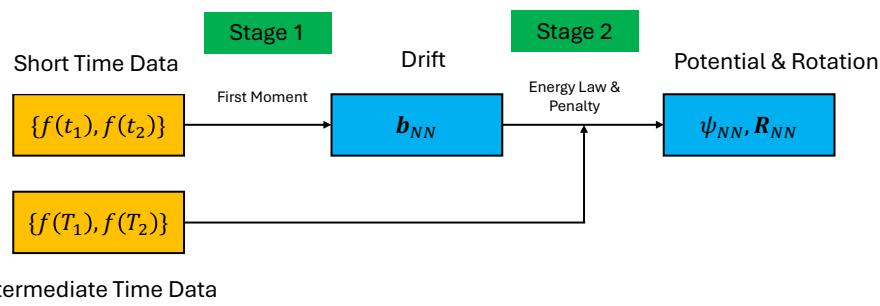


Figure 1: The flowchart of the two-stage method.

264 We remark that in our two-stage learning framework for nonlinear stochastic dynamics, we consider
265 two temporal steps: in Stage 1, the short time is chosen for training to capture the drift \mathbf{b} , while in
266 Stage 2, we choose the intermediate time to learn the pseudo-potential ψ . The reason is that, in Stage
267 1, short-time data remain distinct enough to be a family of effective test functions, allowing for a
268 better identification of the drift compared to long-term data. In addition, the intermediate temporal
269 data in Stage 2 can reduce the non-convexity of (13) significantly based on the free energy since as
 t large enough, (13) has a unique solution $\psi_{\text{NN}} = -\ln(\sigma^2 f)$.

270 4 NUMERICAL EXAMPLES
271
272

273 In this section, we show several representative numerical examples and focus on two- and three-
274 dimensional cases, i.e. $d = 2, 3$. Noting that the equation (2) is posed on the whole space \mathbb{R}^2 , we
275 solve the FP equation on a sufficiently large computational domain, e.g. $[-4, 4]^2$ for the 2D cases,
276 to achieve an accurate approximation. To generate continuous data observations, we simulate M
277 different initial distributions of $\mathcal{N}(\mu^0, \sigma_0^2 I)$, where the M mean vectors μ^0 are uniformly spaced in a
278 smaller domain, e.g. $[-2, 2]^2$ in the 2D cases, $\sigma_0^2 = 0.01$, and I is the identity matrix. We remark that
279 in stage 2, while learning pseudo-potentials based on energy laws, there are singularities caused by
280 $\ln f$ and $|\nabla f|^2/f$ when the density f vanishes in (13). To tackle this numerical issue, we approximate
281 f by using $\bar{f} = \max(f, 5 \times 10^{-4})$.

282 Note that the pseudo-potential ψ is uniquely determined up to an additive constant. To compare the
283 neural network approximation ψ_{NN} with the ground truth ψ , we shift ψ_{NN} so that the average of ψ_{NN}
284 is the same as that of ground truth ψ : $\psi_{\text{NN}}(\mathbf{x}) \rightarrow \psi_{\text{NN}}(\mathbf{x}) + \frac{1}{N} \sum_{i=1}^N (\psi(\mathbf{x}_i) - \psi_{\text{NN}}(\mathbf{x}_i))$.

285 For training in both stages, we use a four-layer fully connected neural network with two 50-node
286 hidden layers and **Tanh()** activation. Training uses the **Adam** optimizer (learning rate 10^{-4}), batch
287 size 5, for 10,000 epochs.

288 We evaluate the performance of each step of our method using the following relative
289 root mean square errors (rRMSE): $\text{rRMSE}_{\mathbf{b}} = \sqrt{\sum_{i=1}^N |\mathbf{b}(\mathbf{x}_i) - \mathbf{b}_{\text{NN}}(\mathbf{x}_i; \theta_{\mathbf{b}}^*)|^2} / \sqrt{\sum_{i=1}^N |\mathbf{b}(\mathbf{x}_i)|^2}$,
290 $\text{rRMSE}_{\psi} = \sqrt{\sum_{i=1}^N (\psi(\mathbf{x}_i) - \psi_{\text{NN}}(\mathbf{x}_i; \theta_{\psi}^*))^2} / \sqrt{\sum_{i=1}^N (\psi(\mathbf{x}_i))^2}$, $\text{rRMSE}_{\mathbf{R}} = \sqrt{\sum_{i=1}^N |\mathbf{R}(\mathbf{x}_i) - \mathbf{R}_{\text{NN}}(\mathbf{x}_i)|^2}$
291 / $\sqrt{\sum_{i=1}^N |\mathbf{R}(\mathbf{x}_i)|^2}$, where $\mathbf{R}_{\text{NN}} := \frac{2}{\sigma^2} \mathbf{b}_{\text{NN}} + \nabla \psi_{\text{NN}}$.

292 4.1 AN ILLUSTRATIVE EXAMPLE
293
294

300 To demonstrate the effectiveness of our two-stage method, we begin with a basic two-dimensional
301 example in which the potential is a double-well, and the rotational component is the orthogonal
302 complement of the potential's gradient (i.e., the *canonical* form).

303 **Double-well Potential & Canonical Rotation.** Consider the potential function $\psi(x, y) = \frac{1}{4}(x^2 - 1)^2 +$
304 $\frac{1}{2}y^2$, the rotation $\mathbf{R}(x, y) = \nabla \psi^\perp = [y, -(x^3 - x)]^T$, and the noise intensity $\sigma^2(x, y) = 1/(1 + x^2 + y^2)$.
305 Then, the ground truth drift is given by $\mathbf{b}(x, y) = \frac{1}{2(1+x^2+y^2)} [-(x^3 - x) + y, -y - (x^3 - x)]^T$.

306 The training data $\{f_j(x_i, y_i, t_1), f_j(x_i, y_i, t_2), f_j(x_i, y_i, T_1), f_j(x_i, y_i, T_2)\}_{i,j=1}^{N,M}$ are generated by solving
307 the FP equation using a spatial grid size of $\Delta x = \Delta y = 0.1$ and a time step size of $\Delta t = 0.0001$.
308 For the baseline experiment, we simulate 40 different initial distributions and select snapshots at
309 $t_1 = 0.015$, $t_2 = 0.016$, $T_1 = 2$ and $T_2 = 2.001$ as our training data. We set the weight $\lambda = 10$ for the
310 orthogonality penalty in (15). Applying the two-stage method yields a learned drift vector field and
311 a learned pseudo-potential, correspondingly a learned rotation field (Figures 3,4,5).

312 Table 1 summarizes a series of experiments with varying hyperparameters, including the sample size
313 M , observation grid size δx and δy , observation time step size δt , timescales t_1 and T_1 for the first
314 and second stages respectively, and the weight λ for the orthogonality penalty.

315 As shown in Table 1, $\lambda = 10$ leads to a relatively small error in learning the pseudo-potential and
316 rotation term compared to $\lambda = 1$ and $\lambda = 100$. Furthermore, learning drifts and pseudo-potentials are
317 robust to the increment of δt and t_1 . Whereas, an increase in δx adversely affects the ability to learn
318 the drift. It should be noted, however, that $\delta x = 0.1$ is already a relatively coarse grid size. Similarly,
319 decreasing T_1 leads to a worse learning of pseudo-potentials, as it results in a more severely non-
320 convex loss function, as discussed in Lu et al. (2024). In particular, Experiment 2 shown in Table
321 1 implies that the sparseness of data observation (the number M of the initial distributions is small)
322 significantly reduces the accuracy of learning.

324 Table 1: Experiments of the basic example using different hyperparameters, along with their corresponding
 325 relative root mean square errors.

Experiment	M	δx (δy)	δt	t_1	T_1	λ	rRMSE _b	rRMSE _{ψ}	rRMSE _R
1 (baseline)	40	0.1	0.001	0.015	2	10	2.266e-02	1.929e-02	3.495e-02
2	20	0.1	0.001	0.015	2	10	3.702e-01	3.007e-01	6.286e-01
3	40	0.2	0.001	0.015	2	10	4.610e-02	1.968e-02	5.837e-02
4	40	0.1	0.01	0.015	2	10	1.784e-02	1.605e-02	3.101e-02
5	40	0.1	0.001	0.5	2	10	2.633e-02	1.345e-02	3.435e-02
6	40	0.1	0.001	0.015	1	10	2.230e-02	2.552e-02	4.661e-02
7	40	0.1	0.001	0.015	2	1	1.551e-02	6.259e-02	8.778e-02
8	40	0.1	0.001	0.015	2	100	1.838e-02	5.807e-01	9.840e-01

337 4.2 FURTHER ANALYSIS

339 We now present several examples to test the robustness of our two-stage method. The first example
 340 uses the same double-well potential as in Section 4.1, but incorporates a non-canonical rotation. The
 341 second example involves a quadruple-well potential combined with the canonical rotation, along
 342 with an oscillatory noise intensity. The third example examines a rough double-well potential. The
 343 fourth example revisits the original double-well potential and canonical rotation from Section 4.1,
 344 but with training data contaminated by Gaussian noise. In the fifth example, we consider a three-
 345 dimensional problem with a double-well potential and a canonical rotation to show the effectiveness
 346 of our two-stage method in higher-dimensional problems. In the sixth example, we examine the
 347 impact of different choices of training-data time stamps, which quantifies how close the training
 348 data are to the steady state(s), on obtaining reasonable learning results. In the seventh example, we
 349 validate our method on particle data, which are more readily available in real-world applications.
 350 Finally, we compare our two-stage method with a PDE-based approach on a simple example to
 351 demonstrate the necessity of the two-stage framework for learning non-gradient systems.

