
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NONDETERMINISTIC POLYNOMIAL-TIME PROBLEM
CHALLENGE: AN EVER-SCALING REASONING BENCH-
MARK FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning is the fundamental capability of large language models (LLMs). Due
to the rapid progress of LLMs, there are two main issues of current benchmarks:
i) these benchmarks can be crushed in a short time (less than 1 year), and ii)
these benchmarks may be easily hacked. To handle these issues, we propose the
ever-scalingness for building the benchmarks which are scaling over complexity,
instance, oversight and coverage. This paper presents Nondeterministic Polynomial-
time Problem Challenge (NPPC) , an ever-scaling reasoning benchmark for LLMs.
Specifically, the NPPC has three main modules: i) npgym, which provides a unified
interface of 25 well-known NP-complete problems and can generate any number
of instances with any levels of complexities, ii) npsolver, which provides a unified
interface to evaluate the problem instances with both online and offline models
via APIs and local deployments, respectively, and iii) npeval, which provides
the comprehensive and ready-to-use tools to analyze the performances of LLMs
over different problems, the number of tokens, the aha moments, the reasoning
errors and the solution errors. Extensive experiments over widely-used LLMs
demonstrate: i) NPPC can successfully decrease the performances of advanced
LLMs to below 10%, demonstrating that NPPC is not crushed by current models,
ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs,
where DeepSeek-R1 can outperform Claude-3.7-Sonnet and o1/o3-mini in most
NP-complete problems considered, and iii) the numbers of tokens, aha moments
in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed
first to increase and then decrease when the problem instances become more and
more difficult. Through continuously scaling analysis, NPPC can provide critical
insights into LLMs’ reasoning capabilities, exposing fundamental limitations and
suggesting future directions for further improvements.

1 INTRODUCTION

2023 2024 20250

20

40

60

80

100

Pe
rf

or
m

an
ce

GSM8K
MMLU
MMLU-Pro
GPQA

AIME
SWE-bench
Human Last Exam
ARC-AGI

Figure 1: Crush of benchmarks

The remarkable successes of Large Language Models
(LLMs) (Achiam et al., 2023) have catalyzed the fun-
damental shift of artificial intelligence. Recent break-
throughs on reasoning (Guo et al., 2025) enable LLMs
to complete complex tasks, e.g., math proof, code gener-
ation and computer use, which require the capabilities of
understanding, generation and long-term planning. Vari-
ous benchmarks, e.g., GPQA (Rein et al., 2024), AIME,
SWE-bench (Jimenez et al., 2024) and ARC-AGI (Chollet,
2019), are proposed to evaluate these advanced reasoning
capabilities, where most benchmarks are curated and verified by human researchers with a finite
number of questions. Current benchmarks face two fundamental challenges that limit their effective-
ness for LLM evaluation. First, current benchmarks can be crushed in a short time: GSM8K (Cobbe
et al., 2021) performance increased from approximately 35% to 95% within three years, while
SWE-bench (Jimenez et al., 2024) scores improved from 7.0% to 64.6% in merely eight months,
as illustrated in Figure 1. This rapid saturation suggests that these benchmarks quickly lose their
discriminative power as models advance. Second, current benchmarks can be easily hacked or

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

exploited. Static benchmarks are susceptible to data contamination and memorization issues, leading
to overfitting rather than genuine capability assessment (Wu et al., 2025; Xu et al., 2024). While
live benchmarks such as LiveCodeBench (Jain et al., 2025) address contamination by continuously
introducing new problems, they require substantial ongoing human curation efforts. Similarly, human
evaluation platforms like ChatbotArena (Chiang et al., 2024) incur significant costs (approximately
$3,000 per evaluation) and remain vulnerable to strategic manipulation where MixEval (Ni et al.,
2024) can achieve comparable correlation with human judgment at under $1 per evaluation. These
limitations represent significant obstacles for reliable evaluation of the rapidly evolved LLMs.

Complexity Instances

Oversight Coverage

Ever-
Scalingness

Figure 2: Desiderate of ever-scalingness

To address these issues, we propose the ever-scalingness
with four desiderata for a benchmark (as shown in Fig-
ure 2): i) scaling over complexity – the benchmark can
generate the problems with continually increasing com-
plexities to avoid the crushing of the benchmarks, ii) scal-
ing over instance – the benchmark can generate an infinite
number of instances to avoid the exploitation, iii) scaling
over oversight – the benchmark can verify the correct-
ness of the solutions efficiently for the problems with any
complexity, and iv) scaling over coverage – the problems
covered by the benchmark should be highly relevant to the
real-world problems, rather than puzzles or rare problems.
These four desiderata for ever-scaling benchmarks ensure continuous differentiation among LLMs
over extended periods, identifying fundamental limitations for further improvement.

To construct the ever-scaling benchmark, we focus on nondeterministic polynomial-time (NP)
problems whose solutions can be verified in polynomial time (Cormen et al., 2022). Specifically,
we target on NP-complete (NPC) problems, i.e., the most computationally challenging problems in
the NP class, for three key reasons. First, NPC problem instances can be systematically generated
across arbitrary difficulty levels through controlled parameters, e.g., numbers of variables, enabling
precise scaling of both complexity and instance. Second, NPC problems are intrinsically “difficult
to solve, easy to verify”—no polynomial-time algorithms have been discovered for solving NPC
problems, making them computationally intractable even with specialized tools, while their solutions
remain efficiently verifiable. Third, NPC problems demonstrate broad applicability, including diverse
real-world scenarios, e.g., routing (Toth & Vigo, 2002), and various puzzles, e.g., Sudoku (Seely et al.,
2025). The theoretical foundation for using NPC problems as a comprehensive evaluation framework
stems from the fundamental property that any NP problem can be reduced to an NPC problem in
polynomial time, establishing NPC problems as a theoretically grounded, universal framework for
computational problem-solving assessment. Therefore, NPC problems are the foundation problems
of all computational problems and LLMs are the foundation models for wide range tasks, thus leading
to our ever-scaling nondeterministic polynomial-time problem challenge (NPPC) (Figure 4(a)).

Specifically, NPPC has three main modules: i) npgym, which provides a unified interface of 25
well-known NPC problems and can generate any number of instances with any levels of complexities,
which implies the ever-scalingness of NPPC, ii) npsolver, which provides a unified interface to
evaluate the problem instances with both online and offline models via APIs and local deployments,
respectively, to facilitate users to evaluate their own models and iii) npeval, which provides compre-
hensive and ready-to-use tools to analyze the performances of LLMs over different problems, the
number of tokens, the “aha moments”, the reasoning errors and the solution errors, which can provide
in-depth analysis of the LLMs and the insights to further improve the LLMs’ reasoning capabilities.
Extensive experiments over widely-used LLMs, i.e., GPT-4o-mini, GPT-4o, Claude-3.7-Sonnet,
DeepSeek-V3, DeepSeek-R1, and OpenAI o1-mini, demonstrate: i) NPPC can successfully decrease
the performances of advanced LLMs to below 10%, demonstrating that NPPC is not crushed by
current LLMs, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs,
where DeepSeek-R1 can outperform Claude-3.7-Sonnet and o1-mini in most NP-complete problems
considered, and iii) the numbers of tokens, aha moments in the advanced LLMs, e.g.. Claude-
3.7-Sonnet and DeepSeek-R1, are observed to first increase and then decrease when the problem
instances become more and more difficult. We also analyze the typical reasoning errors in the LLMs,
which provide the insights of the fundamental limitations of current LLMs and suggest the potential
directions for further improvement. To the best of our knowledge, NPPC is the first ever-scaling
benchmark for reliable and rigorous evaluation of the reasoning limits of LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Table 1: Comparison of different reasoning bench-
marks according to the ever-scalingness.

Com
plex

ity

In
sta

nce

Ove
rsi

gh
t

Cov
era

ge

NPHardEval (Fan et al., 2024) % % ! %

ZebraLogic (Lin et al., 2025) ! % ! %

Reasoning Gym (Stojanovski et al., 2025) % ! ! !

Sudoku-Bench (Seely et al., 2025) % ! ! %

ARC-AGI-1 & 2 (Chollet, 2019) % % % %

NPPC (this work) ! ! ! !

Traditional benchmarks are typically curated by
human with static datasets. Abstraction and Rea-
soning Corpus (ARC-AGI)-1 (Chollet, 2019) is
designed to be “easy for humans, hard for AI”,
which is formed by human-curated 800 puzzle-
like tasks, designed as grid-based visual rea-
soning problems. o3 at high compute scored
87% on ARC-AGI-1 (OpenAI, 2025), which
roughly crushes the ARC-AGI-1 benchmarks
and leads to the emergence of the ARC-AGI-2
benchmark. This pattern exemplifies a funda-
mental challenge with traditional benchmarks for LLMs, including MMLU (Hendrycks et al., 2021),
GPQA (Rein et al., 2024), GSM8K (Cobbe et al., 2021), and SWE-bench (Jimenez et al., 2024), where
static benchmarks are systematically solved within relatively short periods (as shown in Figure 1).
Therefore, researchers have to continuously either develop new benchmarks, e.g., MMLU-Pro (Wang
et al., 2024) and SuperGPQA (Du et al., 2025), or regularly update with new datasets and problems,
e.g., LiveCodeBench (Jain et al., 2025) and SWE-bench-Live (Zhang et al., 2025). However, these
remedies rely on extensive human efforts to maintain their relevance and difficulty.

Several recent benchmarks consider either NP(C) problems, e.g., 3SAT (Balachandran et al., 2025;
Hazra et al., 2024; Parashar et al., 2025), or partially the ever-scalingness (Fan et al., 2024; Stojanovski
et al., 2025) (displayed in Table 1). NPHardEval (Fan et al., 2024) considers 3 problems from P, NPC
and NP-hard classes and use these class to evaluate the LLMs. We note that the problems in P class
can be solved by augmenting the LLMs with tools, e.g., code running, and the NP-hard problems
cannot be verified efficiently, therefore, NPHardEval cannot scale over the scalable oversight. Only 3
NPC problems are considered, i.e., Knapsack, Traveling salesman problem (TSP) and graph coloring,
and the instances of each problem in NPHardEval are finite and only regularly updated, which cannot
scale over the instance and complexity. ZebraLogic (Lin et al., 2025) considers one logic puzzle, i.e.,
Zebra puzzle, to test the reasoning capabilities of LMs when the problems’ complexities increase.
However, the reasoning capability on specific puzzles does not necessarily transfer to other problems,
which violates the scaling of the coverage. Sudoku-Bench (Seely et al., 2025) focuses on one specific
Sudoku game with 2765 procedurally generated instances with various difficulty levels. Reasoning
Gym (Stojanovski et al., 2025) is an ongoing project which collects the procedural generators and
algorithmic verifiers for infinite training data with adjustable complexity. Though with some NP(C)
problems, e.g., Zebra puzzles and Sudoku, the reasoning gym does not specifically focus on NPC
problems and cannot meet the desiderate of ever-scalingness.

3 PRELIMINARIES

P

NP-hard

NP-complete

NP

Figure 3: Complexity classes

P and NP Problems. The problems in P class are decision problems
that can be solved in polynomial time by a deterministic Turing
machine, which implies there exists an algorithm that can find a
solution in time proportional to a polynomial function, e.g., O(nk),
of the input size n. Examples include sorting, shortest path problems,
and determining if a number is prime. The problems in NP class
are decision problems that can be solved in polynomial time by
nondeterministic Turing machine, where a proposed solution can be
easily verified, though finding that solution might require more time
(as displayed in Definition 1). All P problems are also in NP, but the
reverse remains an open question, known as “P vs. NP problem”. NP
problems form the cornerstone of computational complexity theory,
for which solution verification is tractable (polynomial time) even
though solution discovery may be intractable (potentially exponential time), i.e., “difficult to solve,
easy to verify”. Many real-world optimization problems can be formulated as NP problems, such as
equilibrium finding in game theory, portfolio management, network design and machine learning.

