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ABSTRACT

In this paper, we introduce Motion-Grounded Video Reasoning, a new motion
understanding task that requires generating visual answers (video segmentation
masks) according to the input question, and hence needs implicit spatiotemporal
reasoning and grounding. This task extends existing spatiotemporal grounding
work focusing on explicit action/motion grounding, to a more general format by
enabling implicit reasoning via questions. To facilitate the development of the new
task, we collect a large-scale dataset called GROUNDMORE, which comprises
1,673 video clips, 243K object masks that are deliberately designed with 4 question
types (Causal, Sequential, Counterfactual, and Descriptive) for benchmarking
deep and comprehensive motion reasoning abilities. GROUNDMORE uniquely
requires models to generate visual answers, providing a more concrete and visually
interpretable response than plain texts. It evaluates models on both spatiotemporal
grounding and reasoning, fostering to address complex challenges in motion-related
video reasoning, temporal perception, and pixel-level understanding. Furthermore,
we introduce a novel baseline model named Motion-Grounded Video Reasoning
Assistant (MORA). MORA incorporates the multimodal reasoning ability from the
Multimodal LLM, the pixel-level perception capability from the grounding model
(SAM), and the temporal perception ability from a lightweight localization head.
MORA achieves respectable performance on GROUNDMORE outperforming the
best existing visual grounding baseline model by an average of 28.8% relatively.
We hope this novel and challenging task will pave the way for future advancements
in robust and general motion understanding via video reasoning segmentation.

1 INTRODUCTION

Understanding motions (Aggarwal & Cai, 1999; Corona et al., 2020; Zhou et al., 2012; Tevet et al.,
2022) in dynamic video scenes has long been an important topic in the computer vision community. It
plays a crucial role in many vital real-world applications, such as scene/video understanding (Saleemi
et al., 2010; Sturgess et al., 2009; Mottaghi et al., 2016; Tsai et al., 2011; Fan et al., 2018), autonomous
driving (Chen et al., 2015; Singh et al., 2022; Leon & Gavrilescu, 2019; Hu et al., 2023), and human-
computer interaction (Aggarwal & Park, 2004; Wren & Pentland, 1999; Schmidt, 2000). Existing
motion understanding tasks (e.g., action recognition (Soomro et al., 2012; Carreira & Zisserman,
2017), temporal action localization (Caba Heilbron et al., 2015; Jiang et al., 2014), spatiotemporal
action/object detection (Gkioxari & Malik, 2015; Gu et al., 2018; Li et al., 2021; Vu et al., 2018;
Jiang et al., 2020), video object segmentation (Xu et al., 2018; Seo et al., 2020; Khoreva et al., 2019;
Cheng et al., 2023b; Ding et al., 2023)) are designed to either comprehend spatial interactions or
detect motions in temporal span.

However, motion is a complex spatiotemporal concept involving interactions between visual entities
over time. Understanding motion-related attributes abstracted from dynamic scenes is crucial for
comprehensive motion understanding. Table 1 highlights that existing tasks only address this
challenge from specific aspects. As shown in Figure 1(a), action recognition focuses on identifying
actions within a curated video clip, primarily using spatial features. The models are not required
to distinguish fine-grained motion patterns over time but to recognize "the motion" mostly based
on spatial features in a temporal-agnostic (Huang et al., 2018) manner due to potential single-frame
bias (Lei et al., 2022). It leads to overlook fine-grained temporal motion patterns. Conversely,
temporal action localization in Figure 1(b) emphasizes the temporal dimension but lacks detailed

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Causal Question: What did the man in grey dibbles in a step-back move to perform a fake action fooling the man in pink pants? (0~16s)
Sequential Question: Who dribbled the ball before he accelerates passing the man in pink shorts? (0-24s)

Counterfactual Question: Who needs to be passed or else the man in grey cannot easily score? (0~32s)
Descriptive Question: Who consumes more energy in this video? (0~48s)

t
0s 8s 16s 24s 32s 40s 48s

Raw Frames

Spatiotemporal Masks Annotations

curated clips

Label: “layup”

snippet-level feature

0~16s: fake move 32~48s: layup Motion Expression: The man in grey passed 
the man in pink pants and performed layup.

(a) Action Recognition (b) Temporal Action Localization (c) Motion Expression Video Segmentation

(e) Motion-Grounded Video Reasoning and GroundMoRe Dataset

(d) Spatiotemporal Action Detection

Label: “dribbling and scoring”

detection     & classification

Figure 1: The illustration of the comparison between our Motion-Grounded Video Reasoning and
previous video motion understanding tasks. Existing video motion understanding tasks (a)-(d) could
at most address one or two key problems, either lacking fine-grained spatiotemporal perception or
ignoring motion-related reasoning. (e) Our Motion-Grounded Video Reasoning considers both subject
and object in motion as well as temporally adjacent events, performing challenging reasoning given
four types of questions (Causal, Sequential, Counterfactual, and Descriptive) carefully designed in
our GROUNDMORE dataset and output spatiotemporal masks to indicate the answer visually at the
pixel level. For instance, in the question “who needs to be passed or else the man
in grey cannot easily score?”, the motion “pass” and the subject “the man in
grey” as well as an adjacent event “easily score” are provided in this question, the model
needs reason about the object “the man in pink shorts”, while output spatiotemporal
masks (only between 0 to 32s where the motion “pass” happens). Such a paradigm fully grasps
the spatiotemporal contexts of motion and provides an explainable response to evaluate the motion
understanding ability. The colors of the questions are corresponded to the spatiotemporal masks.

spatial analysis at the object level, relying on snippet-level features. Spatiotemporal action detection
aims to localize actions in both dimensions but typically focuses only on humans in predefined actions
(e.g., AVA (Gu et al., 2018), MultiSports (Li et al., 2021)), neglecting other interacting objects. It
impairs the integrity of the spatial perception of motion understanding. Previous compositional action
recognition investigates subject-object interaction and examines whether the model could distinguish
pretended actions, but the benchmark (Goyal et al., 2017) only contains short clips, making the task
fall short in analyzing the temporal context of motions. Thus, a crucial question arises: What will be
a more comprehensive task for motion understanding? Inspired by the recent reasoning segmentation
task in image domain (Lai et al., 2023), and considering the spatiotemporal nature of the motion as
mentioned above, a feasible answer is to design an implicit video reasoning segmentation task where
all necessary spatial and temporal factors of the motion of interest are taken into account, and then
the motion-related object, which could be viewed as the medium of the corresponding motion, will
be masked out as the final response.

First, understanding specific motions requires analyzing their spatial contexts. For instance, in
the interaction scenario “a boy kicked the ball for entertainment”, the entities
“a boy” and “the ball” constitute the spatial context for the motion “kicked”. A com-
prehensive understanding of “kicked” involves grasping the interaction tuple <a boy, kick,
the ball>. While spatiotemporal action localization tasks might address this problem, current
benchmarks (e.g., AVA (Gu et al., 2018)) focus primarily on human-centric cases and overlook the
bidirectional nature of interactions. A more effective approach would involve a question-answering
format that leverages motion-related objects to visualize and reason about the interaction, enhancing
spatial understanding. Second, temporal context, which provides chronological order to distinguish
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Table 1: Comparison of different motion understanding tasks. Spatial Context means whether to
consider object-level interaction, Temporal Context indicates the influence of temporally adjacent
motions/events, Motion Abstraction means understanding of motion-related abstract attributes,
Pixel-level Output means whether output object segmentation mask as the final response and
Implicit Reasoning means the ability to understand textual input without explicit object information.

Tasks Datasets & Benchmarks Spatial
Context

Temporal
Context

Motion
Abstraction

Pixel-level
Output

Implicit
Reasoning

Action Recognition Kinetics400 (Carreira & Zisserman, 2017), UCF101 (Soomro et al., 2012) ✗ ✗ ✗ ✗ ✗
Temporal Action Localization ActivityNet (Caba Heilbron et al., 2015), THUMOS14 (Jiang et al., 2014) ✗ ✓ ✗ ✗ ✗
Spatiotemporal Action Localization AVA (Gu et al., 2018), MultiSports (Li et al., 2021) ✓ ✓ ✗ ✗ ✗
Motion Expression Video Reasoning MeViS (Ding et al., 2023) ✓ ✗ ✗ ✓ ✗

Motion-Grounded Video Reasoning GROUNDMORE (Ours) ✓ ✓ ✓ ✓ ✓

different motions, is also crucial for motion understanding. Temporal information not only delin-
eates temporal boundaries but also enables understanding of cause-and-effect relationships between
actions. For example, in “the woman opened the refrigerator before taking
out the milk”, the two motions are connected, necessitating understanding of both for full
comprehension. Thus, a question-answering paradigm can be designed, where a complete scene
description with spatiotemporal context is converted into a motion-related question. However, merely
answering the question cannot fully convey motion understanding, as language alone, if not visually
grounded, is not the most direct explanation of visual concepts (Glenberg & Kaschak, 2002), and
temporal information cannot be precisely represented by words (Xiao et al., 2024).

