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Abstract

Denoising diffusion probabilistic models (DDPMs) are a recent family of generative models
that achieve state-of-the-art results. In order to obtain class-conditional generation, it was
suggested to guide the diffusion process by gradients from a time-dependent classifier. While
the idea is theoretically sound, deep learning-based classifiers are infamously susceptible to
gradient-based adversarial attacks. Therefore, while traditional classifiers may achieve good
accuracy scores, their gradients are possibly unreliable and might hinder the improvement
of the generation results. Recent work discovered that adversarially robust classifiers exhibit
gradients that are aligned with human perception, and these could better guide a generative
process towards semantically meaningful images. We utilize this observation by defining
and training a time-dependent adversarially robust classifier and use it as guidance for a
generative diffusion model. In experiments on the highly challenging and diverse ImageNet
dataset, our scheme introduces significantly more intelligible intermediate gradients, better
alignment with theoretical findings, as well as improved generation results under several
evaluation metrics. Furthermore, we conduct an opinion survey whose findings indicate
that human raters prefer our method’s results.

1 Introduction

Image synthesis is one of the most fascinating capabilities that have been unveiled by deep learning. The
ability to automatically generate new natural-looking images without any input was first enabled by revo-
lutionary research on VAEs – variational auto-encoders (Kingma & Welling, 2014) and GANs – generative
adversarial networks (Goodfellow et al., 2014). Both these techniques, as well as their many subsequent
works (Radford et al., 2016; Arjovsky et al., 2017; Gulrajani et al., 2017; Karras et al., 2020; Van Den Oord
et al., 2017; Vahdat & Kautz, 2020), involved training neural networks on a large dataset of natural images,
aiming to convert simple and easily accessed random vectors into images drawn from a distribution close to
the training set. Despite their impressive capabilities, the image distributions learned by these models were
initially restricted to a specific class of images, ranging from low-resolution handwritten digits (Deng, 2012)
to higher-resolution human faces (Karras et al., 2019). As more research and resources were invested in this
field, several works (Pu et al., 2017; Brock et al., 2018; Esser et al., 2021) were able to make a leap forward,
and devise more complicated models capable of synthesizing a diverse range of natural images. A commonly
agreed upon challenge in this context is ImageNet (Deng et al., 2009), a dataset containing millions of natural
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Figure 1: Images generated with our proposed method.

images, all labeled with one of 1000 image classes. For a given class label (e.g. “hen” or “baseball”), these
class-conditional generative models can nowadays synthesize a realistic image of that class.

Recently, a different family of generative models has emerged to the forefront of image synthesis research.
Denoising diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020), also known as score-
based generative models (Song & Ermon, 2019), have achieved new state-of-the-art image generation perfor-
mance (Dhariwal & Nichol, 2021; Song et al., 2021; Vahdat et al., 2021), showcasing better image fidelity and
mode coverage than VAEs and GANs. These models have also excelled at several downstream tasks (Amit
et al., 2021; Kawar et al., 2021b; Theis et al., 2022; Nie et al., 2022), and they also act as the powerhouse
behind the unprecedented capabilities of text-to-image models (Ramesh et al., 2022; Saharia et al., 2022).
Essentially, these models utilize a Gaussian denoising neural network in an iterative scheme – starting from
a pure Gaussian noise image, it is continually and gradually denoised in a controlled fashion, while also
being perturbed randomly, until it finally turns into a synthesized natural-looking image. To achieve class-
conditional generation, the denoising neural network can accept the class label as input (Ho et al., 2022a).
Additionally, the diffusion process can be guided by gradients from a classifier (Dhariwal & Nichol, 2021).
This brings us naturally to discuss the next topic, of image classifiers, and their role in image synthesis.

In parallel to the progress in image synthesis research, substantial efforts were also made in the realm of
image classification. Given an input image, neural networks trained for classification are able to assign
it a class label from a predefined set of such labels, often achieving superhuman performance (He et al.,
2016; Dosovitskiy et al., 2020). Despite their incredible effectiveness, such classifiers were found to be
susceptible to small malicious perturbations known as adversarial attacks (Szegedy et al., 2014). These
attacks apply a small change to an input image, almost imperceptible to the human eye, causing the network
to incorrectly classify the image. Subsequently, several techniques were developed for defending against such
attacks (Madry et al., 2018; Andriushchenko & Flammarion, 2020; Zhang et al., 2019; Wang et al., 2020),
obtaining classifiers that are adversarially robust. In addition to their resistance to attacks, robust classifiers
were also found to possess unexpected advantages. The gradients of a robust classifier model were found to
be perceptually aligned, exhibiting salient features of a class interpretable by humans (Tsipras et al., 2019).
This phenomenon was harnessed by a few subsequent works, enabling robust classifiers to aid in basic image
generation, inpainting, and boosting existing generative models (Santurkar et al., 2019; Ganz & Elad, 2021).