352 **Double-well Potential & Non-canonical Rotation.** This example demonstrates that the two-stage
 353 method remains effective for rotational fields \mathbf{R} that are not of the form $\mathbf{R} = \nabla\psi^\perp$.

354 Let ψ , \mathbf{R} , and σ^2 be the same as in the example of Section 4.1. We define $\bar{\psi} = \psi$, $\bar{\mathbf{R}} = \frac{\psi}{4}\mathbf{R}$, where the
 355 factor $\frac{1}{4}$ is introduced to avoid numerical overflow near the boundary. Note that $\nabla\bar{\psi} \cdot \bar{\mathbf{R}} = \frac{\psi}{4}(\nabla\psi \cdot \mathbf{R}) =$
 356 0 and $\nabla \cdot \bar{\mathbf{R}} = \frac{\nabla\psi}{4} \cdot \mathbf{R} + \frac{\psi}{4}\nabla \cdot \mathbf{R} = 0$ since $\nabla\psi \cdot \mathbf{R} = 0$ and $\nabla \cdot \mathbf{R} = 0$.

358 In other words, without ambiguity in notation, we consider the potential function $\psi(x, y) = \frac{1}{4}(x^2 -$
 359 $1)^2 + \frac{1}{2}y^2$, the rotation $\mathbf{R}(x, y) = \left(\frac{1}{16}(x^2 - 1)^2 + \frac{1}{8}y^2\right)[y, -(x^3 - x)]^T$. Thus, the ground truth drift is
 360 given by $\mathbf{b}(x, y) = \frac{1}{2(1+x^2+y^2)}\left[-(x^3 - x) + \left(\frac{1}{16}(x^2 - 1)^2 + \frac{1}{8}y^2\right)y, -y - \left(\frac{1}{16}(x^2 - 1)^2 + \frac{1}{8}y^2\right)(x^3 - x)\right]^T$.

362 We first adopt the same hyperparameter setting as in the baseline of the example in Section 4.1, with
 363 a sample size of $M = 40$. We observe that while the learned drift \mathbf{b}_{NN} and potential ψ_{NN} closely
 364 match the ground truth (rRMSE_b = 1.232×10^{-1} and rRMSE _{ψ} = 6.287×10^{-2}), the reconstructed
 365 rotational field \mathbf{R}_{NN} deviates more significantly from the true \mathbf{R} (rRMSE_R = 5.290×10^{-1}). To
 366 accurately capture the complex structure of \mathbf{R} , a larger sample size is needed. We increase M to 80,
 367 and the resulting learned field \mathbf{R}_{NN} is shown in Figure 6. The relative root mean square errors are
 368 rRMSE_b = 3.640×10^{-2} , rRMSE _{ψ} = 4.337×10^{-2} , and rRMSE_R = 1.692×10^{-1} .

369 **Quadruple-well Potential & Canonical Rotation.** In this example, we consider a sym-
 370 metric quadruple-well potential, $\psi(x, y) = \frac{1}{8}(x^2 - 1)^2 + \frac{1}{8}(y^2 - 1)^2$, paired with the rota-
 371 tional field $\mathbf{R}(x, y) = \frac{1}{2}[y^3 - y, -(x^3 - x)]^T$, and an oscillatory noise intensity $\sigma^2(x, y) =$
 372 $1 + \frac{1}{2}\cos((x + \frac{1}{2})^2 + y^2)$. The corresponding ground truth drift field is given by $\mathbf{b}(x, y) =$
 373 $\left(\frac{1}{4} + \frac{1}{8}\cos((x + \frac{1}{2})^2 + y^2)\right)[-(x^3 - x) + (y^3 - y), -(y^3 - y) - (x^3 - x)]^T$.

376 We use the same hyperparameter settings as in the baseline of example in Section 4.1 with $M =$
 377 80. The learned pseudo-potential is shown in Figure 7. The relative root mean square errors are
 378 rRMSE_b = 1.441×10^{-1} , rRMSE _{ψ} = 1.513×10^{-1} , and rRMSE_R = 2.265×10^{-2} .

378 **Rough Double-well Potential & Canonical Rotation.** In this example, we consider the potential function $\psi(\mathbf{x}) = \frac{1}{4}(x^2 - 1)^2 + \frac{1}{2}y^2 + \varepsilon^4 \sin(\frac{2\pi x}{\varepsilon}) \sin(\frac{2\pi y}{\varepsilon})$ with a parameter ε . The parameter ε controls the oscillatory behavior of the potential function and its derivatives — smaller values of ε lead to stronger oscillations. Moreover, the oscillations become more prominent in higher-order derivatives compared to lower-order ones. In other words, under a given resolution, higher-order derivatives are more difficult to estimate accurately compared to lower-order ones. For the reader’s convenience, we also list the gradient of the potential function $\nabla\psi(x, y) = \left[x + 2\pi\varepsilon^3 \cos(\frac{2\pi x}{\varepsilon}) \sin(\frac{2\pi y}{\varepsilon}), y + 2\pi\varepsilon^3 \sin(\frac{2\pi x}{\varepsilon}) \cos(\frac{2\pi y}{\varepsilon}) \right]^T$, the rotation term $\mathbf{R}(x, y) = \left[-y - 2\pi\varepsilon^3 \sin(\frac{2\pi x}{\varepsilon}) \cos(\frac{2\pi y}{\varepsilon}), x + 2\pi\varepsilon^3 \cos(\frac{2\pi x}{\varepsilon}) \sin(\frac{2\pi y}{\varepsilon}) \right]^T$, and the noise intensity $\sigma^2 = 2$ here.

388 In this example, we choose $\varepsilon = 0.4$, the corresponding first and second partial derivatives of the
389 potential function are shown in Figure 2. We use the same hyperparameter setting as in the example
390 in Section 4.1, except we use a lower resolution $\delta x = \delta y = 0.2$ for training. The learned pseudo-
391 potential is shown in Figure 8. The relative root mean square errors are $\text{rRMSE}_b = 5.670 \times 10^{-2}$,
392 $\text{rRMSE}_\psi = 3.539 \times 10^{-2}$, and $\text{rRMSE}_R = 9.690 \times 10^{-2}$.

393 **The Impacts of Noisy Data.** This example aims to test the robustness of our proposed two-stage
394 method for noisy training data. For comparison and convenience, we follow the same potential
395 function and rotation term as in the example in Section 4.1.

396 The training data $\{f_j(x_i, y_i, t_1), f_j(x_i, y_i, t_2), f_j(x_i, y_i, T_1), f_j(x_i, y_i, T_2)\}_{i,j=1}^{N,M}$ are generated by solving
397 the FP equation as in the example in Section 4.1. To construct noisy training data, the numerical
398 solution f is convoluted with a Gaussian distribution $\mathcal{N}(\mathbf{0}, \gamma I)$, where I is the identity matrix and the
399 parameter γ is referred to as the noise level.

400 We use the same hyperparameters as in the first row of Table 1, except for the noise level. For the
401 reader’s convenience, we reproduce the baseline result in the first row of Table 2. As shown in Table
402 2, although the accuracy of the learned model gradually decreases as the noise intensity increases,
403 our method yields reasonably reliable results, with all errors remaining below 35%, even when the
404 noise level reaches as high as $\gamma = 0.3$. This robustness primarily arises from the fact that our loss
405 function is formulated in an integral form. Moreover, the presence of an underlying variational
406 structure allows us to avoid the challenges associated with approximating higher-order derivatives.

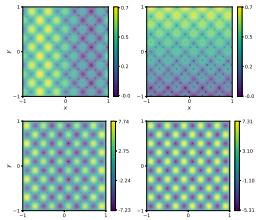


Table 2: The Impacts of Noisy Data.

Experiment	Noise level	rRMSE_b	rRMSE_ψ	rRMSE_R
1	0.0	2.266e-02	1.929e-02	3.495e-02
2	0.1	3.541e-02	3.320e-02	4.226e-02
3	0.2	9.468e-02	7.521e-02	8.616e-02
4	0.3	2.235e-01	2.057e-01	3.404e-01
5	0.4	4.426e-01	2.163e-01	7.200e-01

417 **Figure 2: Rough po-**
418 **tential. Upper row:**
419 The first derivatives.
420 **Lower row:** The sec-
421 ond derivatives.

422 **Three-dimensional problem.** Consider $\psi(x, y, z) = (1 - x^2)^2 + y^2 + z^2$ and $\mathbf{R}(x, y, z) =$
423 $\left[-(y + z), 2(x^3 - x), 2(x^3 - x) \right]^T$. We solve the Fokker-Planck equation on $[-3, 3] \times [-1.5, 1.5]^2$,
424 simulate $M = 80$ initial distributions in $[-2, 2] \times [-1, 1]^2$ for generating training data, and adopt the
425 same hyperparameter setting as in the baseline of the example in Section 4.1 ($\Delta x = \Delta y = \Delta z = 0.1$,
426 $\Delta t = 0.0001$, $t_1 = 0.015$, $t_2 = 0.016$, $T_1 = 2$ and $T_2 = 2.001$). The relative root mean square errors
427 are $\text{rRMSE}_b = 1.568 \times 10^{-1}$, $\text{rRMSE}_\psi = 5.991 \times 10^{-2}$, and $\text{rRMSE}_R = 1.596 \times 10^{-1}$. This example
428 demonstrates the robustness of the two-stage method in higher-dimensional problems.

