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ABSTRACT

Humans acquire semantic object representations from egocentric visual streams
with minimal supervision. Importantly, the visual system processes with high
resolution only the center of its field of view and learns similar representations
for visual inputs occurring close in time. This emphasizes slowly changing infor-
mation around gaze locations. This study investigates the role of central vision
and slowness learning in the formation of semantic object representations in hu-
mans. We simulate five months of human-like visual experience using the Ego4D
dataset and generate gaze coordinates with a state-of-the-art gaze prediction model.
Using these predictions, we extract crops that mimic central vision and train a
time-contrastive Self-Supervised Learning model on them. Our results show that
combining temporal slowness and central vision improves the encoding of dif-
ferent semantic facets of object representations. Specifically, focusing on central
vision strengthens the extraction of foreground object features, while considering
temporal slowness, especially during fixational eye movements, allows the model
to encode broader semantic information about objects. These findings provide
new insights into the mechanisms by which humans may develop semantic object
representations from natural visual experience. Our code will be made public upon
acceptance.

1 INTRODUCTION

Humans develop strong semantic object representations from an unsupervised egocentric visual
stream. These semantic representations reflect different non-perceptual facets of an object, such as
its instance, fine-grained category, basic category or its context of occurrence. Models trained with
self-supervised learning models (SSL) are reasonably good models of biological vision (Zhuang
et al., 2021), but they are poor models of visual learning, as they rely on different training data and
learning mechanisms than humans. As a consequence, they fail to model semantic human object
similarity judgments (Mahner et al., 2025) and under-perform at recognizing objects when trained on
a visual experience similar to humans’ (Orhan, 2023; Orhan & Lake, 2024).

To learn semantic representations from their natural visual experience, humans may rely on two
biological processes that are neglected in current models. First, the stimuli received by humans’
visual cortex structurally differ from egocentric videos. The anatomy of the retina relatively amplifies
the information located in the center of the field of view (Anstis, 1974; Wässle et al., 1989), meaning
that high and intermediate acuity processing occurs only within several degrees from the center
of the visual field, i.e. in central vision. As a consequence, central vision plays a crucial role in
the formation of visual representations in areas of the visual cortex related to semantic information
(Quaia & Krauzlis, 2024; Yu et al., 2015). To compensate for the relatively low acuity in peripheral
vision, humans actively move their gaze onto different objects to parse their environment. Since
human gazes are naturally attracted by salient objects, the visual sequence in central vision may
most of the time present a few big objects. Second, a key principle of biological learning states
that biological systems assign similar representations to close-in-time visual inputs. This may be
important when learning from a natural experience in central vision. For instance, observing objects
through different viewpoints may favor viewpoint-invariant object representations (Aubret et al.,
2022a). In addition, consecutive scanning of objects within the same context may support object
representations that encode their context of occurrences (Aubret et al., 2024a), a feature of human
semantic object perception (Turini & Võ, 2022). For instance, the presence of a knife often reflects a
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“kitchen” context. However, humans produce frequent gaze movements that may disrupt the learning
of these different semantic facets of objects, leaving unclear whether extracting slow information in
central vision actually helps semantic object learning.

Egocentric Video

Time

Time-augmented
SSL

Gaze
Estimation

Gaze-centered crop

1.

2.

3.

Gaze-centered crop

Align AlignSeparateAlign Align

Extract central vision

Estimate gaze location

Figure 1: Illustration of our data generation and model training approach. (1) We extract frames from
the egocentric dataset Ego4D (Grauman et al., 2022). (2) For each frame, we predict the human gaze
location (red dot) using a state-of-the-art model (Lai et al., 2022). (3) We train a time-augmented SSL
model to align representations of gaze-centered crops (red rectangle) extracted from close-in-time
frames.

In this paper, we investigate the combined role of central vision and slowness learning for learning
semantic object representations in humans. We simulate 5 months of human-like visual experience
using Ego4D (Grauman et al., 2022), a dataset that contains 3,670 hours of videos collected with
head-mounted cameras. This dataset contains gaze locations on only a subset of videos (45 hours).
Thus, we apply a state-of-the-art model of human gaze prediction to generate gaze locations on
the rest of the dataset (Lai et al., 2022). To simulate the importance of central vision in humans,
we propose to crop a subpart of the image centered on the location of the gaze. Finally, we train a
biologically inspired variant of an SSL model, which trains visual representations to slowly change,
on the resulting visual sequence for one single epoch. Figure 1 summarizes our approach.

