Under review as a conference paper at ICLR 2026

NONDETERMINISTIC POLYNOMIAL-TIME PROBLEM
CHALLENGE: AN EVER-SCALING REASONING BENCH-
MARK FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning is the fundamental capability of large language models (LLMs). Due
to the rapid progress of LLMs, there are two main issues of current benchmarks:
i) these benchmarks can be crushed in a short time (less than 1 year), and ii)
these benchmarks may be easily hacked. To handle these issues, we propose the
ever-scalingness for building the benchmarks which are scaling over complexity,
instance, oversight and coverage. This paper presents Nondeterministic Polynomial-
time Problem Challenge (NPPC) , an ever-scaling reasoning benchmark for LLMs.
Specifically, the NPPC has three main modules: i) npgym, which provides a unified
interface of 25 well-known NP-complete problems and can generate any number
of instances with any levels of complexities, ii) npsolver, which provides a unified
interface to evaluate the problem instances with both online and offline models
via APIs and local deployments, respectively, and iii) npeval, which provides
the comprehensive and ready-to-use tools to analyze the performances of LLMs
over different problems, the number of tokens, the aha moments, the reasoning
errors and the solution errors. Extensive experiments over widely-used LLMs
demonstrate: i) NPPC can successfully decrease the performances of advanced
LLMs to below 10%, demonstrating that NPPC is not crushed by current models,
ii) DeepSeek-R1, Claude-3.7-Sonnet, and 01/03-mini are the most powerful LLMs,
where DeepSeek-R1 can outperform Claude-3.7-Sonnet and o1/03-mini in most
NP-complete problems considered, and iii) the numbers of tokens, aha moments
in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed
first to increase and then decrease when the problem instances become more and
more difficult. Through continuously scaling analysis, NPPC can provide critical
insights into LLMSs’ reasoning capabilities, exposing fundamental limitations and
suggesting future directions for further improvements.

1 INTRODUCTION

The remarkable successes of Large Language Models '
(LLMs) (Achiam et al., 2023) have catalyzed the fun-
damental shift of artificial intelligence. Recent break-
throughs on reasoning (Guo et al., 2025) enable LLMs
to complete complex tasks, e.g., math proof, code gener-

Iy %
S S

Performance
IS
>

ation and computer use, which require the capabilities of =~ | == o

understanding, generation and long-term planning. Vari- o e

ous benchmarks, e.g., GPQA (Rein et al., 2024), AIME, 203 3057 7035
SWE-bench (Jimenez et al., 2024) and ARC-AGI (Chollet, Figure 1: Crush of benchmarks

2019), are proposed to evaluate these advanced reasoning

capabilities, where most benchmarks are curated and verified by human researchers with a finite
number of questions. Current benchmarks face two fundamental challenges that limit their effective-
ness for LLM evaluation. First, current benchmarks can be crushed in a short time: GSM8K (Cobbe
et al., 2021) performance increased from approximately 35% to 95% within three years, while
SWE-bench (Jimenez et al., 2024) scores improved from 7.0% to 64.6% in merely eight months,
as illustrated in Figure 1. This rapid saturation suggests that these benchmarks quickly lose their
discriminative power as models advance. Second, current benchmarks can be easily hacked or

Under review as a conference paper at ICLR 2026

exploited. Static benchmarks are susceptible to data contamination and memorization issues, leading
to overfitting rather than genuine capability assessment (Wu et al., 2025; Xu et al., 2024). While
live benchmarks such as LiveCodeBench (Jain et al., 2025) address contamination by continuously
introducing new problems, they require substantial ongoing human curation efforts. Similarly, human
evaluation platforms like ChatbotArena (Chiang et al., 2024) incur significant costs (approximately
$3,000 per evaluation) and remain vulnerable to strategic manipulation where MixEval (Ni et al.,
2024) can achieve comparable correlation with human judgment at under $1 per evaluation. These
limitations represent significant obstacles for reliable evaluation of the rapidly evolved LLMs.

To address these issues, we propose the ever-scalingness

with four desiderata for a benchmark (as shown in Fig- Complexity Instances
ure 2): i) scaling over complexity — the benchmark can

generate the problems with continually increasing com- @
plexities to avoid the crushing of the benchmarks, ii) scal- E.Vﬂ'

ing over instance — the benchmark can generate an infinite Scalingness

number of instances to avoid the exploitation, iii) scaling
over oversight — the benchmark can verify the correct-
ness of the solutions efficiently for the problems with any
complexity, and iv) scaling over coverage — the problems
covered by the benchmark should be highly relevant to the
real-world problems, rather than puzzles or rare problems.
These four desiderata for ever-scaling benchmarks ensure continuous differentiation among LLMs
over extended periods, identifying fundamental limitations for further improvement.

Coverage

Figure 2: Desiderate of ever-scalingness

To construct the ever-scaling benchmark, we focus on nondeterministic polynomial-time (NP)
problems whose solutions can be verified in polynomial time (Cormen et al., 2022). Specifically,
we target on NP-complete (NPC) problems, i.e., the most computationally challenging problems in
the NP class, for three key reasons. First, NPC problem instances can be systematically generated
across arbitrary difficulty levels through controlled parameters, e.g., numbers of variables, enabling
precise scaling of both complexity and instance. Second, NPC problems are intrinsically “difficult
to solve, easy to verify”’—no polynomial-time algorithms have been discovered for solving NPC
problems, making them computationally intractable even with specialized tools, while their solutions
remain efficiently verifiable. Third, NPC problems demonstrate broad applicability, including diverse
real-world scenarios, e.g., routing (Toth & Vigo, 2002), and various puzzles, e.g., Sudoku (Seely et al.,
2025). The theoretical foundation for using NPC problems as a comprehensive evaluation framework
stems from the fundamental property that any NP problem can be reduced to an NPC problem in
polynomial time, establishing NPC problems as a theoretically grounded, universal framework for
computational problem-solving assessment. Therefore, NPC problems are the foundation problems
of all computational problems and LLMs are the foundation models for wide range tasks, thus leading
to our ever-scaling nondeterministic polynomial-time problem challenge (NPPC) (Figure 4(a)).

Specifically, NPPC has three main modules: i) npgym, which provides a unified interface of 25
well-known NPC problems and can generate any number of instances with any levels of complexities,
which implies the ever-scalingness of NPPC, ii) npsolver, which provides a unified interface to
evaluate the problem instances with both online and offline models via APIs and local deployments,
respectively, to facilitate users to evaluate their own models and iii) npeval, which provides compre-
hensive and ready-to-use tools to analyze the performances of LLMs over different problems, the
number of tokens, the “aha moments”, the reasoning errors and the solution errors, which can provide
in-depth analysis of the LLMs and the insights to further improve the LLMs’ reasoning capabilities.
Extensive experiments over widely-used LLMs, i.e., GPT-40-mini, GPT-40, Claude-3.7-Sonnet,
DeepSeek-V3, DeepSeek-R1, and OpenAl ol-mini, demonstrate: i) NPPC can successfully decrease
the performances of advanced LLLMs to below 10%, demonstrating that NPPC is not crushed by
current LLMs, ii) DeepSeek-R1, Claude-3.7-Sonnet, and 01/03-mini are the most powerful LLMs,
where DeepSeek-R1 can outperform Claude-3.7-Sonnet and ol-mini in most NP-complete problems
considered, and iii) the numbers of tokens, aha moments in the advanced LLMs, e.g.. Claude-
3.7-Sonnet and DeepSeek-R1, are observed to first increase and then decrease when the problem
instances become more and more difficult. We also analyze the typical reasoning errors in the LLMs,
which provide the insights of the fundamental limitations of current LLMs and suggest the potential
directions for further improvement. To the best of our knowledge, NPPC is the first ever-scaling
benchmark for reliable and rigorous evaluation of the reasoning limits of LLMs.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Traditional benchmarks are typically curated by Table 1: Comparison of different reasoning bench-
human with static datasets. Abstraction and Rea- marks according to the ever-scalingness.
soning Corpus (ARC-AGI)-1 (Chollet, 2019) is

. . &

designed to be “easy for humans, hard for AI”, & & & 8
which is formed by human-curated 800 puzzle- & & o F
like tasks, designed as grid-based visual rea- NPHardEval (Fan ct al., 2024)

soning problems. o3 at high compute scored ZebraLogic (Lin etal., 2025)

roughly crushes the ARC-AGI-1 benchmarks ARC-AGI-1 & 2 (Chollet, 2019)
and leads to the emergence of the ARC-AGI-2 NPPC (this work) |
benchmark. This pattern exemplifies a funda-

mental challenge with traditional benchmarks for LLMs, including MMLU (Hendrycks et al., 2021),
GPQA (Rein et al., 2024), GSMS8K (Cobbe et al., 2021), and SWE-bench (Jimenez et al., 2024), where
static benchmarks are systematically solved within relatively short periods (as shown in Figure 1).
Therefore, researchers have to continuously either develop new benchmarks, e.g., MMLU-Pro (Wang
et al., 2024) and SuperGPQA (Du et al., 2025), or regularly update with new datasets and problems,
e.g., LiveCodeBench (Jain et al., 2025) and SWE-bench-Live (Zhang et al., 2025). However, these
remedies rely on extensive human efforts to maintain their relevance and difficulty.

X

v

. Reasoning Gym (Stojanovski et al., 2025) X

87% on ARC-AGI-1 (OpenAl, 2025), which Sudoku-Bench (Seely et al., 2025) X
X

4

AN SN NN
N X XN X% X%

Several recent benchmarks consider either NP(C) problems, e.g., 3SAT (Balachandran et al., 2025;
Hazra et al., 2024; Parashar et al., 2025), or partially the ever-scalingness (Fan et al., 2024; Stojanovski
et al., 2025) (displayed in Table 1). NPHardEval (Fan et al., 2024) considers 3 problems from P, NPC
and NP-hard classes and use these class to evaluate the LLMs. We note that the problems in P class
can be solved by augmenting the LLMs with tools, e.g., code running, and the NP-hard problems
cannot be verified efficiently, therefore, NPHardEval cannot scale over the scalable oversight. Only 3
NPC problems are considered, i.e., Knapsack, Traveling salesman problem (TSP) and graph coloring,
and the instances of each problem in NPHardEval are finite and only regularly updated, which cannot
scale over the instance and complexity. ZebralLogic (Lin et al., 2025) considers one logic puzzle, i.e.,
Zebra puzzle, to test the reasoning capabilities of LMs when the problems’ complexities increase.
However, the reasoning capability on specific puzzles does not necessarily transfer to other problems,
which violates the scaling of the coverage. Sudoku-Bench (Seely et al., 2025) focuses on one specific
Sudoku game with 2765 procedurally generated instances with various difficulty levels. Reasoning
Gym (Stojanovski et al., 2025) is an ongoing project which collects the procedural generators and
algorithmic verifiers for infinite training data with adjustable complexity. Though with some NP(C)
problems, e.g., Zebra puzzles and Sudoku, the reasoning gym does not specifically focus on NPC
problems and cannot meet the desiderate of ever-scalingness.

3 PRELIMINARIES

P and NP Problems. The problems in P class are decision problems
that can be solved in polynomial time by a deterministic Turing
machine, which implies there exists an algorithm that can find a
solution in time proportional to a polynomial function, e.g., O(n*),
of the input size n. Examples include sorting, shortest path problems,
and determining if a number is prime. The problems in NP class
are decision problems that can be solved in polynomial time by
nondeterministic Turing machine, where a proposed solution can be
easily verified, though finding that solution might require more time
(as displayed in Definition 1). All P problems are also in NP, but the
reverse remains an open question, known as “P vs. NP problem”. NP
problems form the cornerstone of computational complexity theory, i
for which solution verification is tractable (polynomial time) even ~Figure 3: Complexity classes
though solution discovery may be intractable (potentially exponential time), i.e., “difficult to solve,
easy to verify”. Many real-world optimization problems can be formulated as NP problems, such as
equilibrium finding in game theory, portfolio management, network design and machine learning.

NP-hard

Definition 1 (NP Problems). The complexity class NP consists of all decision problems §2 such
that for any “yes” instance I of {2, there exists a certificate o of polynomial length in || where a
deterministic Turing machine can verify in polynomial time that c is a valid certificate for I.

Under review as a conference paper at ICLR 2026

(a) (9 npgym r .
Foundation Foundation configs {true, false}
Models Problems 1 pefformance
generator verifier ABcianfriaca/tvs.
Yy
® &6 | K
=
‘|H|. | [tokens |
‘ I . Token number
npgym instance — solution vs. Difficulty
NPPC
1.Problem-specific
. errors
@ -‘E I —Ei parsing 2.Typical reasoning
npeval template Failures
prompt Dy
template ’* LV &@ leaderboard
npsolver) npeval g

Figure 4: Overview of NPPC. (a) NPPC represents the intersection of foundation models and
foundation problems. (b) The three main components of NPPC: npgym (problem generation),
npsolver (solution generation), and npeval (evaluation). (c¢) Workflow diagram illustrating the
interactions between components, with npgym configuring generators and verifiers, npsolver using
LLMs to generate solutions, and npeval measuring performance metrics.

NP-complete (NPC) Problems. Formally, a problem €2 is an NPC problem if i) the problem is in
NP, and ii) any NP problems can be transformed to problem (2 in polynomial time. This reducibility
property establishes NPC problems as the "hardest” problems in NP class. The Cook-Levin theorem
established SAT as the first proven NPC problem (Cook, 2023; Karp, 2009), while 3SAT is the
special case of SAT and is also an NPC problem. Subsequent NPC problems typically proven via
reduction chains back to 3SAT or other established NPC problems. The most well-known NPC
problems include vertex cover problem, clique problem, traveling salesman proble (TSP), Hamiltonian
path/cycle problem, etc. NPC problems play the most important roles in answering the “P vs. NP
problem”, i.e., if any NPC problem were shown to have a polynomial-time algorithm, then P =
NP. However, despite decades of research, no polynomial-time algorithms for any NPC problem is
discovered, which implies that NPC problems are computationally intractable by current methods.

Reasoning in LLMs. The reasoning ability of LLMs refers to the model’s capacity to tackle
complex problems, e.g., mathematical proof, code generation through multi-step thinking and
context understanding. Recently, specialized reasoning models have been proposed. OpenAl-ol is
an LLM trained with reinforcement learning (RL), which enables the model to perform complex
reasoning, including logical thinking and problem solving, via chain-of-thought (CoT). o1 thinks
before it answers and can significantly outperform GPT-40 on reasoning-heavy tasks with high data
efficiency. DeepSeek-R1 (Guo et al., 2025) is an enhanced reasoning model designed to improve
LLMs’ reasoning performance that incorporates multi-stage training and cold-start data before
the large-scale RL. DeepSeek-R1 demonstrates remarkable reasoning capabilities, and achieves
comparable performance to OpenAl-ol across various reasoning tasks, e.g., mathematical problems,
code generation, and scientific reasoning. Additionally, there are open-sourced medium-sized LLMs
with strong reasoning capabilities, e.g., DeepSeek-R1-32B, a distilled version of DeepSeek-R1,
QwQ-32B (Team, 2025), and Gemma 3 (Team et al., 2025).

4 NONDETERMINISTIC POLYNOMIAL-TIME PROBLEM CHALLENGE

We introduce Nondeterministic Polynomial Problem Challenge (NPPC), an ever-scaling reasoning
benchmark for LLMs. There are three main components in NPPC (as displayed in Figure 4(b)):
1) npgym, which provides a unified interface of 25 well-known NPC problems and can generate
any number of instances and verify the solution with any levels of complexities, ii) npsolver, which
provides a unified interface to evaluate the problem instances with both online and offline models via
APIs and local deployments, respectively, to facilitate the users to evaluate their own models and iii)
npeval, which provides the comprehensive and ready-to-use tools to analyze the performances of
LLMs over problems, the number of tokens, the “aha moments”, the reasoning and solution errors,
providing the in-depth analysis of the LLMs’ reasoning capabilities.

Under review as a conference paper at ICLR 2026

4.1 PROBLEM SUITE: npgym

Interaction Protocol. Typically, NPC problems are the decision problems where given the instance
I, the answer is “Yes” or “No”. However, the LLMs may take a random guess without reasoning
for the true solution (Fan et al., 2024). Therefore, we consider a more challenging setting: given
the instance I, the LLM needs to generate the solution s for the instance. This setting will enforce
the LLMs to reason for the correct solutions and the NPPC needs to provide the certificate o to
verify the solutions generated by the LLMs. npgym provides a unified interface of NPC problems
to interact with LLMs. The interaction between npgym and the LLM is displayed in Figure 4(c).
npgym generates the instance I with the given configuration, and the LLM receives the instance and
generate the solution s, then the solution is verified by npgym with the output {true, false}. The
representation of problem instances is designed to be concise and complementary to include all
necessary information for the LLMs to reason for the solution.

Core Problems and Extension. There are 25 typical NPC problems implemented in npgym. Among
all NPC problems, 12 typically NPC problems are selected as the core problems, chosen for their fun-
damental importance and broad real-world applications across domains such as logistics and routing
(TSP, Hamiltonian Cycle), network optimization (Vertex Cover, Graph 3-Colourability), resource
allocation (Bin Packing, 3-Dimensional Matching), automated reasoning (3SAT), computational
biology (Shortest Common Superstring), and mathematical optimization (Quadratic Diophantine
Equations, Minimum Sum of Squares). The other 13 problems are categorized as the extension
problems, covering specialized applications in social networks, facility location, cryptography, and
data mining. A full list of the 25 problems is displayed in Table 2.

Table 2: Core Problems and Extension.

3-Satisfiability (3SAT), Vertex Cover, 3-Dimensional Matching (3DM), Trav-
elling Salesman (TSP), Hamiltonian Cycle, Graph 3-Colourability (3-COL),
Bin Packing, Maximum Leaf Spanning Tree, Quadratic Diophantine Equations
(QDE), Minimum Sum of Squares, Shortest Common Superstring, Bandwidth

Core

Clique, Independent Set, Dominating Set, Set Splitting, Set Packing, Exact
Extension | Cover by 3-Sets (X3C), Minimum Cover, Partition, Subset Sum, Hitting String,
Quadratic Congruences, Betweenness, Clustering

Generation and Verification. Specifically, for each problem, npgym implements two functions:

* generate_instance (-): given the configurations, this function will generate the problem
instances. Taking the 3SAT as an example, the configurations include the number of variables and
the number of clauses. The generated instances are guaranteed to have at least one solution and
not necessarily to have a unique solution, which is ensured by the generation process.

* verify_solution (-): given the solution and the problem instance, this function will verify
whether the solution is correct or not. Additional to the correctness, this function also returns the
error reasons. Taking the TSP as an example, the errors include i) the solution is not a tour, ii) the
tour length exceeds the target length. The full list of the errors is displayed in Table 5.