429 **The impact of different choices of T_1 .** In our two-stage method, training data at t_1 and T_1 are
430 used to accommodate the first-moment loss and the EnVarA loss. As noted in Lu et al. (2024),
431 closer second-stage data to the steady state generally improve learning performance. To assess

proximity to steady state, we use the absolute value of free-energy dissipation $\frac{d\mathcal{F}}{dt}$, which vanishes at equilibrium. This example uses the same setup as Section 4.1 but varies T_1 . As shown in Table 5, choosing $T_1 \geq 1.0$ yields good learning results, consistent with Lu et al. (2024).

Particle-to-density method. We evaluate our method on particle data, which are more accessible than probability density data. Consider the same system as in Section 4.1. We solve the SDE with $\Delta t = 0.001$ and simulate $M = 40$ initial distributions with means in $[-1.5, 1.5]^2$ and fixed variance 0.04 for generating training data, where each distribution is approximated by the kernel density estimation method using 10^4 particles. The training data are chosen at $t_1 = 0.5$, $t_2 = 0.7$ and $T_1 = 2.0$, $T_2 = 2.2$. Therefore, the observational time step size is 0.2. In this particle-to-density setting, as shown in Figures 9, 10, and 11, our method yields reasonable learning results.

Comparison to a PDE-based method. To compare our two-stage method with existing PDE-based methods Schaeffer (2017); Lu et al. (2024), which are widely used in science and engineering, we consider a 2D single-well potential $\psi(x, y) = \frac{1}{2}(x^2 + y^2)$. We then minimize a PDE-based loss function aiming to learn the gradient (without rotation) and non-gradient drifts (with a canonical rotation $\mathbf{R}(x, y) = [y, -x]^T$), respectively; the explicit form of this loss is given in Appendix D. The learning results show that the PDE-based method can successfully recover the potential for gradient systems from data, but fails to do so for non-gradient systems. See Figures 12 and 13 in Appendix C.

4.3 ABLATION STUDIES

Direct Methods vs Two-stage Method. We compare the performance of the two-stage method proposed in Section 3 with two direct methods described in Appendix B.1, which aim to jointly learn the potential component ψ and the rotation component \mathbf{R} from data.

To illustrate, we consider the basic example in Section 4.1 while the noise intensity is set to a constant value $\sigma^2 \equiv 2$. For simulation, we adopt the baseline’s hyperparameters in Table 1. The results in Table 3 demonstrate that the two-stage method achieves the most stable and accurate performance in learning all the drift, pseudo-potentials, and rotational components. In particular, although the energy-based direct method performs well in learning the pseudo-potential ψ , it exhibits deficient performance in capturing the rotational component. This limitation arises because the long temporal data adversely affects the accurate learning of the drift by solely using an energy law-based loss function. Similarly, first-moment direct method can not achieve the decent approximation of ψ due to the short-time data observation.

The Impacts of Different Penalties. We test the effectiveness of our proposed penalty term based on the dimensional analysis mentioned in Appendix B.2. For comparison, we follow the same setting as in the example in Section 4.1 except the penalty term. A comparison between the weighted penalty given by (10) and the standard L_2 penalty is provided in Appendix B.2.

As shown in Table 4, the accuracies of the drift term for both penalty types are nearly identical. In fact, they would be exactly the same in the absence of randomness in neural network training, since the first stage of the method does not involve the penalty term. However, the standard penalty fails to properly decompose the gradient and rotational components, as its loss function generally lacks the ability to effectively control behaviors across different scales of energy loss and penalty loss.

Table 3: The relative root mean squared error (rRMSE) for the total drift \mathbf{b} , the pseudo-potential ψ , and the rotational field \mathbf{R} , as recovered by each method.

Method	rRMSE $_{\mathbf{b}}$	rRMSE $_{\psi}$	rRMSE $_{\mathbf{R}}$
First-moment	2.724e-03	5.339e-01	9.987e-01
Free-energy	7.115e-01	4.823e-02	1.005e+00
Two-stage	2.607e-03	2.220e-03	3.569e-03

Table 4: The relative root mean squared error (rRMSE) for the total drift \mathbf{b} , the pseudo-potential ψ , and the rotational field \mathbf{R} , as recovered by the proposed two-stage method with different penalties.

Penalty	rRMSE $_{\mathbf{b}}$	rRMSE $_{\psi}$	rRMSE $_{\mathbf{R}}$
Proposed	2.266e-02	1.929e-02	3.495e-02
L_2 -norm	2.176e-02	5.699e-01	9.946e-01

5 RELATED WORKS

Strong-form based learning. Over the last several decades, various methods have been formulated and developed for learning deterministic/sotchasic dynamics, e.g. sparse identification of nonlinear

dynamical systems (SINDy) Brunton et al. (2016), physics-informed neural network (PINN) Raissi et al. (2019), Koopman operator theory Williams et al. (2015), to name a few. On the other hand, statistical methods including maximum likelihood methods Dietrich et al. (2023); Opper (2019); Chen et al. (2024), Gaussian processes Chen et al. (2021b); Battle et al. (2025), kernel methods Xu et al. (2025), Wasserstein distances Ma et al. (2021), nonparametric regression techniques Lu et al. (2019; 2023); Lang & Lu (2022); Feng et al. (2024); Miller et al. (2023); Lu et al. (2022); Ding et al. (2022), etc. are introduced for learning physical laws. We remark that the existing learning frameworks are typically formulated based on the strong form of the underlying governing equations, such as (stochastic) ordinary differential equations (ODEs/SDEs) and PDEs. Different to the methods we have mentioned and some more methods in the references therein, there are some variational-form based learning frameworks proposed aiming to enhance interpretability in learning. We refer the reader to Yu et al. (2021); Chen et al. (2024); Jin et al. (2020); Huang et al. (2024a); Chen & Tao (2021); Mattheakis et al. (2022); Bertalan et al. (2019); Finzi et al. (2020); Greydanus et al. (2019); Hu et al. (2025); Chen et al. (2020), and the references therein. This is related to the variational and weak-form based learning framework discussed below, although their loss functions are constructed based on the strong form of the differential equations.

Variational- and weak-form based learning. Motivated by the strong-form based learning framework, and aiming to avoid the approximation of high-order derivatives while enhancing robustness to noisy data, recent years have seen growing interest in learning frameworks based on variational and weak formulations. For example, the weak-form variant of SINDy has been proposed to learn PDEs Messenger & Bortz (2021), Hamiltonian systems Messenger et al. (2024), and mean-field equations Messenger & Bortz (2022). Similarly, numerous methods related to PINNs have been developed, such as the weak-form PINN Ryck et al. (2022), variational PINN Kharazmi et al. (2021), Physics-Informed Graph Neural Galerkin Networks Gao et al. (2022), and Weak Adversarial Networks Zang et al. (2020), to name a few. These approaches formulate the loss function based on the weak formulation of the underlying PDEs, which requires constructing a suitable class of test functions to infer the target unknown function. To avoid the explicit construction of test functions, Gao et al. (2024) proposed a self-test loss function that leverages data itself as a test function to learn Wasserstein gradient flows. Interestingly, they also observed that their loss function is closely related to the underlying energy dissipation law. In contrast to weak formulation-based approaches, several learning frameworks have been developed that are directly connected to energy structures aiming to preserve more physical structures during the learning process—whether for conservative or dissipative systems Lu et al. (2024); Lee et al. (2021); Hu et al. (2024); Zhang et al. (2024); Huang et al. (2024b); Gruber et al. (2023; 2025).

6 CONCLUSION

We have developed a learning framework for generalized diffusions with non-gradient structures. Focusing on the FP equation, our method learns both the pseudo-potential and rotational components by combining the first-moment evolution with the energy dissipation law. The proposed two-stage framework demonstrates strong flexibility and effectiveness in handling both gradient-driven diffusion and processes with rotational dynamics. Our approach offers several advantages: it is robust to noisy data, applicable to diffusion processes without detailed balance, and potentially extendable to high-dimensional settings. To enforce the pointwise orthogonality constraint, we introduce a weighted penalty derived via dimensional analysis. We validate our method through a series of representative numerical experiments, including ablation studies comparing the two-stage method with direct methods and evaluating the proposed weighted penalty against the standard L_2 penalty.

Several open problems remain for future exploration. First, applying energy laws to the learning of pseudo-potentials in general drifts without the pointwise orthogonal constraint is challenging due to the severe non-convexity of the energy-based loss. Second, extending the learning framework to the case of time-dependent pseudo-potentials via energy laws deserves future investigation. Identifying the pseudo-potential in the presence of a time-dependent drift is particularly significant, given its relevance to transformer architectures and large language models (LLMs) Bertozzi et al. (2025). However, the corresponding Fokker–Planck equation may fail to admit an energy dissipation law since the drift is time dependent, making it difficult to determine the drift and pseudo-potential at each time. Third, learning physical laws in nonlinear stochastic dynamics with nonlocal effects represents a promising direction for further research.

540 REFERENCES
541

542 P. Batlle, Y. Chen, B. Hosseini, H. Owhadi, and A. M Stuart. Error analysis of kernel/GP methods
543 for nonlinear and parametric PDEs. *J. Comput. Phys.*, 520:113488, 2025.