In this work, we draw inspiration from these recent discoveries in image classification and incorporate their
advantages into the world of diffusion-based image synthesis, which has largely been oblivious to the capabil-
ities of robust classifiers. Dhariwal & Nichol (2021) suggested to use gradients from a (non-robust) classifier
for guiding a diffusion synthesis process. We improve upon this technique by examining the validity of these
gradients and suggesting a way to obtain more informative ones. We pinpoint several potential issues in
the training scheme of classifiers used as guidance and observe their manifestation empirically (see Figures
3 and 4). We then propose the training of an adversarially robust, time-dependent classifier (i.e., a classifier
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Figure 2: Images generated by guided diffusion using the same random seed and class label, with a vanilla
(top) and a robust (bottom) classifier. Our robust model provides more informative gradients, leading to
better synthesis quality.

that accepts the current diffusion timestep as input) suited for guiding a generation process. Our proposed
training method resolves the theoretical issues raised concerning previous classifier guidance techniques.
Empirically, our method attains significantly enhanced generative performance on the highly challenging
ImageNet dataset (Deng et al., 2009). We evaluate the synthesis results using standard metrics, where our
method outperforms the previous state-of-the-art classifier guidance technique. Furthermore, we conduct an
opinion survey, where we ask human evaluators to choose their preferred result out of a pair of generated
images. Each pair consists of two images generated using the same class label and the same random seed,
once using the baseline classifier guidance method (Dhariwal & Nichol, 2021), and once using our proposed
robust classifier guidance. Our findings show that human raters exhibit a pronounced preference towards
our method’s synthesis results.

To summarize, we incorporate a recently discovered capability of robust classifiers, perceptually aligned
gradients, into the classifier-guided diffusion-based image synthesis scheme (Dhariwal & Nichol, 2021). We
highlight several benefits of the adversarial training scheme and show how they can aid in classifier guidance
for diffusion models. To that end, we train an adversarially robust time-dependent classifier on the diverse
ImageNet dataset (Deng et al., 2009). We use this classifier in conjunction with a conditional diffusion
model to obtain high quality image generation. The resulting technique outperforms the previous vanilla
classifier guidance method on several key evaluation metrics such as FID (Heusel et al., 2017). Furthermore,
we present a conducted opinion survey, which found that human evaluators show a clear preference towards
our method.

2 Background

2.1 Robust Classifiers

Deep learning-based classifiers parameterized by ϕ aim to model the log-likelihood of a class label y ∈
{1, . . . , C} given a data instance x ∈ Rd, namely log pϕ(y|x). Such architectures are trained to minimize the
empirical risk over a given labeled training set {xi, yi}N

i=1, e.g.,

min
ϕ

1
N

N∑
i=1

LCE(hϕ(xi), yi), (1)

where N is the number of training examples, hϕ(xi) = {log pϕ(j|xi)}C
j=1 is the set of these log-likelihood

scores predicted by the classifier for the input xi, and LCE is the well-known cross-entropy loss, defined as

LCE(z, y) = − log exp(zy)∑C
j=1 exp(zj)

. (2)
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Figure 3: Gradients of images on their respective true class labels, using a vanilla classifier and our robust
one at different timesteps. Gradients are min-max normalized.

Classifiers of this form have had astounding success and have led to state-of-the-art (SOTA) performance
in a wide range of domains (He et al., 2016; Simonyan & Zisserman, 2014). Nevertheless, these networks
are known to be highly sensitive to minor corruptions (Hosseini et al., 2017; Dodge & Karam, 2017; Geirhos
et al., 2017; Temel et al., 2017; 2018; Temel & AlRegib, 2018) and small malicious perturbations, known as
adversarial attacks (Szegedy et al., 2014; Athalye et al., 2017; Biggio et al., 2013; Carlini & Wagner, 2017;
Goodfellow et al., 2015; Kurakin et al., 2017; Nguyen et al., 2014). With the introduction of such models
to real-world applications, these safety issues have raised concerns and drawn substantial research attention.
As a consequence, in recent years there has been an ongoing development of better attacks, followed by the
development of better defenses, and so on.

While there are abundant attack and defense strategies, in this paper we focus on the Projected Gradient
Descent (PGD) attack and Adversarial Training (AT) robustification method (Madry et al., 2018) that
builds on it. PGD is an iterative process for obtaining adversarial examples – the attacker updates the input
instance using the direction of the model’s gradient w.r.t. the input, so as to maximize the classification loss.
AT is an algorithm for robustifying a classifier, training it to classify maliciously perturbed images correctly.
Despite its simplicity, this method was proven to be highly effective, yielding very robust models, and most
modern approaches rely on it (Andriushchenko & Flammarion, 2020; Huang et al., 2020; Pang et al., 2020;
Qin et al., 2019; Xie et al., 2019; Zhang et al., 2019; Wang et al., 2020).