Definition 1 (NP Problems). The complexity class NP consists of all decision problems Ω such
that for any “yes” instance I of Ω, there exists a certificate σ of polynomial length in |I| where a
deterministic Turing machine can verify in polynomial time that c is a valid certificate for I .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

NPPC
npgym

npsolver npeval

Foundation
Models

Foundation
Problems

NPPC

instance solution

configs

prompt
template

performance

errors

tokens

npgym

npsolver npeval

generator verifier

LLM parsing
template

Accuracy vs.
Difficulty

Token number
vs. Difficulty

1.Problem-specific
errors

2.Typical reasoning
Failures

{true, false}

leaderboard

(a)

(b)

(c)

Figure 4: Overview of NPPC. (a) NPPC represents the intersection of foundation models and
foundation problems. (b) The three main components of NPPC: npgym (problem generation),
npsolver (solution generation), and npeval (evaluation). (c) Workflow diagram illustrating the
interactions between components, with npgym configuring generators and verifiers, npsolver using
LLMs to generate solutions, and npeval measuring performance metrics.

NP-complete (NPC) Problems. Formally, a problem Ω is an NPC problem if i) the problem is in
NP, and ii) any NP problems can be transformed to problem Ω in polynomial time. This reducibility
property establishes NPC problems as the ”hardest” problems in NP class. The Cook-Levin theorem
established SAT as the first proven NPC problem (Cook, 2023; Karp, 2009), while 3SAT is the
special case of SAT and is also an NPC problem. Subsequent NPC problems typically proven via
reduction chains back to 3SAT or other established NPC problems. The most well-known NPC
problems include vertex cover problem, clique problem, traveling salesman proble (TSP), Hamiltonian
path/cycle problem, etc. NPC problems play the most important roles in answering the “P vs. NP
problem”, i.e., if any NPC problem were shown to have a polynomial-time algorithm, then P =
NP. However, despite decades of research, no polynomial-time algorithms for any NPC problem is
discovered, which implies that NPC problems are computationally intractable by current methods.

Reasoning in LLMs. The reasoning ability of LLMs refers to the model’s capacity to tackle
complex problems, e.g., mathematical proof, code generation through multi-step thinking and
context understanding. Recently, specialized reasoning models have been proposed. OpenAI-o1 is
an LLM trained with reinforcement learning (RL), which enables the model to perform complex
reasoning, including logical thinking and problem solving, via chain-of-thought (CoT). o1 thinks
before it answers and can significantly outperform GPT-4o on reasoning-heavy tasks with high data
efficiency. DeepSeek-R1 (Guo et al., 2025) is an enhanced reasoning model designed to improve
LLMs’ reasoning performance that incorporates multi-stage training and cold-start data before
the large-scale RL. DeepSeek-R1 demonstrates remarkable reasoning capabilities, and achieves
comparable performance to OpenAI-o1 across various reasoning tasks, e.g., mathematical problems,
code generation, and scientific reasoning. Additionally, there are open-sourced medium-sized LLMs
with strong reasoning capabilities, e.g., DeepSeek-R1-32B, a distilled version of DeepSeek-R1,
QwQ-32B (Team, 2025), and Gemma 3 (Team et al., 2025).

4 NONDETERMINISTIC POLYNOMIAL-TIME PROBLEM CHALLENGE

We introduce Nondeterministic Polynomial Problem Challenge (NPPC), an ever-scaling reasoning
benchmark for LLMs. There are three main components in NPPC (as displayed in Figure 4(b)):
i) npgym, which provides a unified interface of 25 well-known NPC problems and can generate
any number of instances and verify the solution with any levels of complexities, ii) npsolver, which
provides a unified interface to evaluate the problem instances with both online and offline models via
APIs and local deployments, respectively, to facilitate the users to evaluate their own models and iii)
npeval, which provides the comprehensive and ready-to-use tools to analyze the performances of
LLMs over problems, the number of tokens, the “aha moments”, the reasoning and solution errors,
providing the in-depth analysis of the LLMs’ reasoning capabilities.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 PROBLEM SUITE: npgym

Interaction Protocol. Typically, NPC problems are the decision problems where given the instance
I , the answer is “Yes” or “No”. However, the LLMs may take a random guess without reasoning
for the true solution (Fan et al., 2024). Therefore, we consider a more challenging setting: given
the instance I , the LLM needs to generate the solution s for the instance. This setting will enforce
the LLMs to reason for the correct solutions and the NPPC needs to provide the certificate σ to
verify the solutions generated by the LLMs. npgym provides a unified interface of NPC problems
to interact with LLMs. The interaction between npgym and the LLM is displayed in Figure 4(c).
npgym generates the instance I with the given configuration, and the LLM receives the instance and
generate the solution s, then the solution is verified by npgym with the output {true, false}. The
representation of problem instances is designed to be concise and complementary to include all
necessary information for the LLMs to reason for the solution.

Core Problems and Extension. There are 25 typical NPC problems implemented in npgym. Among
all NPC problems, 12 typically NPC problems are selected as the core problems, chosen for their fun-
damental importance and broad real-world applications across domains such as logistics and routing
(TSP, Hamiltonian Cycle), network optimization (Vertex Cover, Graph 3-Colourability), resource
allocation (Bin Packing, 3-Dimensional Matching), automated reasoning (3SAT), computational
biology (Shortest Common Superstring), and mathematical optimization (Quadratic Diophantine
Equations, Minimum Sum of Squares). The other 13 problems are categorized as the extension
problems, covering specialized applications in social networks, facility location, cryptography, and
data mining. A full list of the 25 problems is displayed in Table 2.

Table 2: Core Problems and Extension.

Core

3-Satisfiability (3SAT), Vertex Cover, 3-Dimensional Matching (3DM), Trav-
elling Salesman (TSP), Hamiltonian Cycle, Graph 3-Colourability (3-COL),
Bin Packing, Maximum Leaf Spanning Tree, Quadratic Diophantine Equations
(QDE), Minimum Sum of Squares, Shortest Common Superstring, Bandwidth

Extension
Clique, Independent Set, Dominating Set, Set Splitting, Set Packing, Exact
Cover by 3-Sets (X3C), Minimum Cover, Partition, Subset Sum, Hitting String,
Quadratic Congruences, Betweenness, Clustering

Generation and Verification. Specifically, for each problem, npgym implements two functions:

• generate instance(·): given the configurations, this function will generate the problem
instances. Taking the 3SAT as an example, the configurations include the number of variables and
the number of clauses. The generated instances are guaranteed to have at least one solution and
not necessarily to have a unique solution, which is ensured by the generation process.

• verify solution(·): given the solution and the problem instance, this function will verify
whether the solution is correct or not. Additional to the correctness, this function also returns the
error reasons. Taking the TSP as an example, the errors include i) the solution is not a tour, ii) the
tour length exceeds the target length. The full list of the errors is displayed in Table 5.

Difficulty Levels. NPC problems exhibit distinct combinatorial structures and computational char-
acteristics. npgym implements the difficulty levels (Cobbe et al., 2020; Fan et al., 2024) establish a
standardized metric for quantifying the computational complexity. Specifically, the difficult levels are
determined with a two-stage approach: i) the parameters for NPC problems are manually configured
based on problem-specific insights (e.g., graph size, constraint density) by human experts, and ii) the
human-defined difficulty levels are further calibrated with empirical LLMs’ performance. This hybrid
methodology ensures difficulty levels reflect both theoretical computational complexity and observed
LLM capabilities, i.e., the higher difficulty levels lead lower performance. The comprehensive
justification of this approach is displayed in Appendix A.5. Each NPC problem is stratified into 10
levels, designed to produce monotonically decreasing LLM performance from > 90% success at
level 1 to < 10% at level 10. Appendix D.1 includes the full specifications of difficulty levels.

Ever-scalingness of npgym. npgym fulfills the four desiderata of ever-scalingness. Specifically,
npgym can generate enormous problem instances with arbitrary difficulty levels, enabling scaling
over complexity and instance to continuously differentiate the LLMs while avoiding hacking, e.g.,
memorization. Solution verification in npgym is computationally efficient, guaranteed by the inherent
properties of NP problems. npgym supports extensible coverage through a simple interface requiring
only two core functions and difficulty specifications for adding new NP(C) problems.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 SOLVER SUITE: npsolver

Prompt Template. The prompt template for LLMs is designed to be simple without any problem-
specific knowledge and consistent across all problems. Therefore, the prompt template includes:
i) problem description, which provides the concise definition of the NPC problem, including the
problem name, the input and the question to be solved, ii) the context examples, where each example
is formed by the instance and its corresponding solution, demonstrating the input and output patterns
to help LLMs to generate the solution, iii) the target instance to solve, and iv) the general instruction
about the solution format, where the solution is required to be in the JSON format for easy extracting
and analyzing. We note that the structural output in JSON format may bring difficulties for LLMs
to generate the correct solution, especially for the offline models, which will be analyzed in the
experiments. The complete prompt template is displayed in Appendix E.

Completion with LLMs. To streamline response extraction across various LLMs, we present
npsolver, a solver suite that provides a unified interface for both online (API-based) and offline
(locally deployed) models. npsolver includes: i) prompt generation, which constructs problem-
specific prompts dynamically using the designed prompt templates, ii) LLM completion, that handles
response generation via either online APIs supported through LiteLLM (BerriAI, 2023), or offline
models via vLLM (Kwon et al., 2023); iii) solution extraction, which applies regular expressions
to parse JSON-formatted responses, ensuring a consistent validation pipeline across all models; iv)
error reporting, that standardizes error messages. Through the unified interface, npsolver enables
both online and offline models to share a common workflow for completion.

4.3 EVALUATION SUITE: npeval

Comprehensive LLM evaluation across all problems and difficulty levels is computationally expensive
due to the randomness in instance generation and LLM responses1. While existing benchmarks
evaluate LLMs on fixed datasets (e.g., 200 instances across 5 difficulty levels in (Lin et al., 2025)),
difficulty-specific performance assessment is required, thus leading to the development of npeval (as
displayed in Figure 4(c)). Inspired by rliable (Agarwal et al., 2021), npeval aggregates performance
across multiple independent seeds (typically 3) for each difficulty level, generating 30 instances per
seed—the minimum sample size for statistical analysis. This sampling strategy enables statistically
sound performance aggregation while controlling instance-specific variance within budget constraints.
npeval provides four performance measures following rliable, i.e., inter-quantile mean (IQM), mean,
median, and optimality gap, which employ stratified bootstrap confidence intervals (SBCIs) with
stratified sampling for aggregate performance estimation, a method suitable for small sample sizes
and more robust than standard deviations. The framework analyzes both prompt and completion
tokens across problems and difficulty levels, as well as the number “aha moments” in reasoning
processes in (Guo et al., 2025). Additionally, it categorizes errors into solution errors (detected by
npgym’s verification) and reasoning errors (flaws in the LLM’s internal problem-solving process).

5 RESULTS

5.1 ANALYSIS OF PERFORMANCE

The performance of online LLMs over difficulty levels is displayed in Figure 5, where all online
models exhibit a decline in accuracy as difficulty levels increase across all 12 NPC problems. Take
3SAT as an example, all online models except for DeepSeek-R1 drop from ≥ 80% accuracy to close
to 0% at the last level, and DeepSeek-R1 shows the slowest decline but still falls to ≤ 15% accuracy.
All models collapse to around or even below 10% accuracy at extreme difficulty confirms that NPPC
is not crushed against the SoTA LLMs and can discriminate their capabilities. One exception is
Claude-3.7-Sonnet on Superstring problem, where the accuracy is still above 50% even for the level
10, while other models are all decreased into less than 20%, which demonstrates the superiority of
Claude-3.7-Sonnet to deal with long contexts, where the prompts at level 10 is more than 50K2. All
models perform similarly on the Bandwidth problem, which may be mainly due to the fact that none of
the models are familiar with this specific problem. Both o3-mini and DeepSeek-V3-2503 demonstrate
superior performance to their predecessor models, o1-mini and DeepSeek-V3, respectively, validating
continually improvements in both non-reasoning and reasoning LLMs.