To address these issues and facilitate comprehensive motion understanding, we introduce a novel task:
Motion-Grounded Video Reasoning as illustrated in Figure 1(e). This task requires models to take
the motion-related question along with the video as input and output spatiotemporal segmentation
masks of a specific object as a pixel-level visual answer. Such detailed spatiotemporal grounding al-
lows for advanced motion comprehension. To further evaluate versatile spatiotemporal reasoning, we
carefully design four types of questions in our newly collected dataset GROUNDMORE (Grounding
via Motion Reasoning). As shown in Figure 1(e), Causal questions explore the motivations behind
motions, Sequential questions probe the order of temporally adjacent motions, Counterfactual
questions are designed for imagining and reasoning about false reality and Descriptive questions
ask about the general dynamic scene or abstract motion-related attributes such as enregetic, naughty,
excited, etc. GROUNDMORE consists of about 1,673 video clips, 7,301 questions and 243K object
masks involving 3,942 different objects, ensuring a robust evaluation of motion understanding.
Additionally, our task aligns with Video Object Segmentation (VOS) (Xu et al., 2018; Ding et al.,
2023) but introduces additional challenges: 1) the use of implicit question inputs versus explicit
referring expressions, and 2) the requirement for spatiotemporal object masks rather than spatial-only
(no temporal localization requirement in current RVOS datasets), emphasizing the need for accurate
temporal perception. We emphasize the practical benefits of the new task in diverse real-world appli-
cations. For example, localizing potential threats in public transportation often involves ambiguous
information about the suspects. A robust Motion-Grounded Video Reasoning system can address
this by processing queries like “Who is acting suspiciously in this airport?”,
effectively identifying unusual behaviors with implicit reasoning and spatiotemporal grounding.

We conduct an extensive evaluation for various image/video grounding baselines on GROUNDMORE,
though scoring competitive performances in other benchmarks (Kazemzadeh et al., 2014; Xu et al.,
2018; Ding et al., 2023), none of them performs satisfyingly on our new task as shown in Table 3.
Considering the spatiotemporal reasoning and grounding nature of the task, we further propose a new
baseline model called Motion-Grounded Video Reasoning Assistant (MORA). MORA integrates
LLaVA (Liu et al., 2023a), which is capable of complex multimodal reasoning, as the reasoning
module, and a pretrained SAM (Kirillov et al., 2023) decoder as the mask head. To further empower
the model of temporal awareness, we additionally introduce a novel [LOC] token for temporal
information embedding and add a temporal localization head to decode a binary temporal mask; thus
inhibiting false temporal activation during spatiotemporal mask decoding. Our MORA achieves
overall SOTA performance on the proposed GROUNDMORE, but there still remains a large room
for future improvement (e.g., HTR (Miao et al., 2024) could reach 67.1 with J&F metric on
Ref-YouTubeVOS as its SoTA, while only 10.41 on GROUNDMORE), which also underscores the
increased difficulty of GROUNDMORE.

Our contributions are as follows:
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• We introduce a new task, Motion-Grounded Video Reasoning, designed to assess multimodal
models’ reasoning and perception capabilities for motion understanding, filling the gap between
referring VOS/action detection and motion-related video reasoning.

• We collect a large-scale and versatile video dataset, named GROUNDMORE for the proposed
Motion-Grounded Video Reasoning task.

• We comprehensively evaluate existing image/video grounding baseline models on our GROUND-
MORE, revealing their deficient motion understanding abilities. On the other hand, our proposed
MORA method achieves SOTA performance on GROUNDMORE. The results also suggest
substantial room for future improvement.

2 RELATED WORK

Motion Understanding in Videos. Motion understanding is pivotal in video analysis, serving as
the basis for interpreting dynamic scenes and activities. Action recognition (Carreira & Zisserman,
2017; Soomro et al., 2012) identifies specific actions in videos, while temporal action localiza-
tion (Caba Heilbron et al., 2015; Jiang et al., 2014) pinpoints the exact time intervals of these actions,
requiring a thorough grasp of motion patterns over time. Spatiotemporal action detection (Gkioxari
& Malik, 2015; Gu et al., 2018; Li et al., 2021) and video object detection (Vu et al., 2018; Jiang
et al., 2020) predict object bounding boxes in both spatial and temporal domains. Video object seg-
mentation (VOS) (Xu et al., 2018) and video tracking (Cheng et al., 2023b) capture moving objects
in videos relying on objects appearance. To fully understand motion, it is crucial to comprehend its
spatiotemporal contexts, including the involved objects and temporally adjacent information. In this
paper, we introduce Motion-Grounded Video Reasoning, a new task that aims to reason based on the
spatiotemporal context of motion and respond with video object masks.

Spatiotemporal Video Grounding. Spatiotemporal video grounding involves leveraging temporal
cues to localize, identify, and interpret objects based on natural language expressions. Existing
pipelines either focus on enhancing visual/textual semantic understanding (Baradel et al., 2018; He &
Ding, 2024; Khoreva et al., 2019; Miao et al., 2024; Lin et al., 2023; Li et al., 2023) or strengthening
cross-modal interaction (Wu et al., 2023; Gu et al., 2024; Ding et al., 2022; Liu et al., 2021; Wu et al.,
2022a;b; Miao et al., 2023). Action grounding (Regneri et al., 2013; Zeng et al., 2020) localizes
actions indicated by the input descriptions, and referring VOS (Seo et al., 2020; Khoreva et al.,
2019) aims to ground objects at pixel level based on object-related expressions and recent work
MeViS (Ding et al., 2023) introduces more challenging motion expressions, demanding advanced
motion understanding to segment moving objects. These advanced frameworks achieve outstanding
performance in grounding objects of interest in both spatial and temporal dimensions, however, these
works primarily focus on context-level understanding and cannot perform complex reasoning and
motion context perceiving. Recent works (Lai et al., 2023; Huang et al., 2024; Munasinghe et al.,
2023; Zhang et al., 2024a; Rasheed et al., 2024; Zhang et al., 2024b) connects reasoning abilities of
LLMs to the grounding task. PG-Video-LLaVA (Munasinghe et al., 2023) is a video-LLM equipped
with pixel-level grounding modules but struggles with implicit reasoning/referring. LITA (Huang
et al., 2024) leverages LLM for 1-D video temporal span localization with text query. In this paper,
we present a novel baseline model, MORA, that handles both complex spatiotemporal reasoning and
grounding for the proposed Motion-Grounded Video Reasoning task.

Video Reasoning. Video reasoning (Wang et al., 2024a; Wu et al., 2021; Tapaswi et al., 2016; Jang
et al., 2017; Yu et al., 2019; 2024; Wang et al., 2024b) is an advanced domain in multimodal video
understanding, enabling models to answer questions based on video by comprehensively interpreting
both visual and textual semantics. Early works like MovieQA (Tapaswi et al., 2016) use movies as
visual sources and pose questions that require understanding long temporal correspondences and
dialogue logic. TGIF-QA (Jang et al., 2017) introduces more challenging question types involving
repeating actions, and state transitions, necessitating spatiotemporal reasoning. Causal-VidQA (Li
et al., 2022) explores commonsense and evidence reasoning. Recent NExT-GQA (Xiao et al., 2024)
emphasizes the visual evidence for answers, akin to our GROUNDMORE, but we additionally provide
pixel-level annotations and focus specifically on motion. PerceptionTest (Patraucean et al., 2024)
is a benchmark designed to evaluate multimodal video models’ perception and reasoning skills. It
includes grounded video QA but lacks motion grounding at the pixel level. Our Motion-Grounded
Video Reasoning is presented as a Video QA task where the answer is spatiotemporal masks, offering
a more visually concrete assessment of motion understanding.
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Table 2: Comparison of different video datasets. # Obj. indicates the number of total object categories
in the dataset and Clip Len. means average clip length.

Datasets # Videos # Expressions Reasoning # Masks # Obj. Clip Len.