544 T. Bertalan, F. Dietrich, I. Mezić, and I. G. Kevrekidis. On learning Hamiltonian systems from data.
545 *Chaos.*, 29(12):121107, 2019.

546 A. L. Bertozzi, N. Drenska, J. Latz, and M. Thorpe. Partial differential equations in data science,
547 2025.

549 S. Brunton, J. Proctor, and J. Kutz. Discovering governing equations from data by sparse identifica-
550 tion of nonlinear dynamical systems. *Proc. Natl. Acad. Sci.*, 113(15):3932–3937, 2016.

551 F. Chen, Y. Bai, and C. Li. Estimation of non-equilibrium transition rate from gene expression data.
552 *Briefings in Bioinformatics*, 24(3):bbad113, 2023.

554 R. Chen and M. Tao. Data-driven prediction of general Hamiltonian dynamics via learning exactly-
555 symplectic maps. In *Proceedings of the 38th International Conference on Machine Learning*,
556 2021.

557 X. Chen, L. Yang, J. Duan, and G. Em Karniadakis. Solving inverse stochastic problems from
558 discrete particle observations using the fokker–planck equation and physics-informed neural net-
559 works. *SIAM J. Sci. Comput.*, 43(3):B811–B830, 2021a.

560 X. Chen, B. Soh, Z.-E. Ooi, E. Vissol-Gaudin, H. Yu, K. Novoselov, K. Hippalgaonkar, and Q. Li.
561 Constructing custom thermodynamics using deep learning. *Nat. Comput. Sci.*, 4(1):66–85, 2024.

563 Y. Chen and D. Xiu. Learning stochastic dynamical system via flow map operator. *J. Comput. Phys.*,
564 508:112984, 2024.

566 Y. Chen, B. Hosseini, H. Owhadi, and A. M. Stuart. Solving and learning nonlinear PDEs with
567 Gaussian processes. *J. Comput. Phys.*, 447:110668, 2021b.

568 Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou. Symplectic recurrent neural networks. In *Inter-
569 national Conference on Learning Representations*, 2020.

571 V. Churchill and D. Xiu. Flow map learning for unknown dynamical systems: Overview, implemen-
572 tation, and benchmarks. *J. Mach. Learn. Model. Comput.*, 4(2):173–201, 2023.

573 G. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for free
574 energy differences. *Phys. Rev. E*, 60(3):2721, 1999.

576 F. Dietrich, A. Makeev, G. Kevrekidis, N. Evangelou, T. Bertalan, S. Reich, and I. G. Kevrekidis.
577 Learning effective stochastic differential equations from microscopic simulations: Linking
578 stochastic numerics to deep learning. *Chaos.*, 33(2), 2023.

579 L. Ding, W. Li, S. Osher, and W. Yin. A mean field game inverse problem. *J. Sci. Comput.*, 92(1):
580 7, 2022.

581 J. Dorfman. *An introduction to chaos in nonequilibrium statistical mechanics*. Number 14. Cam-
582 bridge university press, 1999.

584 S. Drobot. On the foundations of dimensional analysis. *Stud. Math.*, 14(1):84–99, 1953.

585 M. Esposito. Stochastic thermodynamics under coarse graining. *Phys. Rev. E.*, 85(4):041125, 2012.

587 M. Esposito and C. Van den Broeck. Three detailed fluctuation theorems. *Phys. Rev. Lett.*, 104(9):
588 090601, 2010.

589 J. Feng, C. Kulick, and S. Tang. Data-driven model selections of second-order particle dynamics
590 via integrating Gaussian processes with low-dimensional interacting structures. *Physica D*, 461:
591 134097, 2024.

593 M. Finzi, K. A. Wang, and A. G. Wilson. Simplifying Hamiltonian and Lagrangian neural networks
594 via explicit constraints. In *Advances in Neural Information Processing Systems*, 2020.

594 H. Gao, M. J Zahr, and J.-X. Wang. Physics-informed graph neural Galerkin networks: A unified
 595 framework for solving PDE-governed forward and inverse problems. *Comput. Methods Appl.*
 596 *Mech. Eng.*, 390:114502, 2022.

597

598 Y. Gao, Q. Lang, and F. Lu. Self-test loss functions for learning weak-form operators and gradient
 599 flows. *arXiv preprint arXiv:2412.03506*, 2024.

600 H. Ge and H. Qian. Physical origins of entropy production, free energy dissipation, and their math-
 601 ematical representations. *Phys. Rev. E*, 81(5):051133, 2010.

602

603 R. Graham. Statistical theory of instabilities in stationary nonequilibrium systems with applications
 604 to lasers and nonlinear optics. In *In Quantum Statistics in Optics and Solid-state Physics, Springer*
 605 *Tracts in Modern Physics*, pp. 1–97. Springer, 1973.

606 R. Graham and H. Haken. Generalized thermodynamic potential for markoff systems in detailed
 607 balance and far from thermal equilibrium. *Z. Physik*, 243:289–302, 1971.

608

609 S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks. In *Advances in Neural*
 610 *Information Processing Systems*, 2019.

611 L. Grigorio and M. Alqahtani. Quasi-potential and drift decomposition in stochastic systems by
 612 sparse identification. *arXiv preprint arXiv:2409.06886*, 2024.

613

614 A. Gruber, M. Gunzburger, L. Ju, and Z. Wang. Energetically consistent model reduction for
 615 metriplectic systems. *Comput. Methods Appl. Mech. Eng.*, 404:115709, 2023.

616 A. Gruber, K. Lee, H. Lim, N. Park, and N. Trask. Efficiently parameterized neural metriplectic
 617 systems. In *The Thirteenth International Conference on Learning Representations*, 2025.

618

619 Ziheng Guo, James Greene, and Ming Zhong. Learning stochastic dynamical systems with struc-
 620 tured noise. *arXiv preprint arXiv:2503.01077*, 2025.

621 J. Hu, J.-P. Ortega, and D. Yin. A structure-preserving kernel method for learning hamiltonian
 622 systems. *Mathematics of Computation*, 2025.

623

624 Z. Hu, C. Liu, Y. Wang, and Z. Xu. Energetic variational neural network discretizations of gradient
 625 flows. *SIAM J. Sci. Comput.*, 46(4):A2528–A2556, 2024.

626

627 C.-K. Huang, Q. Tang, Y. K. Batygin, O. Beznosov, J. Burby, A. Kim, S. Kurennoy, T. Kwan, and
 628 H. N. Rakotoarivelo. Symplectic neural surrogate models for beam dynamics. *J. Phys.: Conf.*
 629 *Ser.*, 2687(6):062026, 2024a.

630

631 S. Huang, Z. He, and C. Reina. Variational Onsager Neural Networks (VONNs): A
 632 thermodynamics-based variational learning strategy for non-equilibrium PDEs. *J. Mech. Phys.*
 633 *Solids*, 163:104856, 2022.

634

635 S. Huang, Z. He, N. Dirr, J. Zimmer, and C. Reina. Statistical-physics-informed neural networks
 636 (stat-pinns): A machine learning strategy for coarse-graining dissipative dynamics. *J. Mech. Phys.*
 637 *Solids*, pp. 105908, 2024b.

638

639 D.-Q. Jiang and D.-H. Jiang. *Mathematical theory of nonequilibrium steady states: on the frontier*
 640 *of probability and dynamical systems*. Springer Science & Business Media, 2004.

641

642 P. Jin, Z. Zhang, A. Zhu, Y. Tang, and G.E. Karniadakis. SympNets: Intrinsic structure-preserving
 643 symplectic networks for identifying hamiltonian systems. *Neural Netw.*, 132:166–179, 2020.

644

645 E. Kharazmi, Z. Zhang, and G. Em Karniadakis. hp-vpinns: Variational physics-informed neural
 646 networks with domain decomposition. *Comput. Methods Appl. Mech. Eng.*, 374:113547, 2021.

647

648 J. Kurchan. Fluctuation theorem for stochastic dynamics. *J. Phys. A: Math. Gen.*, 31(16):3719,
 649 1998.

650

651 Q. Lang and F. Lu. Learning interaction kernels in mean-field equations of first-order systems of
 652 interacting particles. *SIAM J. Sci. Comput.*, 44(1):A260–A285, 2022.

648 K. Lee, N. Trask, and P. Stinis. Machine learning structure preserving brackets for forecasting
 649 irreversible processes. In *Advances in Neural Information Processing Systems*, 2021.
 650

651 C. Li and J. Wang. Quantifying cell fate decisions for differentiation and reprogramming of a human
 652 stem cell network: landscape and biological paths. *PLoS computational biology*, 9(8):e1003165,
 653 2013.

654 Y. Li, S. Xu, J. Duan, X. Liu, and Y. Chu. A machine learning method for computing quasi-potential
 655 of stochastic dynamical systems. *Nonlinear Dyn.*, 109(3):1877–1886, 2022.
 656

657 B. Lin, Q. Li, and W. Ren. A data driven method for computing quasipotentials. In *Math. Sci. Mach.
 658 Learn.*, pp. 652–670. PMLR, 2022.

659 Y. Liu, Y. Chen, D. Xiu, and G. Zhang. A training-free conditional diffusion model for learning
 660 stochastic dynamical systems. *arXiv preprint arXiv:2410.03108*, 2024.
 661

662 F. Lu, M. Zhong, S. Tang, and M. Maggioni. Nonparametric inference of interaction laws in systems
 663 of agents from trajectory data. *Proc. Natl. Acad. Sci.*, 116(29):14424–14433, 2019.