Difficulty Levels. NPC problems exhibit distinct combinatorial structures and computational char-
acteristics. npgym implements the difficulty levels (Cobbe et al., 2020; Fan et al., 2024) establish a
standardized metric for quantifying the computational complexity. Specifically, the difficult levels are
determined with a two-stage approach: i) the parameters for NPC problems are manually configured
based on problem-specific insights (e.g., graph size, constraint density) by human experts, and ii) the
human-defined difficulty levels are further calibrated with empirical LLMs’ performance. This hybrid
methodology ensures difficulty levels reflect both theoretical computational complexity and observed
LLM capabilities, i.e., the higher difficulty levels lead lower performance. The comprehensive
justification of this approach is displayed in Appendix A.5. Each NPC problem is stratified into 10
levels, designed to produce monotonically decreasing LLM performance from > 90% success at
level 1 to < 10% at level 10. Appendix D.1I includes the full specifications of difficulty levels.

Ever-scalingness of npgym. npgym fulfills the four desiderata of ever-scalingness. Specifically,
npgym can generate enormous problem instances with arbitrary difficulty levels, enabling scaling
over complexity and instance to continuously differentiate the LLMs while avoiding hacking, e.g.,
memorization. Solution verification in npgym is computationally efficient, guaranteed by the inherent
properties of NP problems. npgym supports extensible coverage through a simple interface requiring
only two core functions and difficulty specifications for adding new NP(C) problems.

Under review as a conference paper at ICLR 2026

4.2 SOLVER SUITE: npsolver

Prompt Template. The prompt template for LLMs is designed to be simple without any problem-
specific knowledge and consistent across all problems. Therefore, the prompt template includes:
i) problem description, which provides the concise definition of the NPC problem, including the
problem name, the input and the question to be solved, ii) the context examples, where each example
is formed by the instance and its corresponding solution, demonstrating the input and output patterns
to help LLMs to generate the solution, iii) the target instance to solve, and iv) the general instruction
about the solution format, where the solution is required to be in the JSON format for easy extracting
and analyzing. We note that the structural output in JSON format may bring difficulties for LLMs
to generate the correct solution, especially for the offline models, which will be analyzed in the
experiments. The complete prompt template is displayed in Appendix E.

Completion with LLMs. To streamline response extraction across various LLMs, we present
npsolver, a solver suite that provides a unified interface for both online (API-based) and offline
(locally deployed) models. npsolver includes: i) prompt generation, which constructs problem-
specific prompts dynamically using the designed prompt templates, ii) LLM completion, that handles
response generation via either online APIs supported through LiteLLM (BerriAl, 2023), or offline
models via vLLM (Kwon et al., 2023); iii) solution extraction, which applies regular expressions
to parse JSON-formatted responses, ensuring a consistent validation pipeline across all models; iv)
error reporting, that standardizes error messages. Through the unified interface, npsolver enables
both online and offline models to share a common workflow for completion.

4.3 EVALUATION SUITE: npeval

Comprehensive LLM evaluation across all problems and difficulty levels is computationally expensive
due to the randomness in instance generation and LLM responses'. While existing benchmarks
evaluate LLMs on fixed datasets (e.g., 200 instances across 5 difficulty levels in (Lin et al., 2025)),
difficulty-specific performance assessment is required, thus leading to the development of npeval (as
displayed in Figure 4(c)). Inspired by rliable (Agarwal et al., 2021), npeval aggregates performance
across multiple independent seeds (typically 3) for each difficulty level, generating 30 instances per
seed—the minimum sample size for statistical analysis. This sampling strategy enables statistically
sound performance aggregation while controlling instance-specific variance within budget constraints.
npeval provides four performance measures following rliable, i.e., inter-quantile mean (IQM), mean,
median, and optimality gap, which employ stratified bootstrap confidence intervals (SBCIs) with
stratified sampling for aggregate performance estimation, a method suitable for small sample sizes
and more robust than standard deviations. The framework analyzes both prompt and completion
tokens across problems and difficulty levels, as well as the number “aha moments” in reasoning
processes in (Guo et al., 2025). Additionally, it categorizes errors into solution errors (detected by
npgym’s verification) and reasoning errors (flaws in the LLM’s internal problem-solving process).

5 RESULTS

5.1 ANALYSIS OF PERFORMANCE

The performance of online LLMs over difficulty levels is displayed in Figure 5, where all online
models exhibit a decline in accuracy as difficulty levels increase across all 12 NPC problems. Take
3SAT as an example, all online models except for DeepSeek-R1 drop from > 80% accuracy to close
to 0% at the last level, and DeepSeek-R1 shows the slowest decline but still falls to < 15% accuracy.
All models collapse to around or even below 10% accuracy at extreme difficulty confirms that NPPC
is not crushed against the SOTA LLMs and can discriminate their capabilities. One exception is
Claude-3.7-Sonnet on Superstring problem, where the accuracy is still above 50% even for the level
10, while other models are all decreased into less than 20%, which demonstrates the superiority of
Claude-3.7-Sonnet to deal with long contexts, where the prompts at level 10 is more than 50K?. All
models perform similarly on the Bandwidth problem, which may be mainly due to the fact that none of
the models are familiar with this specific problem. Both 03-mini and DeepSeek-V3-2503 demonstrate
superior performance to their predecessor models, o1-mini and DeepSeek-V3, respectively, validating
continually improvements in both non-reasoning and reasoning LLMs.

'Randomizing responses, i.e., non-zero temperature, is used for better performance (Guo et al., 2025).
We do not continually increase the difficulty of this problem as all other models are worse than 10%.

Under review as a conference paper at ICLR 2026

—— QwQ-32B —— GPT-40-mini —— Claude-3.7-Sonnet DeepSeek-V3-2503 ol-mini
—— DeepSeek-R1-32B —— GPT-40 —— DeepSeek-V3 —— DeepSeek-R1 —=— 03-mini
10 3SAT Vertex Cover Superstring QDE
>0.8
o6 ~ \ \s
go.4 \; e
<0.2 \

0.0

12345678910 12345678910 123456789101234567382910
3DM TSP Hamiltonian Cycle Bin Packing

1.0
>0.8
o
0.6
30.4
)
<0.2

0.0

12345678910 12345678910 123456780910 123456780910
3-COL Min Sum Square Bandwidth Max Leaf Span Tree

1.0
>0.8
()
£0.6
>

504
<0.2

)

0 —C—
T2345678910 12345678910 123456780910 12345678910
Figure 5: Performance over difficulty levels measured by IQM

3SAT Vertex Cover Superstring QDE 3DM

[.l—--—] I..I-- — II---..--- l .-. —

5 | - I

=}

3 =

b I' lI ==

a B] I
=11 | I =[] [== | {_|
12345678910 12345678910 12345 123 5678910

Bin Packing Min Sum Square Bandwidth Max Leaf Span Tree

5 lgn
=
3
2
b=
1)
° i
=l il = [= mil i
12345678910 12345678910 123456780910 123456780910 123456780910 12345678910
s QwQ-32B I GPT-40-mini [Claude-3.7-Sonnet DeepSeek-V3-2503 ol-mini
[DeepSeek-R1-32B W GPT-40 DeepSeek-V3 [DeepSeek-R1 03-mini

Figure 6: Ranks of models over problems, where the x-axis represents the rank, ranging from 1 to 10,
as we evaluate 10 models, and the y-axis shows the distribution of different LLMs across the ranks.

The ranks of models over problems are shown in Figure 6, which measures the models’ performances
across different levels of a specific problem. We observe that DeepSeek-R1 and 03-mini demonstrate
statistical dominance in achievement of first-rank positions among reasoning-specialized architectures
and Claude-3.7-Sonnet is the best non-reasoning model compared with the two versions of DeepSeek-
v3 and GPT-4o, even better than ol-mini. Figure 7 visualizes the performance interval of different
LLMs over all problems across all difficulty levels, where all four aggregate metrics are employed to
measure LLMs’ performance. We observe that DeepSeek-R1 achieves superior performance with
the highest IQM, mean, medium values and the lowest optimality gap, followed by 03-mini and
Claude-3.7-Sonnet, while GPT-40-mini performs in an opposite way.

Takeaways

* NPPC can successfully decrease the performances of advanced LLMs to < 10%

¢ DeepSeek-R1, 03-mini and Claude are the strongest LLMs across all considered NPC problems
* The ranks of different LLMs depend on the specific NPC problems

5.2 ANALYSIS OF TOKENS AND AHA MOMENTS

Figure 8 displays the token utilization across models on 3SAT. Offline models (QwQ-32B, DeepSeek-
R1-32B) rapidly approach maximum token limits and incorrect solutions (red) usually take more
tokens than correct solutions (blue). Among online models, DeepSeek-R1 demonstrates highest
consumption (10,000-20,000 tokens) for successful solutions, while o-series models exhibit significant

Under review as a conference paper at ICLR 2026

IQM Mean Median Optimality Gap

03-mini 1 I 1 I
ol-mini 1 1 1 1
DeepSeek-R1 I I 1 I
DeepSeek-V3-2503 1 1 1 1
DeepSeek-V3 I I 1 I
Claude-3.7-Sonnet I I 1 I
GPT-40 1 | 1 1
GPT-40-mini
DeepSeek-R1-32B | I I 1
QwQ-32B] 1 L]]

02 04 06 0.15 0.30 0.45 0.600.00 0.25 0.50 0.75 0.45 0.60 0.75

Figure 7: Performance interval over all problems across all levels

variance, with outliers exceeding 40,000 tokens at higher complexity levels. DeepSeek-R1 and 03-
mini show steeper token scaling compared to ol-mini and Claude-3.7-Sonnet, indicating advanced
reasoning models leverage increased token allocation for complex problem-solving. GPT-40 variants
maintain relatively efficient token utilization (;2,000) across all complexities. This quantifies the
computational efficiency-performance tradeoff between specialized reasoning architectures and
general-purpose models. Similar phenomenon are also observed in the analysis of the aha moments
(instances of insight during reasoning, marked by phrases like “wait”) in the reasoning contents of
DeepSeek-R13. Due to the limited space, full results of tokens over all problems and the analysis of
aha moment are displayed in Appendices J and K, respectively.

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
i =% % 7 X% X X% 2000 2000 3000
k) H |
g 5000 50001 ¢ ' 2000
g H s e 1000{f § RE 1000 i
38 I/“T'\,-/ < | 1000
o NIERNRENENE ! il
12345678910 12345678910 12345678910 12345678910 123456780910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
2000{ F ¥ %X %% ¥ 4000 ¥ % x % x] 20000 :

- @
.
™~

20000 10000
10000 1

20004§ °

Completion
N
o
o
o

0 IRER)
12345678910 12345678910 123456780910 123456780910 012345678910

Figure 8: The number of tokens of different models on 3SAT. The correct and incorrect solutions are
represented as blue and red points, respectively, and the line are the average values over all instances.

Takeaways
* Reasoning models can solve more difficult problems by scaling up the number of tokens used
» The number of tokens used first increase then decrease, indicating the failure of LLM reasoning

5.3 ANALYSIS OF SOLUTION ERRORS
QwQ-32B DeepSeek -R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

rrrr
I I _III---lII

100

50

12345678910 12345678910 12345678910 12345678910 123456780910

100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
= [
= pill =all B
l,, I u i
0 il L elEEScgl | i=—1-—-.—-..l

12345678910 1727345678910'12345678910'12345678910

EEm JSON ERROR ~ mmm VERIFICATION ERROR BN 3SAT ERROR 1 I 3SAT ERROR 2

Figure 9: The number of errors of different models on 3SAT

The solution errors of 3SAT is displayed in Figure 9. The results show that the distribution of these
errors varies across models and difficulty levels. As the difficulty increases, the frequency of certain
error types tends to increase as well. For QwQ-32B, JSON ERROR dominate across all levels, which
is mainly due to the reasoning process is not finished when the context reaches the limits. For other
models (such as GPT-40, Claude-3.7-Sonnet, and DeepSeek-R1), problem-specific errors (3SAT
ERROR 1 and 2) become more prevalent at higher difficulty levels. DeepSeek and GPT models
show a more balanced distribution of error types. The o-series models demonstrate relatively better

3The reasoning contents of 01/03-mini are not available for analysis.

Under review as a conference paper at ICLR 2026

performance at intermediate difficulties but still encounter increasing problem-specific errors at the
highest complexity levels. This error analysis provides valuable insights into not just whether models
fail, but specifically how they fail when tackling increasingly complex NPC problems, which could
inform future improvements to reasoning capabilities in LLMs.

Takeaways
» Offline models, e.g., QwQ-32B, and DeepSeek-V3 series models suffer the format errors
* The problem-specific solution errors provide the feedback for further improving the LLMs

5.4 ANALYSIS OF REASONING FAILURE CASES
Table 3: Examples of Failure Cases for Deepseek-R1.

Failure Reason 1: Cascading Assumptions and Placeholder/Guess

. At this point, I'm not sure. Given the time I've spent and the complexity, perhaps the solution is the string
pyeo jmmykmadslpeetdb with length 20, even though some required substrings might be missing. But according
to the problem statement, there is a solution. So I'll have to take a guess. ... But given the time I’ve spent and the need
to provide an answer, I’ll make an educated guess. ...

Failure Reason 2: Manual Computation Errors and Complexity Avoidance

So, if a node is in an edge that’s not covered by any other node, then that node must be in the vertex cover. But checking
that for each edge would be time-consuming. Let’s look for edges that have a unique node. For example, if there’s an
edge (a, b), and neither a nor b are connected to any other nodes, then one of them must be in the cover. But in a graph
of 40 nodes, this is unlikely. So probably most nodes have multiple edges.

Failure Reason 3: Reliance on Prompt Examples

... Wait, in the example problem, the solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30,
32, 34, 37. So maybe similar patterns here. But the new problem’s edges are different. ... Alternatively, perhaps the
solution is similar to the example. The example’s solution includes nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25,
26, 30, 32, 34, 37. Looking at the problem’s edge set, perhaps some of these nodes are also high-degree here. Let’s see.
... Wait, another idea: the example solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32,
34, 37. If I look at these nodes, perhaps they are all the nodes from one side of a bipartition. ...

Failure Reason 4: Reasoning Repetition

... For example, node 8 appears in edges like (8,18), (8,35), (8,21), (8,30), (8,39), etc. Maybe node 8 is a hub. ... In the
problem to solve, node 8 is involved in many edges, as per the edges provided. So including 8 in the cover would cover
a lot of edges. ... For example, node 8 appears in a lot of edges. Including node 8 would cover many edges. ... For
example, many edges involve node 8. So including node 8 is a must.

For Deepseek-R1, the reasoning content of the failure cases shows several reasons that lead to wrong
answers. i) cascading assumptions and placeholder/guess: DeepSeek-R1 begins with a high-level
approach but quickly resorts to making assumptions to derive answers without logical deduction and
considering all the conditions, and finally returns a placeholder or an educated guess; ii) manual
computation errors and complexity avoidance: DeepSeek-R1 uses inefficient manual calculations
(prone to errors) instead of programming, skips complex steps even the reasoning is correct, and
resorts to guesses to avoid effort; iii) reliance on prompt examples: DeepSeek-R1 relies heavily on
the example solution, making it waste time and get distracted by verifying and editing the solution
instead of solving the problem directly; iv) reasoning repetition: DeepSeek-R1 gets stuck repeating
the same logic without making further progress, wasting time and tokens. We list some typical
examples of failure cases of DeepSeek-R1 in Table 3, and more examples are shown in Table 20 in
Appendix M. Failure cases of Claude-3.7-Sonnet typically exhibit more concise reasoning, as it often
outlines a high-level step-by-step approach but omits detailed calculations and rigorous verification,
and it relies on approximate calculations to derive a final answer, incorrectly asserting that the result
has been validated. More examples are shown in Tables 21 and 22 in Appendix M.

6 CONCLUSION

The rapid advancement of LLMs’ reasoning abilities has rendered current benchmarks easily crushable
and vulnerable to hacking. This work presents Nondeterministic Polynomial Problem challenge
(NPPC), the first ever-scaling benchmark over complexity, instance, oversight and coverage. Through
extensive experiments of LLMs on various difficulty levels across NPC problems, NPPC provides
critical insights into the reasoning limits of LLMs and suggest directions for future improvement.
The limitations and negative impacts of this paper are discussed in Appendix B.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper does not involve human subjects, sensitive personal data, or other ethical risks. The
datasets used are synthetic, and no privacy or ethical concerns are associated with this study.

REPRODUCIBILITY STATEMENT

The anonymous codebase can be accessed at https://anonymous.4open.science/r/
nppc. We will release the codebase to the public upon the paper acceptance.

USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

We used LLMs, e.g., ChatGPT and Claude, to assist with the writing and polishing of this manuscript.
The model was employed to improve grammar, clarity, and readability, but it did not contribute to the
generation of research ideas, experimental design, implementation, or analysis. All technical content,
including algorithms, proofs, and experimental results, was conceived and verified by the authors.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In NeurIPS, pp. 29304-29320,
2021.

Greg Aloupis, Erik D Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games are
(computationally) hard. Theoretical Computer Science, 586:135-160, 2015.

Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John
Langford, Besmira Nushi, Vibhav Vineet, Yue Wu, and Safoora Yousefi. Inference-time scaling
for complex tasks: Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

BerriAl Litellm. https://github.com/BerriAIl/litellm, 2023.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
platform for evaluating llms by human preference. In ICML, 2024.

Francois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In ICML, pp. 2048-2056, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Stephen A Cook. The complexity of theorem-proving procedures. In Logic, automata, and computa-
tional complexity: The works of Stephen A. Cook, pp. 143-152. ACM, 2023.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. MIT press, 2022.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In International conference

on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337-340. Springer,
2008.

10

https://anonymous.4open.science/r/nppc
https://anonymous.4open.science/r/nppc
https://github.com/BerriAI/litellm

Under review as a conference paper at ICLR 2026

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, et al. SuperGPQA: Scaling LLM evaluation across 285 graduate
disciplines. arXiv preprint arXiv:2502.14739, 2025.

B Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, pp. 1-26, 1979.

Bradley Efron. Better bootstrap confidence intervals. Journal of the American statistical Association,
82(397):171-185, 1987.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. In ACL, pp.
4092-4114, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. DeepSeek-R1 incentivizes reasoning in LLMs through
reinforcement learning. Nature, 645(8081):633-638, 2025.

Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos Martires, and Luc De Raedt. Can large language
models reason? a characterization via 3-SAT. arXiv preprint arXiv:2408.07215, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In /ICLR, 2021.

Robert V Hogg, Elliot A Tanis, and Dale L Zimmerman. Probability and Statistical Inference, volume
993, Macmillan New York, 1977.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free
evaluation of large language models for code. In ICLR, 2025. URL https://openreview.
net/forum?id=chfJJYC3iL.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In ICLR, 2024.