Video Question-Answering
NExT-GQA (Xiao et al., 2024) 5,417 43,043 ✓ - - 43.60s
Causal-VidQA (Li et al., 2022) 26,900 107,600 ✓ - - 9.00s
Perception Test (Patraucean et al., 2024) 11,620 38,000 ✓ - 190K 23s

Action Detection
UCF101-24 (Soomro et al., 2012) 3,207 - ✗ - 4,458 6.90s
AVA (Gu et al., 2018) 430 - ✗ - 56K 15m
FineGym (Shao et al., 2020) 4,883 - ✗ - 32.7K 10m
MultiSports (Li et al., 2021) 3,200 - ✗ - 37.7K 20.9s

Referring Video Segmentation / Video Grounding
Ref-YouTube-VOS (Xu et al., 2018) 3,978 15,009 ✗ 131K 7,451 5.45s
Ref-Davis17 (Khoreva et al., 2019) 90 1,544 ✗ 13.5K 205 2.87s
MeViS (Ding et al., 2023) 2,006 28,570 ✗ 443K 8,171 13.16s
VidSTG (Zhang et al., 2020) 6,924 99,943 ✓ - 50K 28.01s

Motion-Grounded Video Reasoning (Ours)
GROUNDMORE 1,673 7,301 ✓ 243.6K 3,942 9.61s

3 GROUNDMORE FOR MOTION-GROUNDED VIDEO REASONING

3.1 MOTION-GROUNDED VIDEO REASONING

Task Definition. We propose Motion-Grounded Video Reasoning as a comprehensive motion under-
standing task. Basically, the input is a video clip V ∈ Rt×h×w×3 (t, w, h, 3 represent video length,
width, height, and channel numbers, respectively), and a corresponding question Q that is related
to a specific motion, the direct answer is an object in this video clip. To let the model understand
when/where the motion occurs and generate a grounded response at the pixel level, we require binary
object segmentation masks M ∈ Rt

′
×h×w (t′ ≤ t) related to the motion as the output.

Task Challenges. The key challenges of the proposed Motion-Grounded Video Reasoning lie in the
following: 1) motion-related reasoning ability towards questions and 2) pixel-level understanding
ability of the target moving object in both spatial and temporal dimensions. Concretely, for the first
point, the model needs to grasp the relationship between the target motion and its spatiotemporal
context, for instance, in the video where “the girl fed the dog with a piece of
dog food after taking the dog food out from the cabinet”. For the mo-
tion “fed”, to fully understand this concept, its spatial contexts “the girl” and ”a piece
of dog food” should also be well perceived; and the temporal context, which is the tem-
porally adjacent motion “taking the dog food out from the cabinet” should be
understood as well since it serves as the temporal constraint on the answer. Then, based on
the question “Who fed the dog with a piece of dog food after taking the
dog food out from the cabinet?”, only when all the spatiotemporal contexts are well
grasped could the model know the answer. Second, once the model reasons about the answer, it
is also required that a sequence of spatiotemporal masks represent the answer since only language
output cannot avoid biased response (Xiao et al., 2024) (e.g., in a common scenario of ball game
video, when asking about the motion ”play”, existing QA models tend to answer ”balls” even
without visual clues). This is of vital importance in our task, since only in a way of visual response
could we know whether the model is aware of when and with what/whom the motion takes place.

3.2 VIDEO COLLECTION

Considering that pixel-level response is required in our Motion Grounded Video Reasoning, we
carefully selected high-resolution videos (720p) from YouTube as our source videos. To ensure there
are enough motion semantic and reasoning concepts in our dataset, we selected the videos from 4
scenarios: family, animal, ball game, and outdoor activity. Specifically, family videos usually
include sufficient indoor human-human and human-object interaction, covering representative daily
events such as cooking, parties, etc. Animal videos contain wild animal interactions and also a lot
of human-pet interactions. Ball game videos include the most common ball-related sports such as
basketball, soccer, etc. Such videos often consist of a series of intensive motions that bond with strong
temporal correspondence in the players. Finally, outdoor activity videos contain general outdoor
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events such as hiking, and surfing as well as normal events like kids playing in the park. We designed
our dataset in this way to guarantee that it could be a benchmark with diverse video types to evaluate
the comprehensive motion-related reasoning in daily life. The details of video scenes can be found in
Appendix A.1. Further, we selected short clips that contain abundant motion semantics, and most of
them are between 5 and 15 seconds. To ensure sufficient temporal information will be included in
GROUNDMORE, we intentionally exclude samples where the motion understanding could be easily
addressed without temporal information. The comparison between GROUNDMORE and other related
datasets is shown in Table 2. Note that the most similar datasets are MeViS (Ding et al., 2023) and
VidSTG (Zhang et al., 2020). However, MeViS does not support implicit reasoning, where the input
expression contains the identity of the answer; while VidSTG focuses more on general object relation,
and pixel-level annotation is not provided. More discussion on the necessity of GROUNDMORE is
provided in Appendix A.4.

3.3 ANNOTATION PIPELINE

We recruited a team of 15 computer science students with experience in video understanding as our
paid annotators to ensure high-quality annotations, 10 of them were assigned to question annotation
and the rest focused on mask. For ease of the annotation, we design a 2-stage annotation pipeline for
our question annotation: 1) motion-related expression annotation; 2) LLM-assisted QA generation.

Question Annotation Stage 1: Motion-related expression annotation. Formally, interaction-
causal expressions are with the following format: <obj_A, motion, obj_B, to do something>. Such
expression could reveal the motivation behind a specific motion. Interaction-temporal expressions
enable the analysis between temporally adjacent motions, which follows the format: <obj_A, motion,
obj_B, before/after another motion>. In this setting, we want the model to understand motion in a
temporal context and the question generated from this expression could assess the temporal awareness
of the models. Moreover, we also have descriptive expression, which includes general dynamic scene
descriptions and motion-related attributes that are abstracted from specific motions. The second
descriptive expression could be much more challenging since it did not mention any motions here but
requires detailed cross-modal and commonsense reasoning.

Question Annotation Stage 2: LLM-assisted QA generation. We define 4 types of questions in
our GROUNDMORE dataset: Causal questions are generated from interaction-causal expressions,
which challenge models to understand the complex relationship within interactions based on some
motivations behind them. Sequential and Counterfactual questions are both generated from
interaction-temporal expressions. The former investigates the chronological relations between
different motions and the latter requires outstanding reasoning ability to imagine situations where it
conflicts with reality. Descriptive questions are converted from descriptive questions. It assesses the
ability to understand general scenes and use visual commonsense reasoning. Several QA examples
are shown in Figure 2 and the detailed question type statistics can be found in Appendix A.1.

Before question generation, we ask our annotators to additionally annotate an index for each object
related to the potential answer in our expressions in order to point out what to target in each question
for the LLM we use. Basically, we leverage the strong text generation ability of GPT-4 for our
question generation. We carefully design a prompt in an in-context manner (details in Appendix A.2)
that requires GPT-4 to generate a question and the corresponding answer based on the expression and
the target objects. The annotators manually check all of the QAs to ensure the quality.

Mask Annotation. We utilized the interactive tool of XMem++ (Bekuzarov et al., 2023) as our
mask annotation tool. To begin with, we ask our annotators to annotate the motion timestamp for
spatiotemporal mask annotation additionally. Concretely, given the video clips and the corresponding
object ID information, the annotators are asked to annotate the masks for each of the objects within
the motion time range. In Figure 2, we show several representative examples of our GROUNDMORE.
More annotation details and more examples are provided in the Appendix A.2.

Quality Control. After completing the annotation process, the dataset is distributed to different
annotators for quality validation. A question annotation is considered qualified if the annotator can
derive the same answer as originally annotated based on the video clips. In the mask annotation, there
are usually two common issues. The first is the correct mask-answer pair but poor mask quality; the
second is the wrong mask-answer pair. For the first case, the annotator will improve the quality and
the original annotator will check again, this process will end until the instance meets the required
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Who guards the man in the yellow shorts the most to stop him from moving closer to the hoop? (Causal) The man in the orange shorts
Who points at the man in the orange shorts because the man in the orange shorts fouled? (Descriptive) The man in the yellow shorts

Who might not run towards the basket if the basket had not been moved? (Counterfactual) The panda close to the wall in the beginning
Who drops the purple broom after seeing the panda would not leave the basket? (Sequential) The woman

Figure 2: Visualizations of GROUNDMORE, including videos, questions, and visual answers
(masks). Answer colors correspond to the masks. More examples are in Figure13 in Appendix.

(a) Clip Length(s) Distribution (b) Motion Length(s) Distribution (c) Question Number Distribution (d) Question Word Length Distribution

C
ou
nt

Figure 3: Statistics of GROUNDMORE dataset.

standard; for the second case, since it will take less effort to annotate a new instance, we just directly
discard those defective annotations. In the end, all of the mask-answer pairs will meet the criteria.
More details can be found in Appendix A.2.

3.4 DATASET STATISTICS

We compare our GROUNDMORE with existing popular RVOS datasets Ref-YouTube-VOS (Seo
et al., 2020), Ref-Davis17 (Khoreva et al., 2019), and the recent MeViS (Ding et al., 2023). Our
GROUNDMORE contains 1,673 videos 7,301 questions and 243K object masks as well as 3,942
objects. And the average video clip duration is 9.61 seconds. GROUNDMORE is split into 800
training, 150 validation, and 723 test videos, roughly a 50:10:40 split. Following (Lai et al., 2023),
we intentionally reduce the scale of the training split due to the strong zero-shot ability of current
multimodal LLMs, and we ensure there are sufficient test samples for persuasive benchmarking.