Our experiments demonstrate that learning slowly changing representations in central vision leads to
more semantic object representations, compared to a standard training on the whole field of view.
Our analysis shows that this stems from a complementary effect between central vision, fixational eye
movements and learning temporal slowness: while central vision favors the extraction of foreground
object information versus background information, learning with temporal slowness during eye
fixations distills semantic information in object representations Together, our work sheds light on
how humans build semantic object representations from a natural visual experience. Furthermore,
our approach may inspire more semantically grounded and efficient learning strategies in embodied
AI applications.

2 RELATED WORKS

Egocentric SSL. The increased availability of datasets collected with head-mounted cameras
(Grauman et al., 2022; Sullivan et al., 2021; Long et al., 2024; Greene et al., 2024; Ma et al.,
2024) recently induced a surge for training egocentric SSL (Orhan et al., 2024). To the best of our
knowledge, all these approaches train egocentric SSL models using the entire high-resolution field
of view captured by head-mounted cameras (Orhan et al., 2024; He et al., 2022; Zhou et al., 2022;
Emin Orhan, 2024). Previous work also found that endowing SSL models with representations that
slowly change over time can slightly boost object learning (Orhan et al., 2020). A related line of work
leverages egocentric data to train vision models useful for solving robotic tasks. VC-1 (Majumdar
et al., 2023) is trained on egocentric and third-person videos. R3M (Nair et al.) and VIP (Ma et al.)
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both notably learn slowly changing representations on Ego4D. We show in Section 4 that training
on gaze-based central vision elicits better object representations. Other works try to extract the
correspondences between objects’ views in videos to learn visual representations (Jabri et al., 2020;
Venkataramanan et al., 2024; Salehi et al., 2023; Parthasarathy et al., 2023; Gordon et al., 2020).
Here, we are rather interested in understanding how the biological importance of central vision may
impact egocentric SSL.

Time-based SSL. Many works previously proposed to learn similar representations for close-in-
time visual inputs (Wiskott & Sejnowski, 2002; Földiák, 1991). More recently, this learning principle
has been integrated into mainstream SSL methods (Aubret et al., 2022a). However, these works do
not leverage in-the-wild egocentric data, such as synthetic (Aubret et al., 2022a; Schaumlöffel et al.,
2023) or curated (Aubret et al., 2024b; Sanyal et al., 2023; Aubret et al., 2024a) visual sequences of
interactions with objects. Other works use third-person ones (Sermanet et al., 2018), videos recorded
by a car (Jayaraman & Grauman, 2015; 2016), movie video clips (Jayaraman & Grauman, 2016),
chicks egocentric perspective (Pandey et al., 2024) or object-tracking datasets (Xu & Wang, 2021).

Central and peripheral vision in deep learning. Many studies modeled the changing resolution
of the retina. Previous works already showed that it can make supervised representations more
adversarially robust (Vuyyuru et al., 2020), improve the computational efficiency of the training
process (Lukanov et al., 2021) and induce a stronger center bias (Deza & Konkle, 2020). Other
works combined a bio-inspired central vision with attention mechanisms for temporally extended
image recognition (e.g. Almeida et al. (2018)). In the context of SSL, Wang et al. (2021) argues that
foveation can mimic the impact of the Crop/Resize data-augmentation, widespread in SSL. In line
with our work, recent studies combined retina modeling with time-based SSL. Aubret et al. (2022b)
showed that a progressive blur towards visual periphery can make visual representations slightly
more transferable across backgrounds, and Yu et al. (2024) showed that gaze patterns in central vision
may support a view-invariant object learning. However, these two works trained SSL models with a
tiny number of objects (10 and 24, respectively). In contrast, using scaled human data allows us to
study the role of bio-inspired learning with respect to semantic recognition abilities.