Richard M Karp. Reducibility among combinatorial problems. In 50 Years of Integer Programming
1958-2008: from the Early Years to the State-of-the-Art, pp. 219-241. Springer, 2009.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. ZebralLogic: On the scaling limits of LLMs for logical reasoning. arXiv
preprint arXiv:2502.01100, 2025.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and Yang
You. MixEval: Deriving wisdom of the crowd from LLM benchmark mixtures. In NeurlPS, 2024.

OpenAl. OpenAl 03 and 04-mini system card, 2025. URL https://openai.com/index/
03-o04-mini-system—card/.

Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, and
Shuiwang Ji. Inference-time computations for LLM reasoning and planning: A benchmark and
insights. arXiv preprint arXiv:2502.12521, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof Q&A
benchmark. In COLM, 2024.

Jeffrey Seely, Yuki Imajuku, Tianyu Zhao, Edoardo Cetin, and Llion Jones. Sudoku-Bench. https:
//github.com/SakanaAI/Sudoku—-Bench, 2025.

11

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://github.com/SakanaAI/Sudoku-Bench
https://github.com/SakanaAI/Sudoku-Bench

Under review as a conference paper at ICLR 2026

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Képf. REASONING GYM: Reasoning environments for reinforcement learning with
verifiable rewards. arXiv preprint arXiv:2505.24760, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Qwen Team. QwQ-32B: Embracing the power of reinforcement learning, March 2025. URL
https://gqwenlm.github.io/blog/qwg-32b/.

Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM, 2002.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-Pro: A more robust and challenging multi-task
language understanding benchmark. In NeurIPS Datasets and Benchmarks Track, 2024.

Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
Zhou, Yanwei Fu, Qin Liu, et al. Reasoning or memorization? unreliable results of reinforcement
learning due to data contamination. arXiv preprint arXiv:2507.10532, 2025.

Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
language models: A survey. arXiv preprint arXiv:2406.04244, 2024.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. SWE-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

12

https://qwenlm.github.io/blog/qwq-32b/

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

1 Introduction

2 Related Work

3 Preliminaries

4 Nondeterministic Polynomial-time Problem Challenge
4.1 Problem Suite: npgym
4.2 Solver Suite: npsolver e e

4.3 Evaluation Suite: npeval e

5 Results
5.1 Analysis of Performance
5.2 Analysis of Tokens and Aha Moments
5.3 Analysis of Solution Errorso

5.4 Analysis of Reasoning Failure Cases
6 Conclusion

A Frequently Asked Questions (FAQs)
A.1 Why Ever-Scaling and the Four Desiderata?
A.2 Why Focusing on NP (Specifically NPC) Problems?
A.3 Why Not Considering More Complex Test-time Scaling?
A4 Why Not Focusingon 3SAT Only?
A.5 Determining the Difficulty Levels
A.6 Selectionof Models
A7 Laderboard

B Limitations and Negative Impacts
B.1 Limitations and Future Work

B.2 Negative Impacts e
C Computational Complexity: P, NP and NP-complete

D Modules in NPPC
D.1 Problem Suite: npgym e e e
D.2 Solver Suite: npsolver e e

D.3 Evaluation Suite: npeval

AN O W A

O 0 9 AN A

15
15
15
15
16
16
17
17

18
18
18

19

Under review as a conference paper at ICLR 2026

E Prompts and Responses

F List of NP-complete Problems

G Hyperparameters

H Full Results over Problems

I Performance over Problems

J Tokens

K Aha Moments

L Solution Errors

M Analysis of Reasoning Failure Cases

N Costs of the Evaluation

14

31

33

36

37

41

44

48

49

53

57

Under review as a conference paper at ICLR 2026

A FREQUENTLY ASKED QUESTIONS (FAQS)

A.1 WHY EVER-SCALING AND THE FOUR DESIDERATA?

Why Ever-Scaling? LLMs are advancing at an unprecedented pace, making existing benchmarks
obsolete quickly and posing a significant challenge for maintaining reliable evaluation. An ever-
scaling benchmark can evolve alongside LLMs, i.e., adapting dynamically to match the development
of LLMs. The ever-scaling benchmark can address two core limitations in traditional benchmarks: 1)
short lifespan, where traditional benchmarks are easily crushed as LLMs rapidly improve, losing their
ability to distinguish between models; ii) limited exploitability, where models can hack the answers
in static benchmarks through overfitting or finding shortcuts to answers without genuine reasoning.

Why the Four Desiderate are Important? The four desiderata include:

* Scaling over complexity. The benchmark can generate problems with continually increasing
difficulty, e.g., larger input sizes, stricter constraints, etc. This property can prevent the benchmark
from being solved to prevent obsolescence, and mirror the real-world problems, e.g., logistics and
chip design, which grow in complexity as systems scale. The scaling over complexity implies if
the LLMs solve the generated problem instances of the current difficulty level, the benchmarks can
generate more difficult problem instances until the reasoning limits of them.

* Scaling over the instance. The benchmark can generate infinite unique instances, even at the same
complexity level. This property makes it impossible for LLMs to memorize the answers or simply
overfit to patterns in static training data, and it forces LLMs to reason about the underlying logic
to ensure the fairness of evaluation. To mitigate memorization effects, researchers can randomly
sample novel problem instances during evaluation to obtain reliable performance metrics.

* Scaling over oversight. The benchmark provides an automated and cost-effective evaluation
without any human intervention, i.e., the solutions can be verified efficiently even for arbitrarily
complex problems. This property is critical for large-scale benchmarking as human evaluation
is impractical for massive or highly complex benchmarks, therefore, automated verification is
necessary for evaluating at scale.

* Scaling over coverage. This property enables the benchmark to prioritize problems with broad
applicability, thereby reflecting real-world utility and challenges. Consequently, advances demon-
strated on the benchmark serve as reliable indicators of progress on practical, real-world tasks.

A.2 WHY FOCUSING ON NP (SPECIFICALLY NPC) PROBLEMS?

Why not P or NP-hard Problems? Problems in the P complexity class can be solved in polynomial
time. When LLMs are equipped with code execution capabilities, they can generate and execute
algorithms to solve these problems directly. Consequently, such benchmarks become susceptible to
trivial solutions through computational tools rather than genuine reasoning. Conversely, NP-hard
problems, particularly those lacking polynomial-time verification procedures, present scalability
challenges: as problem instances grow extremely large, efficient solution verification becomes
intractable, potentially compromising the benchmark’s ability to scale over complexity and oversight.

Why NPC Problems? NPC problems are the “hardest” problems in NP class and any other NP
problems can be reduced to NPC problems in polynomial time. The absence of known polynomial-
time algorithms for NPC problems ensures that current benchmarks measuring performance on
these problems cannot be trivially dominated through tool using. Furthermore, the polynomial-time
verifiability of solutions enables efficient assessment of solutions generated by LLMs or Al agents
even for large-scale problem instances.

A.3 WHY NOT CONSIDERING MORE COMPLEX TEST-TIME SCALING?

The Majority Voting, Best of IV, and even tools, e.g., domain-specific solvers, can further improve
the performance of models (Parashar et al., 2025; Lin et al., 2025). However, these approaches either
necessitate multiple forward passes through the language model or incorporate auxiliary components
such as reward models or external tools to augment the reasoning process. Our primary objective
is to investigate the reasoning capabilities of LLMs and these complex test-time scaling would be
beyond the scope of this paper. We will tackle this in the future work.

15

Under review as a conference paper at ICLR 2026

A.4 WHY NOT FOCUSING ON 3SAT ONLY?

3SAT is a classic NPC problem with theoretical completeness, which provides a theoretically rigorous
foundation for benchmarking. As an NPC problem, although all NP problems can be reduced to
3SAT, solely relying on reduction to 3SAT is impractical and reasoning benchmarks demand broader
diversity for several key reasons:

* Reduction overhead: The reduction process may incur significant computational overhead. Addi-
tional variables and constraints are often introduced when reducing non-trivial NP problems to a
specific NP-complete problem, e.g., reducing Traveling Salesman Problem (TSP) to 3SAT requires
mapping the structure of the original problem into a Boolean logic expression through an encod-
ing mechanism, which introduces an exponential number of variables and clauses, significantly
increasing the computational complexity and leading to hidden costs.

* Loss of characteristics: Each specific NP problem has domain-specific information, e.g., structure
and characteristics. For example, Traveling Salesman Problem (TSP) has graph structures, Bin
Packing has combinatorial optimization characteristics, and Graph 3-Colourability (3-COL) has
adjacency characteristics. Therefore, reducing NP problems to 3SAT and only considering 3SAT
will cause the loss of problem specificity, e.g., structural semantics, which could be used to design
more efficient heuristics or approximation algorithms.

* Lack of robustness: NP problems form the foundation of numerous real-world scenarios, which
often exhibit various conditions that cannot be adequately represented solely through 3SAT. As a
reasoning benchmark, NPPC should encompass a variety of problem sizes and structures rather
than concentrating exclusively on 3SAT to effectively evaluate the capabilities and scalability
of LLMs. Therefore, a diverse set of complex NP problems that can closely mimic real-world
challenges should be considered.

A.5 DETERMINING THE DIFFICULTY LEVELS

Is There a Unified Principle for Difficulty Levels of NPC Problems? Establishing a unified
principle for determining difficulty levels across all NPC problems is fundamentally challenging due
to inherent differences from both theoretical and practical perspectives. From the problem perspective,
the structural heterogeneity of NPC problems prevents the establishment of a universal difficulty
metric. While all NPC problems are polynomially reducible to each other in theory, they exhibit
vastly different characteristics in practice. These differences include: i) representation complexity,
i.e., problems vary in how constraints and variables are encoded (graph structures vs. logical
formulas vs. numerical constraints), ii) Search space topology, i.e., some problems have smooth
difficulty landscapes while others contain sharp complexity transitions. This heterogeneity means
that uniform metrics—such as simple parameter counts or constraint numbers—fail to capture the
true computational difficulty that emerges during actual problem-solving. From the LLM perspective,
LLMs demonstrate highly variable performance across different NPC problems, and the problem
instances generated should not be too easy or too difficult, which may fail to differentiate the
capabilities of LLMs. Additionally, there exists no established theoretical framework for determining
the upper bounds of problem difficulty that LLMs can effectively handle, making difficulty calibration
necessarily empirical and problem-specific.

How to Determine the Difficulty Levels? For NPPC, we address this challenge through a two-
stage method: we begin with manual configuration of problem parameters based on established
computational complexity theory and domain expertise and then the human-configured difficulty
levels are further calibrated through systematic empirical testing with state-of-the-art LLMs. This
two-stage approach ensures that problems’ difficulty levels are both theoretically grounded and
practically meaningful for evaluating LLM capabilities.

Are the Generated Instances Truly Difficult for LLMs? Yes, our validation process confirms this
through multiple measures: i) we observe consistent performance degradation across difficulty levels,
indicating that our instances successfully challenge LLM capabilities, ii) different difficulty levels
produce distinct failure modes, suggesting that instances test different aspects of reasoning ability,
and iii) the difficulty progression holds across multiple LLM architectures, indicating robustness
beyond specific model biases. Although our approach is conceptually simple, it can trully generate
difficult instances.

16

Under review as a conference paper at ICLR 2026

Why not Focusing on Hardest Instances? Our goal is to evaluate general reasoning capabilities
rather than exploit specific failure modes. By providing a graduated difficulty spectrum, we can
assess reasoning development by tracking how LLM performance scales with problem complexity,
identify capability boundaries to determine where different reasoning strategies break down, and
support practical applications by focusing on difficulties relevant to real-world scenarios.

Why not Using Traditional Tools, e.g., Z3 (De Moura & Bjgrner, 2008)? The difficulty expe-
rienced by traditional symbolic solvers does not necessarily translate to difficulty for LLMs due to
fundamental differences in problem-solving approaches. First, traditional solvers use systematic
search and logical inference, while LLMs rely on pattern recognition and learned heuristics. Second,
problems that are hard for symbolic methods due to search space explosion may be tractable for
LLMs through pattern matching, and vice versa, therefore, the relationship between problem size and
difficulty differs dramatically between symbolic and neural approaches. Third, traditional tools fail
due to computational resource constraints, while LLMs fail due to reasoning limitations or training
data gaps. Therefore, LLM-specific calibration is essential to create benchmarks that meaningfully
assess the unique capabilities and limitations of LLMs. In examining 25 NPC problems across
multiple domains, we observe that problem-specific tools, while potentially effective within their
narrow scope, lack the generalizability required for comprehensive evaluation. Therefore, we do not
rely on traditional computational tools as the primary metric for establishing problem difficulty levels
in LLM evaluation frameworks.

A.6 SELECTION OF MODELS

Due to the limited budget, we can only select the representative models for the evaluation. Specifi-
cally, we choose the two representative offline medium-sized reasoning models, i.e., QwQ-32B and
DeepSeek-R1-32B, and online advanced non-reasoning models, i.e., GPT-40-mini, GPT-40, Claude-
3.7-Sonnet, DeepSeek-V3, DeepSeek-V3-2503, and online reasoning models, i.e., DeepSeek-R1,
o1-mini, and 03-mini. For the more recent models, e.g., 03, 04-mini, Gemini 2.5 Pro, Qwen 3, Llama
4, Claude-4, and GPT-5, we will add them in the next update of our benchmark.

A.7 LADERBOARD

We only provide the screenshot of the leaderboard in Figure 10 due to the anonymity of the submission.
We will release this leaderboard upon the acceptance of the paper.

Y Leaderboard

) . | [Model Filter:

Search:

[Type to search Search Open-Source?

- True J FalseJ

Select Columns to Display: Reasoning?
Date (9 Open-source (@ Reasoning True | @ False

Model] Rank{ Averagel Datel 3SAT] Vertex Cover] Superstringl QDE] 3DM] TSP{ Hamiltonian Cycle] Bin Packing] 3
DeepSeck-
Rl 0.63 0.63 0,
03-mini 055 043 0,
Claude-
3.7-Sonnet 043 03 0
DeepSeek-
Y 033 037 0,
ol-mini 03 027 0,
DeepSeek-
S 24-12 0.19 021 0,
QwQ-32B 7 03 0.26 0.34 0.27 0.17 0.42 025 038 0.22 0.
GPT-4o 8 0.24 022 033 0.2 012 011 032 0.6 0.18 0.
gfffzs};“' 9 0.17 02 032 0.13 016 014 02 0.14 0.03 0,
GFde- 0 0.14 014 022 0.05 008 005 015 012 0.04 0

Figure 10: Screenshot of NPPC leaderboard

17

Under review as a conference paper at ICLR 2026

B LIMITATIONS AND NEGATIVE IMPACTS

B.1 LIMITATIONS AND FUTURE WORK

Multimodal NP Problems. The first limitation of this work is only text-based NPC problems
are considered. Extending NPPC to the multimodal domains represents a promising direction.
Games like StarCraft I, Minesweeper, Pokemon and Super Mario Bros (Aloupis et al., 2015),
could form the foundation of a multimodal version of NPPC. However, extending NPC problems
to the multimodal domain presents significant challenges that require careful consideration and
novel approaches. Two primary obstacles emerge in this endeavor: first, not all NPC problems are
inherently suitable for multimodal representation, as demonstrated by problems like 3SAT which
are fundamentally symbolic and lack natural visual components; second, maintaining the scalable
difficulty characteristics essential to NPC problems becomes complex when incorporating images or
videos that may exceed the input context window limitations of current multimodal language models.
We will tackle this limitation and the associated challenges in the future work.

AI Agent with Tool Use. The second limitation of this work is we do not consider the tool using of
LLMs for solving the NPC problems, where LLMs with tool using are usually termed as Al agents.
The benchmark could significantly contribute to Al agent development by encouraging tool use for
solving increasingly complex NP problems. As the difficulty of problems increases, LLMs will
naturally require external tools to manage computational complexity. This creates a natural pathway
toward agent capabilities, where models learn to decompose problems and leverage appropriate tools.
The code generation already observed in models attempting to solve difficult NPPC problems can be
viewed as a form of tool creation, as these generated algorithms can be saved and reused for future
problem-solving. This provides a principled way to measure progress in agent development in a
well-defined framework.

Unstoppable RL vs. Ever-Scaling NP Problems. The rapid progress in LLM reasoning capabilities
through reinforcement learning (RL) presents an interesting dynamic when considered alongside
ever-scaling NPC problems. As models like DeepSeek-R1 and OpenAl o1/03-mini demonstrate
significant reasoning improvements through RL techniques, NPPC provides a counterbalance by
offering problems that can continuously scale in difficulty. This creates an adversarial paradigm to
drive the Al development: RL improves model reasoning and NPPC scales to maintain challenging.

B.2 NEGATIVE IMPACTS

We do not foresee any negative impacts of this paper.

18

Under review as a conference paper at ICLR 2026

C COMPUTATIONAL COMPLEXITY: P, NP AND NP-COMPLETE

NP-hard

Figure 11: The relation between P, NP and NP-complete

P. The class P consists of decision problems that can be solved by a deterministic Turing machine in
polynomial time. In practical terms, these are problems for which efficient algorithms exist. The time
required to solve these problems grows polynomially with the input size (n), such as O(n), O(n?), or
O(n?). Examples include sorting, searching in a sorted array, and determining if a number is prime.

NP. NP contains all decision problems for which a solution can be verified in polynomial time. Every
problem in P is also in NP, but NP may contain problems that are not in P. The key characteristic is
that if someone gives you a potential solution, you can quickly check whether it’s correct, even if
finding that solution might be difficult. Examples include the Boolean satisfiability problem and the
Traveling Salesman decision problem.

NP-complete (NPC). NP-complete problems are the “hardest” problems in NP. A problem is NP-
complete if: 1) It belongs to NP, ii) Every other problem in NP can be reduced to it in polynomial time.
This means that if an efficient (polynomial-time) algorithm were found for any NP-complete problem,
it could be used to solve all problems in NP efficiently. The first proven NP-complete problem was
the Boolean satisfiability problem (SAT). Other examples include the Traveling Salesman Problem,
Graph Coloring, and the Knapsack Problem. The question of whether P=NP (whether every problem
with efficiently verifiable solutions also has efficiently computable solutions) remains one of the most
important open questions in computer science and mathematics.

19

Under review as a conference paper at ICLR 2026

D MODULES IN NPPC

D.1 PROBLEM SUITE: npgym

Interface. We introduce npgym, a problem suite containing 25 NPC problems with a unified
gym-style interface for instance generation and solution verification. Each environment is defined
by a problem name and its corresponding hyperparameters, enabling the generation of unlimited
problem instances and example solutions. Difficulty can be scaled by adjusting these parameters.
npgym also supports automatic verification of solutions produced by large language models (LLMs).
New problems can be added easily by implementing two core functions and providing a problem

description for prompt generation.

class NPEnv:

def __init__ (self, problem_name, level):
self.problem_name = problem_name
self.level = level

self._generate_instance, self._verify_ solution =
_get_instance_generator ()

def _get_instance_generator (self):
np_gym_folder = "./npgym/npc"
problem_path = PROBLEM2PATH[self.problem_name]

generate_instance

verify_solution

return generate_instance, verify_solution

generate_instance = importlib.import_module (problem_path) .

verify_solution = importlib.import_module (problem_ path) .