In addition to the clear robustness advantage of adversarial defense methods, Tsipras et al. (2019) has
discovered that the features captured by such robust models are more aligned with human perception. This
property implies that modifying an image to maximize the probability of being assigned to a target class
when estimated by a robust classifier, yields semantically meaningful features aligned with the target class.
In contrast, performing the same process using non-robust classifiers leads to imperceptible and meaningless
modifications. This phenomenon is termed Perceptually Aligned Gradients (PAG). Since its discovery, few
works (Santurkar et al., 2019; Aggarwal et al., 2020) have harnessed it for various generative tasks, including
synthesis refinement as a post-processing step (Ganz & Elad, 2021).

2.2 Diffusion Models

Denoising diffusion probabilistic models (DDPMs), also known as simply diffusion models, are a family of
generative models that has recently been increasing in popularity (Song & Ermon, 2019; Ho et al., 2020).
These methods have demonstrated unprecedented realism and mode coverage in synthesized images, achiev-
ing state-of-the-art results (Dhariwal & Nichol, 2021; Song et al., 2021; Vahdat et al., 2021) in well-known
metrics such as Fréchet Inception Distance – FID (Heusel et al., 2017). In addition to image genera-
tion, these techniques have also been successful in a multitude of downstream applications such as image
restoration (Kawar et al., 2021a; 2022), unpaired image-to-image translation (Sasaki et al., 2021), image
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segmentation (Amit et al., 2021), image editing (Liu et al., 2021; Avrahami et al., 2022), text-to-image gen-
eration (Ramesh et al., 2022; Saharia et al., 2022), and more applications in image processing (Theis et al.,
2022; Gao et al., 2022; Nie et al., 2022; Blau et al., 2022; Han et al., 2022) and beyond (Jeong et al., 2021;
Chen et al., 2022; Ho et al., 2022b; Zhou et al., 2021).

The core idea of diffusion-based generative models is to start from a pure Gaussian noise image, and gradually
modify it using a denoising network and a controlled random perturbation until it is finally crystallized into a
realistic high-quality image. While different realizations of this idea exist, we follow the notation established
in (Dhariwal & Nichol, 2021). Specifically, diffusion models aim to sample from a probability distribution
pθ(x) that approximates a data probability q(x) representing a given dataset. Sampling starts from a pure
Gaussian noise vector xT , and gradually updates it into samples xT −1, xT −2, . . . , x2, x1 until the final output
image x0. Each timestep t represents a fixed noise level in the corresponding image xt, which is a mixture
of x0 and a white Gaussian noise vector ϵt, specifically

xt =
√

αtx0 +
√

1 − αtϵt, (3)

with predefined signal and noise levels αt and 1 − αt, respectively (0 = αT < αT −1 < · · · < α1 < α0 = 1). A
denoising model ϵθ(xt, t) is trained to approximate ϵt, and is subsequently used at sampling time to model
the distribution pθ(xt−1|xt) = N (µt, σ2

t I), with

µt =
√

αt−1

αt

(
xt −

1 − αt

αt−1√
1 − αt

ϵθ(xt, t)
)

, (4)

and σ2
t is either set to a constant value representing a bound on the possible variance of the underlying

distribution (Ho et al., 2020), or learned by a neural network (Nichol & Dhariwal, 2021). This distribution
enables the iterative sampling, starting from pure noise xT and ending with a final image x0.

3 Motivation

3.1 Class-Conditional Diffusion Synthesis

We are interested in generating an image from a certain user-requested class of images, labeled y. Previous
work in this area suggested conditioning a denoising diffusion model on an input class label, thereby obtaining
ϵθ(xt, t, y), and this way conditioning the sampling sequence on the desired class label (Ho et al., 2022a). In
addition, building on ideas from (Sohl-Dickstein et al., 2015; Song et al., 2021), it was suggested by (Dhariwal
& Nichol, 2021) to guide the diffusion process using gradients from a classifier. Assuming access to a time-
dependent (actually, noise-level-dependent) classification model that outputs log pϕ(y|xt, t), this classifier
guidance technique suggests incorporating the model’s gradient ∇xt log pϕ(y|xt, t) into the diffusion process.
This encourages the sampling output x0 to be recognized as the target class y by the classifier model utilized.
These gradients can be further scaled by a factor s, corresponding to a modified distribution proportional
to pϕ(y|xt, t)s. Increasing s results in a sharper distribution, thereby trading off diversity for fidelity. A
time-dependent classifier log pϕ(y|xt, t) is trained for this purpose using the cross-entropy loss on noisy
intermediate images xt, obtained by sampling images x from a dataset and randomly setting t, controlling
the noise level. The classifier is then used in conjunction with a conditional diffusion model for sampling.