664 F. Lu, M. Maggioni, and S. Tang. Learning interaction kernels in stochastic systems of interacting
 665 particles from multiple trajectories. *Found. Comput. Math.*, 22(4):1013–1067, 2022.
 666

667 F. Lu, Q. An, and Y. Yu. Nonparametric learning of kernels in nonlocal operators. *J. Peridyn.
 668 Nonlocal Model.*, 2023.

669 Y. Lu, X. Li, C. Liu, Q. Tang, and Y. Wang. Learning generalized diffusions using an energetic
 670 variational approach. *arXiv preprint arXiv:2412.04480*, 2024.
 671

672 S. Ma, S. Liu, H. Zha, and H. Zhou. Learning stochastic behaviour from aggregate data. In Marina
 673 Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine
 674 Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 7258–7267. PMLR,
 675 18–24 Jul 2021.

676 U. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani. Fluctuation–dissipation: response theory in
 677 statistical physics. *Phys. Rep.*, 461(4-6):111–195, 2008.
 678

679 M. Mattheakis, D. Sondak, A. S. Dogra, and P. Protopapas. Hamiltonian neural networks for solving
 680 equations of motion. *Phys. Rev. E*, 105:065305, 2022.

681 D. A. Messenger and D. M. Bortz. Weak SINDy for partial differential equations. *J. Comput. Phys.*,
 682 443:110525, 2021.
 683

684 D. A. Messenger and D. M. Bortz. Learning mean-field equations from particle data using WSINDy.
 685 *Physica D*, 439:133406, 2022.

686 D. A. Messenger, J. W. Burby, and D. M. Bortz. Coarse-graining hamiltonian systems using wsindy.
 687 *Scientific Reports*, 14(1):14457, 2024.
 688

689 J. Miller, S. Tang, M. Zhong, and M. Maggioni. Learning theory for inferring interaction kernels in
 690 second-order interacting agent systems. *Sampling Theory Signal Process. Data Anal.*, 21(1):21,
 691 2023.

692 M. Opper. Variational inference for stochastic differential equations. *Annalen der Physik*, 531(3):
 693 1800233, 2019.
 694

695 K. Petrović, L. Atanackovic, V. Moro, K. Kapuśniatek, I. I. Ceylan, M. Bronstein, A. J. Bose,
 696 and A. Tong. Curly flow matching for learning non-gradient field dynamics. *arXiv preprint
 697 arXiv:2510.26645*, 2025.

698 H. Qian. A decomposition of irreversible diffusion processes without detailed balance. *J. Math.
 699 Phys.*, 54(5), 2013.
 700

701 M. Qian and Z. Wang. The entropy production of diffusion processes on manifolds and its circulation
 decompositions. *Commun. Math. Phys.*, 206:429–445, 1999.

702 M.-P. Qian and M. Qian. Circulation for recurrent markov chains. *Z. Wahrsch. Verw. Gebiete*, 59
 703 (2):203–210, 1982.
 704

705 M.-P. Qian, M. Qian, and G. Gong. The reversibility and the entropy production of markov pro-
 706 cesses. *Contemp. Math.*, 118:255–261, 1991.

707 M. Raissi, P. Perdikaris, and G. Em Karniadakis. Physics-informed neural networks: A deep learn-
 708 ing framework for solving forward and inverse problems involving nonlinear partial differential
 709 equations. *J. Comput. Phys.*, 378:686–707, 2019.
 710

711 T. De Ryck, S. Mishra, and R. Molinaro. Weak physics informed neural networks for approximat-
 712 ing entropy solutions of hyperbolic conservation laws. In *Seminar für Angewandte Mathematik,
 713 Eidgenössische Technische Hochschule, Zürich, Switzerland, Rep*, volume 35, pp. 2022, 2022.

714 H. Schaeffer. Learning partial differential equations via data discovery and sparse optimization. *Pro-
 715 ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 473(2197):
 716 20160446, 2017. doi: 10.1098/rspa.2016.0446. URL <https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2016.0446>.
 717

718 M. O Williams, I. G. Kevrekidis, and C. W Rowley. A data–driven approximation of the koopman
 719 operator: Extending dynamic mode decomposition. *J. Nonlinear Sci.*, 25:1307–1346, 2015.
 720

721 Z. Xu, D. Long, Y. Xu, G. Yang, S. Zhe, and H. Owhadi. Toward efficient kernel-based solvers for
 722 nonlinear PDEs. In *Forty-second International Conference on Machine Learning*, 2025.
 723

724 L. Yang, D. Zhang, and G. Em Karniadakis. Physics-informed generative adversarial networks for
 725 stochastic differential equations. *SIAM J. Sci. Comput.*, 42(1):A292–A317, 2020.
 726

727 H. Yu, X. Tian, W. E, and Q. Li. OnsagerNet: Learning stable and interpretable dynamics using a
 728 generalized Onsager principle. *Phys. Rev. Fluids*, 6:114402, 2021.
 729

730 Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional partial
 731 differential equations. *J. Comput. Phys.*, 411:109409, 2020.
 732

733 J. Zhang, S. Zhang, J. Shen, and G. Lin. Energy-dissipative evolutionary deep operator neural
 734 networks. *J. Comput. Phys.*, 498:112638, 2024.
 735

736 Z. Zhang, Y. Shin, and G. Em Karniadakis. Gfnn: Generic formalism informed neural networks for
 737 deterministic and stochastic dynamical systems. *Philos. Trans. Roy. Soc. A*, 380(2229):20210207,
 738 2022.
 739

A COMPUTATION OF THE ENERGY-DISSIPATION LAW

740 In this appendix, we compute the functional derivative of the energy $\mathcal{F}[f]$ defined in (5). To begin
 741 with, we define $v \in C_c^\infty(\mathbb{R}^d)$ as an arbitrary test function. Noting that $\mathcal{F}[f + \varepsilon v]$ is continuously
 742 differentiable in ε , one computes the Gateaux derivative, which is
 743

$$\begin{aligned} \frac{d}{d\varepsilon} \Big|_{\varepsilon=0} \mathcal{F}[f + \varepsilon v] &= \left\langle \frac{\delta \mathcal{F}}{\delta f}, v \right\rangle_{L^2} \\ &= \int_{\mathbb{R}^d} \frac{d}{d\varepsilon} \Big|_{\varepsilon=0} \left[(f + \varepsilon v) \ln\left[\frac{1}{2}\sigma^2(f + \varepsilon v)\right] + \psi(f + \varepsilon v) \right] d\mathbf{x} = \int_{\mathbb{R}^d} v \left[\ln\left(\frac{1}{2}\sigma^2 f\right) + 1 \right] + \psi v d\mathbf{x}, \end{aligned} \quad (\text{A.1})$$

744 which implies Fréchet derivative of $\mathcal{F}[f]$ is
 745

$$\frac{\delta \mathcal{F}}{\delta f} = \ln\left(\frac{1}{2}\sigma^2 f\right) + 1 + \psi. \quad (\text{A.2})$$

746 It follows that
 747

$$\nabla \left(\frac{\delta \mathcal{F}}{\delta f} \right) = \nabla \left[\ln\left(\frac{1}{2}\sigma^2 f\right) + \psi \right] = -\frac{2}{\sigma^2} \mathbf{u}, \quad (\text{A.2})$$

756 where $\mathbf{u} := -[\frac{\sigma^2}{2} \nabla \ln(\sigma^2 f) + \frac{\sigma^2}{2} \nabla \psi]$. In light of the FP equation (2), one finds
 757

$$\begin{aligned} 758 \quad \partial_t f &= \nabla \cdot \left[\left(\nabla \left(\frac{\sigma^2}{2} f \right) - \mathbf{b} f \right) \right] = \nabla \cdot \left[\left(\nabla \left(\frac{\sigma^2}{2} f \right) + \frac{\sigma^2}{2} \nabla \psi f \right) - \frac{1}{2} \sigma^2 \mathbf{R} f \right] \\ 759 &= \nabla \cdot \left[\frac{f \sigma^2}{2} \nabla (\ln(\sigma^2 f) + \psi) - \frac{1}{2} \sigma^2 \mathbf{R} f \right] \\ 760 &= -\nabla \cdot [\mathbf{u} f] - \frac{1}{2} \nabla \cdot (\sigma^2 \mathbf{R} f). \end{aligned} \quad (\text{A.3})$$

761
 762
 763
 764

765 Now, we are ready to compute $\frac{d\mathcal{F}}{dt}$ with \mathcal{F} defined in (5). Indeed, denoting $\langle \cdot, \cdot \rangle_{L^2}$ the L^2 -inner
 766 product, one has from (A.2) and (A.3) that
 767

$$\begin{aligned} 768 \quad \frac{d\mathcal{F}}{dt} &= \left\langle \frac{\delta \mathcal{F}}{\delta f}, f_t \right\rangle_{L^2} = \int_{\mathbb{R}^d} \frac{\delta \mathcal{F}}{\delta f} f_t d\mathbf{x} \\ 769 &= - \int_{\mathbb{R}^d} \frac{\delta \mathcal{F}}{\delta f} \nabla \cdot [f(\sigma^2 \mathbf{R} + \mathbf{u})] d\mathbf{x} \\ 770 &= \int_{\mathbb{R}^d} \nabla \left(\frac{\delta \mathcal{F}}{\delta f} \right) \cdot f(\sigma^2 \mathbf{R} + \mathbf{u}) d\mathbf{x} \\ 771 &= - \int_{\mathbb{R}^d} \frac{2f}{\sigma^2} |\mathbf{u}|^2 d\mathbf{x} + \frac{1}{2} \int_{\mathbb{R}^d} [\mathbf{R} \cdot \nabla(\sigma^2 f) + \sigma^2 f \mathbf{R} \cdot \nabla \psi] d\mathbf{x}, \\ 772 & \\ 773 & \\ 774 & \\ 775 & \\ 776 & \end{aligned}$$

777 proving the energy evolutionary equation (6).