20

Under review as a conference paper at ICLR 2026

Variables to Scale. Table 4 lists the variables to scale for each of the 25 NP-complete problems.

Table 4: NPC problems in NPPC and the variables to scale

Type | Problems | Variables to scale
3SAT num_variables, num_clauses
Vertex Cover num_nodes, cover_size
3DM n
TSP num_cities, target_length
Hamiltonian Cycle num_nodes, directed
3-COL num_nodes, num_edges

Core
Bin Packing num_items, bin_capacity, num_bins
Max Leaf Span Tree num_nodes, target_leaves
QDE low, high
Min Sum of Squares num_elements, k
Superstring n, k
Bandwidth num_nodes, bandwidth
Clique num_nodes, clique_size
Independent Set num_nodes, ind_set_size
Dominating Set num_nodes, k, edge_prob
Set Splitting num_elements, num_subsets
Set Packing num_elements, num_subsets, num_disjoint_sets
X3C num_elements, num_subsets

Extension | Minimum Cover num_elements, num_sets, k

Partition n, max_value
Subset Sum num_elements, max_value
Hitting String n, m
Quadratic Congruences | min_value, max_value
Betweenness num_element, num_triples
Clustering num_elements, b

21

Under review as a conference paper at ICLR 2026

Difficulty Levels. We define and release problem-specific difficulty levels for each of the 25 core
problems included in our benchmark. Each problem includes approximately 10 levels of increasing
complexity, determined primarily by theoretical factors such as search space size and validated
through empirical testing using DeepSeek-R1 and GPT-40. npgym allows seamless extension to
higher difficulty levels as more powerful models become available.

{
"3-Satisfiability (3-SAT)": {
1: {"num_variables": 5, "num_clauses": 5},
2: {"num_variables": 15, "num_clauses": 15},
3: {"num_variables": 20, "num_clauses": 20},
4: {"num_variables": 25, "num_clauses": 25},
5: {"num_variables": 30, "num_clauses": 30},
6: {"num_variables": 40, "num_clauses": 40},
7: {"num_variables": 50, "num_clauses": 50},
8: {"num_variables": 60, "num_clauses": 60},
9: {"num_variables": 70, "num_clauses": 70},
10: {"num_variables": 80, "num_clauses": 80},
I
"Vertex Cover": {
1: {"num_nodes": 4, "cover_size": 2},
2: {"num_nodes": 8, "cover_size": 3},
3: {"num_nodes": 12, "cover_size": 4},
4: {"num_nodes": 16, "cover_size": 5},
5: {"num_nodes": 20, "cover_size": 10},
6: {"num_nodes": 24, "cover_size": 12},
7: {"num_nodes": 28, "cover_size": 14},
8: {"num_nodes": 32, "cover_size": 16},
9: {"num_nodes": 36, "cover_size": 18},
10: {"num_nodes": 40, "cover_size": 20},
I
"Clique": {
1: {"num_nodes": 4, "clique_size": 2},
2: {"num_nodes": 8, "clique_size": 4},
3: {"num_nodes": 12, "clique_size": 6},
4: {"num_nodes": 14, "clique_size": 7},
5: {"num_nodes": 16, "clique_size": 8},
6: {"num_nodes": 18, "clique_size": 9},
7: {"num_nodes": 20, "clique_size": 10},
8: {"num_nodes": 22, "clique_size": 11},
9: {"num_nodes": 24, "clique_size": 12},
10: {"num_nodes": 26, "clique_size": 13},
11: {"num_nodes": 28, "clique_size": 14},
12: {"num_nodes": 30, "clique_size": 15},
13: {"num_nodes": 40, "clique_size": 20},
I
"Independent Set": {
1: {"num_nodes": 4, "ind_set_size": 2},
2: {"num_nodes": 8, "ind_set_size": 4},
3: {"num_nodes": 12, "ind_set_size": 6},
4: {"num_nodes": 16, "ind_set_size": 8},
5: {"num_nodes": 20, "ind_set_size": 10},
6: {"num_nodes": 24, "ind_set_size": 12},
7: {"num_nodes": 26, "ind_set_size": 13},
8: {"num_nodes": 28, "ind_set_size": 14},
9: {"num_nodes": 30, "ind_set_size": 15},
10: {"num_nodes": 32, "ind_set_size": 16},
11: {"num_nodes": 34, "ind_set_size": 17},
12: {"num_nodes": 36, "ind_set_size": 18},
13: {"num_nodes": 48, "ind_set_size": 24},
by
"Partition": {
1: {"n": 2, "max_value": 1},
2: {"n": 4, "max_value": 40},
3: {"n": 10, "max_value": 100},

22

Under review as a conference paper at ICLR 2026

4: {"n": 20, "max_value": 200},
5: {"n": 30, "max_value": 300},
6: {"n": 40, "max_value": 400},
7: {"n": 50, "max_value": 500},
8: {"n": 55, "max_value": 550},
9: {"n": 60, "max_value": 600},
10: {"n": 65, "max_value": 650},
11: {"n": 70, "max_value": 700},
12: {"n": 75, "max_value": 750},
13: {"n": 80, "max_value": 800},

I
"Subset Sum": {

1: {"num_elements": 5, "max_value": 100},

2: {"num_elements": 10, "max_value": 100},

3: {"num_elements": 20, "max_value": 200},

4: {"num_elements": 40, "max_value": 400},

5: {"num_elements": 80, "max_value": 800},

6: {"num_elements": 100, "max_value": 1000},
7: {"num_elements": 120, "max_value": 1200},
8: {"num_elements": 160, "max_value": 1000},
9: {"num_elements": 160, "max_value": 1600},
10: {"num_elements": 200, "max_value": 2000},
11: {"num_elements": 200, "max_value": 1000},
12: {"num_elements": 400, "max_value": 2000},
13: {"num_elements": 600, "max_value": 2000},

I
"Set Packing": {

1: {"num_elements": 10, "num_subsets": 10, "num_disjoint_sets
ma 2,

2: {"num_elements": 40, "num_subsets": 40, "num_disjoint_sets
"e. 8},

3: {"num_elements": 100, "num_subsets": 200, "
num_disjoint_sets": 50},

4: {"num_elements": 100, "num_subsets": 400, "
num_disjoint_sets": 30},

5: {"num_elements": 100, "num_subsets": 500, "
num_disjoint_sets": 30},

6: {"num_elements": 100, "num_subsets": 600, "
num_disjoint_sets": 30},

7: {"num_elements": 100, "num_subsets": 800, "
num_disjoint_sets": 30},

8: {"num_elements": 100, "num_subsets": 1000, "
num_disjoint_sets": 30},

9: {"num_elements": 200, "num_subsets": 400, "
num_disjoint_sets": 60},

10: {"num_elements": 200, "num_subsets": 800, "
num_disjoint_sets": 60},

11: {"num_elements": 400, "num_subsets": 1000, "
num_disjoint_sets": 200},

I
"Set Splitting": {

1: {"num_elements": 5, "num_subsets": 5},
2: {"num_elements": 10, "num_subsets": 10},
3: {"num_elements": 10, "num_subsets": 50},
4: {"num_elements": 10, "num_subsets": 100},
5: {"num_elements": 10, "num_subsets": 200},
6: {"num_elements": 100, "num_subsets": 100},
7: {"num_elements": 100, "num_subsets": 200},
8: {"num_elements": 10, "num_subsets": 500},
9: {"num_elements": 10, "num_subsets": 1000},
10: {"num_elements": 15, "num_subsets": 500},
11: {"num_elements": 20, "num_subsets": 500},

I

"Shortest Common Superstring": {

g {Umip 4@, ey),

23

Under review as a conference paper at ICLR 2026

20,
40,
80,
100,
100,
100,
200,
300,
300,

nEw.
",
",

O o0 Jo Udbd W
55555555

@3 {UmPg
by

1: {"low":
{"low":
{"low":
{"low":
{"low":
{"low":
{"low":
{"low":
{"low":
O0: {"low":

1,

1
1
1
1,
1
1
1
1

= O o0 Jo Ul W

’
1,
}y

LB
LU
LB
LU
LB
nEw.

1:

O o0 Jo U W

}y

1:

O 0 Jo Ul b W

}y

1:

O o0 Jo Ul W

s

1:

oY U1 W N

0:

0:

0:

{"min_value":
{"min_value":
{"min_value":
{"min_value":
{"min_value":
{"min_value":
{"min_value":
{"min_value":
{"min_value":

{"min_value":

{vlnvv:
{Ilnll:
{"nvv:
{Ilnll:
{"n":
{Ilnll:
{"n":
{Ilnll:
{"1’1":
{"nll:

41,

8},

12},
15},
201},
25},
301},
401},
501},

60},

"Travelling Salesman
{"num_cities":
{"num_cities":
{"num_cities":
{"num_cities":
{"num_cities":
{"num_cities":
{"num_cities":
{"num_cities":
{"num_cities":
{"num_cities":

"Dominating Set": {

{"num_nodes":
{"num_nodes":
{"num_nodes":
{"num_nodes":
{"num_nodes":
{"num_nodes":

10},
20},
40},

"Quadratic Congruences":

~ ~ 0~

~

~ N~ 0~

el e e N e e
N

=~

’

"3-Dimensional Matching

501,
100},
200},
200},
4001},
600},

"Quadratic Diophantine Equations":
"high":
, "high":
, "high":
, "high":
"high":
, "high":
, "high":
, "high":
"high":
"high":

50},
100},
500},
1000},
5000},
10000},
50000},
80000},
100000},

{

200000},

"max_value":
"max_value":
"max_value":
"max_value":
"max_value":
"max_value":
"max_value":
"max_value":
"max_value":
"max_value":

100},
1000},
10000},
50000},
100000},
3000001},
5000001},
800000},
1000000},
3000000},

(3DM) ": {

(TSP) ": {

5, "target_length": 100},
8, "target_length": 100},
10, "target_length": 100},
12, "target_length": 100},
15, "target_length": 100},
17, "target_length": 200},
20, "target_length": 200},
25, "target_length": 200},
30, "target_length": 200},

40, "target_length": 300},
10, "k": 5, "edge_prob": 0.3},
15, "k": 5, "edge_prob": 0.3},
30, "k": 15, "edge_prob": 0.3},
50, "k": 20, "edge_prob": 0.3},
70, "k": 20, "edge_prob": 0.3},
100, "k": 20, "edge_prob": 0.3},

24

Under review as a conference paper at ICLR 2026

7: {"num_nodes": 70, "k": 20, "edge_prob": 0.2},
8: {"num_nodes": 80, "k": 20, "edge_prob": 0.2},
9: {"num_nodes": 100, "k": 20, "edge_prob": 0.2},
10: {"num_nodes": 150, "k": 20, "edge_prob": 0.2},
11: {"num_nodes": 160, "k": 15, "edge_prob": 0.2},
12: {"num_nodes": 180, "k": 15, "edge_prob": 0.2},
I
"Hitting String": {
1: {"nll. 5, "m": 10},
2: {"n": 5, "m": 20},
3: {"n": 10, "m": 20},
4: {"n": 10, "m": 30},
5: {"n": 10, "m": 40},
6: {"n": 10, "m": 45},
7: {"nll: 10’ llm". 50},
8: {"n": 10, "m": 55},
9: {"n": 10, "m": 60},
10: {"n": 10, "m": 70},
by
"Hamiltonian Cycle": {
1: {"num_nodes": 5, "directed": False},
2: {"num_nodes": 8, "directed": False},
3: {"num_nodes": 10, "directed": False},
4: {"num_nodes": 12, "directed": False},
5: {"num_nodes": 16, "directed": False},
6: {"num_nodes": 18, "directed": False},
7: {"num_nodes": 20, "directed": False},
8: {"num_nodes": 22, "directed": False},
9: {"num_nodes": 25, "directed": False},
10: {"num_nodes": 30, "directed": False},
by
"Bin Packing": {
l: {"num_items": 10, "bin_capacity": 20, "num_bins":
2: {"num_items": 20, "bin_capacity": 30, "num_bins":
3: {"num_items": 30, "bin_capacity": 30, "num_bins":
4: {"num_items": 40, "bin_capacity": 30, "num_bins":
5: {"num_items": 50, "bin_capacity": 50, "num_bins":
6: {"num_items": 60, "bin_capacity": 50, "num_bins":
7: {"num_items": 70, "bin_capacity": 50, "num_bins":
8: {"num_items": 80, "bin_capacity": 50, "num_bins":
9: {"num_items": 80, "bin_capacity": 30, "num_bins":
10: {"num_items": 100, "bin_capacity": 50, "num_bins":
by
"Exact Cover by 3-Sets (X3C)": {
1: {"num_elements": 3, "num_subsets": 6},
2: {"num_elements": 4, "num_subsets": 8},
3: {"num_elements": 5, "num_subsets": 10},
4: {"num_elements": 7, "num_subsets": 14},
5: {"num_elements": 8, "num_subsets": 16},
6: {"num_elements": 10, "num_subsets": 20},
7: {"num_elements": 15, "num_subsets": 30},
8: {"num_elements": 20, "num_subsets": 40},
9: {"num_elements": 25, "num_subsets": 50},
10: {"num_elements": 30, "num_subsets": 60},
I
"Minimum Cover": ({
1: {"num_elements": 5, "num_sets": 10, "k": 3},
2: {"num_elements": 10, "num_sets": 20, "k": 5},
3: {"num_elements": 10, "num_sets": 30, "k": 5},
4: {"num_elements": 15, "num_sets": 20, "k": 8},
5: {"num_elements": 15, "num_sets": 30, "k": 10},
6: {"num_elements": 20, "num_sets": 40, "k": 10},
7: {"num_elements": 25, "num_sets": 50, "k": 10},
8: {"num_elements": 30, "num_sets": 60, "k": 10},
9: {"num_elements": 35, "num_sets": 70, "k": 10},

25

3},
3},
3},
3},
Sty
S}y,
Sty
S}y,
10},
10},

Under review as a conference paper at ICLR 2026

26

10: {"num_elements": 40, "num_sets": 80, "k": 10},
11: {"num_elements": 45, "num_sets": 90, "k": 10},
12: {"num_elements": 50, "num_sets": 100, "k": 10},
13: {"num_elements": 55, "num_sets": 110, "k": 10},
14: {"num_elements": 60, "num_sets": 120, "k": 10},
15: {"num_elements": 65, "num_sets": 130, "k": 10},
16: {"num_elements": 70, "num_sets": 140, "k": 10},
I
"Graph 3-Colourability (3-COL)": {
1: {"num_nodes": 5, "num_edges": 8},
2: {"num_nodes": 8, "num_edges": 12},
3: {"num_nodes": 10, "num_edges": 20},
4: {"num_nodes": 15, "num_edges": 25},
5: {"num_nodes": 15, "num_edges": 30},
6: {"num_nodes": 15, "num_edges": 40},
7: {"num_nodes": 20, "num_edges": 40},
8: {"num_nodes": 20, "num_edges": 45},
9: {"num_nodes": 30, "num_edges": 60},
10: {"num_nodes": 30, "num_edges": 80},
I
"Clustering": {
1: {"num_elements": 6, "b": 10},
2: {"num_elements": 10, "b": 10},
3: {"num_elements": 15, "b": 10},
4: {"num_elements": 18, "b": 10},
5: {"num_elements": 20, "b": 10},
6: {"num_elements": 30, "b": 10},
7: {"num_elements": 40, "b": 10},
8: {"num_elements": 50, "b": 10},
9: {"num_elements": 60, "b": 10},
10: {"num_elements": 70, "b": 10},
by
"Betweenness": {
1: {"num_element": 3, "num_triples": 1},
2: {"num_element": 4, "num_triples": 2},
3: {"num_element": 5, "num_triples": 3},
4: {"num_element": 6, "num_triples": 4},
5: {"num_element": 7, "num_triples": 5},
6: {"num_element": 8, "num_triples": 6},
by
"Minimum Sum of Squares": {
1: {"num_elements": 10, "k": 5},
2: {"num_elements": 50, "k": 8},
3: {"num_elements": 100, "k": 8},
4: {"num_elements": 100, "k": 5},
5: {"num_elements": 100, "k": 4},
6: {"num_elements": 100, "k": 3},
7: {"num_elements": 200, "k": 10},
8: {"num_elements": 200, "k": 4},
9: {"num_elements": 200, "k": 3},
10: {"num_elements": 300, "k": 3},
b
"Bandwidth": {
1: {"num_nodes": 3, "bandwidth": 2},
2: {"num_nodes": 4, "bandwidth": 2},
3: {"num_nodes": 5, "bandwidth": 3},
4: {"num_nodes": 6, "bandwidth": 3},
5: {"num_nodes": 5, "bandwidth": 2},
6: {"num_nodes": 7, "bandwidth": 3},
7: {"num_nodes": 6, "bandwidth": 2},
8: {"num_nodes": 8, "bandwidth": 3},
9: {"num_nodes": 7, "bandwidth": 2},
10: {"num_nodes": 8, "bandwidth": 2},
by
"Maximum Leaf Spanning Tree": {

Under review as a conference paper at ICLR 2026

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413 b
1414

{"num_nodes": 5, "target_leaves": 2},
{"num_nodes": 10, "target_leaves": 5},
{"num_nodes": 20, "target_leaves": 10},
{"num_nodes": 30, "target_leaves": 20},
{"num_nodes": 40, "target_leaves": 30},
{"num_nodes": 60, "target_leaves": 50},
{"num_nodes": 70, "target_leaves": 60},
{"num_nodes": 80, "target_leaves": 65},
{"num_nodes": 90, "target_leaves": 75},
0: {"num_nodes": 100, "target_leaves": 80},

RO o Jo Ul W

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

27

Under review as a conference paper at ICLR 2026

Solution Errors. There are two fundamental error categories: problem-independent errors and
problem-dependent errors. Problem-independent errors are general errors that arise from external
factors unrelated to the problem’s intrinsic characteristics and all problems have these types of errors.
Problem-independent errors include JSON ERROR (JSON not found or JSON parsing errors), and
VERIFICATION ERROR (output format mismatches or structural validation failures). Problem-
dependent errors originate from the problem’s inherent complexity, which are defined based on
problem specificity. A comprehensive illustration of the errors is displayed in Table 5.

Table 5: A comprehensive illustration of errors.