3.2 Vanilla Classifier Guidance Shortcomings

The use of gradients of the assumed underlying data distribution ∇xt log q(y|xt, t) in the diffusion process is
well-motivated by Dhariwal & Nichol (2021). However, it is unclear whether the aforementioned “vanilla”
training method of a classifier encourages its gradients’ proximity to those of the data distribution. In fact, it
was proven by (Srinivas & Fleuret, 2020) that these model gradients can be arbitrarily manipulated without
affecting the classifier’s cross-entropy loss nor its accuracy. Crucially, this means that training is oblivious to
arbitrary changes in model gradients. We provide this proof in Appendix B for completeness, and naturally
extend it to cover time-dependent classifiers trained on noisy images. It was also previously suggested that
the iterative use of such gradients is akin to a black-box adversarial attack on the Inception classifier used for
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Figure 4: Maximizing the probability of target classes with given images using classifier gradients (at t = 0).
Our robust classifier leads to images with less adversarial noise, and more aligned with the target class.

assessing generation quality (Ho & Salimans, 2021). Essentially, this may result in better nominal generation
performance in metrics such as FID, while not necessarily improving the visual quality of output images.
Moreover, (Chao et al., 2021) prove that changing the scaling factor of classifier guidance to s ̸= 1 does not
generally correspond to a valid probability density function.

To conclude, there is substantial evidence in recent literature towards the shortcomings of “vanilla” trained
classifiers for obtaining accurate gradients. This, in turn, motivates the pursuit of alternative approximations
of ∇xt log q(y|xt, t) for use as classifier guidance in diffusion-based synthesis.

4 Obtaining Better Gradients

4.1 Robust Classifier Benefits

In traditional Bayesian modeling literature, it is assumed that given a data point x, there exists a probability
of it belonging to a certain class y, for each possible choice of y. In diffusion models, the same assumption is
made over noisy data points xt, with the probability distribution q(y|xt, t). However, in practice, no concrete
realization of these probabilities exists. Instead, we have access to a labeled image dataset where for each
image x, there is a “ground-truth” label y ∈ {1, . . . , C}. Using this data, a classifier model is encouraged
to output pϕ(y|xt, t) = 1 and pϕ(y′ |xt, t) = 0 for y

′ ̸= y through the cross-entropy loss function. While
this method achieves impressive classification accuracy scores, there is no indication that its outputs would
approximately match the assumed underlying distribution, nor will it reliably provide its input-gradients.

Instead of relying on “vanilla” cross-entropy training of classification models, we suggest leveraging a few
recently discovered advantages of robust adversarially-trained classifiers, which have been largely unexplored
in the context of diffusion models hitherto. Tsipras et al. (2019) show that traditionally trained classifiers can
very easily mismatch an underlying synthetic data distribution by relying on non-robust weakly correlated
features. In contrast, an adversarially-trained robust classifier would be vastly more likely to rely on more
robust and highly informative features.

Interestingly, by migrating to a robust classifier, we can leverage its recently discovered phenomenon of
perceptually aligned gradients (Tsipras et al., 2019). These gradients have allowed robust classifiers to be
used in tasks such as inpainting, basic image generation (Santurkar et al., 2019), and boosting existing
generative models (Ganz & Elad, 2021). Notably, such tasks imply the existence of decent generative
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Table 1: Quality metrics for image synthesis using a class-conditional diffusion model on ImageNet (128 ×
128). Left to right: no guidance, vanilla classifier guidance, robust classifier guidance (ours).

Metric Unguided Vanilla Robust
Precision (↑) 0.70 0.78 0.82
Recall (↑) 0.65 0.59 0.56
FID (↓) 5.91 2.97 2.85

capabilities implicit in robust classifier gradients, but not “vanilla” ones. Therefore, we propose replacing
the classifier used in (Dhariwal & Nichol, 2021) with a robust one.

4.2 Proposed Method

Note that an off-the-shelf adversarially trained robust classifier would not fit our purpose in this context.
This is due to the fact that in the diffusion process, the classifier operates on intermediate images xt, which
are a linear mixture of an ideal image and Gaussian noise. Furthermore, this mixture is also a function
of t, which requires the classifier model to be time-dependent. Consequently, we propose the training of
a novel robust time-dependent classifier model hϕ(xt, t) = {log pϕ(j|xt, t)}C

j=1. For each sample x from a
training set D = {xi, yi}N

i=1 and timestep t, we first transform x into its noisy counterpart xt, and then
apply a gradient-based adversarial attack on it. Since the training images are perturbed with both Gaussian
and adversarial noises, we apply early stopping – the attack stops as soon as the model is fooled. Finally,
the model is shown the attacked image x̃t = A (xt, ϕ), and is trained using the cross-entropy loss with the
ground-truth label y. The resulting loss function is formulated as

E(x,y)∼D,t∼Uni[0,T ],xt∼qt(xt|x) [LCE (hϕ (x̃t, t) , y)] . (5)

Early stopping is crucial to this training scheme, as heavily noisy images (especially for large t) with a
full-fledged attack can easily overwhelm the model in the early stages of training. Conversely, early stopping
allows the model to train on non-attacked samples initially, then proceeding to gradually more challenging
cases as training progresses.