Learning context-wise object representations Only few works studied the emergence of similar
visual representations for objects that co-occur in the same context. One work (Bonner & Epstein,
2021) proposed to learn similar representations for objects that co-occur in images of natural scenes.
They did not study temporal co-occurrences of objects. Their impact on semantic representations was
studied by Aubret et al. (2024a) with a curated dataset showing egocentric rotations around images
and hand-made statistics of object transitions. Thus, it remains unclear how and whether the natural
experience of humans supports the construction of context-wise object representations.

3 METHOD

We aim to study the combined impact of high-resolution central vision and the slowness principle
on visual learning in humans. We use the largest-to-date dataset of egocentric videos (Ego4D) and
estimate human gaze locations with a state-of-the-art model of human gaze prediction (Section 3.1).
To simulate the biological importance of central vision, we simply crop the visual area around a gaze
location. To model biological learning, the created sequence of visual inputs feeds an SSL model that
learns slowly changing representations, which is described in Section 3.2. Figure 1 illustrates the
main steps of the pipeline. Finally, we evaluate the ability of our model to capture different semantic
facets of objects, using the approaches detailed in Section 3.3 and Section 3.4.

3.1 DATASET

To simulate the visual experience of humans, we use the Ego4D dataset (Grauman et al., 2022). This
dataset contains 3,600 hours of videos collected through head-mounted cameras, which corresponds
to approximately 5 months of visual experience. 931 participants coming from 74 worldwide
locations wore a camera for one to ten hours. Thus, Ego4D arguably represents much more than 5
months of experience for a single average human in terms of diversity, although it is hard to make
precise estimates. We use videos with a resolution of 540→ 540 pixels and extract their frames at
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approximately 5 fps, following previous findings that a higher fps does not boost the learning process
(Sheybani et al., 2024).

During frame extraction, we create small clips of 5 seconds (25 frames) that we sequentially load into
memory. We gather 24 frames of these 25 frames and split them into three sequences of 8 frames.
For Ego4D videos recorded with an eye-tracker (45 hours), we do not further process the frames and
associate them with ground-truth gaze location. For all other videos, we feed each sequence into
GLC, a state-of-the-art model of human gaze prediction trained on the Ego4D subset that contains
gaze locations (Lai et al., 2022). This model uses spatio-temporal information to generate a saliency
map for each of the 8 frames. Compared to single-image saliency models (Riche & Mancas, 2016),
this allows the model to generate a temporally consistent gaze location and to leverage more cues
(e.g. motion). For each frame, we take as gaze location the position of the most salient pixel (xg, yg).
Our final preprocessed dataset contains 64,380,024 images.

To simulate the importance of central vision in humans, we crop a N →N squared area centered on
the gaze location for each frame. The crop boundaries may go beyond the image boundaries; in this
case, we minimally shift the crop such that its boundaries remain in the image.

3.2 BIO-INSPIRED LEARNING

Since most of the human visual experience is unsupervised, we train SSL models on the simulated
experience in central vision. These models learn high-level visual representations without any explicit
supervision, like human-provided labels. In this work, we focus specifically on the third version
of Momentum Contrast (MoCoV3) (Chen et al., 2021), which is one of the best SSL models in
the literature. The original MoCoV3 works by learning invariant representations to color- and
spatial-based transformations of an image (e.g. horizontal flip, color jittering . . . ). To implement the
biological principle of temporal slowness, we further adapt the model to also learn slowly changing
visual representations, following (Aubret et al., 2022a; Pandey et al., 2024).

For a given input image xt in a batch, we randomly sample an indirect temporal neighbor xt→ within
a temporal window !T , from the same video recording. The two images capture the same scene
from different moments in time, providing a temporally varied view. We compute the embeddings of
images qt = fq(xt) and kt→ = fk(x→

t) using a query feature extractor fq and a momentum feature
extractor fk, both implemented as neural networks. Finally, for a pair (qt, kt→), the query encoder is
updated by minimizing the InfoNCE loss (van den Oord et al., 2019):

Lqt = ↑ log
exp

(
sim(qt, kt→)/ω

)
∑K

i=0 exp
(
sim(qt, ki)/ω

) (1)

where sim denotes cosine similarity, ω is a temperature hyperparameter, and K represents the outputs
of fk from the same training batch. Intuitively, the objective increases the similarity between
representations of temporally close views (xt and xt→) while enhancing the dissimilarity between
all views (xt and xi). The momentum encoder parameters εk are updated via exponential moving
average of the query encoder εq: εk ↓ mεk + (1↑m)εq , with momentum coefficient m.