Problem | Error Type | Description
JSON ERROR JSON not found.
VERIFICATION ERROR Wrong output format.
3SAT ERROR 1 The solution length mismatches the number of variables.
ERROR 2 Some clauses are not satisfied.
ERROR 1 Wrong solution format.
ERROR 2 The cover is empty.
Vertex Cover ERROR 3 Invalid vertex index, i.e., above the max or below the min.
ERROR 4 The cover size exceeds the limit.
ERROR 5 Some edges are not covered.
ERROR 1 Not all triples in the matching are in the original set.
3DM ERROR 2 The size of matching is wrong
ERROR 3 The elements in the matching are not mutually exclusive.
ERROR 1 Tour length mismatches number of cities.
TSP ERROR 2 Invalid city index, i.e., above the max or below the min.
ERROR 3 There exists cities not be visited exactly once.
ERROR 4 Tour length exceeds target length.
ERROR 1 Path length is wrong.
ERROR 2 Path does not return to start.
Hamiltonian Cycle ERROR 3 Not all vertices visited exactly once.
ERROR 4 There exists invalid vertex in path.
ERROR 5 There exists invalid edges in path.
3-COL \ ERROR 1 \ The two nodes of an edge have the same color
ERROR 1 Solution length mismatches the number of items.
Bin Packing ERROR 2 Invalid bin index.
ERROR 3 The total size exceeds bin capacity.
ERROR 1 Solution length mismatches the number of vertices.
ERROR 2 There exists invalid edges in solution.
Max Leaf Span Tree ERROR 3 The solution does not have exactly one root.
ERROR 4 The solution doesn’t span all vertices.
ERROR 5 The number of leaves in the solution is less than target.
ERROR 1 Solution length mismatches the number of integers.
QDE ERROR 2 There exists non-positive values in the solution.
ERROR 3 The equation does not hold.
ERROR 1 Solution length mismatches the number of elements.
Min Sum Square ERROR 2 The number of subsets exceeds the set limit.
ERROR 3 The sum exceeds the limit J.
ERROR 1 Wrong solution format.
Superstring ERROR 2 The solution length exceeds the limit.
ERROR 3 Some string is not the substring of the solution.
ERROR 1 Layout length mismatches the number of vertices.
Bandwidth ERROR 2 Layout is not a permutation of vertices.
ERROR 3 There exists edge exceeds the bandwidth limit.

28

Under review as a conference paper at ICLR 2026

D.2 SOLVER SUITE: npsolver

We introduce npsolver, a solver suite that provides a unified interface for both online (API-based)
and offline (local) models. The unified interface includes: i) Prompt Generation, which constructs
problem-specific prompts dynamically using the designed prompt templates shown in Appendix E,
including problem descriptions, in-context examples, and target problems; ii) LLM Completion,
which invokes either online or offline LLMs to generate responses from the constructed prompts;
iii) Solution Extraction, which designs regular expressions to parse JSON outputs from the LLMs’
responses, ensuring all online and offline LLMs Use the same JSON validation pipeline; iv) Error
Reporting, which standardizes error messages. Through the unified interface, npsolver enables both
online and offline models to share a common workflow. Through this unified pipeline, npsolver
enables consistent evaluation and analysis for both online and offline models. For each problem,
difficulty level, and model, npsolver stores detailed records—including the problem instance, example
solutions, full LLM responses, extracted solutions, input/output token counts, error messages, solution
correctness, and reasons for failure—in a pickle file to facilitate failure case analysis. The list of
models integrated in npsolver is shown in Table 6.

Table 6: Online and offline models considered in this paper via npsolver.

Type | Models \ Version | Provider
GPT-40-mini gpt-40-mini-2024-07-18 OpenAl
GPT-40 gpt-40-2024-08-06 OpenAl
ol-mini 01-mini-2024-09-12 OpenAl
Online 03-mini 03-mini-2025-01-31 OpenAl
DeepSeek-V3 deepseek-v3-241226 Huoshan
DeepSeek-V3-2503 deepseek-v3-250324 Huoshan
DeepSeek-R1 deepseek-r1-250120 Huoshan
Claude-3.7-Sonnet claude-3-7-sonnet-20250219 Anthropic
Offline QwQ-32B Qwen/QwQ-32B N/A
DeepSeek-R1-32B | deepseek-ai/DeepSeek-R1-Distill-Qwen-32B N/A

Online. The online state-of-the-art LLMs, e.g., o1/03-mini and DeepSeek-v3/R1, can be accessed
through APIs without local computational overhead. However, these online models have dependency
on network stability and API costs with token usage. npsolver supports multiple providers, e.g.,
OpenAl, through modular API clients. We implement efficient batch processing with LiteLLM,
which minimizes the latency during parallel problem-solving.

Offline. Open-weight LLMs, e.g., QwQ-32B and Deepseek-R1-32B, can be accessed by deploying
them locally. This allows for GPU-accelerated, high-throughput inference while avoiding API-related
costs. Offline models are deployed using vLLM, with hyperparameters—such as temperature and
maximum token length—manually configured according to their official technical documentation.

29

Under review as a conference paper at ICLR 2026

D.3 EVALUATION SUITE: npeval

npeval employs a statistically rigorous sampling strategy. For each difficulty, the aggregated per-
formance over 3 different independent seeds, with 30 samples generated per seed, aligning with
the minimum sample size for reliable statistical analysis (Hogg et al., 1977), are considered. This
sampling design, i.e., sampling 90 instances total per difficulty level for each problem, balances
budget constraints while mitigating instance-specific variance.

Evaluation Metrics. rliable (Agarwal et al., 2021) is an open-source Python library designed to
enable statistically robust evaluation of reinforcement learning and machine learning benchmarks.
Inspired by rliable, npeval provides the following 4 evaluation aggregate metrics:

* Mean: Mean is a standard evaluation metric that treats each score equally and calculates the overall
mean across runs and tasks.

* Interquartile Mean (IQM): IQM trims extreme values and computes the interquartile mean across
runs and tasks to smooth out the randomness in responses. IQM highlights the consistency of the
performance and complements metrics like mean/median to avoid outlier skew.

* Median: Median represents the middle value of the scores by calculating the median of the average
scores per task across all runs, which is unaffected by extreme values.

* Optimality Gap (OG): OG measures the average shortfall of scores below a predefined threshold ~,
where all scores above +y are clipped to 7, so as to quantify and penalize the underperformance,
making it less susceptible to outliers compared to mean scores.

To quantify uncertainty in aggregate metrics, e.g. IQM, npeval employs stratified bootstrap confidence
intervals (SBCIs) (Efron, 1979; 1987) for the performance interval estimation. SBClIs use stratified
resampling within predefined strata, e.g., difficulty levels, to preserve the hierarchical structure of the
evaluation data, reduce bias, and provide statistically sound interval estimates.

Comprehensive Analysis. Based on evaluation metrics, npeval provides a comprehensive analysis
of the LLMs’ performance over the problems and difficulty levels, including the full results for
each problem, each model and each level (Appendix H), the performance over different problems
(Appendix I), the analysis of both prompt and completion tokens of LLMs (Appendix J), the analysis
of the number of “aha moments” during the DeepSeek-R1 reasoning (Guo et al., 2025) (Appendix K),
an illustration of errors over problems (Table 5) with detailed error analysis (Appendix L), considering
both the solution errors, i.e., the errors returned by npgym, and the reasoning errors, i.e., the errors
produced in the internal reasoning process of LLMs, which enables the identification of the failure
cases (Appendix M). The cost of evaluation over LLMs is in listed in Table 23 (Appendix N).

30

Under review as a conference paper at ICLR 2026

E PROMPTS AND RESPONSES

Prompts. In this section, we carefully design the prompt template of NPPC for LLM:s to be simple,
general, and consistent across different problems. The prompt template includes:

* Problem description: where a concise definition of the NPC problem is provided, including the
problem name, the input, and the question to be solved.

» Examples: where one or multiple in context examples, defined as problem-solution pairs, are listed,
demonstrating the expected solutions, i.e., answer correctness and format, for specific instances.
These examples guide LLMs to generate the responses with the required format.

» Problem to solve: a target instance that requires LLMs to generate the solution.

* Instruction: which provides a directive to output answers in JSON format.

nppc_template = """
<problem_name> Problem Description:
<problem_description>

Examples:
<in_context_examples>

Problem to Solve:
Problem: <problem_to_solve>

Instruction:
Now please solve the above problem. Reason step by step and present
your answer in the "solution" field in the following json format:

AURTRY

json
{"solution": " "oy
AR N
nmn
example_and_solution = """Problem: <example_problem>
{"solution": <example_solution>}

nun

31

Under review as a conference paper at ICLR 2026

Responses. We extract the answers from the LLMs’ responses and the code is displayed below:

def extract_solution_from_response (response) :
find the json code

match = re.findall (r"**‘json\n(.*?)\n **'", response, re.DOTALL)

if not match:

match = re.findall (r"json\s*({["{}]x})", response, re.DOTALL)
if not match:

match = re.findall (r"\{["{}]*\}", response, re.DOTALL)

if match:
json_str = match[-1]
try:
remove the single line comment
json_str = re.sub(r"//.*$", "", json_str, flags=re.
MULTILINE)
remove the multiple line comment
json_str = re.sub (r"/\x[\s\S]x?2\x/", "", Jjson_str)
data = json.loads (json_str)
answer = data["solution"]
return answer, None
except (json.JSONDecodeError, KeyError, SyntaxError) as e:
print (f"Error parsing JSON or answer field: {e}")

return None, f"Error parsing JSON or answer field: {e}"
else:

print ("No JSON found in the text.")
return None, "JSON Error: No JSON found in the text."

The code extracts JSON data from LLM responses using three regex patterns in sequence:

* First tries to find content between triple quotes with “json” marker,
* If that fails, looks for “json” followed by content in curly braces,
* If both fail, simply looks for any content between curly braces.

If all the three tries cannot find the content, we will raise the error.

32

Under review as a conference paper at ICLR 2026

F LI1ST OF NP-COMPLETE PROBLEMS

Problem 1. * Name: 3-Satisfiability (3SAT)
¢ Input: A set of m clauses {C1,Cs,...,Cp} - over a set of n Boolean valued variables
X, = {z1,xa,...,z,}, such that each clause depends on exactly three distinct variables

from X,,. A clause being a Boolean expression of the form y; A y; A yi where each
y is of the form x or —x (i.e. negation of x) with = being some variable in X,,. For
example if n = 4 and m = 3, a possible instance could be the (set of) Boolean expressions:
Cy = (.’L‘l AN (“CEQ) AN (“ig)), Cy = (LCQ Nx3 A (“1‘4)), C3 = ((“1‘1) Nx3 A $4).

* Question: Can each variable z; of X,, be assigned a Boolean value «; € {true, false} in
such a way that every clause evaluates to the Boolean result true under the assignment
(i =y, i €{1,...,n})?

Problem 2. * Name: Graph 3-Colourability (3-COL)
¢ Input: An n-node undirected graph G = (V, E') with node set V' and edge set E.

* Question: Can each node of G = (V, F) be assigned exactly one of three colours - Red,
Blue, Green - in such a way that no two nodes which are joined by an edge, are assigned the
same colour?

Problem 3. ¢ Name: Clique

¢ Input: An n-node undirected graph G = (V, E') with node set V' and edge set E; a positive
integer k with &k < n.

* Question: Does G contain a k-clique, i.e. a subset W of the nodes V' such that W has size
k and for each distinct pair of nodes w, v in W, {u, v} is an edge of G?

Problem 4. e Name: Vertex Cover

* Input: An n-node undirected graph G = (V, E') with node set V' and edge set F; a positive
integer k with k < n.

* Question: Is there a subset W of V having size at most k£ and such that for every edge
{u,v} in E at least one of u and v belongs to W?

Problem 5. e Name: Quadratic Diophantine Equations
* Input: Positive integers a, b, and c.

* Question: Are there two positive integers x and y such that (a x x x z) + (b* y) = ¢?

Problem 6. * Name: Shortest Common Superstring
o Input: A finite set R = {r1,72,..., 7y} of strings (sequences of symbols); positive integer
k.

* Question: Is there a string w of length at most & such that every string in R is a substring of
w, i.e., for each r in R, w can be decomposed as w = wyrw; where wg, w;y are (possibly
empty) strings?

Problem 7. * Name: Bandwidth
¢ Input: n-node undirected graph G = (V, E); positive integer k < n.

* Question: Is there a linear ordering of V' with bandwidth at most k, i.e., a one-to-one
function f : V' — {0,1,2,...,n — 1} such that for all edges u, v in G, | f(u) — f(v)| < k?

Problem 8. e Name: Maximum Leaf Spanning Tree
* Input: n-node undirected graph G = (V, E); positive integer k < n.

* Question: Does GG have a spanning tree in which at least k£ nodes have degree 1?

Problem 9. * Name: Independent Set

33

Under review as a conference paper at ICLR 2026

¢ Input: n-node undirected graph G = (V, E); positive integer k < n.

* Question: Does GG have an independent set of size at least k, i.e., a subset W of at least k
nodes from V' such that no pair of nodes in W is joined by an edge in £?

Problem 10. e Name: Hamiltonian Cycle
¢ Input: n-node graph G = (V, E).

* Question: Is there a cycle in G that visits every node in V' exactly once and returns to the
starting node, and thus contains exactly n edge

Problem 11. e Name: Travelling Salesman
* Input: A set C of n cities {cy,...,c,}; a positive integer distance d(, j) for each pair
of cities (c;, ¢j),¢ < j,i,j € {1,...,n}; a positive integerB representing the maximum

allowed travel distance.

* Question: Is there an ordering (7 (1), w(2), ..., w(n)) of the n cities such that the total travel
distance, calculated as the sum of d(7(7), 7(i + 1)) fori = 1 ton — 1, plus d(w(n), m(1)),
is at most B?

Problem 12. * Name: Dominating Set
¢ Input: An undirected graph G(V, E) with n nodes; a positive integer k where k < n.

* Question: Does G contain a dominating set of size at most k, i.e. a subset W of V
containing at most k£ nodes such that every node v in V' — W (i.e. in V' but not in W) has at
least one neighbor w in W where u, w is an edge in £'?

Problem 13. e Name: 3-Dimensional Matching (3DM)

 Input: 3 disjoint sets X, Y, and Z, each containing exactly n elements; a set M of m triples
{(zi,yi,2) : 1 <i < m}suchthat z; isin X, y; in Y, and z; in Z, i.e. M is a subset of
XxY xZ.

* Question: Does M contain a matching, i.e., is there a subset) of M such that |Q| = n and
for all distinct pairs of triples (u, v, w) and (z,y, z) in Q it holds that u # x and v # y and
w # 2?7

Problem 14. * Name: Set Splitting
 Input: A finite set .S; A collection C1, . ..,), of subsets of S.

* Question: Can S be partitioned into two disjoint subsets - S1 and S2 - such that for each
set C; it holds that C; is not a subset of S7 and C; is not a subset of S5?

Problem 15. * Name: Set Packing
¢ Input: A collection C = (C4, ..., C,,) of finite sets; a positive integer & < m.

¢ Question: Are there k sets - Dy, ..., Dy - from the collection C such that forall 1 <1 <
Jj <k, D; and D; have no common elements?

Problem 16. * Name: Exact Cover by 3-Sets (X3C)

* Input: A finite set X containing exactly 3n elements; a collection C' of subsets of X each
of which contains exactly 3 elements.

e Question: Does C contain an exact cover for X, i.e., a sub-collection of 3-element sets
D = (Dq,...,D,) such that each element of X occurs in exactly one subset in D?

Problem 17. ¢ Name: Minimum Cover

* Input: A finite set S; A collection C' = (C1,...,Cy,) of subsets of .S; a positive integer
k<m.

* Question: Does C contain a cover for S comprising at most k subsets, i.e., a collection
D = (Dy,...,D;), where t < k, each D, is a set in C, and such that every element in S
belongs to at least one set in D?

34

Under review as a conference paper at ICLR 2026

Problem 18. * Name: Partition
* Input: Finite set A; for each element a in A a positive integer size s(a).

* Question: Can A be partitioned into 2 disjoint sets A; and A5 in a such a way that
ZaeAl S(a) = ZaeAz S(a){7

Problem 19. ¢ Name: Subset Sum

* Input: Finite set A; for each element a € A a positive integer size s(a); a positive integer
K.

* Question: Is there a subset B of A suchthat) 5 s(a) = K?
Problem 20. e Name: Minimum Sum of Squares

* Input: A set A of n elements; for each element a € A a positive integer size s(a); positive
integers k < n and J.

* Question: Can A be partitioned into %k disjoint sets A;,...,A; such that
k
Ei:l(ZmeAq‘, S(l’))2 <=J?
Problem 21. e Name: Bin Packing

* Input: A finite set U of m items; for each item u in U a positive integer size s(u); positive
integers B (bin capacity) and k, where k < m.

* Question: Can U be partitioned into & disjoint sets Uy, . . ., Uy such that the total size of
the items in each subset U; (for 1 < 7 < k) does not exceed B?

Problem 22. * Name: Hitting String
* Input: Finite set S = {s1,..., S} each s; being a string of n symbols over {0, 1, x}.

* Question: Is there a binary string x = 12> . .. 2, of length n such that for each s; € 5, s;
and x agree in at least one position?

Problem 23. e Name: Quadratic Congruences
* Input: Positive integers a, b, and c.

* Question: Is there a positive integer 2 whose value is less than ¢ and is such that 22
mod b == q, i.e., the remainder when z2 is divided by b is equal to a?

Problem 24. * Name: Betweenness

* Input: A finite set A of size n; a set C' of ordered triples, (a, b, ¢), of distinct elements from
A.

* Question: Is there a one-to-one function, f : A — {0,1,2,...,n — 1} such that for each
triple (a, b, ¢) in C it holds that either f(a) < f(b) < f(c) or f(c) < f(b) < f(a)?

Problem 25. e Name: Clustering

 Input: Finite set X; for each pair of elements = and y in X, a positive integer distance
d(x,y); positive integer B.

* Question: Is there a partition of X into 3 disjoint sets - X7, Xo, X3 - with which: for each
set X;,1 € {1,2,3}, for all pairs and y in X, it holds that d(z,y) < B?

35

Under review as a conference paper at ICLR 2026

G HYPERPARAMETERS

The hyperparameters used for benchmarking are listed in Table 7. For both offline and online-
deployed models, accuracy is averaged over three seeds and 30 trials per difficulty level per task.
Each model is allowed up to three attempts to mitigate the impact of API connection issues. For

offline models, we follow the recommended sampling parameters from the technical reports of
Deepseek-R1-32B and QwQ-32B for vLLM deployment.

Table 7: Hyperparameters

Type \ Hyperparameter | Value
seeds 42,53, 64
n_shots 1
Basic n_trials 30
batch_size 10
max_tries 3
temperature 0.6
. top_p 0.95
Offline Model max_tokens 7500
gpu_memory_utilization 0.8

36

Under review as a conference paper at ICLR 2026

H FULL RESULTS OVER PROBLEMS

In this section, we present the full results over problems, as displayed in Figure 5. For each element in
the table xy, is the value of IQM and a and b are the upper and lower values of the CI, respectively.