1Randomizing responses, i.e., non-zero temperature, is used for better performance (Guo et al., 2025).
2We do not continually increase the difficulty of this problem as all other models are worse than 10%.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

3SAT

1 2 3 4 5 6 7 8 9 10

Vertex Cover

1 2 3 4 5 6 7 8 9 10

Superstring

1 2 3 4 5 6 7 8 9 10

QDE

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

3DM

1 2 3 4 5 6 7 8 9 10

TSP

1 2 3 4 5 6 7 8 9 10

Hamiltonian Cycle

1 2 3 4 5 6 7 8 9 10

Bin Packing

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

3-COL

1 2 3 4 5 6 7 8 9 10

Min Sum Square

1 2 3 4 5 6 7 8 9 10

Bandwidth

1 2 3 4 5 6 7 8 9 10

Max Leaf Span Tree

QwQ-32B
DeepSeek-R1-32B

GPT-4o-mini
GPT-4o

Claude-3.7-Sonnet
DeepSeek-V3

DeepSeek-V3-2503
DeepSeek-R1

o1-mini
o3-mini

Figure 5: Performance over difficulty levels measured by IQM

1 2 3 4 5 6 7 8 910

Di
st

rib
ut

io
n

3SAT

1 2 3 4 5 6 7 8 910

Vertex Cover

1 2 3 4 5 6 7 8 910

Superstring

1 2 3 4 5 6 7 8 910

QDE

1 2 3 4 5 6 7 8 910

3DM

1 2 3 4 5 6 7 8 910

TSP

1 2 3 4 5 6 7 8 910

Di
st

rib
ut

io
n

Hamiltonian Cycle

1 2 3 4 5 6 7 8 910

Bin Packing

1 2 3 4 5 6 7 8 910

3-COL

1 2 3 4 5 6 7 8 910

Min Sum Square

1 2 3 4 5 6 7 8 910

Bandwidth

1 2 3 4 5 6 7 8 910

Max Leaf Span Tree

QwQ-32B
DeepSeek-R1-32B

GPT-4o-mini
GPT-4o

Claude-3.7-Sonnet
DeepSeek-V3

DeepSeek-V3-2503
DeepSeek-R1

o1-mini
o3-mini

Figure 6: Ranks of models over problems, where the x-axis represents the rank, ranging from 1 to 10,
as we evaluate 10 models, and the y-axis shows the distribution of different LLMs across the ranks.

The ranks of models over problems are shown in Figure 6, which measures the models’ performances
across different levels of a specific problem. We observe that DeepSeek-R1 and o3-mini demonstrate
statistical dominance in achievement of first-rank positions among reasoning-specialized architectures
and Claude-3.7-Sonnet is the best non-reasoning model compared with the two versions of DeepSeek-
v3 and GPT-4o, even better than o1-mini. Figure 7 visualizes the performance interval of different
LLMs over all problems across all difficulty levels, where all four aggregate metrics are employed to
measure LLMs’ performance. We observe that DeepSeek-R1 achieves superior performance with
the highest IQM, mean, medium values and the lowest optimality gap, followed by o3-mini and
Claude-3.7-Sonnet, while GPT-4o-mini performs in an opposite way.

Takeaways
• NPPC can successfully decrease the performances of advanced LLMs to < 10%
• DeepSeek-R1, o3-mini and Claude are the strongest LLMs across all considered NPC problems
• The ranks of different LLMs depend on the specific NPC problems

5.2 ANALYSIS OF TOKENS AND AHA MOMENTS

Figure 8 displays the token utilization across models on 3SAT. Offline models (QwQ-32B, DeepSeek-
R1-32B) rapidly approach maximum token limits and incorrect solutions (red) usually take more
tokens than correct solutions (blue). Among online models, DeepSeek-R1 demonstrates highest
consumption (10,000-20,000 tokens) for successful solutions, while o-series models exhibit significant

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.15 0.30 0.45 0.60

Mean

0.00 0.25 0.50 0.75

Median

0.45 0.60 0.75

Optimality Gap

Figure 7: Performance interval over all problems across all levels

variance, with outliers exceeding 40,000 tokens at higher complexity levels. DeepSeek-R1 and o3-
mini show steeper token scaling compared to o1-mini and Claude-3.7-Sonnet, indicating advanced
reasoning models leverage increased token allocation for complex problem-solving. GPT-4o variants
maintain relatively efficient token utilization (¡2,000) across all complexities. This quantifies the
computational efficiency-performance tradeoff between specialized reasoning architectures and
general-purpose models. Similar phenomenon are also observed in the analysis of the aha moments
(instances of insight during reasoning, marked by phrases like “wait”) in the reasoning contents of
DeepSeek-R13. Due to the limited space, full results of tokens over all problems and the analysis of
aha moment are displayed in Appendices J and K, respectively.

1 2 3 4 5 6 7 8 9100

5000

Co
m

pl
et

io
n

QwQ-32B

1 2 3 4 5 6 7 8 910
0

5000

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 910

1000

2000
GPT-4o-mini

1 2 3 4 5 6 7 8 910

1000

2000
GPT-4o

1 2 3 4 5 6 7 8 910

1000

2000

3000
Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 910

2000

4000

Co
m

pl
et

io
n

DeepSeek-V3

1 2 3 4 5 6 7 8 910

2000

4000
DeepSeek-V3-2503

1 2 3 4 5 6 7 8 910

10000

20000
DeepSeek-R1

1 2 3 4 5 6 7 8 910
0

20000

o1-mini

1 2 3 4 5 6 7 8 9100

10000

o3-mini

Figure 8: The number of tokens of different models on 3SAT. The correct and incorrect solutions are
represented as blue and red points, respectively, and the line are the average values over all instances.

Takeaways
• Reasoning models can solve more difficult problems by scaling up the number of tokens used
• The number of tokens used first increase then decrease, indicating the failure of LLM reasoning

5.3 ANALYSIS OF SOLUTION ERRORS

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR VERIFICATION ERROR 3SAT ERROR 1 3SAT ERROR 2

Figure 9: The number of errors of different models on 3SAT

The solution errors of 3SAT is displayed in Figure 9. The results show that the distribution of these
errors varies across models and difficulty levels. As the difficulty increases, the frequency of certain
error types tends to increase as well. For QwQ-32B, JSON ERROR dominate across all levels, which
is mainly due to the reasoning process is not finished when the context reaches the limits. For other
models (such as GPT-4o, Claude-3.7-Sonnet, and DeepSeek-R1), problem-specific errors (3SAT
ERROR 1 and 2) become more prevalent at higher difficulty levels. DeepSeek and GPT models
show a more balanced distribution of error types. The o-series models demonstrate relatively better

3The reasoning contents of o1/o3-mini are not available for analysis.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

performance at intermediate difficulties but still encounter increasing problem-specific errors at the
highest complexity levels. This error analysis provides valuable insights into not just whether models
fail, but specifically how they fail when tackling increasingly complex NPC problems, which could
inform future improvements to reasoning capabilities in LLMs.

Takeaways
• Offline models, e.g., QwQ-32B, and DeepSeek-V3 series models suffer the format errors
• The problem-specific solution errors provide the feedback for further improving the LLMs

5.4 ANALYSIS OF REASONING FAILURE CASES

Table 3: Examples of Failure Cases for Deepseek-R1.

Failure Reason 1: Cascading Assumptions and Placeholder/Guess

... At this point, I’m not sure. Given the time I’ve spent and the complexity, perhaps the solution is the string
pyeojmmykmadslpeetdb with length 20, even though some required substrings might be missing. But according
to the problem statement, there is a solution. So I’ll have to take a guess. ... But given the time I’ve spent and the need
to provide an answer, I’ll make an educated guess. ...

Failure Reason 2: Manual Computation Errors and Complexity Avoidance

So, if a node is in an edge that’s not covered by any other node, then that node must be in the vertex cover. But checking
that for each edge would be time-consuming. Let’s look for edges that have a unique node. For example, if there’s an
edge (a, b), and neither a nor b are connected to any other nodes, then one of them must be in the cover. But in a graph
of 40 nodes, this is unlikely. So probably most nodes have multiple edges.

Failure Reason 3: Reliance on Prompt Examples

... Wait, in the example problem, the solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30,
32, 34, 37. So maybe similar patterns here. But the new problem’s edges are different. ... Alternatively, perhaps the
solution is similar to the example. The example’s solution includes nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25,
26, 30, 32, 34, 37. Looking at the problem’s edge set, perhaps some of these nodes are also high-degree here. Let’s see.
... Wait, another idea: the example solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32,
34, 37. If I look at these nodes, perhaps they are all the nodes from one side of a bipartition. ...

Failure Reason 4: Reasoning Repetition

... For example, node 8 appears in edges like (8,18), (8,35), (8,21), (8,30), (8,39), etc. Maybe node 8 is a hub. ... In the
problem to solve, node 8 is involved in many edges, as per the edges provided. So including 8 in the cover would cover
a lot of edges. ... For example, node 8 appears in a lot of edges. Including node 8 would cover many edges. ... For
example, many edges involve node 8. So including node 8 is a must.

For Deepseek-R1, the reasoning content of the failure cases shows several reasons that lead to wrong
answers. i) cascading assumptions and placeholder/guess: DeepSeek-R1 begins with a high-level
approach but quickly resorts to making assumptions to derive answers without logical deduction and
considering all the conditions, and finally returns a placeholder or an educated guess; ii) manual
computation errors and complexity avoidance: DeepSeek-R1 uses inefficient manual calculations
(prone to errors) instead of programming, skips complex steps even the reasoning is correct, and
resorts to guesses to avoid effort; iii) reliance on prompt examples: DeepSeek-R1 relies heavily on
the example solution, making it waste time and get distracted by verifying and editing the solution
instead of solving the problem directly; iv) reasoning repetition: DeepSeek-R1 gets stuck repeating
the same logic without making further progress, wasting time and tokens. We list some typical
examples of failure cases of DeepSeek-R1 in Table 3, and more examples are shown in Table 20 in
Appendix M. Failure cases of Claude-3.7-Sonnet typically exhibit more concise reasoning, as it often
outlines a high-level step-by-step approach but omits detailed calculations and rigorous verification,
and it relies on approximate calculations to derive a final answer, incorrectly asserting that the result
has been validated. More examples are shown in Tables 21 and 22 in Appendix M.

6 CONCLUSION
The rapid advancement of LLMs’ reasoning abilities has rendered current benchmarks easily crushable
and vulnerable to hacking. This work presents Nondeterministic Polynomial Problem challenge
(NPPC), the first ever-scaling benchmark over complexity, instance, oversight and coverage. Through
extensive experiments of LLMs on various difficulty levels across NPC problems, NPPC provides
critical insights into the reasoning limits of LLMs and suggest directions for future improvement.
The limitations and negative impacts of this paper are discussed in Appendix B.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper does not involve human subjects, sensitive personal data, or other ethical risks. The
datasets used are synthetic, and no privacy or ethical concerns are associated with this study.

REPRODUCIBILITY STATEMENT

The anonymous codebase can be accessed at https://anonymous.4open.science/r/
nppc. We will release the codebase to the public upon the paper acceptance.

USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

We used LLMs, e.g., ChatGPT and Claude, to assist with the writing and polishing of this manuscript.
The model was employed to improve grammar, clarity, and readability, but it did not contribute to the
generation of research ideas, experimental design, implementation, or analysis. All technical content,
including algorithms, proofs, and experimental results, was conceived and verified by the authors.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In NeurIPS, pp. 29304–29320,
2021.

Greg Aloupis, Erik D Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games are
(computationally) hard. Theoretical Computer Science, 586:135–160, 2015.

Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John
Langford, Besmira Nushi, Vibhav Vineet, Yue Wu, and Safoora Yousefi. Inference-time scaling
for complex tasks: Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

BerriAI. Litellm. https://github.com/BerriAI/litellm, 2023.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
platform for evaluating llms by human preference. In ICML, 2024.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In ICML, pp. 2048–2056, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Stephen A Cook. The complexity of theorem-proving procedures. In Logic, automata, and computa-
tional complexity: The works of Stephen A. Cook, pp. 143–152. ACM, 2023.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. MIT press, 2022.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

10

https://anonymous.4open.science/r/nppc
https://anonymous.4open.science/r/nppc
https://github.com/BerriAI/litellm

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, et al. SuperGPQA: Scaling LLM evaluation across 285 graduate
disciplines. arXiv preprint arXiv:2502.14739, 2025.

B Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, pp. 1–26, 1979.

Bradley Efron. Better bootstrap confidence intervals. Journal of the American statistical Association,
82(397):171–185, 1987.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. In ACL, pp.
4092–4114, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. DeepSeek-R1 incentivizes reasoning in LLMs through
reinforcement learning. Nature, 645(8081):633–638, 2025.

Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos Martires, and Luc De Raedt. Can large language
models reason? a characterization via 3-SAT. arXiv preprint arXiv:2408.07215, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021.

Robert V Hogg, Elliot A Tanis, and Dale L Zimmerman. Probability and Statistical Inference, volume
993. Macmillan New York, 1977.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free
evaluation of large language models for code. In ICLR, 2025. URL https://openreview.
net/forum?id=chfJJYC3iL.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In ICLR, 2024.

Richard M Karp. Reducibility among combinatorial problems. In 50 Years of Integer Programming
1958-2008: from the Early Years to the State-of-the-Art, pp. 219–241. Springer, 2009.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. ZebraLogic: On the scaling limits of LLMs for logical reasoning. arXiv
preprint arXiv:2502.01100, 2025.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and Yang
You. MixEval: Deriving wisdom of the crowd from LLM benchmark mixtures. In NeurIPS, 2024.

OpenAI. OpenAI o3 and o4-mini system card, 2025. URL https://openai.com/index/
o3-o4-mini-system-card/.

Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, and
Shuiwang Ji. Inference-time computations for LLM reasoning and planning: A benchmark and
insights. arXiv preprint arXiv:2502.12521, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof Q&A
benchmark. In COLM, 2024.

Jeffrey Seely, Yuki Imajuku, Tianyu Zhao, Edoardo Cetin, and Llion Jones. Sudoku-Bench. https:
//github.com/SakanaAI/Sudoku-Bench, 2025.

11

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://github.com/SakanaAI/Sudoku-Bench
https://github.com/SakanaAI/Sudoku-Bench

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Köpf. REASONING GYM: Reasoning environments for reinforcement learning with
verifiable rewards. arXiv preprint arXiv:2505.24760, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Qwen Team. QwQ-32B: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM, 2002.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-Pro: A more robust and challenging multi-task
language understanding benchmark. In NeurIPS Datasets and Benchmarks Track, 2024.

Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
Zhou, Yanwei Fu, Qin Liu, et al. Reasoning or memorization? unreliable results of reinforcement
learning due to data contamination. arXiv preprint arXiv:2507.10532, 2025.

Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
language models: A survey. arXiv preprint arXiv:2406.04244, 2024.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. SWE-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

12

https://qwenlm.github.io/blog/qwq-32b/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

1 Introduction 1

2 Related Work 3

3 Preliminaries 3

4 Nondeterministic Polynomial-time Problem Challenge 4

4.1 Problem Suite: npgym . 5

4.2 Solver Suite: npsolver . 6

4.3 Evaluation Suite: npeval . 6

5 Results 6

5.1 Analysis of Performance . 6

5.2 Analysis of Tokens and Aha Moments . 7

5.3 Analysis of Solution Errors . 8

5.4 Analysis of Reasoning Failure Cases . 9

6 Conclusion 9

A Frequently Asked Questions (FAQs) 15

A.1 Why Ever-Scaling and the Four Desiderata? . 15

A.2 Why Focusing on NP (Specifically NPC) Problems? 15

A.3 Why Not Considering More Complex Test-time Scaling? 15

A.4 Why Not Focusing on 3SAT Only? . 16

A.5 Determining the Difficulty Levels . 16

A.6 Selection of Models . 17

A.7 Laderboard . 17

B Limitations and Negative Impacts 18

B.1 Limitations and Future Work . 18

B.2 Negative Impacts . 18

C Computational Complexity: P, NP and NP-complete 19

D Modules in NPPC 20

D.1 Problem Suite: npgym . 20

D.2 Solver Suite: npsolver . 29

D.3 Evaluation Suite: npeval . 30

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

E Prompts and Responses 31

F List of NP-complete Problems 33

G Hyperparameters 36

H Full Results over Problems 37

I Performance over Problems 41

J Tokens 44

K Aha Moments 48

L Solution Errors 49

M Analysis of Reasoning Failure Cases 53

N Costs of the Evaluation 57

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A FREQUENTLY ASKED QUESTIONS (FAQS)

A.1 WHY EVER-SCALING AND THE FOUR DESIDERATA?

Why Ever-Scaling? LLMs are advancing at an unprecedented pace, making existing benchmarks
obsolete quickly and posing a significant challenge for maintaining reliable evaluation. An ever-
scaling benchmark can evolve alongside LLMs, i.e., adapting dynamically to match the development
of LLMs. The ever-scaling benchmark can address two core limitations in traditional benchmarks: i)
short lifespan, where traditional benchmarks are easily crushed as LLMs rapidly improve, losing their
ability to distinguish between models; ii) limited exploitability, where models can hack the answers
in static benchmarks through overfitting or finding shortcuts to answers without genuine reasoning.

Why the Four Desiderate are Important? The four desiderata include:

• Scaling over complexity. The benchmark can generate problems with continually increasing
difficulty, e.g., larger input sizes, stricter constraints, etc. This property can prevent the benchmark
from being solved to prevent obsolescence, and mirror the real-world problems, e.g., logistics and
chip design, which grow in complexity as systems scale. The scaling over complexity implies if
the LLMs solve the generated problem instances of the current difficulty level, the benchmarks can
generate more difficult problem instances until the reasoning limits of them.

• Scaling over the instance. The benchmark can generate infinite unique instances, even at the same
complexity level. This property makes it impossible for LLMs to memorize the answers or simply
overfit to patterns in static training data, and it forces LLMs to reason about the underlying logic
to ensure the fairness of evaluation. To mitigate memorization effects, researchers can randomly
sample novel problem instances during evaluation to obtain reliable performance metrics.

• Scaling over oversight. The benchmark provides an automated and cost-effective evaluation
without any human intervention, i.e., the solutions can be verified efficiently even for arbitrarily
complex problems. This property is critical for large-scale benchmarking as human evaluation
is impractical for massive or highly complex benchmarks, therefore, automated verification is
necessary for evaluating at scale.

• Scaling over coverage. This property enables the benchmark to prioritize problems with broad
applicability, thereby reflecting real-world utility and challenges. Consequently, advances demon-
strated on the benchmark serve as reliable indicators of progress on practical, real-world tasks.

A.2 WHY FOCUSING ON NP (SPECIFICALLY NPC) PROBLEMS?

Why not P or NP-hard Problems? Problems in the P complexity class can be solved in polynomial
time. When LLMs are equipped with code execution capabilities, they can generate and execute
algorithms to solve these problems directly. Consequently, such benchmarks become susceptible to
trivial solutions through computational tools rather than genuine reasoning. Conversely, NP-hard
problems, particularly those lacking polynomial-time verification procedures, present scalability
challenges: as problem instances grow extremely large, efficient solution verification becomes
intractable, potentially compromising the benchmark’s ability to scale over complexity and oversight.

Why NPC Problems? NPC problems are the “hardest” problems in NP class and any other NP
problems can be reduced to NPC problems in polynomial time. The absence of known polynomial-
time algorithms for NPC problems ensures that current benchmarks measuring performance on
these problems cannot be trivially dominated through tool using. Furthermore, the polynomial-time
verifiability of solutions enables efficient assessment of solutions generated by LLMs or AI agents
even for large-scale problem instances.

A.3 WHY NOT CONSIDERING MORE COMPLEX TEST-TIME SCALING?

The Majority Voting, Best of N , and even tools, e.g., domain-specific solvers, can further improve
the performance of models (Parashar et al., 2025; Lin et al., 2025). However, these approaches either
necessitate multiple forward passes through the language model or incorporate auxiliary components
such as reward models or external tools to augment the reasoning process. Our primary objective
is to investigate the reasoning capabilities of LLMs and these complex test-time scaling would be
beyond the scope of this paper. We will tackle this in the future work.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 WHY NOT FOCUSING ON 3SAT ONLY?

3SAT is a classic NPC problem with theoretical completeness, which provides a theoretically rigorous
foundation for benchmarking. As an NPC problem, although all NP problems can be reduced to
3SAT, solely relying on reduction to 3SAT is impractical and reasoning benchmarks demand broader
diversity for several key reasons:

• Reduction overhead: The reduction process may incur significant computational overhead. Addi-
tional variables and constraints are often introduced when reducing non-trivial NP problems to a
specific NP-complete problem, e.g., reducing Traveling Salesman Problem (TSP) to 3SAT requires
mapping the structure of the original problem into a Boolean logic expression through an encod-
ing mechanism, which introduces an exponential number of variables and clauses, significantly
increasing the computational complexity and leading to hidden costs.

• Loss of characteristics: Each specific NP problem has domain-specific information, e.g., structure
and characteristics. For example, Traveling Salesman Problem (TSP) has graph structures, Bin
Packing has combinatorial optimization characteristics, and Graph 3-Colourability (3-COL) has
adjacency characteristics. Therefore, reducing NP problems to 3SAT and only considering 3SAT
will cause the loss of problem specificity, e.g., structural semantics, which could be used to design
more efficient heuristics or approximation algorithms.

• Lack of robustness: NP problems form the foundation of numerous real-world scenarios, which
often exhibit various conditions that cannot be adequately represented solely through 3SAT. As a
reasoning benchmark, NPPC should encompass a variety of problem sizes and structures rather
than concentrating exclusively on 3SAT to effectively evaluate the capabilities and scalability
of LLMs. Therefore, a diverse set of complex NP problems that can closely mimic real-world
challenges should be considered.

A.5 DETERMINING THE DIFFICULTY LEVELS

Is There a Unified Principle for Difficulty Levels of NPC Problems? Establishing a unified
principle for determining difficulty levels across all NPC problems is fundamentally challenging due
to inherent differences from both theoretical and practical perspectives. From the problem perspective,
the structural heterogeneity of NPC problems prevents the establishment of a universal difficulty
metric. While all NPC problems are polynomially reducible to each other in theory, they exhibit
vastly different characteristics in practice. These differences include: i) representation complexity,
i.e., problems vary in how constraints and variables are encoded (graph structures vs. logical
formulas vs. numerical constraints), ii) Search space topology, i.e., some problems have smooth
difficulty landscapes while others contain sharp complexity transitions. This heterogeneity means
that uniform metrics—such as simple parameter counts or constraint numbers—fail to capture the
true computational difficulty that emerges during actual problem-solving. From the LLM perspective,
LLMs demonstrate highly variable performance across different NPC problems, and the problem
instances generated should not be too easy or too difficult, which may fail to differentiate the
capabilities of LLMs. Additionally, there exists no established theoretical framework for determining
the upper bounds of problem difficulty that LLMs can effectively handle, making difficulty calibration
necessarily empirical and problem-specific.

How to Determine the Difficulty Levels? For NPPC, we address this challenge through a two-
stage method: we begin with manual configuration of problem parameters based on established
computational complexity theory and domain expertise and then the human-configured difficulty
levels are further calibrated through systematic empirical testing with state-of-the-art LLMs. This
two-stage approach ensures that problems’ difficulty levels are both theoretically grounded and
practically meaningful for evaluating LLM capabilities.