3.3 EVALUATION OF IMAGE RECOGNITION ABILITIES

We follow standard SSL transfer protocols, evaluating frozen representations via linear probing across
diverse downstream tasks grouped by semantic focus (see below). For each dataset, we train a linear
classifier on top of the frozen features of the pre-trained encoder for 100 epochs. We apply the
standard crop/resize and horizontal flip augmentations during training and report the accuracy on a
center crop of validation images.

Object categorization: To assess the categorization ability of the models, we consider the ImageNet-
1k (Russakovsky et al., 2015), ImageNet100 (Tian et al., 2020) and CIFAR100 (Krizhevsky et al.,
2009) datasets, including reduced subsets of ImageNet-1k (1%, 10%) (Chen et al., 2020). We also
analyze object categorization tasks that contain a tiny number of classes in Appendix D.3.

Fine-grained object categorization: Most classes in the two previous groups are for basic-level
category recognition (e.g. car, trucks, bananas . . . ). Here, we rather assess categorization at the
supraordinate level (e.g. for cars, differentiating a 2012 VW Polo from a 2012 BMW M3). This
requires a model to extract more details about an object. We consider a wide range of supraordinate
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categories: Flowers101 (Nilsback & Zisserman, 2008), Stanford Cars (Krause et al., 2013), Oxford
Pet (Parkhi et al., 2012), FGVC-Aircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014).

Instance-level object recognition: We evaluate object instance recognition when exposed in front
of different backgrounds with different orientations. We use ToyBox (Wang et al., 2017), COIL100
(Nene et al., 1996), Core50 (Lomonaco & Maltoni, 2017). Core50 mostly allows us to assess the
robustness of the representation to changing backgrounds, while ToyBox and COIL100 present
objects in different positions and orientations. We explain in Appendix B how we split the train and
test splits. We do not apply a center crop on COIL100.

Scene recognition: For scene recognition, we focus on Places365-standard (Zhou et al., 2017a).
This dataset contains 1.8 million images from 365 scene categories and is commonly used to probe
scene-level representations.

3.4 EVALUATION OF THE CONTEXT-WISE ORGANIZATION OF OBJECT REPRESENTATIONS

In order to evaluate whether the knowledge about 3D object co-occurrences can naturally emerge
from our model, we compare the representations of our models with representations specifically built
to encode objects’ co-occurrence structure.

Object Co-occurrence Representations: To model the latent semantic structure of natural scenes,
we extract object co-occurrence statistics from three large-scale image datasets: COCO (Lin et al.,
2014), ADE20K (Zhou et al., 2017b), and Visual Genome (VG) (Krishna et al., 2017). These datasets
vary in label density and semantic granularity. COCO contains coarse object categories with dense
instance annotations; ADE has finer-grained, segmentation-level labels; and VG offers a rich, albeit
noisy, semantic graph structure. For each dataset, we construct a co-occurrence matrix X ↔ RN↑N ,
where Xij counts how often object i appears with object j in the same image. We train GloVe
(Global Vectors for Word Representation) (Pennington et al., 2014) on these matrices to derive
low-dimensional representations that encode this co-occurrence structure. We refer to Appendix A
for more details.

Model-to-Semantics Alignment: To assess whether neural network representations encode a similar
semantic structure as the co-occurrence embeddings, we perform a representation similarity analysis
using Centered Kernel Alignment (CKA) (Kornblith et al., 2019).

We map object classes from the co-occurrence matrices to their corresponding WordNet synsets
(Miller, 1995). Then, we retrieve representative images from the THINGS dataset (Hebart et al.,
2023), which contains isolated object instances with a naturalistic appearance. For each object, we
extract activations from all layers of a given model and average across object images, resulting in
a single feature vector per object and layer. We then compute the linear CKA score between each
layer’s object representation matrix and the GloVe embedding matrix. Alternatively, we concatenate
the representations across layers to compute a global CKA score, which serves as a summary measure
of semantic alignment for the entire model.