Table 8: 3SAT

| 1 2 3 4 5 6 7 8 9 10
QwQ-32B 0.9445:30 1.00§:08 0.560:93 0.11¢:43 0.00p:00 0.009:00 0.009:00 0.00p:60 0.000:0 0.000:00
DeepSeek-R1-32B | 0.83029 0.520%0 0.320:37 0.195% 0.135:32 0.020:55 0.009:00 0.009:09 0.009-55 0.009-06
GPT-4o-mini | 0.84055 0.270:30 0.170-35 0.085:05 0.020:65 0.000:06 0.005:00 0.005:60 0.009:60 0.000:09
GPT-40 0.940:9% 0.519:27 0.439-47 0.229:37 0.099:-45 0.013:93 0.019:93 0.009:59 0.008:99 0.009-39
9:38 0:9 0:69 0:80 0:29 0:39 0:3 0:98 0:09 0:08
Claude-3.7-Sonnet | 1.00189 0.893:9% 0.620:87 0.545:89 0.36537 0.193:2% 0.145:23 0.08549 0.03057 0.020:93
DeepSeek-V3 0940 83 0.788:28 0.388;§g 0.348:‘113 0.218:% 0.068;(3% 0.018;88 0.008:88 0.008:88 0.008;88
DeepSeek-V3-2503 1001 99098599 0.8999% 0.685:80 0.530-G3 0.3894% 0.28933 0.129:3 0.089% 0.03953
P 1:08 986 Vi 9:60 9:06 0:39 0:33 0.2 0:32 0:92
DeepSeek-R1 | 1.001:05 1.00+-39 0.995:92 0.98L59 0.974-9% 0.915:3¢ 0.83585 0.640:8% 0.230-20 0.1351)
ol-mini 0920 .93 0.910497 0920 .97 0.810'87 067() e 0200 37 0030 .03 0.00().()0 0.000400 0_000.00
03-mini 0.93§3§§ 082%% 072§ %% 077§’§§ 082§ §§ 071§ i% 060§ (7)§ 0.30§3§§ 0.13§3?% 0.12%2

Table 9: Vertex Cover

| 1 2 3 4 5 6 7 8 9 10

QwQ-32B 1.003:99 0.998:99 0.938-97 0.503:52 0.003-93 0.009-89 0.003:99 0.008-99 0.003:89 0.008-39
DeepSeek-R1-32B | 0.91389 0.920:95 0.819-51 0.520:5% 0.035:57 0.020:55 0.009:06 0.009-59 0.009:55 0.009:09
GPT-4o-mini | 0.945:9% 0.675-8Y 0.379:5% 0.185% 0.008:99 0.00359 0.005-95 0.003:59 0.005-95 0.003:59
GPT-40 0.965:90 0.889:58 0.78067 0.60p:22 0.01:08 0.039795 0.00p:50 0.00p:5 0.00755 0.00¢00
Claude-3.7-Sonnet | 1.001:89 0.97589 0.975:8% 0.905:59 0.530:37 0.379:35 0.370:3% 0.260-55 0.149-10 0.049-00
DeepSeek-V3 |0.925:99 0.974:59 0.960795 0.895:33 0.34033 0.14828 0.060:89 0.035:95 0.039-07 0.01952
DeepSeek-V3-2503 100;88 100%83 1.003-38 0.879:99 0. 288}3 0.37939 0.275:33 0.099§2 00985‘; 0.019:93
DeepSeek-R1 | 1.003:09 1.00159 1.004-05 1.001-39 0.918-97 0.779:37 0.41335 0.189:29 0.1333% 0.068-49
ol-mini 0.746:-25 077075 0.785:75 0.919:62 058038 031957 0.13545 0.139:88 0.0862 0.02066
03-mini 0.82020 0.895:93 0.890:35 0.805:29 0.599-2% 0.52025 0.195:2F 0.13%:33 0.118:85 0.079:59

Table 10: Superstring

| 1 2 3 4 5 6 7 8 9 10

QwQ-32B 1.00}:98 0.920-97 0.283-33 0.193-23 0.173:23 0.063-43 0.08%-43 0.013-93 0.009-39 0.009-39
DeepSeek-R1-32B 058" 7“ 0240 0 0.16922 0.12522 0.103:3% 0.033:93 0.020-92 0000 o 0000 g 0.005:0%
GPT-40-mini 0323 gg 0088 }fg 0.020:5% 0.018:93 0.003:5% 0.018:33 0.009:09 0013 33 0008 88 0.003:59
GPT-4o0 0.818:82 0.47537 0.119:4¢ 0.1054% 0.06589 0.1653% 0.060:38 0.12513 0.079:5% 0.039:06
Claude-3.7-Sonnet | 0.9959% 0.975:98 0.780:20 0.519:3¢ 0.680-40 0.7403) 0.775:5% 0.88):35 0.828:29 0.749-50
DeepSeek-V3 | 0. 808?2 0.528;3; 0493_2; 046030 0.440:30 0.400:35 0.249-3% 0.22037 0. 088 55} 0.025:93
DeepSeek-V3-2503 | 0.99g97 0.890%3 0.785%5 0.615:27 0.530:% 0.37p:33 0.21g:58 0.17017 0.26p:35 0.135:14
DeepSeek-R1 | 1.001:09 0.99459 0.948-97 0.810:29 0.805-83 0.619:L% 0.37539 0.319:3% 0.1134¢ 0.138-17
ol-mini 0.91937 0.595:73 0.48):33 0.205:%2 0.109:52 0.035:95 0.018:33 0.003:59 0.008-09 0.009:99
03-mini 1.003:98 1.001:89 0.985:99 0.899:22 0.748-15 0.319:3% 0.049:05 0.018:93 0.005:59 0.008:0%

37

Under review as a conference paper at ICLR 2026

Table 11: QDE

| 1 2 3 4 5 6 7 8 9 10

QwQ-32B [0.729:50 0.56077 0.19:37 0.160:37 0.03¢:53 0.000:65 0.000:66 0.006:00 0.000:66 0.000:66
DeepSeek-R1-32B | 0.8495% 0. 628 000.1194% 0.083:32 0.009:55 0.009:56 0.009:05 0.009:59 0.009:08 0.009:09
GPT-40-mini 0.495-53 0.235-42 0.035:57 0.000:09 0.008-05 0.009:50 0.009:09 0.005-55 0.008:50 0.009:69
GPT-do |0.679.40 0.4303% 008010 0.030% 0.0190% 0.00700 0.000:02 0.000.%0 0.009% 0.00300
Claude-3.7-Sonnet | 0.9658% 0.970:97 0.780:52 0.595:57 0.10:52 0.000:50 0.009:06 0.009:09 0.009:55 0.009-06
DeepSeek-V3 | 0.975:97 0.895:33 0.38):32 0.190-30 0.045-05 0.020:55 0.009:00 0.008:05 0.005:09 0.00:60
DeepSeek-V3-2503 | 1.003-39 1.001-53 0.683-20 0.645-22 0.30035 0.179:22 0.085-53 0.015:55 0.087:35 0.009:05
DeepSeek-R1 1.001-50 1.001-85 1.00105 0.978:99 0.82029 0.680-43 0.27535 0.175:75 0.099:83 0.035:08
ol-mini 0.570:25 0.598-%5 0.44085 0.460-3% 0.118:57 0.035:85 0.009:09 0.005-95 0.008-90 0.00869
03-mini 0.949-55 0.99:99 0.940:5% 0.965:90 0.815:37 0.665L5 0.300:55 0.27535 0.275:35 0.13047

Table 12: 3DM

| 1 2 3 4 5 6 7 8 9 10

QwQ-32B 1.003-99 0.98%99 0.938-97 0.949-37 0.333:83 0.063:59 0.003:99 0.008:99 0.003:89 0.008-99
DeepSeek-R1-32B | 0.87459 0.420-3% 0098 & 0.008:-38 0.008;88 0.013:53 0.008:99 0.009:00 0.008;88 0.009:08
GPT-4o-mini |0.433:37 0.095:3% 0.029:85 0.00589 0.005:89 0.005:59 0.009:59 0.009:59 0.009:58 0.009:09
GPT-4o 064" 83 0.24957 0.135:29 0.109:42 0020 & 0.009:59 0.008-9% 0000 i 0000 g 0.005:0%
Claude-3.7-Sonnet 0963 g; 0.849°20 0.765-89 0.599-19 0213 f% 0.099:49 0.075:4% 0003 33 0008 88 0.003:99
DeepSeek-V3 | 0.74582 0.320-4% 0.080:53 0.035-15 0.005:83 0.008:09 0.009:83 0.005:95 0.009:09 0.00959
DeepSeek-V3-2503 | 0.945-95 0.769-27 0.495:¢% 0.315-37 0.079:89 0.035:95 0.019:55 0.005:95 0.009:09 0.00860
DeepSeek-R1 100% 83 1.004:05 0.98599 0.975:99 0.933:57 0.91995 0.919:37 0. 573 gg 0. 278 2; 0.025:93

ol-m?n? 0.87§E§§ 089§ ég 081§ % 0.77§;2§ 0.38§;§§ 0.26§‘§§ 0.11§;§§ 001§§§ 0.00§;§§ 000§ §§
03-mini 0.635:60 0.865:57 0.725:67 0.715:57 0.57553 0.56.43 0.385:35 0.30p:53 0.235:33 0.20:17

Table 13: TSP

| 1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.61989 0.418:33 0.420-3% 0.560:%0 0.269-33 0.193:27 0.028:97 0.003:99 0.009-39 0.003:89
DeepSeek-R1-32B 0888 22 0.628‘52 0.305:39 0.135:33 0028 88 0.015:85 0.008-90 0008 88 0008 88 0.009:69
GPT-do-mini | 0.930% 034008 0.12030 0.07bid 0.00088 000880 00088 0.0004% 0.0004 0.008%
GPT-40 0.970:9¢ 0.765:39 0.590-87 0.40035 0.220-33 0.160:85 0.085:57 0.020:57 0.005:09 0.009-09
Claude-3.7-Sonnet | 1.001:89 0.9859% 0.900:33 0.8355% 0.860:20 0.800:%3 0.54079 0.519:25 0.08):5% 0.069:50
DeepSeek-V3 |0.985:05 0.900:50 0.749g5 0.620:20 0.49557 0.495-42 0.170:25 0.079:35 0.020:05 0.008:60
DeepSeek-V3-2503 | 1.00-05 0.940-30 0.96589 0.830:50 0.705:E% 0.665:29 0.399:3% 0.10575 0.01g:05 0.018:05
DeepSeek-R1 1.001:06 0.995°9% 0.970:97 0.995:9% 0.87g:57 0.780-52 0.620:57 0.240:36 0.03):50 0.009:00
ol-mini 0. 848 ?g 0.899:22 0.670:45 0.570:5% 0.3403% 0. 378 %g 0.180:32 0. 018 83 0008_88 0.009-69
03-mini 0.79955 0.628:55 0.53):%3 0.285:33 0.310:37 0.3051% 0.308:35 0.195:2% 0.128:57 0.070:53

Table 14: Hamiltonian Cycle

| 1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.94399 0.878:23 0.803:9% 0.628:87 0.333-33 0.163:20 0.033-25 0.003:59 0.009-38 0.003:89
DeepSeek-R1-32B | 0.695 52 0.368:39 024333 0.099:53 0.008:05 0.010:83 0.025:93 0.009:50 0.005-05 0.009:09
GPT-4o-mini | 0.70%:5 0.26519 0.099:3% 0.08543 0.018:03 0.00559 0.018:95 0.003:53 0.005-35 0.003:59
GPT-4o 0.739 %3 0.395:43 0.220 %; 0.120-39 0.095-55 0.015:55 0.069:50 0.005:05 0.008:50 0.00869
Claude-3.7-Sonnet [0.99599 0.800-50 0.740-53 0.645:L5 0.320%% 0.230-37 0.27535 0.160%) 0.100:1) 0.020:08
DeepSeek-V3 [0.830:99 0.440-33 0.148;%8 0.1631% 0.095:57 0.0655% 0. 068 58 0.065 39 001383 0. 018 83
DeepSeek-V3-2503 | 0.995:99 0.820-92 0.519:35 0.380:33 0.160:27 0.145-17 0.099:8% 0.105:5¢ 0.060:0% 0.035:55
DeepSeek-R1 | 1.001:09 1.00189 0.975:98 0.910-3% 0.765-03 0.640:%3 0.4953% 0.369:32 0.179%3 0.045:45
ol-mini 0.7298% 0.719:62 0.549°90 0.4053% 0.195%2 0.23579 0.120:17 0.085:3% 0.049-9 0.009-08
03-mini 0.8288% 0.8452% 0.715:5% 0.715:85 0.635%3 0.595:87 0.4493% 0.320:32 0.20055 0.220-33

38

Under review as a conference paper at ICLR 2026

Table 15: Bin Packing

| 1 2 3 4 5 6 7 8 9 10
QwQ-32B |0.880:53 0.830:27 0.465:35 0.083:80 0.00g:00 0.000:00 0.000:00 0.000:65 0.000-6 0.006:00
DeepSeek-R1-32B 0.268:?; 0.035:87 0.019:83 0.035:87 0.005:89 0.000:59 0.009:59 0.009:56 0.009:08 0.009:06
GPT-40-mini 0.30§;§§ 003§;8§ 0.04§;§§ 0.03§;§§ 0.00§;§§ 0.00(8);§§ 000§;§§ 0.00§;§§ 0.00§;§§ 0.00§;§§
GPT-40 0.83575 0.44473 0.34p33 0.18573 0.04g759 0.025:05 0.00g799 0.00p759 0.00q:99 0.00g:
Claude-3.7-Sonnet | 0.9859% 0.8933 0.58)7% 0.395:3% 0.070:3¢ 0.010:55 0.019:05 0.039:07 0.019:55 0.009-06
DeepSeek-V3 [0.660:53 0.460:35 0.440-39 0.379:39 0.060-85 0.049-0% 0.020-05 0.008-09 0.018-05 0.005-00
DeepSeek-V3-2503 | 1.003-30 0.870:33 0.743-53 0.625-87 0.18027 0.183:23 0.095-43 0.025:55 0.020:55 0.009:05
DeepSeek-R1 1.00}:05 1.00}:05 1.001:09 0.981:99 0.800:9% 0.640-27 0.499:55 0.295-35 0.069:05 0.039-05
ol-mint 067080 05808 052087 033080 031058 0.1083 007810 000808 002887 001003
03-mini 0.720:83 () 67980 (.620-67 ().480-57 ().410°47 ().29043 (). 240:47 () 17027 () 490:47 () 2g0-33
0.60 U-O7g57 U.025757 U.20p733 U.2lgizz U.29g717 U.2%g713 U.17g7g U.22p733 U.28q750

Table 16: 3-COL

| 1 2 3 4 5 6 7 8 9 10
QwQ-32B 0.965:99 0.919:32 0.78387 0.56557 0.3494% 0.10342 0.013:93 0.019:53 0.003-59 0.009-99
DeepSeek-R1-32B | 0.4993% 0.510:3% 0038 8(7) 0.01953 0.008;88 0.00559 0.00585 0.00889 0.008;88 0.009:08
GPT-4o-mini | 0.40)-30 0.179:35 0.000:00 0.000:00 0.005:06 0.000:60 0.005:06 0.009-60 0.005:05 0.000-09
GPT-40 060" 8 039O 2 0.039:85 0.019:53 0010 & 0.005:59 0.009:89 000" o 000O g 0.009:59
Claude-3.7-Sonnet 0768 27 0708 Z? 0.22952 0178 %g 0098 }19 0.049 5% 0.01953 0008 88 0008 88 0.00989
DeepSeek-V3 | 0.675:43 0.605°93 0.130:32 0.120-17 0.035-05 0.02055 0.020-07 0.008-95 0.005:09 0.008:59
DeepSeek-V3-2503 | 0.80957 0.90533 0.485%3 0.640 %2 0.32030 0.1603% 0.160:33 0.099:35 0.020:55 0.009:09
DeepSeek-R1 0. 99(1) 89 1.00}:98 0.975:93 0.978;35 0.888:2‘9 0.720:68 0.72082 ()518 % 0.22527 0.045 5%
ol-m?n? 061{1{% 0.76§;§§ 057§ %g 0.62§;§§ 0.37§;§§ 027§ g‘% 0.34§;‘é% 017§§2 0.03§;8§ 002§ §§
03-mini 0.985.97 0.91g557 0.965799 0.84553 0.78q79 0.725767 0.71g5g0 0.615:37 0.515737 0.295757

Table 17: Min Sum Square

| 1 2 3 4 5 6 7 8 9 10
QwQ-32B 0.779 Sf’ 0.003:9% 0.003:8% 0.003:8% 0.003:99 0.008;88 0.008-99 0.018:53 0.003:83 0.009:59
DeepSeek-R1-32B 0.238"118 0008 88 0.049 57 0078 (1)8 0068 (1)3 0.049 5 0.02957 0068 (1)2 0018 83 0.069 55
GPT-do-mini |0.74050 0.620:00 0.0335¢ 0.07040 0.08%:40 0.030:8% 0.030:0 0.02357 0.02098 0.049:L3
GPT-40 0.940-05 0.820:50 0.460:35 0.56023 0.440-33 0.480-33 0.04g:05 0.010:05 0.019:03 0.019:05
Claude-3.7-Sonnet 0,98[1):89 0.848:38 0.835:29 0.738:?8 0.798:% 0.648158 0.5955% 0,678:;; 0.625-9% 0.148;3?
DeepSeek-V3 [0.870:33 0.908;%:;‘3 0.849:29 0.588;‘55 0.588;23 0.485-3% 0.075-48 0.178;3% 0.075:45 0.025:05
DeepSeek-V3-2503 | 1.001°50 0.48537 0.719:5% 0.5998% 0.620%7 0.610%9 0.220:33 0.299:5% 0.020-53 0.009-00
DeepSeek-R1 | 1.00170 0.88033 0.645%7 0.46037 0.47933 0.3%55 0.13916 0.13510 0.07g:4 0.0200
ol-mini 0. 628 g; 0.70p5 0.27935 0.185:56 0.140:53 0. 108 5? 0.03g:50 0. 068 8§ 0.020:05 0.010:05
03-mini 0.695-55 0.3853% 0.380:37 0.393:3% 0.525-9 0.30935 0.440:2% 0.245-57 0.035-95 0.18)%3