As shown in Figure 3a, most of the clips have a duration between 5s and 15s, which is long enough
to include sufficient motion semantics. This range ensures that the clips capture complete actions and
interactions, providing a rich context for question formulation. In Figure 3b, it is evident that most
motions in GROUNDMORE have a duration from 2s to 6s, highlighting the challenge of temporal
localization in our dataset. These short-duration motions require precise temporal understanding
and segmentation, adding to the complexity of the GROUNDMORE. Besides, the average motion
(segment) ratio in each video clip is 51%. As seen in Figure 3c, for most clips, the number of
questions is more than 2, with a significant number having up to 4 or more questions. This indicates
that GROUNDMORE provides a diverse set of questions per clip, ensuring a comprehensive evaluation
of the clip’s content. It also implies that each clip contains multiple distinct motion semantics that
warrants varied questioning. In Figure 3d, the distribution shows that most questions are sufficiently
long, typically ranging from 7 to 15 words. This length reflects the complexity and detail required in
the questions, underscoring the difficulty level of our GROUNDMORE. The substantial word count in
questions ensures that they are descriptive and context-rich, further challenging the systems to provide
accurate and detailed responses. More details including figures of statistics are in the Appendix A.1.

4 EXPERIMENTS

In this section, we first list popular image/video grounding frameworks (Sec. 4.1). Then we introduce
our proposed baseline Motion-Grounded Video Reasoning Assistant (MoRA) (Sec. 4.2). Next, we
provide detailed evaluation results and analysis in terms of reasoning ability, temporal context, and
the localization branch (Sec. 4.3).
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Large Language Model

Visual Encoder (CLIP)

Projection Layer

SAM

Spatiotemporal Pooling
Who played the boxing reflex ball to
make everyone laugh? Please output the
spatiotemporal segmentation masks as the
answer to the question according to both
temporal and spatial motion clues.

…

Sure, the target object is <SEG>, and the temporal boundary is <LOC>.

…

MLP
Binary Temporal Mask

𝑽 ∈ 𝑹𝒕×𝒉×𝒘×𝟑

𝑴𝒕×𝒉×𝒘

Text Token

Figure 4: MoRA adopts the spatiotemporal pooling strategy and inserts the extra special [SEG] token.
Additionally, to enable the temporal localization ability, MoRA takes advantage of the extra [LOC]
token to learn a binary temporal mask, which refines the direct SAM outputs.

4.1 BASELINE MODELS FOR EVALUATION

We choose baselines including 1) Referring VOS Models: ReferFormer (Wu et al., 2022b),
SgMg (Miao et al., 2023), HTR (Miao et al., 2024), and LMPM (Ding et al., 2023), that are
pure visual segmentation models and without LLMs. 2) Image Reasoning Segmentation Models:
LISA (Lai et al., 2023) and PixelLM (Zhongwei et al., 2023) that have strong LLM and are equipped
with extra spatial grounding heads. We adapt them to videos in a frame-by-frame manner. 3) Video
Reasoning Segmentation Models: PG-Video-LLaVA (Munasinghe et al., 2023) that is build upon
video-LLM (Maaz et al., 2023) and strong grounding modules (Kirillov et al., 2023; Liu et al.,
2023b; Cheng et al., 2023a). Since our task could be solved in a non-end-to-end, two-stage manner
(answering first, segmentation next), we also evaluate 4) Two-stage Baselines that are composed
by strong video QA models (ViLA (Lin et al., 2024), VideoChat2 (Li et al., 2024) and SeViLA (Yu
et al., 2023)) and Referring VOS models.

4.2 OUR METHOD: MOTION-GROUNDED VIDEO REASONING ASSISTANT

Our Motion-Grounded Video Reasoning Assistant (MoRA) is built upon LISA (Lai et al., 2023),
which is an image-based reasoning segmentation framework, equipping the strong LLaVA (Liu et al.,
2023a) and SAM (Kirillov et al., 2023). To perform an efficient frame encoding, we take advantage
of the spatiotemporal pooling mechanism in Video-ChatGPT (Maaz et al., 2023). We leverage the
segmentation token [SEG] in LISA for spatial segmentation. However, one of the most challenging
points in our task is that we need not only to segment the objects in the spatial dimension but also
to localize them temporally. Therefore, as shown in Figure 4, to construct a unified LLM-based
framework, we leverage extra [LOC] tokens to encode the temporal boundary information in the
language space. The [LOC] embedding will be decoded by an MLP layer into a temporal mask to
prevent false activations during frame-wise mask decoding.

In training, we directly initialize our MoRA with a pre-trained LISA due to its well-leaned text-
object alignment. Further, in order to adapt the model with vision-language alignment in the video
domain, we first pre-train it with the Ref-YouTubeVOS (Xu et al., 2018) and MeViS (Ding et al.,
2023) dataset (we convert the original text annotation into QA formats to force MORA to follow
the instructions) for 20 epochs without the temporal localization module, which could be used for
zero-shot evaluation. Further, we finetune MoRA, equipped with the localization module, with the
training split of GROUNDMORE for another 20 epochs.
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4.3 EVALUATION AND ANALYSIS

Metrics. Following prior works (Khoreva et al., 2019; Seo et al., 2020; Ding et al., 2023), we use the
popular metrics: Jaccard index (J ) (Jaccard, 1912) and F-measure (F) (Dice, 1945). J estimates
the IoU of the predicted and the GT masks, F indicates contour accuracy. We also report J&F to
reflect overall performance. We evaluate models on GROUNDMORE across question types, revealing
their grounding and reasoning ability from different aspects.

Baseline Comparisons. As shown in Table 3, we first replace the questions with the titles of the
corresponding YouTube videos and run as an RVOS task with noisy text labels using ReferFormer (Wu
et al., 2022b) as the random baseline. Compared with the random baselines, RVOS models achieve
reasonable improvements, especially LMPM (Ding et al., 2023), which is also trained by MeViS (Ding
et al., 2023) data that contains more motion-related data than simple referring VOS datasets (Seo
et al., 2020; Khoreva et al., 2019). Surprisingly, image reasoning segmentation baselines (Lai et al.,
2023; Zhongwei et al., 2023), with strong LLM, are lower than RVOS models. The reason could
be the lack of temporal modeling in those image-level models, which makes it hard to propagate
target object information across frames. For PG-Video-LLaVA (Munasinghe et al., 2023), though
it is a video reasoning segmentation/grounding model, the performance is not even higher than the
best RVOS model. A potential reason could be that it tends to ground all salient objects given the
scene description due to the redundant response of its video LLM (Maaz et al., 2023), resulting in
more false positives. For two-stage baselines, we could also observe superior performance over
PG-Video-LLaVA. Comparing the video LLM in PG-Video-LLaVA and the other three (Yu et al.,
2023; Lin et al., 2024; Li et al., 2024), the most important reason is that Video-ChatGPT tends
to generate overlong answers, which could be ambiguous for grounding models to locate target
objects. Details of the video LLMs in the two-stage baselines can be found in Appendix A.6. For
different question types, we can also observe that in Causal and Descriptive questions, two-stage
baselines built upon ViLA and SeViLA perform better than MORA, we hypothesize that ViLA and
SeViLA maintain their strong reasoning ability in these two types of questions when not trained
with an additional grounding module; while in the temporal-related questions (i.e., Sequential and
Counterfactual), the temporal head in our MORA makes a difference.

Conclusively, our MORA achieves new state-of-the-art, outperforming the best existing video
reasoning grounding model (PG-Video-LLaVA) by an average of 28.8% relatively. The reasons
could be two-fold: (1) the language model in PG-Video-LLaVA provides ambiguous response for its
grounding modules while the [SEG] token in MORA is trained in an end-to-end manner, conveying
more informative features of target objects; (2) PG-Video-LLaVA, as well as other baselines, does not
include any temporal localization design while the [LOC] in MORA, supervised by the timestamps
of the motion, could lead to accurate temporal estimation.

However, the design of our MORA is still basic and there is substantial room for future improvements
in both model training and model design. For instance, the LLaVA could be replaced with better LLMs
which are trained with more motion-sensitive language corpus to enhance visual-language alignment
in dynamic scenes; the spatiotemporal pooling, though efficient, could inevitably cause information
loss; and better time-sensitive modeling could also replace the simple temporal localization head.

Dataset Diagnosis. In order to showcase that our GROUNDMORE indeed introduces challenges
mentioned in Sec. 3.1, we diagnose GROUNDMORE from two aspects, implicit reasoning and
temporal context. We examine implicit reasoning by comparing the evaluation metrics between the
original setting and replacing questions with the ground truth answer, which could be viewed as
referring to spatiotemporal video segmentation. As shown in Table 4, providing GT answers could
largely alleviate the difficulty of the task, resulting in an average of 55.93% relative improvement
in J&F . For temporal context diagnosis, we simply leverage the temporal annotation of the
spatiotemporal masks to segment the original clip and input these motion-heavy clips into the models.
The tasks are easier without temporal context since only spatial grounding is required. As shown
in Table 4, comparing the first row and the third row for each model, we could observe a relative
improvement of 48.96%. This diagnosis indicates that the QA design and the temporal localization
feature contribute a lot to its challenge.