This scheme resolves several previously mentioned issues with vanilla classifier guidance. First, the gradients
of an adversarially trained classifier cannot be arbitrarily manipulated like those of a vanilla model. Unlike
the vanilla setting, the loss for an adversarially trained classifier is directly dependent on the adversarial
attack employed, which in turn depends on the model gradients. Therefore, any change to the model’s
gradients, such as the one suggested by (Srinivas & Fleuret, 2020), would necessarily affect the model’s
predictions and loss during training. Second, gradients from a robust classifier are shown to be aligned with
human perception. Namely, they exhibit salient features that humans naturally associate with the target
class, and this should be contrasted with adversarial noise unintelligible by humans. Therefore, they cannot
be thought of as “adversarial” to performance metrics, as their vanilla classifier counterparts (Ho & Salimans,
2021). Third, while vanilla cross-entropy-trained classifier gradients are not known to contain any intelligible
features, robust classifier gradients may be interpretable. Elliott et al. (2021) have leveraged robust classifier
gradients in order to highlight salient features and explain neural network decisions. These findings hint
towards the superiority of these gradients.

Note that because of the need to work on intermediate images, the classifiers employed with diffusion models
train on data mixed with Gaussian noise. It was discovered that this simple data augmentation can lead to
gradients that are more interpretable by humans (Kaur et al., 2019), albeit to a lesser extent than observed
in adversarially trained models. Therefore, we hypothesize that utilizing a model with better “perceptually
aligned gradients” will yield enhanced image synthesis results.
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Figure 5: Approximations of the final image at uniformly spaced intermediate steps of the guided diffusion
process, for the same class and the same random seed. Our robust classifier provides better guidance.

5 Experiments

5.1 Robust Time-Dependent Classifier Training

In our experiments, we focus on the highly challenging ImageNet (Deng et al., 2009) dataset for its diversity
and fidelity. We consider the 128 × 128 pixel resolution, as it provides a sufficiently high level of details,
while still being computationally efficient. In order to test our hypothesis, we require the training of a robust
time-dependent classifier. We adopt the same classifier architecture from (Dhariwal & Nichol, 2021) and
train it from scratch using the proposed loss in Equation (5) on the ImageNet training set. We use the
gradient-based PGD attack to perturb the noisy images xt. The attack is restricted to the threat model
{xt + δ | | ∥δ∥2 ≤ 0.5}, and performed using a step size of 0.083, and a maximum number of 7 iterations.
We stop the PGD attack on samples as soon as it is successful in achieving misclassification. This early
stopping technique allows the model to train on unattacked data points at the beginning, and progressively
increase its robustness during training. We train the classifier for 240k iterations, using a batch size of
128, a weight decay of 0.05, and a linearly annealed learning rate starting with 3 × 10−4 and ending with
6 × 10−5. Training is performed on two NVIDIA A40 GPUs. In addition, we conduct an ablation study on
CIFAR-10 (Krizhevsky et al., 2009) and report the results and implementation details in Appendix E.

To qualitatively verify that the resulting model indeed produces perceptually aligned gradients, we examine
the gradients at different timesteps for a handful of natural images from the ImageNet validation set. For
comparison, we also show the same gradients as produced from the vanilla classifier trained by Dhariwal &
Nichol (2021). As can be seen in Figure 3, the gradients from our robust model are more successful than their
vanilla counterpart at highlighting salient features aligned with the image class, and with significantly less
adversarial noise. To further demonstrate the information implicit in these gradients, we perform a targeted
PGD process with 7 steps and a threat model {x + δ | | ∥δ∥2 ≤ 100}, maximizing a certain target class for
a initial image. Figure 4 shows that our model yields images that align better with the target class.

5.2 Robust Classifier Guided Image Synthesis

The main goal of our work is improving class-conditional image synthesis. Following (Dhariwal & Nichol,
2021), we utilize 250 diffusion steps out of the trained 1000 (by uniformly skipping steps at sampling time)
of their pre-trained conditional diffusion model for this task, while guiding it using our robust classifier. For
the classifier guidance scale, we sweep across values s ∈ {0.25, 0.5, 1, 2} and find that s = 1 produces better
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Table 2: Percentage of image pairs where human evaluators prefer our robust classifier’s output, the vanilla
one, or have no preference. An output is considered preferred if the percentage of users who selected it passes
a certain threshold.

Threshold Robust Vanilla No Preference
50% 61.5% 31.5% 7.0%
60% 51.0% 28.5% 28.5%
70% 35.0% 13.5% 51.5%
80% 21.5% 8.5% 70.0%

results, aligning well with theoretical findings set forth by Chao et al. (2021). Dhariwal & Nichol (2021)
perform a similar sweep for their model, and find that s = 0.5 provides the best results. In all comparisons,
we use s = 1 for our robust classifier and s = 0.5 for the vanilla one. We conduct an ablation study regarding
the important hyperparameters and design choices in Appendix E.