Table 18: Bandwidth

| 1 2 3 4 5 6 7 8 9 10
QwQ-32B 0.965:99 0.919:92 0.9059% 0.843:9% 0.76387 0.663:57 0.633:87 0.303-3 0.20339 0.069-0%
DeepSeek-R1-32B | 0.93539 0.835:87 0.870:35 0.670:%3 0.5491° 0.498;;25 0.38539 0,118;(1)§ 0.149:17 0.035:57
GPT-4o-mini | 1.00{-05 0.945°50 0.940:0% 0.845:5% 0.78059 0.470-50 0.460-35 0.205:33 0.140-30 0.030:04
GPT-40 1.003:05 0.964:95 0.975:9% 0.945-% 0.78)-87 0.620-¢7 0.609-25 0.2203Y 0.109-42 0.020-05
Claude-3.7-Sonnet | 1.001:60 0.96590 0.965:00 0.87¢38 0.785:¢r 0.660:5; 0.62927 0.28532 0.119:43 0.02005
DeepSeek-V3 1()0% 88 0.985:9% 0.995:5% 0.93937 0.748:2% 0,638jg§ 0.568;33 0. 348 §8 0.235%2 0. 038 8(7)
DeepSeek-V3-2503 | 1.001-5) 0.918:33 0.895:29 0.628;?; 0.585% 0.575:%% 0.4393% 0.3353% 0178;?% 0.0495%
DeepSeek-R1 1.003:05 0.900-53 0.930:99 0.880-35 0.830:39 0.685:L% 0.595:%7 0.345-32 0248;58 0.07989
ol-mini 0.74980 0.745-63 0.8493% 0.828;?; 0.8257 0.68552 0.59995 0.33537 0.2453% 0.069 55
o3mini 08005 08888 08208 00003 07208 05800 052038 02003 017438 o008l

39

Under review as a conference paper at ICLR 2026

Table 19: Max Leaf Span Tree

\ 1 2 3 4 5 6 7 8 9 10

QwQ-32B |0.73p:82 0.930:87 0.280:50 0.060:0% 0.00p:00 0.000:00 0.009:00 0.00p:60 0.000:00 0.000-00
DeepSeek-R1-32B | 0.200:39 0.2495% 0.185:21 0.005:55 0.005:59 0.000:56 0.009:06 0.009-59 0.009:05 0.009:08
GPT-40-mini 0.268jj‘§ 0.198339 0.018:88 0.008:88 0.008j88 0.008388 0008;88 0.008j88 0008;88 0.008:88
GPT-40 0.495-37 0.535:82 0.2993% 0.24930 0.087:42 0.00559 0.000:59 0.005-55 0.005:56 0.009-06
Claude-3.7-Sonnet 1.00%:88 0.996:8? 0.968:85 0828:?8 0.718:2? 0.598;(5? 0128:39 0.00888 0008:88 0.00888
DeepSeek-V3 [0.799-52 0.880-33 0.890-35 0.699-59 0.560-89 0.260:53 0.270-13 0.098-55 0.028-05 0.015-05
DeepSeek-V3-2503 0.908;‘25 0.8653% 0.765:52 0.39933 0.185%0 0.22027 0.28):33 0.170:2% 0.079:35 0.020:03
DeepSeek-R1 0.97597 0.9955% 0.88922 0.635£% 0.3993% 0.185%3 0.219:33 0.015:9% 0.019:03 0.009-08
ol-mini 0.708:Z§ 0538:23 0.578;?? 0.178:%8 0.028:88 0.028;88 0008;88 0.008:88 0018:88 0.008;88
03-mini 0.775:8% 0.685&3 0.6658% 0.660 50 0.42030 0.2603% 0.199%2 0.16952 0.119:5% 0.099-5%

40

Under review as a conference paper at ICLR 2026

I PERFORMANCE OVER PROBLEMS

In this section, we present the performance of LLMs on each problem across different levels.

03-mini

ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B

03-mini

ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B

03-mini

ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B

IQM Mean Median Optimality Gap
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
]] 1 L}
1 1 1 [
| I I
0.25 0.50 0.75 0.2 04 0.6 0.80.0 0.3 0.6 0.9 04 06 0.8
Figure 12: 3SAT
IQM Mean Median Optimality Gap
1 1 1 1
| | | |
1 1 1 1
| | | |
1 1 1 1
1 1 1 1
1 1 1 1
| | | |
1 1 [1
| |]]
0.2 04 06 0.30 045 0.60 0.00 0.25 0.50 0.75 0.45 0.60 0.75
Figure 13: Vertex Cover
QM Mean Median Optimality Gap
[| [I
1 1 1 1
| | | |
1 1 1 1
[[[[
1 1 1 1
1 L 1 u
1 1 1 1
| | n | L}
0.25 0.50 0.75 0.25 0.50 0.750.00 0.25 0.50 0.75 0.25 0.50 0.75 1.00

Figure 14: Superstring

41

Under review as a conference paper at ICLR 2026

IQM Mean Median Optimality Gap

03-mini 1 1 1 1
ol-mini
DeepSeek-R1 1 1 1 1
DeepSeek-V3-2503 1 1 1 1
DeepSeek-V3 1 1 I 1
Claude-3.7-Sonnet 1 1 1 1
GPT-40 | 1 I |
GPT-40-mini |] 1
DeepSeek-R1-32B | 1 1
QwQ-32B m | I

00 02 04 0.6 0.2 0.4 0.6 0.00 0.25 0.50 0.75 0.4 0.6 0.8

Figure 15: QDE

QM Mean Median Optimality Gap

03-mini 1 1 1 1
ol-mini I |
DeepSeek-R1 1 1 1 1
DeepSeek-V3-2503 1 1 1 1
DeepSeek-V3
Claude-3.7-Sonnet 1 1 1 1
GPT-40 | 1 I 1
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B | [| I

0.00 0.25 0.50 0.75 0.2 04 06 0.80.0 0.3 0.6 0.9 04 06 0.8

Figure 16: 3DM

QM Mean Median Optimality Gap

03-mini 1 1 1 1
ol-mini I I I I
DeepSeek-R1 1 1 I 1
DeepSeek-V3-2503 1 1 1 1
DeepSeek-V3 1 1 1 1
Claude-3.7-Sonnet 1 1 [[
GPT-40 1 1 1 1
GPT-40-mini & L] L
DeepSeek-R1-32B 1 1 I 1
QwQ-32B m m m m

0.25 0.50 0.750.15 0.30 0.45 0.60 0.00 0.25 0.50 0.75 0.45 0.60 0.75

Figure 17: TSP

IQM Mean Median Optimality Gap

03-mini 1 1 1 1
ol-mini
DeepSeek-R1 1 1 [[
DeepSeek-V3-2503 I
DeepSeek-V3 1 1 1 1
Claude-3.7-Sonnet 1 1 1 1
GPT-40 @ 1 1 |
GPT-40-mini
DeepSeek-R1-32B 1 1 I 1
QwQ-32B m u |]

0.2 04 06 0.15 0.30 0.45 0.60 0.00 0.25 0.50 0.75 0.45 0.60 0.75 0.90

Figure 18: Hamiltonian Cycle

QM Mean Median Optimality Gap

03-mini 1 1 1 1
ol-mini
DeepSeek-R1 1 1 1 1
DeepSeek-V3-2503
DeepSeek-V3 1 1 1 1
Claude-3.7-Sonnet 1 1 1 1
GPT-40 1 1 1 1
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B m [] |

00 02 04 0.6 0.2 0.4 0.6 0.00 0.25 0.50 0.75 0.4 0.6 0.8 1.0

Figure 19: Bin Packing

42

Under review as a conference paper at ICLR 2026

IQM Mean Median Optimality Gap
03-mini 1 1 1 1
ol-mini
DeepSeek-R1 1 1 1 1
DeepSeek-V3-2503 1 1 1 1
DeepSeek-V3 | 1 1 1
Claude-3.7-Sonnet & 1 I 1
GPT-40
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B m] |

0.00 0.25 0.50 0.75 02 04 06 0.00 0.25 0.50 0.75 04 06 0.8

Figure 20: 3-COL

IQM Mean Median Optimality Gap
03-mini 1 1 1 1
ol-mini
DeepSeek-R1 1 1 1 1
DeepSeek-V3-2503 1 1 1 1
DeepSeek-V3 1 1 1 1
Claude-3.7-Sonnet 1 1 1 1
GPT-40 1 1 1 1
GPT-40-mini 1] [| []
DeepSeek-R1-32B | 1 1
QwQ-32B | 1 1

00 02 04 06 0.2 04 0.6 0.0 02 04 0.6 04 06 0.8

Figure 21: Min Sum Square

QM Mean Median Optimality Gap
03-mini [1 1 1
ol-mini
DeepSeek-R1 1 1 1 1
DeepSeek-V3-2503 1 1 1 1
DeepSeek-V3 1 1 1 1
Claude-3.7-Sonnet 1 1 1 1
GPT-40 1 1 I |
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B &] m

0.0 0.2 0.4 0.6 0.15 0.30 045 0.0 0.2 04 0.6 0.60 0.75 0.90

Figure 22: Max Leaf Span Tree

IQM Mean Median Optimality Gap
03-mini 1 1 1 1
ol-mini I I I
DeepSeek-R1 1 1 1 1
DeepSeek-V3-2503 1 1 1 1
DeepSeek-V3 1 1 1 1
Claude-3.7-Sonnet 1 1 1 1
GPT-40 1 1 1 1
GPT-40-mini | | | |
DeepSeek-R1-32B 1 1 1 1
QwQ-32B | i —) — |

0.48 0.56 0.64 0.72 0.50 0.55 0.60 0.65 05 06 0.7 0.8 0.35 040 0.45 0.50

Figure 23: Bandwidth

43

Under review as a conference paper at ICLR 2026

J TOKENS

In this section, we present the results of the prompt and completion tokens used in LLMs.

o QwQ-32B 3000 DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
- correct correct 2000 correct 2000 correct 2000 correct
£2000 wrong 2000 wrong wrong wrong wrong
<]
£ 1000 1000 1000 1000 1000
< v TX ¥ 7 77 X X %] 2000 2000 3000
B 5000 50001 ¢ ¢ ' 2000
[® 1000 ¥
& ! (.“_\——r'/ 1090 H_H‘Frf-f‘bl 1000 M
S 0 A bR Wk (]
123456728910 123456780910 123456780910 123456780910 123456780910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
correct correct correct correct correct
22000 wionp 2000 whony 2000 wong 2000 wong 2000 oy
E 1000 1000 1000 1000 1000
S 4000 4000 20000
B ! 20000 10000 2
32000 2000 10000 '/'/H‘!\.—'—“_'
o
o bl 0 L) 0
123456780910 123456780910 123456780910 123456780910

Figure 24: 3SAT

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
correct correct 4000 correct 4000 correct correct
+ 5000 5000 4000
g wrong wrong wrong wrong wrong
E 2500 2500 2000 2000 2000
0 0
2000
2000
5000 2000]
x ! - 1 &
: 1000 i 1000 000 l
0 “ - ! 0
12345678910 123456780910 123456780910 123456780910 123456780910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
+ 4000 correct 4000 correct 4000 correct 4000 correct 4000 correct
3 wrong wrong wrong wrong wrong
g 2000 2000 2000 2000 2000
0 0 0 0
§4000 P3| 4000 20000 40000
3 50000 B&4
- i i
gzooo 2000 0 o o ,_,w
S L] 0 0] 0
123456728910 123456780910 123456780910 123456780910 123456780910

50000

Prompt

ion

Completi

25000

50000

2

Prompt

Completion

5000

IS
=)
=3
=3

2000

=)

Figure 25: Vertex Cover

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
correct 50000 correct correct correct correct
wrong wrong 40000 wrong 40000 wrong 50000 wrong
25000 20000 20000 25000
0 0 0 0
¥
<000 5000 3000 3000
f 2000 2000 :
¥ ! N 2500 1000 1000 i
123456780910

345678910

0 (] :
12345678910

123456782910

123456780910

DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
correct 50000 correct 50000 correct correct correct
wrong wrong wrong 40000 wrong 40000 wrong
25000 25000 20000 20000
0 0 0 0
] 40000 T T T = 20000 10000
N
2000 10000 5000 20000 H
i X
- = 0 0 0
12345678910 12345678910 12345678910 1234567280910 12345678910

Figure 26: Superstring

44

Under review as a conference paper at ICLR 2026

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
., 200 correct. 200 correct 170 correct 170 correct correct
& 50 wrong wrong wrong wrong 190 wrong
180
g 160 160
160 160 180
¥ rx 2000 4000
5000 : 2000
LA 1000. { 100014 4 2000 NN
HiHH 0
123456738910 123456780910 123456780910 123456780910 123456780910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
160 correct, 160 correct correct correct correct
‘é wrong wrong 160 wrong 180 wrong 165 wrong
S 160
& 150 150 150 170 155
s 4000 XX 4000 40000
2 H 20000
= 10000
g 2000 10000 20000 {
S 0 0 0 -
123456780910 123456780910 123456780910 123456780910
Figure 27: QDE
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
6000 6000 —222 4000 4000 4000
o correct correct correct correct correct
£4000 wrong 4000 wrong wrong wrong wrong
2000 2000
22000 2000 2000
s % o ® X 3000 4000 ¥
820000 5000 2000 2000
g 1 ik ! i 2000
S i 1000 P"HW 1 #| 1000 i
0
012345678910 12345678910 123456738910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
4000 e 4000 B> 4000 4000 4000
- correct correct correct correct correct
g wrong wrong wrong wrong wrong
S 2000 2000 2000 2000 2000
a
54000 FFTFTE] 4000 20000 20000 40000
=
o
22000 ¢ 10000 10000 20000
£ H—r‘i\-—r‘”‘— 2000
o IR 0
123456780910 12345678910 12345678910 12345678910
Figure 28: 3DM
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
- correct correct 40000 correct 40000 correct 40000 correct
250000 wrong 50000 wrong wrong wrong wrong
[20000 20000 20000
I
0 0 0 0 0
< XXX 4000
5000 5000 10000 10000 (o
g‘ H 5000 x 5000 2000 i ¥
S x
S o 0 [| 0 iR 0Le—8—8—b—8—t—t—t—i—k
1234567280910 12345678910 1234567380910 1234567280910 123456780910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
., 40000 correct 40000 correct 40000 correct 40000 correct 40000 correct
g wrong wrong wrong wrong wrong
S 20000 20000 20000 20000 20000
-
0 0 0 0 0
s 4000 & 0 X X X X1 4000 15000 >
3 i b ;| 20000 40000
22000 + 10000 20000 Pt
s Tiai 2000 5000 ' ! ! [
o Wow N v 0 0
12345678910 12345678910 12345678910 1234567380910 12345678910

Figure 29: TSP

45

Under review as a conference paper at ICLR 2026

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
- correct. correct. 4000 correct. 4000 correct. 4000 correct.
54000 wrong 4000 wrong wrong wrong wrong
S 5000 2000 2000 2000 2000
-
3000 4000
5000 2000 2000
1 2000
w ux 2 10001, (. 1000
Ao [

0
123456718910

12345678910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
., 4000 comect 4000 comect 4000 correct 4000 correct 4000 correct
g wrong wrong wrong wrong wrong
52000 2000 2000 2000 2000
IS
c4000{7 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ F| 4000 ¥ 20000 20000
% ' 1 50000
Kt M 1 i
22000 10000 10000 .
£ 2000 i i 25000 i
S]
© 0 0
1 12345678910 12345678910 12345678910 12345678910
Figure 30: Hamiltonian Cycle
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
- correct correct 1000 correct 1000 correct correct
E_IOOO wrong 1000 wrong wrong wrong 1000 wrong
I
£ 500 500 500 500 500
c x e 3000
S
820000 5000 2000 5000 20001
g‘ & 1 i ¥
1000{ fA-H—HHHHHH 1000 H\'—H‘Hm
S 1 0 [AEEEN oLt
123456780910 12345678910 12345678910 123456780910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
. 1000 correct 1000 correct 1000 correct 1000 correct 1000 correct
E- wrong wrong wrong wrong wrong
s
& 500 500 500 500 500
<4000 ¥ 400073 20000
S
2 HH H
22000 [10000 10000 % ¢ | 1| 20000 .
§) 2o -
¥ o 1 0
123456780910 123456780910 123456780910 123456780910 123456780910
Figure 31: Bin Packing
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 1500 Claude-3.7-Sonnet
- 1500 correct 1500 correct correct correct correct
a wrong wrong wrong wrong wrong
£1000 1000 1000 1000 1000
g
& 500 500 500 500 500
— 1500
k H ¥ 1500 3000
©5000 5000 ¥| 1000{ 2000 s
2, 500/] 1000 HHHHH |
2500 i i 1000
S L4 o 500 ¥ 500 |]
12345678910 12345678910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
- correct correct correct correct correct
£1000 wrong 1000 wrong 1000 Weng. 1000 ong 1000 wrong
s
& 500 500 500 500 500
<4000 FToOE o E T T %) 4000 15000
2 10000 50000
22000 i_l/-“_'__—_—‘ 2000 1‘;222 ! 25000 iz dl
8 L | ! I g % o

123456780910

23456780910

12345678910

Figure 32: 3-COL

46

0
12345678910

0
12345678910

Under review as a conference paper at ICLR 2026

3000
a
£ 2000
I
41000

[C N
S O
S o
S o

2500

Completion

3000
a
£2000
S
@ 1000

N I
=3 o
S S
=] =)

Completion

4000

2000

Completion

N N
=3 o
<3 S
=] =)

Completion

QwQ-32B DeepSeek-R1-32B 3000 GPT-40-mini 3000 GPT-40 3000 Claude-3.7-Sonnet
correct. 3000 correct. correct. correct correct.
wrong 2000 wrong 2000 wrong 2000 wrong 2000 wrong
1000 1000 1000 1000
V X R X X X X X X X X 3000 4000
2000
| 5000 s 2000 88§
i 2000 .