Temporal Localization Branch. For ablation, we further fine-tune our MoRA with or without the
temporal localization branch, as shown in Table 5. This branch brings an 8.7% relative boost, and for
all but Descriptive questions the improvements are obvious, indicating the localization is important
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Table 3: Motion-Grounded Video Reasoning results on our GROUNDMORE. We compare all
methods in a zero-shot setting. We bold the best numbers, and underlined the second-best numbers.

Methods Overall Causal Sequential Counterfactual Descriptive
J&F J F J&F J F J&F J F J&F J F J&F J F

Random Baseline
Title+ReferFormer (Wu et al., 2022b) 9.89 9.78 10.00 9.63 9.40 9.85 9.32 9.20 9.43 9.22 9.11 9.32 10.89 10.89 10.88

RVOS Baseline
ReferFormer (Wu et al., 2022b) 10.71 10.75 10.68 9.88 9.79 9.98 9.41 9.39 9.44 11.02 10.99 11.06 12.14 12.35 11.93
SgMg (Miao et al., 2023) 12.55 12.82 12.28 12.10 12.23 11.97 11.16 11.35 10.97 13.59 13.74 13.44 13.26 13.79 12.73
HTR (Miao et al., 2024) 10.41 10.34 10.48 10.13 9.96 10.30 9.22 9.09 9.34 10.42 10.29 10.54 11.42 11.51 11.32
LMPM (Ding et al., 2023) 12.97 13.04 12.90 11.89 12.31 11.47 11.04 11.17 10.91 13.17 13.18 13.19 12.76 12.56 12.96

Image Reasoning Segmentation Baseline
LISA-7B (Lai et al., 2023) 8.01 8.29 7.83 7.55 7.45 7.65 7.79 8.03 7.55 6.77 6.48 7.06 9.44 10.01 8.88
LISA-13B (Lai et al., 2023) 8.24 8.80 7.67 7.09 7.85 6.33 7.81 8.17 7.46 7.28 7.61 6.94 10.48 11.35 9.61
PixelLM-7B (Zhongwei et al., 2023) 9.38 9.49 9.27 9.11 9.21 9.01 9.01 9.23 8.79 10.44 10.87 10.01 9.95 10.01 9.89
PixelLM-13B (Zhongwei et al., 2023) 11.24 11.00 11.48 10.96 11.07 10.85 12.04 12.18 11.90 10.40 10.85 9.95 11.37 12.56 11.18

Video Reasoning Segmentation Baseline
PG-Video-LLaVA (Munasinghe et al., 2023) 11.96 11.35 12.57 10.48 10.24 10.72 11.75 12.76 10.74 12.18 12.01 12.36 12.45 13.21 11.69
PG-Video-LLaVA+SAM2 (Ravi et al., 2024) 11.88 11.32 12.44 10.94 11.21 10.67 12.05 11.98 12.12 12.30 12.40 12.20 12.33 10.17 14.49

Two-Stage Baseline
ViLA (Lin et al., 2024)+ReferFormer 13.92 12.61 15.23 12.92 11.59 14.24 13.40 12.32 14.48 11.56 10.48 12.64 16.56 14.98 18.14
ViLA (Lin et al., 2024)+SgMg 13.87 12.44 15.29 12.79 11.32 14.26 13.18 11.91 14.44 12.47 11.37 13.56 16.12 14.44 17.80
ViLA (Lin et al., 2024)+HTR 13.34 11.90 14.77 12.60 11.17 14.03 12.53 11.28 13.78 11.35 10.18 12.52 15.68 13.99 17.37
VideoChat2 (Li et al., 2024)+ReferFormer 13.06 11.68 14.44 12.41 11.02 13.79 12.44 11.33 13.54 10.61 9.48 11.73 15.47 13.78 17.16
VideoChat2 (Li et al., 2024)+SgMg 13.23 11.76 14.70 12.50 11.02 13.98 12.60 11.32 13.88 11.92 10.76 13.08 15.07 13.31 16.82
VideoChat2 (Li et al., 2024)+HTR 12.61 11.13 14.09 12.37 10.89 13.84 11.94 10.67 13.21 10.87 9.64 12.10 14.26 12.49 16.02
SeViLA (Yu et al., 2023)+ReferFormer 13.77 14.50 13.03 13.56 14.13 12.98 12.20 12.70 11.70 11.49 11.95 11.03 16.23 17.41 15.04
SeViLA (Yu et al., 2023)+SgMg 15.30 16.04 14.56 15.81 16.46 15.17 13.77 14.21 13.33 13.20 13.73 12.67 16.94 18.08 15.81
SeViLA (Yu et al., 2023)+HTR 13.91 14.60 13.23 13.81 14.36 13.25 12.43 12.89 11.97 12.08 12.55 11.61 15.98 17.04 14.92

MORA (Ours) 15.53 15.46 15.60 14.26 14.08 14.45 14.70 14.56 14.84 17.51 17.08 17.94 16.15 16.45 15.84

Table 4: Dataset diagnostics w.r.t. implicit reasoning and temporal context.

Methods Implict
Reasoning

Temporal
Context

Overall Causal Sequential Counterfactual Descriptive
J&F J F J&F J F J&F J F J&F J F J&F J F

ReferFormer
✓ ✓ 10.71 10.75 10.68 9.88 9.79 9.98 9.41 9.39 9.44 11.02 10.99 11.06 12.14 12.35 11.93
✗ ✓ 16.37 14.97 17.78 14.63 13.22 16.03 12.89 11.99 13.79 13.17 12.39 13.96 22.02 19.94 24.10
✓ ✗ 17.03 18.01 16.04 16.30 17.07 15.53 15.43 16.16 14.69 15.57 16.29 14.86 19.53 21.03 18.04

SgMg
✓ ✓ 12.55 12.82 12.28 12.10 12.23 11.97 11.16 11.35 10.97 13.59 13.74 13.44 13.26 13.79 12.73
✗ ✓ 19.15 17.83 20.47 18.68 17.23 20.12 15.61 14.68 16.53 16.07 15.30 16.84 23.52 21.77 25.28
✓ ✗ 16.84 17.79 15.89 16.79 17.59 15.99 15.05 15.76 14.34 14.98 15.66 14.31 19.05 20.43 17.66

HTR
✓ ✓ 10.41 10.34 10.48 10.13 9.96 10.30 9.22 9.09 9.34 10.42 10.29 10.54 11.42 11.51 11.32
✗ ✓ 16.90 15.31 18.49 16.18 14.57 17.78 13.12 11.88 14.35 13.63 12.61 14.65 21.79 19.67 23.91
✓ ✗ 16.00 16.87 15.13 15.67 16.41 14.92 14.50 15.15 13.86 14.61 15.22 13.99 18.03 19.31 16.75

in the other three questions, which is consistent with the conclusion in reasoning ability analysis in
Table 4. Besides, we can observe that, without the temporal localization branch, fine-tuning can still
bring an obvious improvement, especially for Causal and Descriptive questions, indicating that for
the rest two types, weak temporal awareness could impair the performance gain from additional data.

Table 5: Ablation studies of the localization branch in MORA. zs: zero-shot, ft: fine-tuned.

Methods Overall Causal Sequential Counterfactual Descriptive
J&F J F J&F J F J&F J F J&F J F J&F J F

MORA-zs 15.53 15.46 15.60 14.26 14.08 14.45 14.70 14.56 14.84 17.51 17.08 17.94 16.15 16.45 15.84

MoRA-ft w/o loc. 18.14 18.52 17.86 18.71 18.03 19.38 17.23 17.59 16.87 17.08 17.29 16.86 20.88 20.94 20.82
MoRA-ft 19.72 19.52 19.92 20.21 20.02 20.40 19.03 19.88 18.18 18.66 18.45 18.87 21.69 22.03 21.35

5 CONCLUSION

In this paper, we propose a new video task called Motion-Grounded Video Reasoning for comprehen-
sive motion understanding. We consider motion as a combination of its spatiotemporal contexts and
design QA to force models to understand implicit textual input and thus reason about the motion-
related objects. Further, we point out that due to the spatiotemporal nature of motion, solely output
text answers could be vague, which cannot directly illustrate when and where a specific motion
takes place. Considering this, we design to output spatiotemporal masks of motion-related objects,
which is a direct and explainable way to address the issue. To meet the evaluation requirement, we
also collect a large-scale dataset called GROUNDMORE, which includes 4 types of questions that
could evaluate different aspects of motion reasoning abilities. Finally, our simple baseline, MORA,
achieved reasonable performance on the new dataset, but the low score compared to other video
datasets reveals that there is still much to explore for motion reasoning and understanding. The
limitation of our work can be found in Appendix A.7.
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Ethics Statement. Our GROUNDMORE is constructed from publicly available videos on YouTube,
where all sourced videos are licensed under the Creative Commons License. The dataset consists of
segments or clips from the original videos, rather than full-length videos, and has been annotated by
our annotator group. The dataset is intended exclusively for non-commercial research and educational
purposes. In accordance with ethical guidelines, researchers using this dataset are expected to
prioritize privacy, fairness, and the ethical use of data when analyzing or disseminating findings based
on GROUNDMORE. Any potential misuse of the dataset, including re-identification or other actions
that may harm individuals depicted in the videos, is strictly prohibited. By using GROUNDMORE,
researchers agree to adhere to these privacy and ethical standards. Please see Appendix A.8 for more
details about copyright and privacy statements.