Qualitatively, the resulting synthesized images using our robust classifier look visually pleasing, as evident
in Figures 1, 2, and 5. However, our method underperforms in a handful of cases, as we show in Figure 6.
In order to quantify the quality of our results, we adopt the standard practice in class-conditional ImageNet
image synthesis: we randomly generate 50000 images, 50 from each of the 1000 classes, and evaluate them
using several well-known metrics – FID (Heusel et al., 2017), Precision, and Recall (Kynkäänniemi et al.,
2019). Precision quantifies sample fidelity as the fraction of generated images that reside within the data
manifold, whereas Recall quantifies the diversity of samples as the fraction of real images residing within the
generated image manifold. FID provides a comprehensive metric for both fidelity and diversity, measuring
the distance between two image distributions (real and generated) in the latent space of the Inception
V3 (Szegedy et al., 2016) network. In Table 1, we compare three guidance methods for class-conditional
generation: (i) using the class-conditional diffusion model without guidance; (ii) guidance using the pre-
trained vanilla classifier; and (iii) guidance by our robust classifier. Our proposed model achieves better FID
and Precision than both competing techniques, but it is outperformed in Recall.

Seeking a more conclusive evidence that our method leads to better visual quality, we conduct an opin-
ion survey with human evaluators. We randomly sample 200 class labels, and then randomly generate
corresponding 200 images using the conditional diffusion model guided by two classifiers: once using the
pre-trained vanilla classifier, and once using our robust one. Both generation processes are performed using
the same random seed. Human evaluators were shown a randomly ordered pair of images (one from each
classifier), the requested textual class label, and the question: “Which image is more realistic, and more
aligned to the description?”. Evaluators were asked to choose an option from “Left”, “Right”, and “Same”.
The image pairs were shown in a random order for each evaluator.

The main findings of the survey are summarized in Table 2. In each pair, we consider an image to be
preferred over its counterpart if it is selected by more than a certain percentage (threshold) of users who
selected a side. We then calculate the percentage of pairs where evaluators prefer our robust classifier’s
output, the vanilla one, or have no preference. We vary the threshold from 50% up to 80%, and observe that
humans prefer our classifier’s outputs over the vanilla ones for all threshold levels. During the survey, each
pair was rated by 19 to 36 evaluators, with an average of 25.09 evaluators per pair, totaling 5018 individual
answers. Out of these, 40.4% were in favor of our robust classifier and 32.4% were in favor of the vanilla
one. These results provide evidence for human evaluators’ considerable preference for our method, for a
significance level of > 95%.

6 Related Work

In this work we propose to harness the perceptually aligned gradients phenomenon by utilizing robust
classifiers to guide a diffusion process. Since this phenomenon’s discovery, several works have explored the
generative capabilities of such classifiers. Santurkar et al. (2019) demonstrated that adversarially robust
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Figure 6: In a handful of cases, vanilla classifier guidance produces better outputs than robust classifier
guidance. These results mostly consist of better lighting, saturation, and image focus.

models can be used for solving various generative tasks, including basic synthesis, inpainting, and super-
resolution. Zhu et al. (2021) drew the connection between adversarial training and energy-based models
and proposed a joint energy-adversarial training method for improving the generative capabilities of robust
classifiers. Furthermore, Ganz & Elad (2021) proposed using a robust classifier for sample refinement as a
post-processing step. In contrast to these works, this paper is the first to combine a robust classifier into the
inner-works of a generative model’s synthesis process, leading to a marked improvement.

Also worth mentioning are few other improved guidance techniques for class-conditional diffusion that were
proposed. Chao et al. (2021) developed a new objective for training a classifier to capture the likelihood
score. More specifically, they introduced a two-stage training scheme: first train a diffusion model, and
then train the classifier to better supplement the estimations of the frozen diffusion model. Despite the
intriguing idea, they demonstrate it only on low-resolution datasets (32 × 32), and the two training phases
are sequential, as the classifier’s training requires a pre-trained diffusion model. Hence, these phases are
not parallelizable. In contrast, we propose an independent classifier training scheme, which scales well to
more diverse datasets with higher resolutions. Another fascinating work is (Ho & Salimans, 2021), which
proposed a class-conditional synthesis without using a classifier. Instead, they offered to combine predictions
of conditional and unconditional diffusion models linearly. Interestingly, a single neural network was used
for both models. However, while it shows impressive performance, the proposed combination is heuristic,
and requires careful hyperparameter tuning. Their work (named classifier-free guidance) follows a different
research direction than ours, as we focus on enhancing classifier guidance, enabling information from outside
the trained diffusion model to be incorporated into the generation process. This approach improves the
generative process’ modularity and flexibility, as it allows the continued definitions of more classes, without
requiring further training of the base generative diffusion model. Moreover, in the case where classes are
not mutually exclusive, classifier guidance allows for the generation of multiple classes in the same image at
inference time (by taking the gradient for all requested classes). This is possible in classifier-free guidance
only by defining a combinatorial number of class embeddings (to account for all possible class intersections).