AT

1000

[] H
I/H(‘g‘!alunﬂ

1000

12345678910

123456780910

123456718910

123456718910

123456728910

Figure 33: Min Sum Square

DeepSeek-V3 3000 DeepSeek-V3-2503 3000 DeepSeek-R1 3000 ol-mini 3000 03-mini
correct correct correct correct correct
wrong 2000 wrong 2000 wrong 2000 wrong 2000 wrong
1000 1000 1000 1000
40001, 40000
15000 20000
¥
10000 20000 §
2000 10000 H 1
5000 o
12345678910 123456780910 123456780910 123456780910

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
correct 4000 correct 3000 correct 3000 correct 3000 correct
wrong wrong wrong | 4 wrong 1§ wrong
2000 2000 2000 2000
1000 1000 1000
T 7] 2000 3000
5000 1000 L0t 2000 ¥
¥ 1000 %ﬁ 4—1._'_‘_] '/.‘LH—W&T
o NN 14| s00 ! I| 000 |
123456780910 1234567380910 123456718910 123456718910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
correct 3000 correct 3000 correct 3000 correct 3000 correct
wrong 1 2000 wrong 2000 wrong 1 2000 wrong 2000 wrong
1000 1000 1000 1000
4000 15000 7500
5000 50000
10000 g
i 2000 5000 2500 ¥ 25000 !
W
0
12345678910 12345678910 123456780910 123456780910 123456780910

Figure 34: Max Leaf Span Tree

QwQ-32B 350 DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
correct correct 350 correct 350 correct 350 correct
wrong 300 wrong 300 wrong 300 wrong wrong
300
250 250 250
¥ T I 1500 3000
5000 1000 H_',._'/H/'_h 1000 Iy 2000
|
1000]
0 500 500 I—H—-H/H/H)
1234567380910 123456780910 12345678910 12345678910 12345678910
DeepSeek-V3 350 DeepSeek-V3-2503 350 DeepSeek-R1 ol-mini 03-mini
correct correct correct 350 correct 350 correct
wrong 300 wrong 300 wrong wrong wrong
300 300
250 250
250 250
XX X % 10000
4000 40000
10000 i
2000 H—I/._W 5000 §1 20000
o i]
0 0 0
12345678910 12345678910 123456780910 123456780910 123456780910

Figure 35: Bandwidth

47

Under review as a conference paper at ICLR 2026

K

AHA MOMENTS

This section investigates the phenomenon of “aha moments”, sudden bursts of insight that shift
reasoning strategies, happened in DeepSeek-R1, which are usually marked by linguistic cues, e.g.,
“Wait, wait. That’s an aha moment I can flag here.”. The “aha moments” occur when models abruptly
recognize the flawed logic, which align with the creative restructuring of human cognition for self-
correction. Figure 36 display the number of “aha moments” in DeepSeek-R1 across different NPC
problems, where the blue and the red dots represent correct and wrong outputs respectively.

3SAT

Vertex Cover

Superstring

QDE

80
60
40
20

| | "
1]

0

123456782910
3DM

123456782910
TSP

12345678910
Hamiltonian Cycle

123456782910
Bin Packing

80
60
40

2018

g

0

123456782910
3-COL

123456782910
Min Sum Square

123456782910
Bandwidth

123456782910
Max Leaf Span Tree

80
60
40
20

0

L |

L]

FNHH

12345678910 12345678910 12345678910 12345678910

Figure 36: Number of aha moments in DeepSeek-R1

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

L SOLUTION ERRORS

This section visualize the solution errors of different LLMs on the 12 core NPC problems, revealing
variations in error distribution across models and difficulty levels. For each problem, each color
corresponds to a specific error type as listed in Table 5.

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

| L] | =B =l |
123456780910 2345678910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

O [

12345678910 123456780910 12345678910 12345678910

100

100

[N JSON ERROR [VERIFICATION ERROR [N 3SAT ERROR 1 [3SAT ERROR 2

Figure 37: 3SAT

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

] -
Jﬁ;Jl!Ll—Ji—jilL

0'12345678910 12345678910 12345678910 12345678910 123456780910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

12345678910 12345678910 12345678910 12345678910

I JSON ERROR I VERTEX COVER ERROR 1 [VERTEX COVER ERROR 4 [VERTEX COVER ERROR 5
[ZZ0 VERIFICATION ERROR [VERTEX COVER ERROR 2

Figure 38: Vertex Cover

100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
| II
o mill
[—— = I
o jll.l.llil L] = ulllin.al

12345678910 12345678910 12345678910 12345678;10 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

Al

12345678910

100

50

ol ol

12345678910 12345678910 12345678910

h

12345678910

I JSON ERROR [VERIFICATION ERROR W SUPERSTRING ERROR 2 I SUPERSTRING ERROR 3

Figure 39: Superstring

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
II IIIdI]III!lI-I[!I e ldl
123456780910 12345678910 123456728910 12345678910 123456780910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
50 II I“I I
|
0

12345678910

I JSON ERROR

12345678910

[Z2 VERIFICATION ERROR

QwQ-32B

DeepSeek-R1-32B

Bm QDE ERROR 1

Figure 40: QDE

GPT-40-mini

W QDE ERROR 2

12345678910

123456780910

[QDE ERROR 3

Claude-3.7-Sonnet

100

50

100

173456780910

DeepSeek-V3

12345678910
DeepSeek-V3-2503

12345678910
DeepSeek-R1

45678910
03-mini

50

100

12345678910

Bm |SON ERROR

12345678910

[0 VERIFICATION ERROR

QwQ-32B

DeepSeek-R1-32B

I 3DM ERROR 1

133456780910

Figure 41: 3DM

GPT-40-mini

m 3DM ERROR 2

aa==H1
12345678910

il Ll

12345678910

[3DM ERROR 3

Claude-3.7-Sonnet

100

12345678910
DeepSeek-V3

12345678910
DeepSeek-V3-2503

12345678910
DeepSeek-R1

12345678910

1 -
12345678910
03-mini

50

12345678910

BN JSON ERROR
= VERIFICATION ERROR

QwQ-32B

123456780910

DeepSeek-R1-32B

[TSP ERROR 1
[TSP ERROR 2

12345678910

Figure 42: TSP

GPT-40-mini

7% TSP ERROR 3

ol-mini
-i

12345678910

[TSP ERROR 4

GPT-40

12345678910

Claude-3.7-Sonnet

100

12345678910

| el
12345678

12345678910

B JSON ERROR
[VERIFICATION ERROR

12345678910

B HAM CYCLE ERROR 1
[HAM CYCLE ERROR 2

12345678

N
9 10
[HAM CYCLE ERROR 3
[HAM CYCLE ERROR 4

12345678910

Figure 43: Hamiltonian Cycle

50

12345678910 12345678910 12345678910 10
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
= L LA -__-llllllll_

12345678910

HAM CYCLE ERROR 5

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
L]

I

L] —
12345678910 12345678910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

123456780910

12345678910 12345678910

12345678910 12345678910

I JSON ERROR I BIN PACKING ERROR'1 W BIN PACKING ERROR 2 @ BIN PACKING ERROR 3
758 VERIFICATION ERROR

Figure 44: Bin Packing

100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

s I II al

12345678910 12345678910 12345678910 12345678910 12345678910

100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
o I i | | = | ==]] I I

50 I IIII
-I El-
12345678910 12345678910 12345678910 12345678910 12345678910

[N JSON ERROR 720 VERIFICATION ERROR W 3-COLERROR 1
Figure 45: 3-COL

100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

| e S e e |
123456780910 123456780910

12345678910

12345678910 12345678910

DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

100

12345678910

12345678910 12345678910 12345678910

Im JSON ERROR 8 MIN SUM SQ ERROR 1 [MIN SUM SQ ERROR 2 [0 MIN SUM SQ ERROR 3
[VERIFICATION ERROR

Figure 46: Min Sum Square

QwQ-32B DeepSeek-R1-32B GPT-40-mini

Claude-3.7-Sonnet

12345678910 12345678910

123456780910 12345678910

12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

[}
12345678910 12345678910

12345678910 12345678910

12345678910

B JSON ERROR @ MLST ERROR1 [MLST ERROR 3 MLST ERROR 5
[VERIFICATION ERROR W MLST ERROR 2 [0 MLST ERROR 4

Figure 47: Max Leaf Span Tree

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

QwQ-32B DeepSeek-R1-32B

GPT-40-mini

GPT-40

Claude-3.7-Sonnet

,_,-.;l,!!!l.l _=.!I|||!_

123456780910
DeepSeek-V3

12345678910
DeepSeek-V3-2503

ﬁ!!l#l!l

123456728910
DeepSeek-R1

il

ol-mini

12345678910

12345678910

Jﬂ!

12345678910

12345678910

I JSON ERROR
[VERIFICATION ERROR

Figure 48: Bandwidth

I BANDWIDTH ERROR 1

12345678910

52

[BANDWIDTH ERROR 2

| [.
12345678910

03-mini

12345678910

[BANDWIDTH ERROR 3

Under review as a conference paper at ICLR 2026

M ANALYSIS OF REASONING FAILURE CASES

DeepSeek-R1. Taking Deepseek-R1 as an example, the reasoning content of its failure cases shows
several patterns that lead to wrong answers. The concrete examples of failure cases for DeepSeek-R1
are shown in Table 20. Specifically, the typical reasoning failure cases include:

Cascading assumptions and placeholder/guess: Generally, DeepSeek-R1 adopts the trail-and-error
approach to find the answer. Although it may give the high-level approach in the beginning,
after the first answer is not correct, it will start making assumptions to derive an answer without
logical deduction. The following verification may not consider all the given conditions; thus, the
verification and the answer are wrong. If it has already made multiple assumptions and verifications
without deriving the correct answer, it will return a placeholder or an educated guess.

Manual computations errors and complexity avoidance: DeepSeek-R1 makes manual computations
that are time-consuming and token-consuming instead of using programming, such as manually
counting the length and sum of an array by listing the elements one by one. There are also
computation errors that the counting, summation, or sorting results are wrong. In addition, although
it already gives the right method, it avoids computation due to complexity and starts making
assumptions to simplify the reasoning, which may lead to the incorrect solutions.

Reliance on prompt examples: There are examples with the same requirement in the prompt, and
DeepSeek-R1 analyzes and generates the answer heavily relying on the example solution, which
can be a distraction that DeepSeek-R1 wastes time verifying and editing the example solution.
Reasoning repetition: The same assumption, logic, or example can be repeated multiple times
without making further progress in solving the problem, which is a waste of time and tokens.

53

Under review as a conference paper at ICLR 2026

Table 20: Detailed Analysis with Examples of Failure Cases for DeepSeek-R1.

Detailed Failure Reason

| Reasoning Content

cascading assumptions

... Alternatively, perhaps the solution includes nodes 8, 2, 3, 6,7, 9, 10, 12, 13, 14,
18, 19, 20, 22, 24, 25, 30, 34, 35, 37. Let’s count these. That’s 20 nodes. ... Maybe
the solution is to select nodes 0, 2, 3, 5, 6,7, 8,9, 10, 12, 13, 14, 18, 19, 20, 22, 24,
25, 30, 34, 35, 37. Wait, but that’s more than 20. Need to pick 20. ... Wait, perhaps
the solution includes nodes 2, 3, 6, 7, 8,9, 10, 12, 13, 14, 18, 19, 20, 22, 24, 25, 30,
34, 35, 37. Let’s check: ...

placeholder/guess

... At this point, I'm not sure. Given the time I’ve spent and the complexity, perhaps
the solution is the string pyeo jmmykmadslpeetdb with length 20, even though
some required substrings might be missing. But according to the problem statement,
there is a solution. So I’ll have to take a guess. ... But given the time I've spent and
the need to provide an answer, I'll make an educated guess...

manual computation errors

Now, let’s count the number of elements. Each comma separates elements. So
between each number there’s a comma. Let’s count commas. But maybe it’s easier
to split by each element. Let’s do that step by step. Start from the first element: 1.
1;2.14;3.1;4. 1; 5. 5; ... So there are 80 items.

complexity avoidance

So, if a node is in an edge that’s not covered by any other node, then that node must
be in the vertex cover. But checking that for each edge would be time-consuming.
Let’s look for edges that have a unique node. For example, if there’s an edge (a, b),
and neither a nor b are connected to any other nodes, then one of them must be in
the cover. But in a graph of 40 nodes, this is unlikely. So probably most nodes have
multiple edges.

reliance on prompt examples

... Wait, in the example problem, the solution included nodes 0, 2, 4, 5, 6, 7, 8,
9,13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. So maybe similar patterns here.
But the new problem’s edges are different. ... Alternatively, perhaps the solution is
similar to the example. The example’s solution includes nodes 0, 2, 4, 5,6, 7, 8, 9,
13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. Looking at the problem’s edge set,
perhaps some of these nodes are also high-degree here. Let’s see. ... Wait, another
idea: the example solution included nodes 0, 2, 4, 5, 6,7, 8,9, 13, 14, 15, 19, 20,
23, 25, 26, 30, 32, 34, 37. If I look at these nodes, perhaps they are all the nodes
from one side of a bipartition. For example, if the graph is bipartite and these nodes
form one partition.

reasoning repetition (example)

Looking at the edges, let’s see which nodes are involved a lot. For example, node 8
appears in edges like (8,18), (8,35), (8,21), (8,30), (8,39), etc. Maybe node 8 is a
hub. ... In the problem to solve, node 8 is involved in many edges, as per the edges
provided. So including 8 in the cover would cover a lot of edges. ... For example,
node 8 appears in a lot of edges. Including node 8 would cover many edges. ... For
example, many edges involve node 8. So including node 8 is a must.

reasoning repetition (logic)

... So perhaps the key is to find the longest possible superstring that includes as
many of these as possible, then add the b’ and the other small strings. But the "b’ is
a problem. Let’s think: the superstring must include *b’ as a substring. Since none
of the other strings contain ’b’, we have to include the string ’b’ in the superstring.
So the superstring will have the 'b’ as a standalone. But how? ... So in the current
problem, perhaps there’s a way to find such a chain where each string overlaps
with the next, and ’b’ is inserted in the right place. But I'm stuck. Let’s try to look
for possible overlaps between the strings, especially those that include 'mmy’ and
’b’. Wait, the ’b’ must be present. How can b’ be included? Since it’s a single
character, perhaps it’s placed between two other characters in the superstring. For
example, if there’s a string ending with *a’ and another starting with ’c’, but ’b’ is
inserted between them. But in this case, the other strings don’t have "a’ or "¢’ next
to ’b’, so the ’b’ would have to be a standalone. So the superstring must contain ’b’
as a separate character. ... So, perhaps the superstring is a combination of several
merged strings, with ’b’ inserted in between.

54

Under review as a conference paper at ICLR 2026

Claude. Unlike Deepseek-R1, Claude’s failure cases’ reasoning content is generally much shorter.
Claude usually starts with giving the high-level step-by-step solution but does not do detailed
calculation and verification. It derives a final answer with approximation calculation and claims that
the answer is verified as correct. An example is shown in Table 21.

Table 21: Claude Failure Case.

Based on my analysis of the edge patterns, the following nodes would form an
effective vertex cover:

- 11 (connects to many nodes)

- 14 (high degree, covers many edges)

- 10 (connects to multiple nodes)

- 16 (appears frequently in edge list)

- 19 (connects to several nodes)

This selection ensures that every edge in the graph has at least one endpoint in our
subset, with a total of 11 nodes which meets our constraint.

55

Under review as a conference paper at ICLR 2026

QwQ-32B. Table 22 illustrates a representative example of QwQ-32B’s deviation from the expected

output format. Although the prompt specifies the response format as json{"solution":

-h

the model frequently omits the prefix and outputs only {”solution”: ...}. This tendency may originate
from its pretraining on mathematical problems, where instructions commonly include phrases such
as “Please reason step by step, and put your final answer within \boxed{}”. While QwQ-32B can
occasionally self-correct the format, such corrections are infrequent. Another notable failure mode is
the generation of infinite reasoning loops, in which the model repeatedly outputs the same content
until reaching the token limit. This issue is not unique to QwQ-32B and has also been observed in
other reasoning models, indicating a potential direction to improve the reasoning models.

Table 22: QwQ-32B Reasoning Representative Examples

Example

Reasoning Content

Problem in Format Following

... All are present. So this should be a valid solution. Let me confirm again. Another
check: For X=5, we chose triple8 (5,13,29). That uses Y=13 and Z=29 ... So correct.
Yes, this seems to work. So the solution is the list of these triples: {“solution”:
[[0,10,211,[1,15,28], [2,16,26],[3,14,20],[4,11,23], [5,13,291,[6,18,241,[7,19,25]....]}

Self-Correction in Format Fol-
lowing

Final Answer {’solution” [[3,19,21],[6,13,20],[9,11,26],
[4,15,241,[8,10,25],[5,16,231,[7,18,29], [0,17,22],[1,12,28],[2,14,2711}. Wait,
the user’s instruction says to present the answer in the specified JSON format. I
think the correct way is to just output the JSON without any extra text. So the final
answer is: json{’solution”: [[3,19,21],[6,13,20],[9,11,26]....]} Final Answer json
{”solution™: [[3,19,21],[6,13,20],[9,11,26]....]}

Infinite Reasoning Loop

... All are present. So this is a valid solution. The solution is the list of these triples. Fi-
nal Answer {”solution”: [[0,13,29],[1,12,28],[2,17,20], [3,10,261,[4,18,271,[5,14,23],
[6,11,25],[7,15,24],...]} Final Answer {”solution”: [[0,13,29],[1,12,28],[2,17,20],
[3,10,261,[4,18,27],[5,14,23]....]} Final Answer {”’solution™: [[0,13,29],[1,12,28],...]}
... (repeated output continues)

56

Under review as a conference paper at ICLR 2026

N CoOSTS OF THE EVALUATION

Table 23 displays the number of input token and completion token with their corresponding prices,
and the total cost of running online models once for all difficulty levels across core NPC problems.

Table 23: Cost for online models

Model Prompt Completion Cost
GPT-40-mini 30964144 ($0.15/MTok) 9442548 ($0.6/MTok) $10.31
GPT-40 30963606 ($2.5/MTok) 7786156 ($10/MTok) $155.27
Claude-3.7-Sonnet 33799101 ($3/MTok) 11186272 ($15/MTok) $269.19
DeepSeek-V3 31490957 2RMB/MTok) | 16178388 (SRMB/MTok) 192.41RMB
DeepSeek-V3-2503 | 31490957 (2RMB/MTok) | 31808451 (SRMB/MTok) | 317.45RMB
DeepSeek-R1 31512557 (4ARMB/MTok) | 95936418 (16RMB/MTok) | 1661.03RMB
o1-mini 31360984 ($1.1/MTok) 35161551 ($4.4/MTok) $189.21
03-mini 31199884 ($1.1/MTok) 110944621 ($4.4/MTok) $522.48

57

	Introduction
	Related Work
	Preliminaries
	Nondeterministic Polynomial-time Problem Challenge
	Problem Suite: npgym
	Solver Suite: npsolver
	Evaluation Suite: npeval

	Results
	Analysis of Performance
	Analysis of Tokens and Aha Moments
	Analysis of Solution Errors
	Analysis of Reasoning Failure Cases

	Conclusion
	Frequently Asked Questions (FAQs)
	Why Ever-Scaling and the Four Desiderata?
	Why Focusing on NP (Specifically NPC) Problems?
	Why Not Considering More Complex Test-time Scaling?
	Why Not Focusing on 3SAT Only?
	Determining the Difficulty Levels
	Selection of Models
	Laderboard

	Limitations and Negative Impacts
	Limitations and Future Work
	Negative Impacts

	Computational Complexity: P, NP and NP-complete
	Modules in NPPC
	Problem Suite: npgym
	Solver Suite: npsolver
	Evaluation Suite: npeval

	Prompts and Responses
	List of NP-complete Problems
	Hyperparameters
	Full Results over Problems
	Performance over Problems
	Tokens
	Aha Moments
	Solution Errors
	Analysis of Reasoning Failure Cases
	Costs of the Evaluation