Reproducibility Statement. The dataset (we have attached part of the dataset in the Supplementary
Materials, the full version will be released after acceptance), code, and model will be open-sourced.
Moreover, the training detail of our baseline model MORA is described in Sec 4.2.
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A APPENDIX

The following appendix is structured to provide supplementary information about our GROUNDMORE
dataset, its annotations, and representative examples. We aim to present a comprehensive view of the
statistical analysis, annotation process, and key insights that further elaborate on the main text. The
appendix is divided into the following sections:

• Section A.1 offers detailed statistical insights into the types of questions and scenes captured
in our dataset, as well as an analysis of the distribution of objects, verbs, and word clouds in
the question annotations.

• Section A.2 provides detailed information about the annotation process, including the types
of motion-related expressions, the generation of questions through large language models,
and the quality validation procedures.

• Section A.3 showcases a set of representative examples from GROUNDMORE, illustrating
the richness of the dataset through diverse scenes, objects, and questions.

• Section A.4 discusses the necessity of including implicit reasoning, highlighting the impor-
tance of capturing nuanced motion-grounded video reasoning.

• Section A.5 showcases the impact of object numbers on the dataset’s performance.
• Section A.6 demonstrates the qualitative performance of current video LLMs in the two-stage

baseline settings.
• Section A.7 outlines the limitations of the current version of GROUNDMORE and discusses

future work.
• Section A.8 outlines the ethical considerations, privacy concerns, and licensing terms

associated with GROUNDMORE.

A.1 GROUNDMORE STATISTICS

A.1.1 Question and Scene Type. We provide detailed statistics of GROUNDMORE in this section,
including the distribution of question types, scene types, objects, and verbs that appear in our
question annotation, etc. As shown in Figure 5a, the Descriptive questions constitute the highest
proportion at 29.7%, followed closely by Causal questions at 28.5%. Sequential questions make
up 21.7% of the total, while Counterfactual questions are the least common, accounting for 20.2%.
Our GROUNDMORE shows a balanced distribution w.r.t. question type. Regarding scene type
distribution (Figure 5b), family scenes dominate with a significant 35.1% share, slightly higher than
the ball game scenes, which account for 32.7%. Animal scenes are also well-represented at 25.4%,
whereas outdoor activity scenes are relatively rare, comprising only 6.8% of the total scenes in our
GROUNDMORE.

A.1.2 Object Word Distribution. Figure 6 illustrates the top 30 most frequent objects in our
GROUNDMORE questions. We categorize these objects into six parent categories: sports equipment,
people, animals, furniture, household items, and food, reflecting common items in daily life. As
can be seen from the figure, ball is the most frequently occurring object, followed by man, dog,
basketball, and girl. This prevalence is aligned with the high proportion of sports and family videos in
our GROUNDMORE, as indicated in Figure 5b. The dominance of sports equipment such as ball and
basketball correlates with the 32.7% share of ball game scenes. Similarly, the frequent appearance of
man, girl, and woman objects is consistent with the substantial 35.1% of family scenes, where people
are commonly depicted. Additionally, animals like dog and cat are prominent due to their significant
25.4% representation in animal scenes. The distribution of these objects highlights the diverse and
realistic contexts covered in our GROUNDMORE, ensuring a comprehensive evaluation of various
question types and scene contexts.

A.1.3 Verb Distribution. Another key component of our GROUNDMORE is the verb in the motion-
related questions. In Figure 7, we present the top 20 most frequent verbs across different scene types,
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Figure 5: Question and Scene Type Distribution of GROUNDMORE.
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Figure 6: Object distribution of GROUNDMORE.

represented by distinct colors. The verb use has the highest overall proportion, reflecting its ubiquity
in daily activities, with a notable presence in family scenes, as well as significant occurrences in
animal and ball game scenes. The verb dribble ranks second and is exclusively found in ball game
videos, highlighting its specificity to that context. The verb move is also prominent, appearing across
all four scene types, indicating its general applicability in various contexts. Verbs such as hold, open,
and put are more frequently observed in family videos, underscoring their relevance to everyday
domestic activities. In contrast, accelerate and shoot are predominantly associated with ball game
scenes, which is consistent with the dynamic nature of these activities. Besides, the distribution of
verbs shows a more balanced pattern compared to the object distribution, reflecting a diverse range of
actions across different contexts. For instance, while throw and pass are mainly seen in ball game
scenes, verbs like push and grab are well-represented in both family and ball game contexts. This
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balanced distribution underscores the comprehensive nature of our GROUNDMORE, capturing a wide
array of activities and interactions within various scene types.

use
dri

bb
le

mov
e

ho
ld

op
en

acc
ele

rat
e pu

t
thr

ow pa
ss be

sho
ot

pu
sh

gu
ard gra

b
jum

p
cat

ch run hit kic
k

pla
y

0

50

100

150

200

250

Co
un

t

Ball Game
Animal
Family
Outdoor Activity

Figure 7: Verb distribution of the motion concepts in GROUNDMORE.

A.1.4 Word Cloud Visualization. Moreover, we leverage the word cloud of the top 100 words that
appear in our GROUNDMORE questions. The word cloud in Figure 8 provides a visual representation
of the most frequently occurring words. We can observe that common objects like "dog", "cat",
and "ball" are prominently featured, which aligns with the object distribution shown in Figure 6.
These objects are integral to many of the scenes and questions, reflecting their high frequency in the
dataset. In addition to objects, prepositions closely related to motion, such as "down", "out", and
"with", are also prevalent. This is consistent with the verb distribution illustrated in Figure 7, where
actions often involve directional or positional changes, necessitating the use of these prepositions.
Furthermore, adverbs such as "before" and "after" appear frequently, indicating their importance in
describing temporal relationships within the scenes. These temporal adverbs are essential in forming
questions related to sequences and causality, which are common in descriptive and sequential question
types. Overall, the word cloud highlights the interconnected nature of objects, verbs, and descriptive
language within our GROUNDMORE, demonstrating the comprehensive coverage of various elements
that contribute to the complexity and richness of the dataset.

A.1.5 Sankey Diagram for Interaction. We provide the Sankey diagram of our proposed GROUND-
MORE in Figure 9, which illustrates the interactions within our GROUNDMORE. In this diagram,
the elements on the left side represent different initial categories of objects or entities involved in
interactions (e.g., People_A, Animals_A, Sport Equipments_A), while the elements on the right side
represent the resulting categories of objects or entities after interactions (e.g., People_B, Animals_B,
Sport Equipments_B). From the diagram, we can see that human-involved interactions (People_A)
have the highest proportions, flowing prominently into both sports and family categories on the right.
This is consistent with the scene type distribution (Figure 5b), where sports and family scenes were
among the most prevalent. Similarly, the frequent appearance of sports equipment, animals, and
household items in both left and right categories aligns with the object distribution shown in Figure 6.
The Sankey diagram validates that our GROUNDMORE is well-suited for motion and interaction
understanding. It demonstrates the comprehensive coverage of various interactions, emphasizing
the importance of human involvement and the diverse range of objects and entities engaged in these
interactions. This rich interplay of elements ensures that GROUNDMORE could serve as a robust
benchmark for evaluating motion understanding in complex video scenarios.

A.2 ANNOTATION DETAILS

As mentioned in Section 3.3, the question annotation is constituted of two stages: 1) motion-related
expression annotation; and 2) LLM-assisted QA generation. And we resort to XMem++ (Bekuzarov
et al., 2023) as our semi-automated mask annotation tool. The interface is shown in Figure 10.

A.2.1 Expression Annotations. Expression annotation is to annotate the ongoing motions or events
in a given video. We define three different expression types: interaction-causal, interaction-temporal,
and descriptive expression. The motions that can be described within these three types of expressions
could generally cover most of the daily scenarios. The interaction-causal expression has the format
<obj_A, motion, obj_B, to do something> which depicts a scene where the motion takes place based
on some hidden motivations. For instance, as shown in the first row in Figure 11, the causal-driven
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Figure 8: Word cloud of the top 100 words in the question annotation in our GROUNDMORE dataset.