7 Conclusion

In this paper we present the fusion of diffusion-based image synthesis and adversarially robust classification.
Despite the success of the classifier guidance of diffusion models (Dhariwal & Nichol, 2021), we highlight
several key weaknesses with this approach. Specifically, our analysis of the vanilla classifier gradients used
for guidance exposes their limited ability to contribute to the synthesis process. As an alternative, we train a
novel adversarially robust time-dependent classifier. We show that this scheme resolves the issues identified
in vanilla classifier gradients, and use the resulting robust classifier as guidance for a generative diffusion
process. This is shown to enhance the performance of the image synthesis on the highly challenging ImageNet
dataset (Deng et al., 2009), as we verify using standard evaluation metrics such as FID (Heusel et al., 2017),
as well as a generative performance evaluation survey, where human raters show a clear preference towards
images generated by the robust classifier guidance technique that we propose.

Our future work may focus on several promising directions: (i) generalizing this technique for obtaining better
gradients from multi-modal networks such as CLIP (Radford et al., 2021), which help guide text-to-image
diffusion models (Ramesh et al., 2022); (ii) implementing robust classifier guidance beyond diffusion models,
e.g. for use in classifier-guided GAN training (Sauer et al., 2022); (iii) extending our proposed technique to
unlabeled datasets; and (iv) seeking better sources of perceptually aligned gradients (Ganz et al., 2022), so
as to better guide the generative diffusion process.
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A Additional Samples

Figure 7: Uncurated samples generated by a conditional diffusion model, guided by our robust time-
dependent classifier.
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B Proof for Arbitrarily Manipulated Gradients

Below we show a theoretical observation, adapted from the original work it was presented in (Srinivas &
Fleuret, 2020).

Observation. Assume a neural network classifier h(x) = {hi(x)}C
i=1, where hi : Rd → R, and an

arbitrary function g : Rd → R. Consider another neural network classifier h̃(x) =
{

h̃i(x)
}C

i=1, where
h̃i(x) = hi(x) + g(x), for which we obtain ∇xh̃i(x) = ∇xhi(x) + ∇xg(x). For this, the corresponding
cross-entropy loss values and accuracy scores remain unchanged.

Proof. For any data point x ∈ Rd and its corresponding true label y ∈ {1, . . . , C}, the cross-entropy loss for
the neural network h(x) is given as

LCE(h(x), y) = − log exp(hy(x))∑C
j=1 exp(hj(x))

= − log exp(hy(x)) + log

 C∑
j=1

exp (hj(x))


= −hy(x) + log

 C∑
j=1

exp (hj(x))

 . (6)

For the neural network h̃(x), we obtain the cross-entropy loss by substituting h̃i(x) = hi(x) + g(x) in
Equation (6),

LCE(h̃(x), y) = −h̃y(x) + log

 C∑
j=1

exp
(
h̃j(x)

)
= −hy(x) − g(x) + log

 C∑
j=1

exp (hj(x) + g(x))


= −hy(x) − g(x) + log

 C∑
j=1

exp (hj(x)) exp (g(x))


= −hy(x) − g(x) + log

 C∑
j=1

exp (hj(x))

+ log (exp (g(x)))

= −hy(x) − g(x) + log

 C∑
j=1

exp (hj(x))

+ g(x)

= −hy(x) + log

 C∑
j=1

exp (hj(x))


= LCE(h(x), y). (7)

The last equality holds due to Equation (6). It also holds that

arg max
i∈{1,...,C}

h̃i(x) = arg max
i∈{1,...,C}

(hi(x) + g(x)) = arg max
i∈{1,...,C}

hi(x), (8)

implying identical predictions for both networks on any input, and therefore identical accuracy scores,
completing the proof.
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□

This observation shows that two neural networks with an identical loss over all inputs, can have arbitrarily
different gradients, as the proof does not assume any limitations on g(x) nor on x. This also implies that the
proof remains valid for noisy training data, and as a result, it remains valid for time-dependent classifiers
which follow a Gaussian noise schedule, such as the one trained by (Dhariwal & Nichol, 2021). However,
when transitioning into an adversarial training scheme, the perturbed training inputs become dependent
on the model’s gradients, and consequently, the adversarial loss presented in Equation (5) changes. This
motivates the use of an adversarially-trained classifier over a vanilla one, when the goal is to obtain better
gradients.

C Opinion Survey Details

Figure 8: A screenshot of the survey that was shown to human evaluators.

As previously mentioned, we conducted an opinion survey, asking human evaluators to choose their preferred
image out of a pair of generated images or to choose that they have no preference. Evaluators were shown
200 pairs, randomly shuffled, where each pair consists of two randomly ordered images generated with the
same class label and seed, once guided by our robust classifier, and once guided using the pre-trained vanilla
classifier. An example of the screen shown to evaluators is displayed in Figure 8.

Some evaluators did not fill out the entire survey. Hence, different pairs have different numbers of answers.
Nevertheless, sufficient data was collected for all pairs, as the number of answers per pair ranged from 19 to
36, averaging 25.09 answers.