778 Moreover, by using the pointwise orthogonality condition (7) and the divergence-free condition
 779 $\nabla \cdot \mathbf{R} = 0$, since \mathbf{R} is the rotation component, one finds from the integration by parts that
 780

$$\begin{aligned} 781 \quad \frac{d\mathcal{F}}{dt} &= - \int_{\mathbb{R}^d} \frac{2f}{\sigma^2} |\mathbf{u}|^2 d\mathbf{x} + \frac{1}{2} \int_{\mathbb{R}^d} [\mathbf{R} \cdot \nabla(\sigma^2 f) + \sigma^2 f \mathbf{R} \cdot \nabla \psi] d\mathbf{x}, \\ 782 &= - \int_{\mathbb{R}^d} \frac{2f}{\sigma^2} |\mathbf{u}|^2 d\mathbf{x} - \frac{1}{2} \int_{\mathbb{R}^d} [\nabla \cdot \mathbf{R}(\sigma^2 f)] d\mathbf{x} \\ 783 &= - \int_{\mathbb{R}^d} \frac{2f}{\sigma^2} |\mathbf{u}|^2 d\mathbf{x} \leq 0, \\ 784 & \\ 785 & \\ 786 & \\ 787 & \end{aligned}$$

788 which establishes the energy-dissipation law (8).

790 B ABLATION STUDIES

791

792 B.1 DIRECT METHODS VS TWO-STAGE METHOD

793

794 **First-moment direct method:** This method learns ψ and \mathbf{R} by minimizing a dynamical loss derived
 795 from the evolution of empirical first moments. Specifically, we optimize the parameters θ of the
 796 neural networks ψ_{NN} and \mathbf{R}_{NN} according to the following objective:
 797

$$\theta_{\psi, \mathbf{R}}^* = \operatorname{argmin}_{\theta} L_{\psi, \mathbf{R}}^{\text{dyn}}(\theta), \quad (\text{B.1})$$

800 where $L_{\psi, \mathbf{R}}^{\text{dyn}}(\theta) = \sum_{k=1}^d L_{\psi, R_k}^{\text{dyn}}(\theta)$ and for $k = 1, \dots, d$,
 801

$$802 \quad L_{\psi, R_k}^{\text{dyn}}(\theta) = \sum_{j=1}^M \left\| \frac{(\mu_j)_k(t_2) - (\mu_j)_k(t_1)}{t_2 - t_1} + |\delta \mathbf{x}| \sum_{i=1}^N \frac{1}{2} \sigma^2(\mathbf{x}_i) [\partial_{x_k} \psi_{\text{NN}}(\mathbf{x}_i; \theta) - (R_k)_{\text{NN}}(\mathbf{x}_i; \theta)] f_j(\mathbf{x}_i, t_1) \right\|^2. \quad (\text{B.2})$$

803
 804
 805
 806
 807

808 **Free-energy direct method:** Alternatively, we may attempt to directly learn ψ and \mathbf{R} by using
 809 energy dissipation law:

810

$$\theta_{\psi, \mathbf{R}}^* = \operatorname{argmin}_{\theta} \{L_{\psi}^{\text{dyn}}(\theta) + \lambda L_{\psi, \mathbf{R}}^{\text{orth}}(\theta)\}, \quad (\text{B.3})$$

813 where L_{ψ}^{dyn} is defined in (13) and

$$815 \quad L_{\psi, \mathbf{R}}^{\text{orth}}(\theta) = \sum_{j=1}^M \left\| \delta \mathbf{x} \sum_{i=1}^N \sigma^2(\mathbf{x}_i) f_j(\mathbf{x}_i, T_1) |\nabla \psi_{\text{NN}}(\mathbf{x}_i; \theta) \cdot \mathbf{R}_{\text{NN}}(\mathbf{x}_i; \theta)| \right\|^2. \quad (\text{B.4})$$

818 B.2 DIMENSIONAL ANALYSIS: PENALTY IN ENERGY LAWS

820 In this appendix, we discuss our choice of penalty given by (10). The method we shall use is
 821 dimensional analysis, and we refer the reader to Drobot (1953). In detail, for any function g , we
 822 denote $[g]$ as the dimension of g . With the aid of (2), (4) and (5), we have $[\sigma^2][t] = [\mathbf{x}]^2$, $[\nabla \psi] =$
 823 $[\mathbf{R}] = \frac{1}{[\mathbf{x}]}$ and $[\psi] = [\ln(\frac{1}{2}\sigma^2 f)] = 1$. Moreover, one finds

$$824 \quad \left[\frac{d\mathcal{F}}{dt} \right] = \left[\int_{\mathbb{R}^d} \frac{\partial f}{\partial t} d\mathbf{x} \right] = \left[\int_{\mathbb{R}^d} \frac{[\sigma^2]^2[f]}{[\mathbf{x}]^2} d\mathbf{x} \right],$$

827 which implies

$$828 \quad \left(\left[\frac{d\mathcal{F}}{dt} \right] + \int_{\mathbb{R}^d} \left[\frac{1}{2} \frac{|\nabla(\sigma^2 f)|^2}{\sigma^2 f} + \nabla(\sigma^2 f) \cdot \nabla \psi + \frac{1}{2} \sigma^2 f |\nabla \psi|^2 \right] d\mathbf{x} \right)^2 = \left(\left[\int_{\mathbb{R}^d} \frac{[\sigma^2][f]}{[\mathbf{x}]^2} d\mathbf{x} \right] \right)^2 = [\sigma^2]^2[f]^2[\mathbf{x}]^{2d-4}, \quad (\text{B.5})$$

831 where we have used $\left[\int_{\mathbb{R}^d} \frac{1}{[\mathbf{x}]^2} d\mathbf{x} \right] = [\mathbf{x}]^{d-2}$. Noting that the orthogonality penalty is given by (10), we
 832 have

$$833 \quad \left[\int_{\mathbb{R}^d} \sigma^2 f |\nabla \psi \cdot \mathbf{R}| d\mathbf{x} \right]^2 = \left[\int_{\mathbb{R}^d} [\sigma^2][f] \frac{1}{[\mathbf{x}]^2} d\mathbf{x} \right]^2 = [\sigma^2]^2[f]^2[\mathbf{x}]^{2d-4}.$$

836 Otherwise, if we use the standard L^2 penalty, one finds the corresponding dimension is

$$838 \quad \left[\int_{\mathbb{R}^d} |\nabla \psi \cdot \mathbf{R}|^2 d\mathbf{x} \right] = \left[\int_{\mathbb{R}^d} \frac{1}{[\mathbf{x}]^4} d\mathbf{x} \right] = [\mathbf{x}]^{d-4},$$

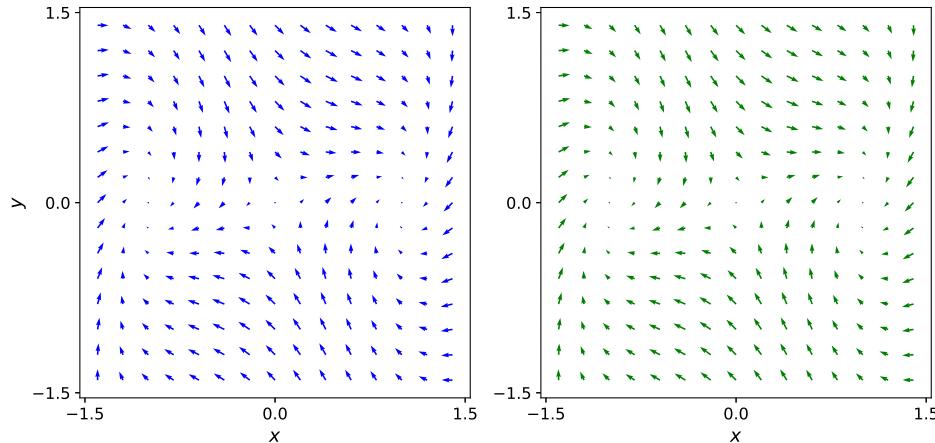
840 which does not match the dimension of energy dissipation rate shown in (B.5).

841

C FIGURES AND TABLES

844 This appendix presents all the figures and some tables mentioned in Section 4.

845



862 Figure 3: Comparison of the learned drift (left) \mathbf{b}_{NN} with the ground truth (right) $\mathbf{b}(x, y) =$
 863 $\frac{1}{2(1+x^2+y^2)} \left[-(x^3 - x) + y, -y - (x^3 - x) \right]$. The relative root mean square error is 2.266×10^{-2} .