We repeat all evaluations across 100 GloVe seeds. We perform a paired t-test across the seeds to
compare the CKA scores of each model under identical co-occurrence conditions and access statistical
significance between models. Throughout the experiment section, we report mean scores, standard
deviations, and significance levels.

3.5 IMPLEMENTATION DETAILS

We use the solo-learn implementation of the model (da Costa et al., 2022), with ResNet-50 (He et al.,
2016) and ViT-B/16 (Dosovitskiy et al., 2020) backbones. For the MoCoV3 loss, a two-layer MLP
(hidden dimension 4096) projects features into a 256-dimensional embedding space. Models are
trained for one epoch on Ego4D; training longer yielded only minor gains (↗ +0.5%) at substantial
computational cost, due to the large but redundant dataset sampled at 5 fps. Full hyperparameters are
given in Appendix C.

4 EXPERIMENTS

We aim to assess the impact of learning visual representations with bio-inspired central vision and
temporal slowness. Thus, we compare our model “Bio-inspired Learning” to a baseline from previous
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work, “Frames Learning”, which uses the full field of view and omits slowness learning during
training (Orhan & Lake, 2024).

4.1 BIO-INSPIRED LEARNING FROM NATURAL EXPERIENCE BOOSTS OBJECT RECOGNITION.

Table 1: Linear probe accuracy on various datasets across two architectures, grouped by semantic
category. For each semantic group, we report the average recognition accuracy. For bio-inspired
vision, we use !T = 3 for ResNet50 and !T = 1 for ViT.

ResNet50 ViT-B/16

Dataset Frames Learning Bio-inspired Learning Frames Learning Bio-inspired Learning

Category recognition
ImgNet-1k 49.50 49.58 49.47 49.86
ImgNet-1k 10% 35.53 35.34 37.65 38.10
ImgNet-1k 1% 19.23 20.25 19.51 20.10
ImgNet-100 70.44 70.34 70.04 70.12
CIFAR100 53.53 59.21 61.73 62.67
Average 45.65 46.94 47.68 48.17

Fine-grained recognition
DTD 47.24 57.06 59.89 62.23
FGVCAircraft 12.83 15.77 28.87 28.60
Flowers102 43.72 49.01 76.35 77.05
OxfordIIITPet 46.68 47.03 54.41 56.26
StanfordCars 18.70 23.25 33.30 33.26
Average 33.84 38.42 50.56 51.58

Instance recognition
ToyBox 89.75 92.61 92.94 95.03
COIL100 64.53 80.12 79.24 86.94
Core50 22.82 28.26 24.02 23.77
Average 59.03 67.00 65.40 68.58

Scene recognition
Places365 43.02 42.95 44.49 39.84

Here, we investigate whether the bio-inspired mechanisms of slowness learning and central vision
support the construction of object recognition abilities. We compare our models with training SSL
models without temporal slowness and from raw frames. In Table 1, we observe that bio-inspired
learning promotes category recognition, fine-grained recognition and instance object recognition.
The improvement is particularly important for fine-grained and instance object recognition. For scene
recognition, training on full frames consistently leads to better results. We further investigate this in
the following paragraph. We conclude that bio-inspired learning from a natural visual experience
promotes better object representations. In Appendix D.1, we support our claim with additional model
architectures.

Central vision makes representations more object-centered In this section, we analyze how
focusing on central vision affects the learned visual representations. First, we study the impact
of the size of the gaze-based crops N on visual learning. In Figure 2, we observe a sweet spot
in the intermediate crop size [224, 336] for all object-centered datasets. This sweet spot is located
at N = 336 for category and instance recognition, while N = 224 seems to be better for fine-
grained recognition. N = 112 lower-bounds all semantic recognition accuracies, indicating that it
probably dismisses too much information about the image. Interestingly, scene recognition accuracy
consistently decreases as we make the crops smaller. We conclude that using the whole field of view
elicits more scene-based representations, versus object-centered representations for central vision.