D Implementation Details

We base our implementation on the publicly available code provided by (Dhariwal & Nichol, 2021). For
implementing the adversarial training scheme, we adapt code from (Madry et al., 2018) to work with time-
dependent models and enable early stopping, and use it to train our robust time-dependent classifier. The
sampling routine is identical to that of (Dhariwal & Nichol, 2021), up to changing the model and sampling
hyperparameters. Our code and trained robust time-dependent classifier models are available at https:
//github.com/bahjat-kawar/enhancing-diffusion-robust.

E Ablation Study

To perform a comprehensive ablation study on the different hyperparameters of our method, we consider
the smaller CIFAR-10 (Krizhevsky et al., 2009) dataset, containing 32 × 32-pixel images. We train a class-
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Table 3: FID at different training iterations of an unguided class-conditional diffusion model for CIFAR-10.

Iterations 50k 100k 150k 200k 250k 300k
FID 11.65 8.41 7.81 7.67 7.68 7.91

conditional diffusion model for CIFAR-10, with an architecture adapted from Nichol & Dhariwal (2021)
(changing the dropout from 0.3 to 0.1, making the model class-conditional, and using a linear 1000-step
noise schedule akin to Dhariwal & Nichol (2021)). We measure FID with 10000 images against the validation
set, and show the diffusion model’s results in Table 3. The trained diffusion model achieves its best FID at
200k training iterations. As a general point of reference, StyleGAN2 (Karras et al., 2020) achieves an FID
of 11.07 (Zhao et al., 2020). As a baseline, we train a vanilla time-dependent classifier with an architecture
similar to Dhariwal & Nichol (2021) (changing: the number of output channels to 10 and image size to 32
to match CIFAR-10, the attention resolutions from [32, 16, 8] to [16, 8], and the classifier width from 128 to
32). At 200k iterations and s = 0.25, it achieves an FID of 7.65 with the aforementioned diffusion model.

Table 4: FID on CIFAR-10 for different threat models and numbers of attacker steps, after training a robust
classifier for 200k steps and using a guidance scale of s = 0.25. Best result is highlighted in bold.

Threat Model 5 steps 7 steps 9 steps
{xt + δ | | ∥δ∥2 ≤ 0.25} 7.62 7.62 7.64
{xt + δ | | ∥δ∥2 ≤ 0.5} 7.62 7.60 7.63
{xt + δ | | ∥δ∥2 ≤ 1.0} 7.64 7.63 7.65
{xt + δ | | ∥δ∥∞ ≤ 4/255} 7.61 7.61 7.62
{xt + δ | | ∥δ∥∞ ≤ 8/255} 7.65 7.64 7.67

Then, we adversarially train a robust classifier with the same architecture. We perform an ablation study on
the different adversarial training hyperparameters and summarize our results in Table 4. The attack step size
is set to 2.5 times the upper bound in the attack threat model, divided by the number of attacker steps. We
choose the best performing robust classifier, which was trained on the threat model {xt + δ | | ∥δ∥2 ≤ 0.5}
with 7 attacker steps and 200k training iterations.

Table 5: FID for classifier guidance scales (s) for both the vanilla and robust classifiers on CIFAR-10.

Classifier s = 0 s = 0.0625 s = 0.125 s = 0.25 s = 0.5
Vanilla 7.67 7.65 7.62 7.65 7.87
Robust 7.67 7.62 7.58 7.60 7.79

Moreover, we also conduct an ablation study for the classifier guidance scale hyperparameter s, for both the
vanilla and robust classifiers, and present the results in Table 5. Our robust classifier outperforms its vanilla
counterpart in every classifier scale, attaining an FID of 7.58 at s = 0.125. These results show that a simple
traversal of the classifier scales cannot improve the vanilla classifier’s performance to the level attained by
the robust one.

E.1 Effect of Classifier Guidance Scale on Precision and Recall

We measure the effect of the classifier guidance scale hyperparameter s on the Precision and Recall metrics
for our main ImageNet experiments for both the vanilla and robust classifiers. The results are presented in
Table 6.
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Table 6: Precision and Recall for classifier guidance scales (s) for both the vanilla and robust classifiers on
ImageNet.

Classifier Metric s = 0 s = 0.25 s = 0.5 s = 1.0 s = 2.0 s = 4.0
Vanilla Precision 0.70 0.73 0.77 0.80 0.84 0.86

Recall 0.65 0.62 0.59 0.53 0.46 0.37
Robust Precision 0.70 0.74 0.77 0.82 0.86 0.89

Recall 0.65 0.62 0.60 0.56 0.47 0.39

Diffusion models are known for their great mode coverage, which gives them an edge in the Recall metric.
In fact, the unguided diffusion model achieves better Recall rates than any guided version. As s increases
(in both vanilla and robust settings), we trade off Recall for better Precision.

Our robust model at s = 0.5 achieves Precision and Recall that are similar to Dhariwal & Nichol (2021).
However, in FID, which computes a distance between distributions (covering concepts from both Precision
and Recall), our robust classifier (at s = 1.0) improves upon the vanilla one (which achieves its best FID
result at s − 0.5), meaning that the improvement in precision outweighs the loss in recall.
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