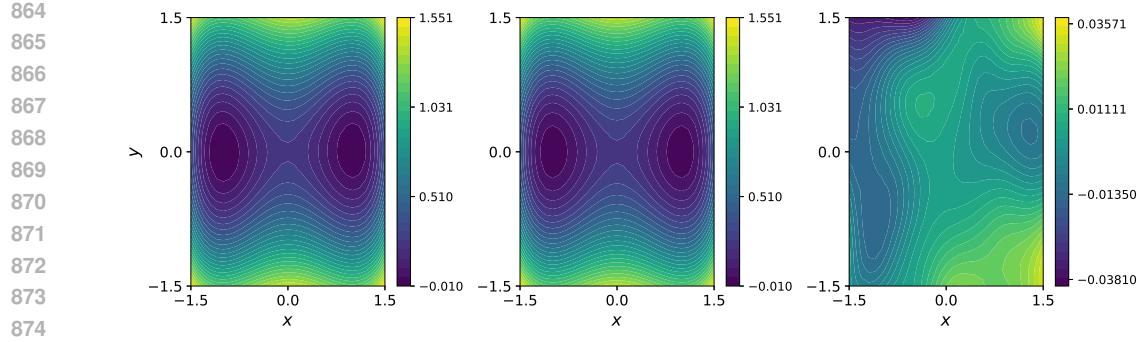


Figure 4: Comparison of the learned potential function ψ_{NN} with the ground truth $\psi(x, y) = \frac{1}{4}(x^2 - 1)^2 + \frac{1}{2}y^2$. The heatmaps, shown from left to right, correspond to ψ_{NN} , the ground truth, and their pointwise difference. The relative root mean square error is 1.929×10^{-2} .

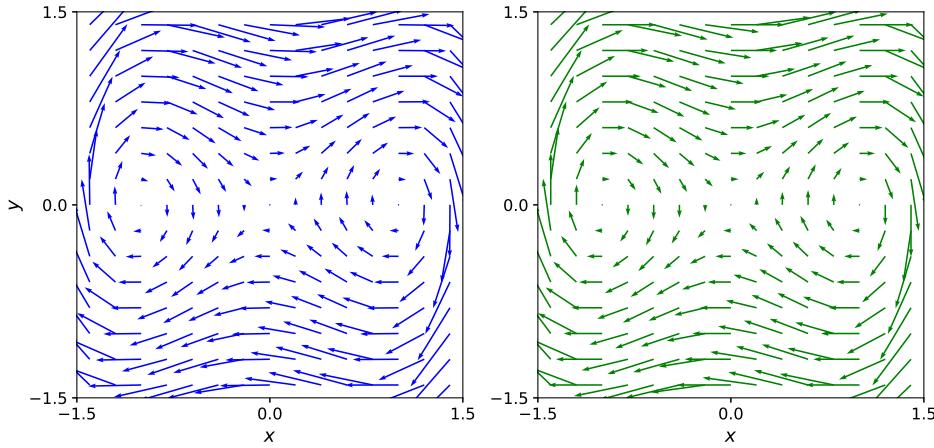


Figure 5: Comparison of the learned rotation (left) \mathbf{R}_{NN} with the ground truth (right) $\mathbf{R}(x, y) = \nabla\psi^{\perp} = \begin{bmatrix} y \\ -(x^3 - x) \end{bmatrix}$. The relative root mean square error is 3.495×10^{-2} .

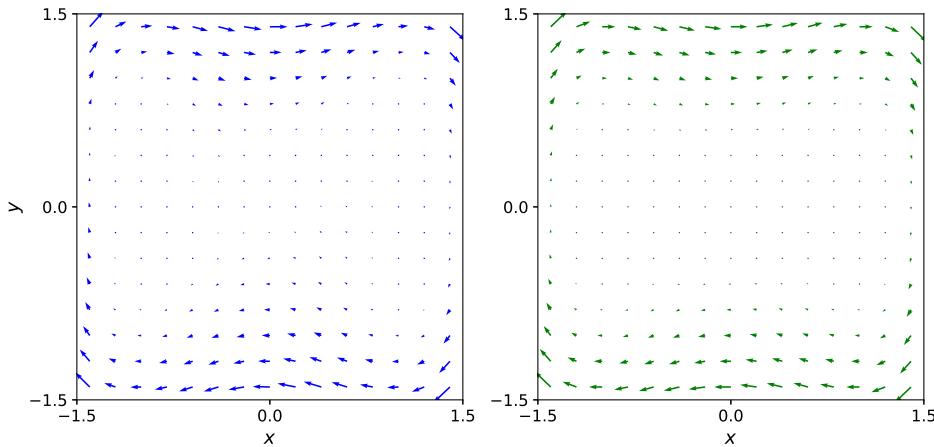


Figure 6: Comparison of the learned rotation (left) \mathbf{R}_{NN} with the ground truth (right) $\mathbf{R}(x, y) = \left(\frac{1}{16}(x^2 - 1)^2 + \frac{1}{8}y^2\right) \begin{bmatrix} y \\ -(x^3 - x) \end{bmatrix}$, using $M = 80$. The relative root mean square error is 1.692×10^{-1} .

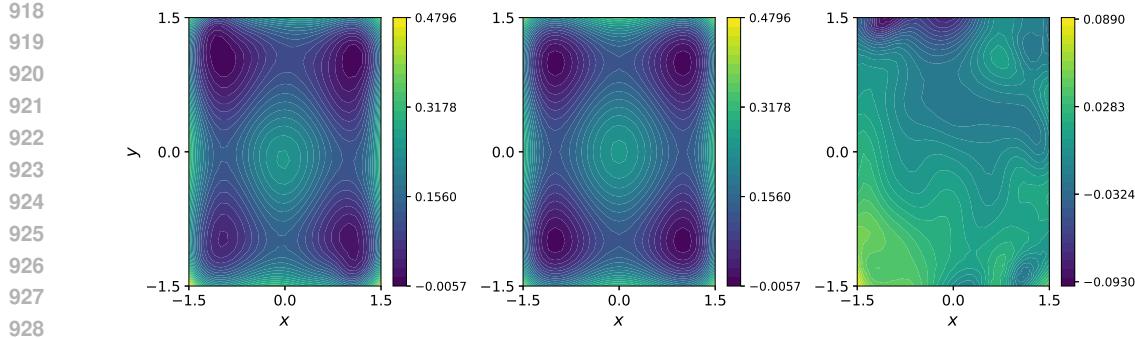


Figure 7: Comparison of the learned potential function ψ_{NN} with the ground truth $\psi(x, y) = \frac{1}{8}(x^2 - 1)^2 + \frac{1}{8}(y^2 - 1)^2$. The heatmaps, shown from left to right, correspond to ψ_{NN} , the ground truth, and their pointwise difference. The relative root mean square error is 1.513×10^{-1} .

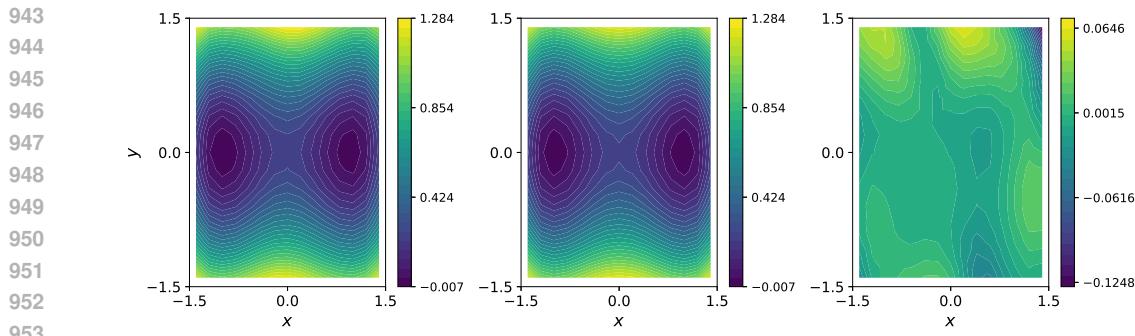


Figure 8: Comparison of the learned potential function ψ_{NN} with the ground truth $\psi(x, y) = \frac{1}{4}(x^2 - 1)^2 + \frac{1}{2}y^2 + \varepsilon^4 \sin(\frac{2\pi x}{\varepsilon}) \sin(\frac{2\pi y}{\varepsilon})$. The heatmaps, shown from left to right, correspond to ψ_{NN} , the ground truth, and their pointwise difference. The relative root mean square error is 3.539×10^{-2} .

Table 5: The Impacts of T_1 .