Are the Generated Instances Truly Difficult for LLMs? Yes, our validation process confirms this
through multiple measures: i) we observe consistent performance degradation across difficulty levels,
indicating that our instances successfully challenge LLM capabilities, ii) different difficulty levels
produce distinct failure modes, suggesting that instances test different aspects of reasoning ability,
and iii) the difficulty progression holds across multiple LLM architectures, indicating robustness
beyond specific model biases. Although our approach is conceptually simple, it can trully generate
difficult instances.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Why not Focusing on Hardest Instances? Our goal is to evaluate general reasoning capabilities
rather than exploit specific failure modes. By providing a graduated difficulty spectrum, we can
assess reasoning development by tracking how LLM performance scales with problem complexity,
identify capability boundaries to determine where different reasoning strategies break down, and
support practical applications by focusing on difficulties relevant to real-world scenarios.

Why not Using Traditional Tools, e.g., Z3 (De Moura & Bjørner, 2008)? The difficulty expe-
rienced by traditional symbolic solvers does not necessarily translate to difficulty for LLMs due to
fundamental differences in problem-solving approaches. First, traditional solvers use systematic
search and logical inference, while LLMs rely on pattern recognition and learned heuristics. Second,
problems that are hard for symbolic methods due to search space explosion may be tractable for
LLMs through pattern matching, and vice versa, therefore, the relationship between problem size and
difficulty differs dramatically between symbolic and neural approaches. Third, traditional tools fail
due to computational resource constraints, while LLMs fail due to reasoning limitations or training
data gaps. Therefore, LLM-specific calibration is essential to create benchmarks that meaningfully
assess the unique capabilities and limitations of LLMs. In examining 25 NPC problems across
multiple domains, we observe that problem-specific tools, while potentially effective within their
narrow scope, lack the generalizability required for comprehensive evaluation. Therefore, we do not
rely on traditional computational tools as the primary metric for establishing problem difficulty levels
in LLM evaluation frameworks.

A.6 SELECTION OF MODELS

Due to the limited budget, we can only select the representative models for the evaluation. Specifi-
cally, we choose the two representative offline medium-sized reasoning models, i.e., QwQ-32B and
DeepSeek-R1-32B, and online advanced non-reasoning models, i.e., GPT-4o-mini, GPT-4o, Claude-
3.7-Sonnet, DeepSeek-V3, DeepSeek-V3-2503, and online reasoning models, i.e., DeepSeek-R1,
o1-mini, and o3-mini. For the more recent models, e.g., o3, o4-mini, Gemini 2.5 Pro, Qwen 3, Llama
4, Claude-4, and GPT-5, we will add them in the next update of our benchmark.

A.7 LADERBOARD

We only provide the screenshot of the leaderboard in Figure 10 due to the anonymity of the submission.
We will release this leaderboard upon the acceptance of the paper.

Figure 10: Screenshot of NPPC leaderboard

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B LIMITATIONS AND NEGATIVE IMPACTS

B.1 LIMITATIONS AND FUTURE WORK

Multimodal NP Problems. The first limitation of this work is only text-based NPC problems
are considered. Extending NPPC to the multimodal domains represents a promising direction.
Games like StarCraft II, Minesweeper, Pokemon and Super Mario Bros (Aloupis et al., 2015),
could form the foundation of a multimodal version of NPPC. However, extending NPC problems
to the multimodal domain presents significant challenges that require careful consideration and
novel approaches. Two primary obstacles emerge in this endeavor: first, not all NPC problems are
inherently suitable for multimodal representation, as demonstrated by problems like 3SAT which
are fundamentally symbolic and lack natural visual components; second, maintaining the scalable
difficulty characteristics essential to NPC problems becomes complex when incorporating images or
videos that may exceed the input context window limitations of current multimodal language models.
We will tackle this limitation and the associated challenges in the future work.

AI Agent with Tool Use. The second limitation of this work is we do not consider the tool using of
LLMs for solving the NPC problems, where LLMs with tool using are usually termed as AI agents.
The benchmark could significantly contribute to AI agent development by encouraging tool use for
solving increasingly complex NP problems. As the difficulty of problems increases, LLMs will
naturally require external tools to manage computational complexity. This creates a natural pathway
toward agent capabilities, where models learn to decompose problems and leverage appropriate tools.
The code generation already observed in models attempting to solve difficult NPPC problems can be
viewed as a form of tool creation, as these generated algorithms can be saved and reused for future
problem-solving. This provides a principled way to measure progress in agent development in a
well-defined framework.

Unstoppable RL vs. Ever-Scaling NP Problems. The rapid progress in LLM reasoning capabilities
through reinforcement learning (RL) presents an interesting dynamic when considered alongside
ever-scaling NPC problems. As models like DeepSeek-R1 and OpenAI o1/o3-mini demonstrate
significant reasoning improvements through RL techniques, NPPC provides a counterbalance by
offering problems that can continuously scale in difficulty. This creates an adversarial paradigm to
drive the AI development: RL improves model reasoning and NPPC scales to maintain challenging.

B.2 NEGATIVE IMPACTS

We do not foresee any negative impacts of this paper.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C COMPUTATIONAL COMPLEXITY: P, NP AND NP-COMPLETE

P

NP-hard

NP-complete

NP

Figure 11: The relation between P, NP and NP-complete

P. The class P consists of decision problems that can be solved by a deterministic Turing machine in
polynomial time. In practical terms, these are problems for which efficient algorithms exist. The time
required to solve these problems grows polynomially with the input size (n), such as O(n), O(n2), or
O(n3). Examples include sorting, searching in a sorted array, and determining if a number is prime.

NP. NP contains all decision problems for which a solution can be verified in polynomial time. Every
problem in P is also in NP, but NP may contain problems that are not in P. The key characteristic is
that if someone gives you a potential solution, you can quickly check whether it’s correct, even if
finding that solution might be difficult. Examples include the Boolean satisfiability problem and the
Traveling Salesman decision problem.

NP-complete (NPC). NP-complete problems are the “hardest” problems in NP. A problem is NP-
complete if: i) It belongs to NP, ii) Every other problem in NP can be reduced to it in polynomial time.
This means that if an efficient (polynomial-time) algorithm were found for any NP-complete problem,
it could be used to solve all problems in NP efficiently. The first proven NP-complete problem was
the Boolean satisfiability problem (SAT). Other examples include the Traveling Salesman Problem,
Graph Coloring, and the Knapsack Problem. The question of whether P=NP (whether every problem
with efficiently verifiable solutions also has efficiently computable solutions) remains one of the most
important open questions in computer science and mathematics.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D MODULES IN NPPC

D.1 PROBLEM SUITE: npgym

Interface. We introduce npgym, a problem suite containing 25 NPC problems with a unified
gym-style interface for instance generation and solution verification. Each environment is defined
by a problem name and its corresponding hyperparameters, enabling the generation of unlimited
problem instances and example solutions. Difficulty can be scaled by adjusting these parameters.
npgym also supports automatic verification of solutions produced by large language models (LLMs).
New problems can be added easily by implementing two core functions and providing a problem
description for prompt generation.

class NPEnv:
def __init__(self, problem_name, level):

self.problem_name = problem_name
self.level = level

self._generate_instance, self._verify_solution = self.
_get_instance_generator()

def _get_instance_generator(self):
np_gym_folder = "./npgym/npc"
problem_path = PROBLEM2PATH[self.problem_name]

generate_instance = importlib.import_module(problem_path).
generate_instance

verify_solution = importlib.import_module(problem_path).
verify_solution

return generate_instance, verify_solution

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Variables to Scale. Table 4 lists the variables to scale for each of the 25 NP-complete problems.

Table 4: NPC problems in NPPC and the variables to scale

Type Problems Variables to scale

Core

3SAT num variables, num clauses
Vertex Cover num nodes, cover size
3DM n
TSP num cities, target length
Hamiltonian Cycle num nodes, directed
3-COL num nodes, num edges
Bin Packing num items, bin capacity, num bins
Max Leaf Span Tree num nodes, target leaves
QDE low, high
Min Sum of Squares num elements, k
Superstring n, k
Bandwidth num nodes, bandwidth

Extension

Clique num nodes, clique size
Independent Set num nodes, ind set size
Dominating Set num nodes, k, edge prob
Set Splitting num elements, num subsets
Set Packing num elements, num subsets, num disjoint sets
X3C num elements, num subsets
Minimum Cover num elements, num sets, k
Partition n, max value
Subset Sum num elements, max value
Hitting String n, m
Quadratic Congruences min value, max value
Betweenness num element, num triples
Clustering num elements, b

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Difficulty Levels. We define and release problem-specific difficulty levels for each of the 25 core
problems included in our benchmark. Each problem includes approximately 10 levels of increasing
complexity, determined primarily by theoretical factors such as search space size and validated
through empirical testing using DeepSeek-R1 and GPT-4o. npgym allows seamless extension to
higher difficulty levels as more powerful models become available.

{
"3-Satisfiability (3-SAT)": {

1: {"num_variables": 5, "num_clauses": 5},
2: {"num_variables": 15, "num_clauses": 15},
3: {"num_variables": 20, "num_clauses": 20},
4: {"num_variables": 25, "num_clauses": 25},
5: {"num_variables": 30, "num_clauses": 30},
6: {"num_variables": 40, "num_clauses": 40},
7: {"num_variables": 50, "num_clauses": 50},
8: {"num_variables": 60, "num_clauses": 60},
9: {"num_variables": 70, "num_clauses": 70},
10: {"num_variables": 80, "num_clauses": 80},

},
"Vertex Cover": {

1: {"num_nodes": 4, "cover_size": 2},
2: {"num_nodes": 8, "cover_size": 3},
3: {"num_nodes": 12, "cover_size": 4},
4: {"num_nodes": 16, "cover_size": 5},
5: {"num_nodes": 20, "cover_size": 10},
6: {"num_nodes": 24, "cover_size": 12},
7: {"num_nodes": 28, "cover_size": 14},
8: {"num_nodes": 32, "cover_size": 16},
9: {"num_nodes": 36, "cover_size": 18},
10: {"num_nodes": 40, "cover_size": 20},

},
"Clique": {

1: {"num_nodes": 4, "clique_size": 2},
2: {"num_nodes": 8, "clique_size": 4},
3: {"num_nodes": 12, "clique_size": 6},
4: {"num_nodes": 14, "clique_size": 7},
5: {"num_nodes": 16, "clique_size": 8},
6: {"num_nodes": 18, "clique_size": 9},
7: {"num_nodes": 20, "clique_size": 10},
8: {"num_nodes": 22, "clique_size": 11},
9: {"num_nodes": 24, "clique_size": 12},
10: {"num_nodes": 26, "clique_size": 13},
11: {"num_nodes": 28, "clique_size": 14},
12: {"num_nodes": 30, "clique_size": 15},
13: {"num_nodes": 40, "clique_size": 20},

},
"Independent Set": {

1: {"num_nodes": 4, "ind_set_size": 2},
2: {"num_nodes": 8, "ind_set_size": 4},
3: {"num_nodes": 12, "ind_set_size": 6},
4: {"num_nodes": 16, "ind_set_size": 8},
5: {"num_nodes": 20, "ind_set_size": 10},
6: {"num_nodes": 24, "ind_set_size": 12},
7: {"num_nodes": 26, "ind_set_size": 13},
8: {"num_nodes": 28, "ind_set_size": 14},
9: {"num_nodes": 30, "ind_set_size": 15},
10: {"num_nodes": 32, "ind_set_size": 16},
11: {"num_nodes": 34, "ind_set_size": 17},
12: {"num_nodes": 36, "ind_set_size": 18},
13: {"num_nodes": 48, "ind_set_size": 24},

},
"Partition": {

1: {"n": 2, "max_value": 1},
2: {"n": 4, "max_value": 40},
3: {"n": 10, "max_value": 100},