Large fields of view tend to display scenes with complex backgrounds and relatively small objects. It
may be that extracting background features shortcuts object learning to satisfy the spatio-temporal
invariance objective of the SSL model. To investigate that, we take the ImageNet-9 dataset, a dataset
of natural images designed to investigate the background sensitivity of models (Xiao et al., 2021). We
compute the category recognition accuracy of our model with a linear probe trained on ImageNet-1k
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Figure 2: Impact of the gaze-based crop size on different semantic image recognition groups for
ResNet50 and ViT-B/16. We compute the average improvement for each semantic group of datasets
with respect to N = 112. We use a temporal window of !T = 3s. Full results are provided in the
Appendix Table 6.

in all settings (normal image, without background and with different ways to remove the object).
We first find that training on central vision also benefits category recognition on normal images for
this dataset (80% versus 75% on ResNet50). Then, we compute the recognition accuracy when
removing the background (Missing background) and when removing the object (Missing object).
When removing the object, we average the recognition accuracies of the different ways of removing
the foreground object (cf. Xiao et al. (2021)). To obtain a measure of background and object
sensitivity irrespective of the raw performance of the model, we subtract the missing object and
missing background accuracies by the recognition accuracy on normal images.

Figure 3: ImageNet-9 recognition sensitivity to missing background or missing foreground object.
We show the relative improvement with respect to the worst model for the two settings. The higher,
the more relatively robust is the representation to missing backgrounds or missing objects. We use a
temporal window !T = 3s.

In Figure 3, we clearly observe that training on an intermediate size of central vision (N ↔ {224, 336})
allows to rely more on the foreground object (missing background), and less on the background (miss-
ing object). We assume this is because training on central vision removes much of the background
information while often keeping the foreground object intact. For N = 112, there is an opposite
trend, presumably because this is too small to display objects fully. Overall, we conclude that central
vision leads to better object-centered representations because it learns to extract less background
information.

Slowness learning supports object learning Previous work on standard videos suggests that
learning representations that slowly vary for up to t = 1 seconds can be beneficial for visual learning
(Xu & Wang, 2021). However, focusing on gaze-based central vision during egocentric learning
provides semantically different temporal dynamics compared to using the whole field of view of,
e.g., a movie clip. In Figure 4, we present the impact of the level of temporal slowness on visual
representations trained with central vision. We observe that temporal slowness is critical for learning
representations with respect to all the semantic aspects investigated (!T = 0 versus !T = 3 for

7
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Resnet50 and !T = 1 for ViT). We note an exception for category recognition with ViT-B/16, for
which the reason is currently unclear to us. We provide detailed results in Appendix E, which further
show that the best temporal window !T is overall consistent for datasets within a semantic group.

Figure 4: Impact of the temporal window of slowness learning on different semantic image recognition
groups. We compute the average improvement for each semantic group of datasets with respect to
!T = 0 second. We use a crop of size N = 224. Full results are provided in the Appendix Table 7.

4.2 HUMAN FIXATIONAL EYE MOVEMENTS SUPPORT OBJECT LEARNING

Human gaze behaviors are characterized by relatively long fixations interleaved by short and distant
saccadic eye movements, a pattern captured by the gaze estimation model (cf. Appendix D.4). To
systematically investigate the importance of human slow/fast fixational eye movements for object
learning, we group fixational eye movements as a sequence of movements with speeds inferior to
P/200 pxms↓1, where P denotes the maximum eye movement in 200ms. Then, during training,
we ensure that two temporal neighbors, even if spaced in time, belong to the same fixation. We also
consider another extreme setting (P = 0) that completely discards eye movements, for which we
always crop the center of the frame. Note that the resulting visual sequences always vary over time
due to head movements of the camera wearer.

In Figure 5, we observe that bio-inspired training with estimated human gaze (P = ↘) outperforms
its gaze-agnostic (P = 0) counterparts in most cases. Notably, for instance recognition, gaze-crops
yield substantial improvements of +4.17% for ResNet and +1.14% for ViT. This suggests that gaze-
directed views provide beneficial cues for distinguishing specific objects over time. This shows that
using simulated gaze locations of humans (weakly) boosts semantic object learning. When training
is restricted to fixational eye movements (P ↔ {45, 30}, we observe that the model learns better
object representations, relative to category, fine-grained and instance recognition. This indicates that
saccadic eye movements are harmful for learning about objects. In practice, humans are aware of
whether their movement is fixational or saccadic (O’regan & Noë, 2001): our finding also suggests
that this knowledge can be leveraged to improve semantic object learning.