Figure 9: Sankey diagram on the interaction of our GROUNDMORE.

expression of this case elucidates the motivation behind the motion of passed the knife to the man in
the grey shirt is to let him cut the watermelon. Interaction-temporal expressions, following the format
<obj_A, motion, obj_B, before/after another motion>, describe the chronological relations between
temporally adjacent actions, which enables motion understanding based on temporal conditions.
As shown in the second row in Figure 11, the man in black performs two consecutive actions,
get rid of the defense from the man in white and shot the basketball. In most similar cases, the
temporally adjacent motion not only has temporal relations but also has cause-and-effect; therefore,
such expressions could help analyze the existence of one motion based on another. The third one is
the descriptive expression, which contains either general scene description or motion-based abstract
attributes (e.g., energetic, naughty, faster, etc.). As shown in the last row in Figure 11, consumed more
energy could be viewed as an abstract attribute represented by the fact that the man is doing massage
for the dog. Given this expression type, the models are required to perform both spatiotemporal
reasoning and commonsense reasoning to understand the scene content.

A.2.2 Question Annotations. As shown in Figure 12, we specifically design the prompt to leverage
the text generation ability of GPT-4o. For each expression, we first specify the target objects that
would be annotated during the mask annotation. For instance, in the first row of Figure 11, considering
the bidirectional nature of an interaction, we will ask GPT-4o to generate questions for both the man
in the yellow shirt and the knife by providing their object ID: {"1": "the man in the yellow shirt", "2":
"the knife"}.
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Figure 10: Annotation Interface of XMem++.

Causal questions are generated from expressions of interaction-causal expressions. Due to the
bidirectional nature of the interactions, we will generate questions targeting both subject and object.
For instance, for the expressions in the first row of Figure 11, we will generate questions as follows:
Who passed the knife to the man in the grey shirt to let him cut the watermelon? and What did the
man in the yellow shirt pass to the man in the grey shirt to let him cut the watermelon? We generate
questions for both the subject and the object of motion to ensure complete spatial context reasoning.
Sequential questions are generated from interaction-temporal expressions. Similarly, since it is also
interaction-related, we will generate two questions for each expression as shown in the middle row of
Figure 11. Counterfactual questions are also generated from interaction-temporal expressions. But
it focuses on those scenarios where temporal-adjacent motions have cause-and-effect. For example,
in the middle row of Figure 11, the fact that the man in black got rid of the defense from the
man in white is a prerequisite that he could perform a jump shot. Therefore, the questions can be
as follows: Who needs to be got rid of defense from by the man in black or he cannot shoot the
basketball? and What cannot be shot if the man in black did not get rid of the defense from the man
in white? Descriptive questions are simply converted from descriptive questions as shown in the
third row of Figure 11. It will follow the same rule aforementioned if an interaction is involved.

A.2.3 Quality Validation. After the generation of questions by GPT-4o, the resulting questions and
their corresponding answers will be distributed to different annotators in the same question annotation
group for quality control. Importantly, these annotators will not have been involved in the original
expression annotation to ensure objectivity. The annotators will be instructed to perform the following
steps:

1. Check relevance: Verify whether the generated question logically aligns with the current
video context and scene.

2. Answer validation: Answer the question independently and compare the response with the
original annotation. The goal is to ensure consistency between the generated answer and the
initial annotation.

3. Single-object validation: Confirm that the answer references a single object when ap-
propriate. If the answer references multiple objects and is not explicitly required, the
question-answer pair should be revised.

If any issues are identified with the question or the answer, the annotator is required to update the
question-answer pair. For example, if the generated question is “Who is playing baseball?” and the
answer is “The boy and the dog”, the annotator should revise the pair to better reflect clarity and
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Interaction-causal expression: The man in the yellow shirt passed the knife to the man in the grey shirt to let him cut the watermelon.
Causal Question: 
1. Who passed the knife to the man in the grey shirt to let him cut the watermelon? 
2. What did the man in the yellow shirt pass to the man in the grey shirt to let him cut the watermelon?

Descriptive expression: The man consumed more energy than the dog in this video.
Descriptive Question: Who consumed more energy in this video?

Interaction-temporal expression: The man in black got rid of the defense from the man in white before he shot the basketball.
Sequential Question: 
1. Who got rid of the defense from the man in white before he shot the basketball? 
2. Who did the man in black get rid of the defense from before he shot the basketball?
Counterfactual Question :
1. Who needs to be got rid of defense from by the man in black or he cannot shoot the basketball?
2. What cannot be shot if the man in black did not get rid of the defense from the man in white?

Figure 11: Question generation examples for different types of motion-related expressions.

Prompt for Converting Expressions to Question-Answering Pairs with Object IDs

Introduction:
Define an "interaction" as <obj_A> + <verb/phrase> + <obj_B>, where these entities are involved in an event or motion. Each entity is also associated with an object ID for precise tracking and referencing.

Expression Types:
1. Interaction-Causal Expression: Follows the format <obj_A> + <verb/phrase> + <obj_B> + <to do something>, indicating the motive behind the interaction.
- Example: "The man in black eats the burger to replenish energy."
- Object ID: {{'1': 'the man in black', '2': 'the burger'}}

2. Interaction-Temporal Expression: Links two events sequentially or causally using the format <obj_A> + <verb/phrase> + <obj_B> + <before/after another event>.
- Example: "The cat knocks down the chessboard pieces after the white chess piece is moved."
- Object ID: {{'1': 'the cat', '2': 'the chessboard pieces'}}

3. Descriptive Expression: Describes dynamic scenes or attributes related to motion.
- Example: "The man in red is dancing on the stage."
- Object ID: {{'1': 'the man in red'}}

Question Types and Data Augmentation:
1. Causal QA: Each question about interaction-causal expressions should include all objects involved. Questions and answers should reflect each object mentioned in the expression.
- Questions and Answers:
{{'Question': 'Who eats the burger to replenish energy?', 'Answer': 'The man in black', 'Object ID': '1', 'QA Type': 'Causal'}}
{{'Question': 'What does the man in black eat to replenish energy?', 'Answer': 'The burger', 'Object ID': '2', 'QA Type': 'Causal'}}

2. Sequential QA: For interaction-temporal expressions, emphasizing the sequence of events. Each question should include both objects if applicable.
- Questions and Answers:
{{'Question': 'Who knocks down the chessboard pieces after the chess piece is moved?', 'Answer': 'The cat', 'Object ID': '1', 'QA Type': 'Sequential'}}
{{'Question': 'What does the cat knock down after the chess piece is moved?', 'Answer': 'The chessboard pieces', 'Object ID': '2', 'QA Type': 'Sequential'}}

3. Counterfactual QA: Applies to interaction-temporal expressions with a causal link, exploring hypothetical scenarios. Include questions regarding each object involved.
- Questions and Answers:
{{'Question': 'What might not knock down the chessboard pieces if the white chess piece had not been moved?', 'Answer': 'The cat', 'Object ID': '1', 'QA Type': 'Counterfactual'}}
{{'Question': 'What might not be knocked down by the cat if the white chess piece had not been moved?', 'Answer': 'The chessboard pieces', 'Object ID': '2', 'QA Type': 'Counterfactual'}}

4. Descriptive QA: Simple questions about descriptive expressions with direct object-focused answers.
- Questions and Answers:
{{'Question': 'Who is dancing on the stage?', 'Answer': 'The man in red', 'Object ID': '1', 'QA Type': 'Descriptive'}}

Figure 12: QA generation prompt.

context, such as: “Who is playing baseball with the dog? The boy.” and “Who is playing baseball
with the boy? The dog.”

Similarly, the masks will undergo a quality check by different annotators within the mask annotation
group. The first task for the reviewer is to assess whether the mask corresponds to the object(s)
indicated in the answer. If a mismatch is found between the mask and the answer, a third annotator
will be consulted to provide an additional opinion. The final decision on whether to accept or reject
the mask will be based on the majority decision. Mismatched masks will be discarded entirely since
re-annotating from scratch is typically more efficient than attempting to fix them.
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If the masks match the answer, the annotator will proceed to evaluate the overall quality, focusing on
any potential missing regions, incorrect regions, or other inaccuracies. In the end, all mask-answer
pairs must meet predefined quality standards to ensure their validity for downstream tasks.

A.2.4 Annotator Compensation. We compensated the question annotators $0.50 per expression
and paid $1.00 per clip for mask annotations. Additionally, during the quality validation process, we
provided an extra compensation of $0.20 per instance (a question-clip pair).