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

4: {"n": 20, "max_value": 200},
5: {"n": 30, "max_value": 300},
6: {"n": 40, "max_value": 400},
7: {"n": 50, "max_value": 500},
8: {"n": 55, "max_value": 550},
9: {"n": 60, "max_value": 600},
10: {"n": 65, "max_value": 650},
11: {"n": 70, "max_value": 700},
12: {"n": 75, "max_value": 750},
13: {"n": 80, "max_value": 800},

},
"Subset Sum": {

1: {"num_elements": 5, "max_value": 100},
2: {"num_elements": 10, "max_value": 100},
3: {"num_elements": 20, "max_value": 200},
4: {"num_elements": 40, "max_value": 400},
5: {"num_elements": 80, "max_value": 800},
6: {"num_elements": 100, "max_value": 1000},
7: {"num_elements": 120, "max_value": 1200},
8: {"num_elements": 160, "max_value": 1000},
9: {"num_elements": 160, "max_value": 1600},
10: {"num_elements": 200, "max_value": 2000},
11: {"num_elements": 200, "max_value": 1000},
12: {"num_elements": 400, "max_value": 2000},
13: {"num_elements": 600, "max_value": 2000},

},
"Set Packing": {

1: {"num_elements": 10, "num_subsets": 10, "num_disjoint_sets
": 2},

2: {"num_elements": 40, "num_subsets": 40, "num_disjoint_sets
": 8},

3: {"num_elements": 100, "num_subsets": 200, "
num_disjoint_sets": 50},

4: {"num_elements": 100, "num_subsets": 400, "
num_disjoint_sets": 30},

5: {"num_elements": 100, "num_subsets": 500, "
num_disjoint_sets": 30},

6: {"num_elements": 100, "num_subsets": 600, "
num_disjoint_sets": 30},

7: {"num_elements": 100, "num_subsets": 800, "
num_disjoint_sets": 30},

8: {"num_elements": 100, "num_subsets": 1000, "
num_disjoint_sets": 30},

9: {"num_elements": 200, "num_subsets": 400, "
num_disjoint_sets": 60},

10: {"num_elements": 200, "num_subsets": 800, "
num_disjoint_sets": 60},

11: {"num_elements": 400, "num_subsets": 1000, "
num_disjoint_sets": 200},
},
"Set Splitting": {

1: {"num_elements": 5, "num_subsets": 5},
2: {"num_elements": 10, "num_subsets": 10},
3: {"num_elements": 10, "num_subsets": 50},
4: {"num_elements": 10, "num_subsets": 100},
5: {"num_elements": 10, "num_subsets": 200},
6: {"num_elements": 100, "num_subsets": 100},
7: {"num_elements": 100, "num_subsets": 200},
8: {"num_elements": 10, "num_subsets": 500},
9: {"num_elements": 10, "num_subsets": 1000},
10: {"num_elements": 15, "num_subsets": 500},
11: {"num_elements": 20, "num_subsets": 500},

},
"Shortest Common Superstring": {

1: {"n": 10, "k": 5},

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2: {"n": 20, "k": 10},
3: {"n": 40, "k": 20},
4: {"n": 80, "k": 40},
5: {"n": 100, "k": 50},
6: {"n": 100, "k": 100},
7: {"n": 100, "k": 200},
8: {"n": 200, "k": 200},
9: {"n": 300, "k": 400},
10: {"n": 300, "k": 600},

},
"Quadratic Diophantine Equations": {

1: {"low": 1, "high": 50},
2: {"low": 1, "high": 100},
3: {"low": 1, "high": 500},
4: {"low": 1, "high": 1000},
5: {"low": 1, "high": 5000},
6: {"low": 1, "high": 10000},
7: {"low": 1, "high": 50000},
8: {"low": 1, "high": 80000},
9: {"low": 1, "high": 100000},
10: {"low": 1, "high": 200000},

},
"Quadratic Congruences": {

1: {"min_value": 1, "max_value": 100},
2: {"min_value": 1, "max_value": 1000},
3: {"min_value": 1, "max_value": 10000},
4: {"min_value": 1, "max_value": 50000},
5: {"min_value": 1, "max_value": 100000},
6: {"min_value": 1, "max_value": 300000},
7: {"min_value": 1, "max_value": 500000},
8: {"min_value": 1, "max_value": 800000},
9: {"min_value": 1, "max_value": 1000000},
10: {"min_value": 1, "max_value": 3000000},

},
"3-Dimensional Matching (3DM)": {

1: {"n": 4},
2: {"n": 8},
3: {"n": 12},
4: {"n": 15},
5: {"n": 20},
6: {"n": 25},
7: {"n": 30},
8: {"n": 40},
9: {"n": 50},
10: {"n": 60},

},
"Travelling Salesman (TSP)": {

1: {"num_cities": 5, "target_length": 100},
2: {"num_cities": 8, "target_length": 100},
3: {"num_cities": 10, "target_length": 100},
4: {"num_cities": 12, "target_length": 100},
5: {"num_cities": 15, "target_length": 100},
6: {"num_cities": 17, "target_length": 200},
7: {"num_cities": 20, "target_length": 200},
8: {"num_cities": 25, "target_length": 200},
9: {"num_cities": 30, "target_length": 200},
10: {"num_cities": 40, "target_length": 300},

},
"Dominating Set": {

1: {"num_nodes": 10, "k": 5, "edge_prob": 0.3},
2: {"num_nodes": 15, "k": 5, "edge_prob": 0.3},
3: {"num_nodes": 30, "k": 15, "edge_prob": 0.3},
4: {"num_nodes": 50, "k": 20, "edge_prob": 0.3},
5: {"num_nodes": 70, "k": 20, "edge_prob": 0.3},
6: {"num_nodes": 100, "k": 20, "edge_prob": 0.3},

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

7: {"num_nodes": 70, "k": 20, "edge_prob": 0.2},
8: {"num_nodes": 80, "k": 20, "edge_prob": 0.2},
9: {"num_nodes": 100, "k": 20, "edge_prob": 0.2},
10: {"num_nodes": 150, "k": 20, "edge_prob": 0.2},
11: {"num_nodes": 160, "k": 15, "edge_prob": 0.2},
12: {"num_nodes": 180, "k": 15, "edge_prob": 0.2},

},
"Hitting String": {

1: {"n": 5, "m": 10},
2: {"n": 5, "m": 20},
3: {"n": 10, "m": 20},
4: {"n": 10, "m": 30},
5: {"n": 10, "m": 40},
6: {"n": 10, "m": 45},
7: {"n": 10, "m": 50},
8: {"n": 10, "m": 55},
9: {"n": 10, "m": 60},
10: {"n": 10, "m": 70},

},
"Hamiltonian Cycle": {

1: {"num_nodes": 5, "directed": False},
2: {"num_nodes": 8, "directed": False},
3: {"num_nodes": 10, "directed": False},
4: {"num_nodes": 12, "directed": False},
5: {"num_nodes": 16, "directed": False},
6: {"num_nodes": 18, "directed": False},
7: {"num_nodes": 20, "directed": False},
8: {"num_nodes": 22, "directed": False},
9: {"num_nodes": 25, "directed": False},
10: {"num_nodes": 30, "directed": False},

},
"Bin Packing": {

1: {"num_items": 10, "bin_capacity": 20, "num_bins": 3},
2: {"num_items": 20, "bin_capacity": 30, "num_bins": 3},
3: {"num_items": 30, "bin_capacity": 30, "num_bins": 3},
4: {"num_items": 40, "bin_capacity": 30, "num_bins": 3},
5: {"num_items": 50, "bin_capacity": 50, "num_bins": 5},
6: {"num_items": 60, "bin_capacity": 50, "num_bins": 5},
7: {"num_items": 70, "bin_capacity": 50, "num_bins": 5},
8: {"num_items": 80, "bin_capacity": 50, "num_bins": 5},
9: {"num_items": 80, "bin_capacity": 30, "num_bins": 10},
10: {"num_items": 100, "bin_capacity": 50, "num_bins": 10},

},
"Exact Cover by 3-Sets (X3C)": {

1: {"num_elements": 3, "num_subsets": 6},
2: {"num_elements": 4, "num_subsets": 8},
3: {"num_elements": 5, "num_subsets": 10},
4: {"num_elements": 7, "num_subsets": 14},
5: {"num_elements": 8, "num_subsets": 16},
6: {"num_elements": 10, "num_subsets": 20},
7: {"num_elements": 15, "num_subsets": 30},
8: {"num_elements": 20, "num_subsets": 40},
9: {"num_elements": 25, "num_subsets": 50},
10: {"num_elements": 30, "num_subsets": 60},

},
"Minimum Cover": {

1: {"num_elements": 5, "num_sets": 10, "k": 3},
2: {"num_elements": 10, "num_sets": 20, "k": 5},
3: {"num_elements": 10, "num_sets": 30, "k": 5},
4: {"num_elements": 15, "num_sets": 20, "k": 8},
5: {"num_elements": 15, "num_sets": 30, "k": 10},
6: {"num_elements": 20, "num_sets": 40, "k": 10},
7: {"num_elements": 25, "num_sets": 50, "k": 10},
8: {"num_elements": 30, "num_sets": 60, "k": 10},
9: {"num_elements": 35, "num_sets": 70, "k": 10},

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

10: {"num_elements": 40, "num_sets": 80, "k": 10},
11: {"num_elements": 45, "num_sets": 90, "k": 10},
12: {"num_elements": 50, "num_sets": 100, "k": 10},
13: {"num_elements": 55, "num_sets": 110, "k": 10},
14: {"num_elements": 60, "num_sets": 120, "k": 10},
15: {"num_elements": 65, "num_sets": 130, "k": 10},
16: {"num_elements": 70, "num_sets": 140, "k": 10},

},
"Graph 3-Colourability (3-COL)": {

1: {"num_nodes": 5, "num_edges": 8},
2: {"num_nodes": 8, "num_edges": 12},
3: {"num_nodes": 10, "num_edges": 20},
4: {"num_nodes": 15, "num_edges": 25},
5: {"num_nodes": 15, "num_edges": 30},
6: {"num_nodes": 15, "num_edges": 40},
7: {"num_nodes": 20, "num_edges": 40},
8: {"num_nodes": 20, "num_edges": 45},
9: {"num_nodes": 30, "num_edges": 60},
10: {"num_nodes": 30, "num_edges": 80},

},
"Clustering": {

1: {"num_elements": 6, "b": 10},
2: {"num_elements": 10, "b": 10},
3: {"num_elements": 15, "b": 10},
4: {"num_elements": 18, "b": 10},
5: {"num_elements": 20, "b": 10},
6: {"num_elements": 30, "b": 10},
7: {"num_elements": 40, "b": 10},
8: {"num_elements": 50, "b": 10},
9: {"num_elements": 60, "b": 10},
10: {"num_elements": 70, "b": 10},

},
"Betweenness": {

1: {"num_element": 3, "num_triples": 1},
2: {"num_element": 4, "num_triples": 2},
3: {"num_element": 5, "num_triples": 3},
4: {"num_element": 6, "num_triples": 4},
5: {"num_element": 7, "num_triples": 5},
6: {"num_element": 8, "num_triples": 6},

},
"Minimum Sum of Squares": {

1: {"num_elements": 10, "k": 5},
2: {"num_elements": 50, "k": 8},
3: {"num_elements": 100, "k": 8},
4: {"num_elements": 100, "k": 5},
5: {"num_elements": 100, "k": 4},
6: {"num_elements": 100, "k": 3},
7: {"num_elements": 200, "k": 10},
8: {"num_elements": 200, "k": 4},
9: {"num_elements": 200, "k": 3},
10: {"num_elements": 300, "k": 3},

},
"Bandwidth": {

1: {"num_nodes": 3, "bandwidth": 2},
2: {"num_nodes": 4, "bandwidth": 2},
3: {"num_nodes": 5, "bandwidth": 3},
4: {"num_nodes": 6, "bandwidth": 3},
5: {"num_nodes": 5, "bandwidth": 2},
6: {"num_nodes": 7, "bandwidth": 3},
7: {"num_nodes": 6, "bandwidth": 2},
8: {"num_nodes": 8, "bandwidth": 3},
9: {"num_nodes": 7, "bandwidth": 2},
10: {"num_nodes": 8, "bandwidth": 2},

},
"Maximum Leaf Spanning Tree": {

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1: {"num_nodes": 5, "target_leaves": 2},
2: {"num_nodes": 10, "target_leaves": 5},
3: {"num_nodes": 20, "target_leaves": 10},
4: {"num_nodes": 30, "target_leaves": 20},
5: {"num_nodes": 40, "target_leaves": 30},
6: {"num_nodes": 60, "target_leaves": 50},
7: {"num_nodes": 70, "target_leaves": 60},
8: {"num_nodes": 80, "target_leaves": 65},
9: {"num_nodes": 90, "target_leaves": 75},
10: {"num_nodes": 100, "target_leaves": 80},

},
}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Solution Errors. There are two fundamental error categories: problem-independent errors and
problem-dependent errors. Problem-independent errors are general errors that arise from external
factors unrelated to the problem’s intrinsic characteristics and all problems have these types of errors.
Problem-independent errors include JSON ERROR (JSON not found or JSON parsing errors), and
VERIFICATION ERROR (output format mismatches or structural validation failures). Problem-
dependent errors originate from the problem’s inherent complexity, which are defined based on
problem specificity. A comprehensive illustration of the errors is displayed in Table 5.