Figure 5: Impact of varying the maximal eye movement during a fixation. We report the average
improvement for each semantic dataset group relative to the P = 0 baseline. All models are trained
under the same settings as the bio-inspired models described in section 4.1.
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4.3 SLOWNESS LEARNING BETTER ASSOCIATES OBJECTS THAT OCCUR IN THE SAME
CONTEXT

In this section, we explore how slowness learning and central vision jointly shape the semantic
similarity between categories of objects. In Table 2, bio-inspired learning yields object representations
whose inter-object similarities more closely align with object co-occurrence statistics, capturing
contextual relationships more effectively than “Frames learning”. This effect is moderate with
ResNet50 (+0.010 CKA score), but important with ViT (+0.028 CKA score). We further observe
that models trained with slowness learning produce significantly higher CKA similarity with co-
occurrence embeddings than static models. This suggests that temporal slowness is essential for
semantic learning.

In practice, the context-based organization of objects may be captured by learning both spatial and
temporal co-occurrences. The former may be particularly pronounced when the image contains
several objects, such as in the full frame. The latter may result from slowness learning when
consecutively observing different objects (Aubret et al., 2024a). Thus, we investigate their relative
role in shaping context-based object representations. In Table 2, we observe an increase in CKA
similarity as we remove the focus on central vision (w/o Central vision), presumably because co-
occurring objects are often spatially distributed and may not appear within the parafovea-sized crop.
However, we observe a minor gap between “Bio-inspired Learning” suggesting that the integration of
central vision over time compensates for limited spatial view. We support the generalization of our
findings across datasets in Appendix D.2. In general, we conclude that slowness learning suffice to
build context-based object representations.

Table 2: CKA similarity between learned representations and GloVe-based object co-occurrence
embeddings, computed on the COCO dataset. Higher values indicate stronger semantic alignment.

Frames Learning Bio-inspired Learning w/o Slowness w/o Central Vision

ResNet50 0.315± 0.004 0.325± 0.004 0.320± 0.004 0.335± 0.003
ViT-B/16 0.453± 0.004 0.481± 0.004 0.406± 0.004 0.487± 0.003

5 CONCLUSION

We investigated whether the relative importance of central vision (vs. peripheral) and the biological
learning principle of slowness jointly support semantic object learning in humans. We simulated
humans’ gaze locations on the largest-to-date dataset of egocentric videos and extracted the visual
areas surrounding the gaze locations. Then, we trained a variant of a mainstream SSL model that
learns slowly changing visual representations. Our extensive experiments demonstrate that extracting
slowly changing information in central vision allows visual representations to better encode different
semantic facets of human perception. This includes the between-object similarity based on their
context of co-occurrences, their basic category, fine-grained (or supraordinate) category and their
instance identity. Our analysis shows that central vision elicits the extraction of more object-related
features than background features. In addition, we found that fixational eye movements specifically
support such bio-inspired learning.

Humans remain far more efficient in learning semantic visual representations. For example, the
accuracy of the Top-5 linear probe with ImageNet-1k 1% barely goes beyond 40%, compared to
about 90% for humans (Russakovsky et al., 2015; Orhan, 2023). We foresee several perspectives.
First, although visual semantic learning continues far beyond the maturation of the retina and eye
movements, the visuo-motor experience of infants in early development differs from the experience
of adults modeled in the present work (Ayzenberg & Behrmann, 2024). Future work will have
to investigate whether this early experience synergizes with slowness learning and central vision.
Second, the gaze estimation model extracts only bottom-up saliency maps of adult views; modeling
the learning of eye movements may offer a way to curate the experience for visual learning. Third,
improving the model may require more realistic retinal processing in egocentric SSL models (Wang
et al., 2021), with a more gradual attenuation of visual information towards the periphery. Yet, our
work shows that prioritizing slow information in central vision is key for learning strong semantic
representations, marking a step toward understanding their human development.
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