A.3 GROUNDMORE EXAMPLES

We provide additional visualizations of our proposed GROUNDMORE in Figure 13. As shown,
our GROUNDMORE requires advanced motion reasoning abilities in diverse scenarios. As illus-
trated in the fourth row of the figure, the question “What might not be held by the
man if it had not been unwrapped from the paper?" requires the model to rea-
son the wrapping relationship between “the man", “the paper" and ”the piston" as
well as the causal connections in the challenging counterfactual setting. Additionally, we can
observe from the case in the seventh row that our GROUNDMORE includes spatiotemporal
grounding context as well as motion-related attributes understanding. The answer to the ques-
tion “Who might not have fallen into the blue cushion on the wall if
he had not tripped while trying to defend?" can only be determined at the end
of the video clip. For the question “Who is the more offensive player?", the model
must infer motion-based implicit attributes from the video sequence, demonstrating a strong need for
world-level commonsense reasoning ability. These details further demonstrate the complex motion
reasoning context of our GROUNDMORE.

Besides, the raw videos are processed into individual frames and stored in a folder named with the
format "youtube_id_start-time_end-time". The annotation is in a JSON format, structured as follows:

1 {
2 "questions": {
3 "1": {
4 "action_end": "0:15",
5 "action_start": "0:00",
6 "answer": "The man",
7 "obj_id": "1",
8 "q_type": "Causal",
9 "question": "Who uses the cut jug to scoop water out of the canoe?"

10 },
11 "2": {
12 "action_end": "0:15",
13 "action_start": "0:00",
14 "answer": "The cut jug",
15 "obj_id": "2",
16 "q_type": "Causal",
17 "question": "What does the man use to scoop water out of the canoe

?"
18 }
19 }
20 }

Each entry in the JSON file consists of a series of questions associated with the video. Each question
contains the following fields:

• action_start and action_end specify the time segment in the video corresponding
to the action.

• answer provides the correct response to the question.

• obj_id uniquely identifies the object involved in the question.

• q_type indicates the question type, such as "Causal".

• question is the text of the question related to the action in the video.
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What might not be gotten out by the man if the drawer had not been opened?  (Counterfactual) The cooking supplies
What does the man open before getting the cooking supplies out? (Sequential) The drawer

Scene Type: Outdoor Activity

Where does the man put the mulch using the shovel?  (Causal) The loader bucket
What does the man use to put the mulch in the loader bucket? (Causal) The shovel

Scene Type: Family

Who is interested in the fake bird? (Descriptive) The bird at the right side
Which bird is not interested in the fake bird? (Descriptive) The bird in the background

Scene Type: Animal

What might not be held by the man if it had not been unwrapped from the paper? (Counterfactual) The broken piston
From what does the man unwrap the broken piston? (Descriptive) The paper

Scene Type: Family

Who opens the door to exit the panda enclosure? (Causal) The woman
Who gets smacked by the panda closer to the wall? (Descriptive) The other panda that is approaching

Scene Type: Animal

What does the cat use to open the door? (Descriptive) The door handle
What does the cat open after jumping on top of the table? (Sequential) The door

Scene Type: Animal

Who is the more offensive player? (Descriptive) The man in the black
Who might not have fallen into the blue cushion on the wall if he had not tripped while trying to defend? (Counterfactual) The man in the white

Scene Type: Ball Game

Who is walking back and forth on the ground? (Descriptive) The dog
Who grabbed out the gift from the sock? (Descriptive) The baby

Scene Type: Family

With whom might the boy in the green shirt not celebrate if he had not scored? (Counterfactual) The woman in the grey shirt
Whose defense does the boy in the green shirt get by to score a point? (Causal) The boy in the blue shirt

Scene Type: Ball Game

Figure 13: Additional Visualizations of our GROUNDMORE. We provide visualizations of videos
alongside their corresponding segmentation masks, questions, answers (color corresponds to the
segmentation masks), and scene types.

A.4 DATASET NECESSITY

In previous MeViS (Ding et al., 2023), the more challenging motion expressions increase the difficulty
of the dataset compared with previous benchmarks, since the target objects have to be distinguished
from others by sophisticated motion understanding. In our GROUNDMORE, we not only consider the
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Table 6: Comparison of explicit and implicit expression on MeViS valid-u.

Expressions Type J&F J F
original (explicit) 40.23 36.51 43.90
implicit 32.33 28.81 35.86

abundant temporal reasoning clues in the motion expressions, we also take the implicit reasoning into
account and we view it as a core challenge in Motion-Grounded Video Reasoning. Moreover, we
hypothesize that containing motion expressions though, the object information in the input language
in MeViS might still result in an identity leakage and make the model ignore the motion description
but rely on the target information itself. To validate this, we made a modification on the original
expressions in MeViS valid-u data so that the object name will be replaced by "something", making
the original explicit expressions into implicit ones. After this, we ran the evaluation process as usual
and only found that the performance had an obvious drop, about 20% as shown in Table 6. In our
GROUNDMORE, due to the fact that we intentionally omit the target identity by using the questions
as our implicit expressions, we force the models to focus on the motion clues and perform reasoning
before the segmentation process. In this way, the motion information is guaranteed to be leveraged.
This interesting discovery in Table 6 not only demonstrates the weak implicit expression processing
ability in existing models but also validates the necessity of our task and dataset, i.e., our implicit
questions are not similar to the motion expressions.

A.5 IMPACT OF OBJECT NUMBERS

The number of objects will affect the results a lot, which is also consistent with the intuition that
more objects in the videos will bring more difficulties in localizing target objects. Due to the time
limit, we cannot obtain the overall analysis now, but we do obtain a subset results. Specifically, we
randomly sample two subsets (containing 120 instances each) from GROUNDMORE, the first subset
contains videos that include less than 3 objects, and the second one with more than 6 objects (we
ignore visual-insignificant objects here). The results (MoRA zero-shot) are shown in Table 7.

Table 7: The impact of object numbers in GROUNDMORE.

J&F J F
#OBJ ≤ 3 15.56 16.93 14.18
#OBJ ≥ 6 9.26 10.42 8.09

A.6 VIDEO LLMS IN TWO-STAGE BASELINES

Compared to the results in the main paper, we can still observe that SeViLA outperforms other
video QA models in the two-stage setting. A key reason is that SeViLA generates concise and
precise answers, avoiding the inclusion of redundant information that could negatively impact the
performance of RefVOS models.

For example, given the question "What does the man in white dribble?", the answers from the video
QA models are as follows:

• SeViLA: "a basketball."

• VideoChat2: "The man in white is dribbling a basketball in the video."

• VILA: "The man in white dribbles the ball around the court while the man in black tries to
block him."

Similarly, for the question "Who snatches the ball after the man in grey accelerates towards him?",
the answers are:

• SeViLA: "the man in red."
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• VideoChat2: "The man in red snatches the ball after the man in grey accelerates towards
him."

• VILA: "The man in grey snatches the ball after the man in red accelerates towards him."

A.7 LIMITATION AND FUTURE WORK

Although our dataset has included a wide range of video scenarios, there are still many scenarios
and motion types to be considered, e.g., motion in first-person-view videos. Besides, in the current
version, we only consider single-object as target (even though multiple objects appear in the scene),
which is less complicated than simultaneously grounding multiple targets.

Besides, we will also consider more modalities, such as audio (which could provide more nuance
information beyond visual clues) and keypoint (which could introduce direct motion features), to
construct more comprehensive training data as well as the evaluation benchmark.

A.8 ETHICS STATEMENT

Copyright and Fair Use Disclaimer. The collection and use of GROUNDMORE are conducted
in accordance with the principles of Fair Use 1 as outlined in U.S. copyright law, particularly for
purposes such as research, scholarship, and commentary. The dataset is provided under a strict
non-commercial use policy. Any use of GROUNDMORE must adhere to these restrictions, and users
are prohibited from using the dataset in any way that may infringe on the rights of the original content
creators. By accessing the dataset, users agree to comply with these terms and with the principles of
Fair Use.

Privacy Considerations. Since GROUNDMORE includes segments from videos that may contain
identifiable human faces and actions, we acknowledge the importance of addressing privacy concerns.
The dataset is restricted to non-commercial use only, with the primary aim of advancing research and
education. We have taken additional steps to ensure ethical standards are maintained by submitting the
dataset for review by the Institutional Review Board (IRB) at our university, and the IRB submission
is currently under review.

License. GROUNDMORE is distributed under the Creative Commons Attribution-NonCommercial
4.0 International License (CC BY-NC 4.0)2. This license allows others to remix, adapt, and build
upon the dataset for non-commercial purposes, provided that appropriate credit is given. Commercial
use of the dataset is strictly prohibited.

Data Usage Responsibility. We encourage all users of GROUNDMORE to adhere to ethical research
standards, including fairness, transparency, and respect for individual privacy. Researchers are ex-
pected to consider the ethical implications of their work and to ensure that any models or technologies
developed using GROUNDMORE do not inadvertently reinforce biases or infringe on individual
rights.

1For more information on Fair Use, see https://www.copyright.gov/fair-use
2For more details on the license, see https://creativecommons.org/licenses/by-nc/4.0/
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