Table 5: A comprehensive illustration of errors.

Problem Error Type Description

JSON ERROR JSON not found.
VERIFICATION ERROR Wrong output format.

3SAT ERROR 1 The solution length mismatches the number of variables.
ERROR 2 Some clauses are not satisfied.

Vertex Cover

ERROR 1 Wrong solution format.
ERROR 2 The cover is empty.
ERROR 3 Invalid vertex index, i.e., above the max or below the min.
ERROR 4 The cover size exceeds the limit.
ERROR 5 Some edges are not covered.

3DM
ERROR 1 Not all triples in the matching are in the original set.
ERROR 2 The size of matching is wrong
ERROR 3 The elements in the matching are not mutually exclusive.

TSP

ERROR 1 Tour length mismatches number of cities.
ERROR 2 Invalid city index, i.e., above the max or below the min.
ERROR 3 There exists cities not be visited exactly once.
ERROR 4 Tour length exceeds target length.

Hamiltonian Cycle

ERROR 1 Path length is wrong.
ERROR 2 Path does not return to start.
ERROR 3 Not all vertices visited exactly once.
ERROR 4 There exists invalid vertex in path.
ERROR 5 There exists invalid edges in path.

3-COL ERROR 1 The two nodes of an edge have the same color

Bin Packing
ERROR 1 Solution length mismatches the number of items.
ERROR 2 Invalid bin index.
ERROR 3 The total size exceeds bin capacity.

Max Leaf Span Tree

ERROR 1 Solution length mismatches the number of vertices.
ERROR 2 There exists invalid edges in solution.
ERROR 3 The solution does not have exactly one root.
ERROR 4 The solution doesn’t span all vertices.
ERROR 5 The number of leaves in the solution is less than target.

QDE

ERROR 1 Solution length mismatches the number of integers.
ERROR 2 There exists non-positive values in the solution.
ERROR 3 The equation does not hold.

Min Sum Square
ERROR 1 Solution length mismatches the number of elements.
ERROR 2 The number of subsets exceeds the set limit.
ERROR 3 The sum exceeds the limit J .

Superstring
ERROR 1 Wrong solution format.
ERROR 2 The solution length exceeds the limit.
ERROR 3 Some string is not the substring of the solution.

Bandwidth
ERROR 1 Layout length mismatches the number of vertices.
ERROR 2 Layout is not a permutation of vertices.
ERROR 3 There exists edge exceeds the bandwidth limit.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D.2 SOLVER SUITE: npsolver

We introduce npsolver, a solver suite that provides a unified interface for both online (API-based)
and offline (local) models. The unified interface includes: i) Prompt Generation, which constructs
problem-specific prompts dynamically using the designed prompt templates shown in Appendix E,
including problem descriptions, in-context examples, and target problems; ii) LLM Completion,
which invokes either online or offline LLMs to generate responses from the constructed prompts;
iii) Solution Extraction, which designs regular expressions to parse JSON outputs from the LLMs’
responses, ensuring all online and offline LLMs Use the same JSON validation pipeline; iv) Error
Reporting, which standardizes error messages. Through the unified interface, npsolver enables both
online and offline models to share a common workflow. Through this unified pipeline, npsolver
enables consistent evaluation and analysis for both online and offline models. For each problem,
difficulty level, and model, npsolver stores detailed records—including the problem instance, example
solutions, full LLM responses, extracted solutions, input/output token counts, error messages, solution
correctness, and reasons for failure—in a pickle file to facilitate failure case analysis. The list of
models integrated in npsolver is shown in Table 6.

Table 6: Online and offline models considered in this paper via npsolver.

Type Models Version Provider

Online

GPT-4o-mini gpt-4o-mini-2024-07-18 OpenAI
GPT-4o gpt-4o-2024-08-06 OpenAI
o1-mini o1-mini-2024-09-12 OpenAI
o3-mini o3-mini-2025-01-31 OpenAI

DeepSeek-V3 deepseek-v3-241226 Huoshan
DeepSeek-V3-2503 deepseek-v3-250324 Huoshan

DeepSeek-R1 deepseek-r1-250120 Huoshan
Claude-3.7-Sonnet claude-3-7-sonnet-20250219 Anthropic

Offline QwQ-32B Qwen/QwQ-32B N/A
DeepSeek-R1-32B deepseek-ai/DeepSeek-R1-Distill-Qwen-32B N/A

Online. The online state-of-the-art LLMs, e.g., o1/o3-mini and DeepSeek-v3/R1, can be accessed
through APIs without local computational overhead. However, these online models have dependency
on network stability and API costs with token usage. npsolver supports multiple providers, e.g.,
OpenAI, through modular API clients. We implement efficient batch processing with LiteLLM,
which minimizes the latency during parallel problem-solving.

Offline. Open-weight LLMs, e.g., QwQ-32B and Deepseek-R1-32B, can be accessed by deploying
them locally. This allows for GPU-accelerated, high-throughput inference while avoiding API-related
costs. Offline models are deployed using vLLM, with hyperparameters—such as temperature and
maximum token length—manually configured according to their official technical documentation.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D.3 EVALUATION SUITE: npeval

npeval employs a statistically rigorous sampling strategy. For each difficulty, the aggregated per-
formance over 3 different independent seeds, with 30 samples generated per seed, aligning with
the minimum sample size for reliable statistical analysis (Hogg et al., 1977), are considered. This
sampling design, i.e., sampling 90 instances total per difficulty level for each problem, balances
budget constraints while mitigating instance-specific variance.

Evaluation Metrics. rliable (Agarwal et al., 2021) is an open-source Python library designed to
enable statistically robust evaluation of reinforcement learning and machine learning benchmarks.
Inspired by rliable, npeval provides the following 4 evaluation aggregate metrics:

• Mean: Mean is a standard evaluation metric that treats each score equally and calculates the overall
mean across runs and tasks.

• Interquartile Mean (IQM): IQM trims extreme values and computes the interquartile mean across
runs and tasks to smooth out the randomness in responses. IQM highlights the consistency of the
performance and complements metrics like mean/median to avoid outlier skew.

• Median: Median represents the middle value of the scores by calculating the median of the average
scores per task across all runs, which is unaffected by extreme values.

• Optimality Gap (OG): OG measures the average shortfall of scores below a predefined threshold γ,
where all scores above γ are clipped to γ, so as to quantify and penalize the underperformance,
making it less susceptible to outliers compared to mean scores.

To quantify uncertainty in aggregate metrics, e.g. IQM, npeval employs stratified bootstrap confidence
intervals (SBCIs) (Efron, 1979; 1987) for the performance interval estimation. SBCIs use stratified
resampling within predefined strata, e.g., difficulty levels, to preserve the hierarchical structure of the
evaluation data, reduce bias, and provide statistically sound interval estimates.

Comprehensive Analysis. Based on evaluation metrics, npeval provides a comprehensive analysis
of the LLMs’ performance over the problems and difficulty levels, including the full results for
each problem, each model and each level (Appendix H), the performance over different problems
(Appendix I), the analysis of both prompt and completion tokens of LLMs (Appendix J), the analysis
of the number of “aha moments” during the DeepSeek-R1 reasoning (Guo et al., 2025) (Appendix K),
an illustration of errors over problems (Table 5) with detailed error analysis (Appendix L), considering
both the solution errors, i.e., the errors returned by npgym, and the reasoning errors, i.e., the errors
produced in the internal reasoning process of LLMs, which enables the identification of the failure
cases (Appendix M). The cost of evaluation over LLMs is in listed in Table 23 (Appendix N).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E PROMPTS AND RESPONSES

Prompts. In this section, we carefully design the prompt template of NPPC for LLMs to be simple,
general, and consistent across different problems. The prompt template includes:

• Problem description: where a concise definition of the NPC problem is provided, including the
problem name, the input, and the question to be solved.

• Examples: where one or multiple in context examples, defined as problem-solution pairs, are listed,
demonstrating the expected solutions, i.e., answer correctness and format, for specific instances.
These examples guide LLMs to generate the responses with the required format.

• Problem to solve: a target instance that requires LLMs to generate the solution.
• Instruction: which provides a directive to output answers in JSON format.

nppc_template = """
<problem_name> Problem Description:
<problem_description>

Examples:
<in_context_examples>
Problem to Solve:
Problem: <problem_to_solve>

Instruction:
Now please solve the above problem. Reason step by step and present

your answer in the "solution" field in the following json format:
‘‘‘json
{"solution": "___" }
‘‘‘

"""

example_and_solution = """Problem: <example_problem>
{"solution": <example_solution>}
"""

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Responses. We extract the answers from the LLMs’ responses and the code is displayed below:

def extract_solution_from_response(response):
find the json code
match = re.findall(r"‘‘‘json\n(.*?)\n‘‘‘", response, re.DOTALL)

if not match:
match = re.findall(r"json\s*({[ˆ{}]*})", response, re.DOTALL)

if not match:
match = re.findall(r"\{[ˆ{}]*\}", response, re.DOTALL)

if match:
json_str = match[-1]
try:

remove the single line comment
json_str = re.sub(r"//.*$", "", json_str, flags=re.

MULTILINE)
remove the multiple line comment
json_str = re.sub(r"/*[\s\S]*?*/", "", json_str)
data = json.loads(json_str)
answer = data["solution"]
return answer, None

except (json.JSONDecodeError, KeyError, SyntaxError) as e:
print(f"Error parsing JSON or answer field: {e}")
return None, f"Error parsing JSON or answer field: {e}"

else:
print("No JSON found in the text.")
return None, "JSON Error: No JSON found in the text."

The code extracts JSON data from LLM responses using three regex patterns in sequence:

• First tries to find content between triple quotes with “json” marker,
• If that fails, looks for “json” followed by content in curly braces,
• If both fail, simply looks for any content between curly braces.

If all the three tries cannot find the content, we will raise the error.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F LIST OF NP-COMPLETE PROBLEMS

Problem 1. • Name: 3-Satisfiability (3SAT)

• Input: A set of m clauses {C1, C2, . . . , Cm} - over a set of n Boolean valued variables
Xn = {x1, x2, . . . , xn}, such that each clause depends on exactly three distinct variables
from Xn. A clause being a Boolean expression of the form yi ∧ yj ∧ yk where each
y is of the form x or ¬x (i.e. negation of x) with x being some variable in Xn. For
example if n = 4 and m = 3, a possible instance could be the (set of) Boolean expressions:
C1 = (x1 ∧ (¬x2) ∧ (¬x3)), C2 = (x2 ∧ x3 ∧ (¬x4)), C3 = ((¬x1) ∧ x3 ∧ x4).