$\left \frac{dF}{dt} \right $	T_1	rRMSE $_{\psi}$	rRMSE $_{\mathbf{R}}$
0.350	0.2	3.259e-01	5.982e-01
0.125	0.5	3.159e-01	5.365e-01
0.055	1.0	1.625e-02	2.657e-02
0.030	1.5	9.433e-03	2.343e-02
0.017	2.0	8.577e-03	2.367e-02
0.011	2.5	8.686e-03	2.443e-02
0.007	3.0	8.466e-03	2.350e-02

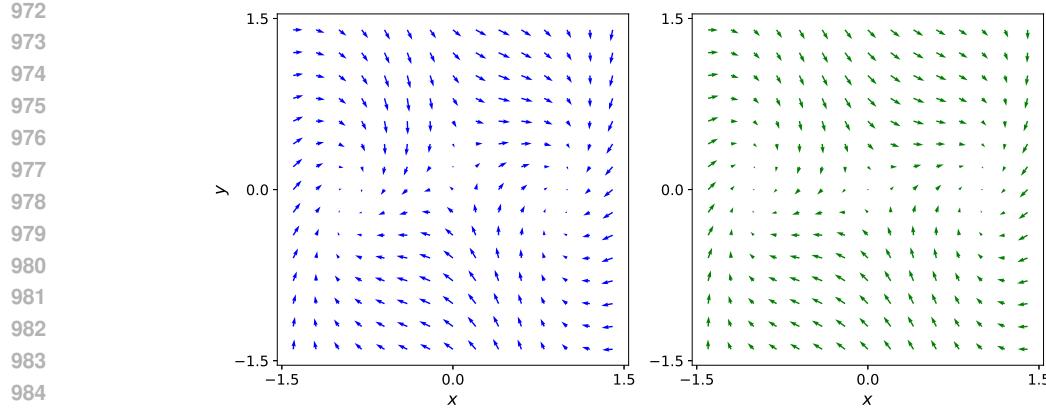


Figure 9: Comparison of the learned drift (left) \mathbf{b}_{NN} with the ground truth (right) $\mathbf{b}(x, y) = \frac{1}{2(1+x^2+y^2)} \begin{bmatrix} -(x^3 - x) + y \\ -y - (x^3 - x) \end{bmatrix}$. The relative root mean square error is 2.024×10^{-1} .

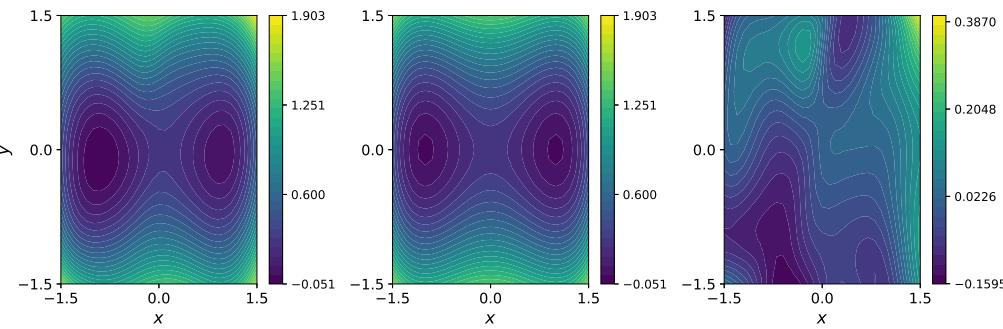


Figure 10: Comparison of the learned potential function ψ_{NN} with the ground truth $\psi(x, y) = \frac{1}{4}(x^2 - 1)^2 + \frac{1}{2}y^2$. The heatmaps, shown from left to right, correspond to ψ_{NN} , the ground truth, and their pointwise difference. The relative root mean square error is 1.216×10^{-1} .

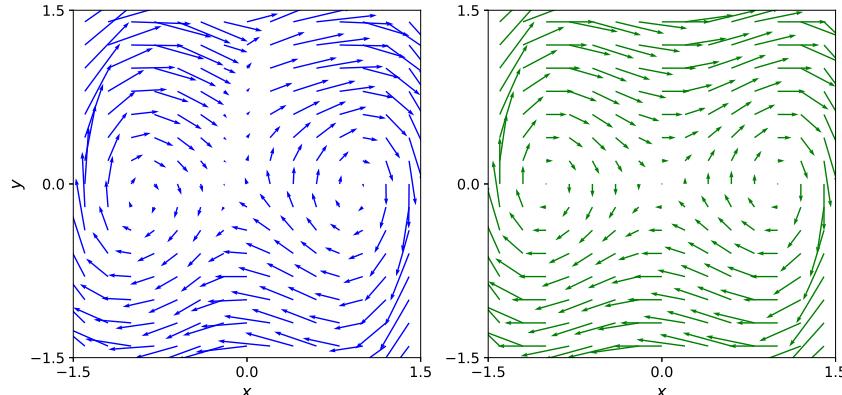


Figure 11: Comparison of the learned rotation (left) \mathbf{R}_{NN} with the ground truth (right) $\mathbf{R}(x, y) = \nabla\psi^\perp = \begin{bmatrix} y \\ -(x^3 - x) \end{bmatrix}$. The relative root mean square error is 3.495×10^{-2} .

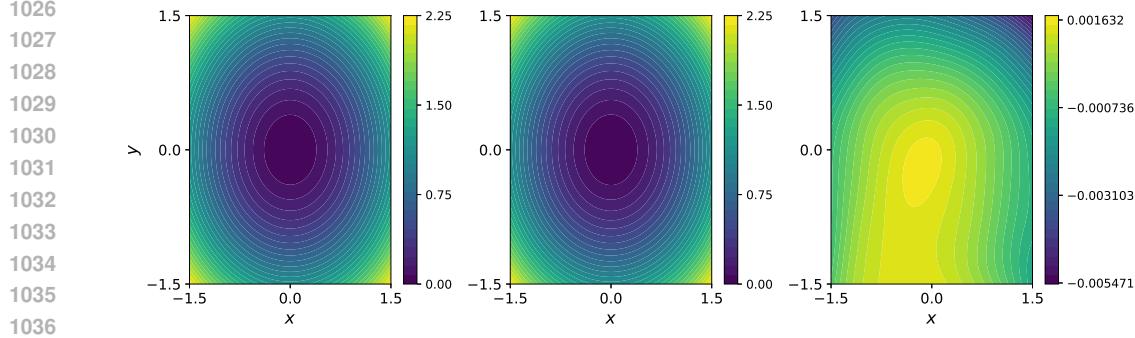


Figure 12: Comparison of the learned potential function ψ_{NN} for a gradient system with the ground truth $\psi(x, y) = \frac{1}{2}x^2 + \frac{1}{2}y^2$. The heatmaps, shown from left to right, correspond to ψ_{NN} , the ground truth, and their pointwise difference. The relative root mean square error is 1.404×10^{-3} .

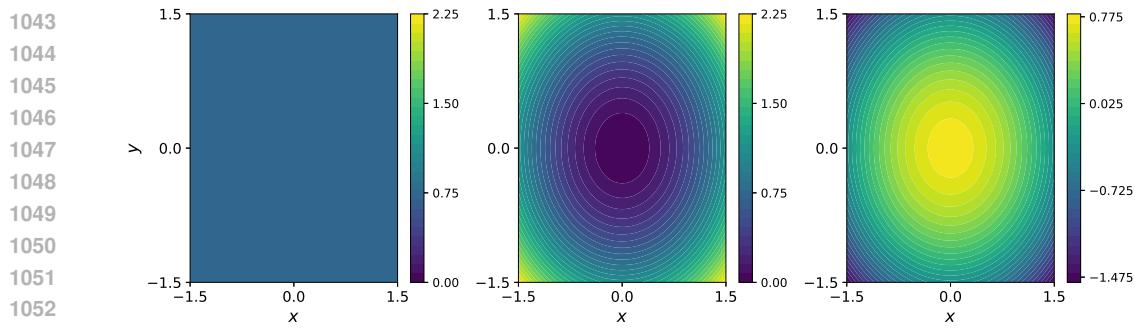


Figure 13: Comparison of the learned potential function ψ_{NN} for a non-gradient system with the ground truth $\psi(x, y) = \frac{1}{2}x^2 + \frac{1}{2}y^2$. The heatmaps, shown from left to right, correspond to ψ_{NN} , the ground truth, and their pointwise difference. The relative root mean square error is 5.344×10^{-1} .

D FORMULATION OF A PDE-BASED LOSS

We minimize the loss function $L_{\psi}^{\text{PDE-total}}(\theta)$ below, with the aim of learn the potential for gradient and non-gradient systems.

$$L_{\psi}^{\text{PDE-total}}(\theta) = L_{\psi}^{\text{PDE}}(\theta) + \lambda L_{\psi}^{\text{PDE-penalty}}(\theta), \quad (\text{D.1})$$

where

$$\begin{aligned} L_{\psi}^{\text{PDE}}(\theta) &= \sum_{i,j=1}^{N,M} \left| \partial_t f_j(\mathbf{x}_i, t_1) + \tilde{\nabla} \cdot (b f_j(\mathbf{x}_i, t_1)) - \frac{1}{2} \tilde{\Delta}(\sigma^2 f_j(\mathbf{x}_i, t_1)) \right|^2 |\delta \mathbf{x}| \\ &+ \sum_{i,j=1}^{N,M} \left| \partial_t f_j(\mathbf{x}_i, T_1) + \tilde{\nabla} \cdot (b f_j(\mathbf{x}_i, T_1)) - \frac{1}{2} \tilde{\Delta}(\sigma^2 f_j(\mathbf{x}_i, T_1)) \right|^2 |\delta \mathbf{x}|, \end{aligned} \quad (\text{D.2})$$

and

$$L_{\psi}^{\text{PDE-penalty}}(\theta) = \sum_{i,j=1}^{N,M} \sigma^4 f_j^2(\mathbf{x}, t_1) |\nabla \psi \cdot \mathbf{R}| |\delta \mathbf{x}| + \sum_{i,j=1}^{N,M} \sigma^4 f_j^2(\mathbf{x}_i, T_1) |\nabla \psi \cdot \mathbf{R}| |\delta \mathbf{x}|. \quad (\text{D.3})$$

The penalty term $L_{\psi}^{\text{PDE-penalty}}$ is derived using the dimensional analysis discussed in Appendix B.2.