• Question: Can each variable xi of Xn be assigned a Boolean value αi ∈ {true, false} in
such a way that every clause evaluates to the Boolean result true under the assignment
⟨xi := αi, i ∈ {1, . . . , n}⟩?

Problem 2. • Name: Graph 3-Colourability (3-COL)

• Input: An n-node undirected graph G = (V,E) with node set V and edge set E.

• Question: Can each node of G = (V,E) be assigned exactly one of three colours - Red,
Blue, Green - in such a way that no two nodes which are joined by an edge, are assigned the
same colour?

Problem 3. • Name: Clique

• Input: An n-node undirected graph G = (V,E) with node set V and edge set E; a positive
integer k with k ≤ n.

• Question: Does G contain a k-clique, i.e. a subset W of the nodes V such that W has size
k and for each distinct pair of nodes u, v in W , {u, v} is an edge of G?

Problem 4. • Name: Vertex Cover

• Input: An n-node undirected graph G = (V,E) with node set V and edge set E; a positive
integer k with k ≤ n.

• Question: Is there a subset W of V having size at most k and such that for every edge
{u, v} in E at least one of u and v belongs to W ?

Problem 5. • Name: Quadratic Diophantine Equations

• Input: Positive integers a, b, and c.

• Question: Are there two positive integers x and y such that (a ∗ x ∗ x) + (b ∗ y) = c?

Problem 6. • Name: Shortest Common Superstring

• Input: A finite set R = {r1, r2, . . . , rm} of strings (sequences of symbols); positive integer
k.

• Question: Is there a string w of length at most k such that every string in R is a substring of
w, i.e., for each r in R, w can be decomposed as w = w0rw1 where w0, w1 are (possibly
empty) strings?

Problem 7. • Name: Bandwidth

• Input: n-node undirected graph G = (V,E); positive integer k ≤ n.

• Question: Is there a linear ordering of V with bandwidth at most k, i.e., a one-to-one
function f : V → {0, 1, 2, ..., n− 1} such that for all edges u, v in G, |f(u)− f(v)| ≤ k?

Problem 8. • Name: Maximum Leaf Spanning Tree

• Input: n-node undirected graph G = (V,E); positive integer k ≤ n.

• Question: Does G have a spanning tree in which at least k nodes have degree 1?

Problem 9. • Name: Independent Set

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

• Input: n-node undirected graph G = (V,E); positive integer k ≤ n.

• Question: Does G have an independent set of size at least k, i.e., a subset W of at least k
nodes from V such that no pair of nodes in W is joined by an edge in E?

Problem 10. • Name: Hamiltonian Cycle

• Input: n-node graph G = (V,E).

• Question: Is there a cycle in G that visits every node in V exactly once and returns to the
starting node, and thus contains exactly n edge

Problem 11. • Name: Travelling Salesman

• Input: A set C of n cities {c1, . . . , cn}; a positive integer distance d(i, j) for each pair
of cities (ci, cj), i < j, i, j ∈ {1, . . . , n}; a positive integerB representing the maximum
allowed travel distance.

• Question: Is there an ordering ⟨π(1), π(2), ..., π(n)⟩ of the n cities such that the total travel
distance, calculated as the sum of d(π(i), π(i+ 1)) for i = 1 to n− 1, plus d(π(n), π(1)),
is at most B?

Problem 12. • Name: Dominating Set

• Input: An undirected graph G(V,E) with n nodes; a positive integer k where k ≤ n.

• Question: Does G contain a dominating set of size at most k, i.e. a subset W of V
containing at most k nodes such that every node u in V −W (i.e. in V but not in W) has at
least one neighbor w in W where u,w is an edge in E?

Problem 13. • Name: 3-Dimensional Matching (3DM)

• Input: 3 disjoint sets X , Y , and Z, each containing exactly n elements; a set M of m triples
{(xi, yi, zi) : 1 ≤ i ≤ m} such that xi is in X , yi in Y , and zi in Z, i.e. M is a subset of
X × Y × Z.

• Question: Does M contain a matching, i.e., is there a subset Q of M such that |Q| = n and
for all distinct pairs of triples (u, v, w) and (x, y, z) in Q it holds that u ̸= x and v ̸= y and
w ̸= z?

Problem 14. • Name: Set Splitting

• Input: A finite set S; A collection C1, . . . , Cm of subsets of S.

• Question: Can S be partitioned into two disjoint subsets - S1 and S2 - such that for each
set Ci it holds that Ci is not a subset of S1 and Ci is not a subset of S2?

Problem 15. • Name: Set Packing

• Input: A collection C = (C1, . . . , Cm) of finite sets; a positive integer k ≤ m.

• Question: Are there k sets - D1, . . . , Dk - from the collection C such that for all 1 ≤ i <
j ≤ k, Di and Dj have no common elements?

Problem 16. • Name: Exact Cover by 3-Sets (X3C)

• Input: A finite set X containing exactly 3n elements; a collection C of subsets of X each
of which contains exactly 3 elements.

• Question: Does C contain an exact cover for X , i.e., a sub-collection of 3-element sets
D = (D1, . . . , Dn) such that each element of X occurs in exactly one subset in D?

Problem 17. • Name: Minimum Cover

• Input: A finite set S; A collection C = (C1, . . . , Cm) of subsets of S; a positive integer
k ≤ m.

• Question: Does C contain a cover for S comprising at most k subsets, i.e., a collection
D = (D1, . . . , Dt), where t ≤ k, each Di is a set in C, and such that every element in S
belongs to at least one set in D?

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Problem 18. • Name: Partition

• Input: Finite set A; for each element a in A a positive integer size s(a).

• Question: Can A be partitioned into 2 disjoint sets A1 and A2 in a such a way that∑
a∈A1

s(a) =
∑

a∈A2
s(a)?

Problem 19. • Name: Subset Sum

• Input: Finite set A; for each element a ∈ A a positive integer size s(a); a positive integer
K.

• Question: Is there a subset B of A such that
∑

a∈B s(a) = K?
Problem 20. • Name: Minimum Sum of Squares

• Input: A set A of n elements; for each element a ∈ A a positive integer size s(a); positive
integers k ≤ n and J .

• Question: Can A be partitioned into k disjoint sets A1, . . . , Ak such that∑k
i=1(

∑
x∈Ai

s(x))2 <= J?
Problem 21. • Name: Bin Packing

• Input: A finite set U of m items; for each item u in U a positive integer size s(u); positive
integers B (bin capacity) and k, where k ≤ m.

• Question: Can U be partitioned into k disjoint sets U1, . . . , Uk such that the total size of
the items in each subset Ui (for 1 ≤ i ≤ k) does not exceed B?

Problem 22. • Name: Hitting String

• Input: Finite set S = {s1, . . . , sm} each si being a string of n symbols over {0, 1, ∗}.

• Question: Is there a binary string x = x1x2 . . . xn of length n such that for each sj ∈ S, sj
and x agree in at least one position?

Problem 23. • Name: Quadratic Congruences

• Input: Positive integers a, b, and c.

• Question: Is there a positive integer x whose value is less than c and is such that x2

mod b == a, i.e., the remainder when x2 is divided by b is equal to a?
Problem 24. • Name: Betweenness

• Input: A finite set A of size n; a set C of ordered triples, (a, b, c), of distinct elements from
A.

• Question: Is there a one-to-one function, f : A → {0, 1, 2, ..., n − 1} such that for each
triple (a, b, c) in C it holds that either f(a) < f(b) < f(c) or f(c) < f(b) < f(a)?

Problem 25. • Name: Clustering

• Input: Finite set X; for each pair of elements x and y in X , a positive integer distance
d(x, y); positive integer B.

• Question: Is there a partition of X into 3 disjoint sets - X1, X2, X3 - with which: for each
set Xi, i ∈ {1, 2, 3}, for all pairs x and y in Xi, it holds that d(x, y) ≤ B?

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

G HYPERPARAMETERS

The hyperparameters used for benchmarking are listed in Table 7. For both offline and online-
deployed models, accuracy is averaged over three seeds and 30 trials per difficulty level per task.
Each model is allowed up to three attempts to mitigate the impact of API connection issues. For
offline models, we follow the recommended sampling parameters from the technical reports of
Deepseek-R1-32B and QwQ-32B for vLLM deployment.

Table 7: Hyperparameters

Type Hyperparameter Value

Basic

seeds 42, 53, 64
n shots 1
n trials 30

batch size 10
max tries 3

Offline Model

temperature 0.6
top p 0.95

max tokens 7500
gpu memory utilization 0.8

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

H FULL RESULTS OVER PROBLEMS

In this section, we present the full results over problems, as displayed in Figure 5. For each element in
the table xa

b , x is the value of IQM and a and b are the upper and lower values of the CI, respectively.

Table 8: 3SAT

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.941.000.90 1.001.001.00 0.560.600.53 0.110.130.07 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.830.900.73 0.520.700.40 0.320.370.30 0.190.270.13 0.130.230.07 0.020.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.840.870.83 0.270.300.20 0.170.270.10 0.080.100.03 0.020.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.940.970.93 0.510.570.47 0.430.470.40 0.220.270.20 0.090.170.00 0.010.030.00 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 1.001.001.00 0.890.930.80 0.620.670.60 0.540.600.50 0.360.470.27 0.190.270.13 0.140.230.03 0.080.100.03 0.030.070.00 0.020.030.00

DeepSeek-V3 0.940.970.93 0.780.900.60 0.380.400.33 0.340.430.17 0.210.270.17 0.060.100.03 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-V3-2503 1.001.001.00 0.981.000.97 0.890.970.83 0.680.800.60 0.530.630.47 0.380.430.30 0.280.330.23 0.120.230.03 0.080.170.03 0.030.030.03

DeepSeek-R1 1.001.001.00 1.001.001.00 0.991.000.97 0.981.000.93 0.971.000.93 0.910.970.87 0.830.930.63 0.640.670.63 0.230.270.20 0.130.170.10

o1-mini 0.920.930.90 0.910.970.87 0.920.970.90 0.810.870.77 0.670.770.60 0.200.370.10 0.030.030.03 0.000.000.00 0.000.000.00 0.000.000.00

o3-mini 0.930.970.90 0.820.870.77 0.720.830.63 0.770.830.70 0.820.830.80 0.710.770.67 0.600.700.53 0.300.430.20 0.130.170.10 0.120.170.03

Table 9: Vertex Cover

1 2 3 4 5 6 7 8 9 10

QwQ-32B 1.001.001.00 0.991.000.97 0.930.970.90 0.500.600.37 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.911.000.83 0.920.930.90 0.810.870.73 0.520.600.43 0.030.070.00 0.020.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.941.000.87 0.670.800.57 0.370.430.27 0.180.230.10 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.961.000.90 0.880.900.83 0.780.870.67 0.600.630.57 0.010.030.00 0.030.070.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 1.001.001.00 0.971.000.90 0.971.000.93 0.900.900.90 0.530.570.47 0.370.470.30 0.370.500.23 0.260.300.20 0.140.170.10 0.040.070.00

DeepSeek-V3 0.921.000.87 0.971.000.93 0.960.970.93 0.890.930.83 0.340.430.23 0.140.200.10 0.060.100.03 0.030.070.00 0.030.070.00 0.010.030.00

DeepSeek-V3-2503 1.001.001.00 1.001.001.00 1.001.001.00 0.870.900.83 0.280.430.10 0.370.500.23 0.270.330.23 0.090.130.07 0.090.100.07 0.010.030.00

DeepSeek-R1 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 0.910.970.87 0.770.870.70 0.410.470.33 0.180.200.13 0.130.200.08 0.060.100.00

o1-mini 0.740.770.73 0.770.800.73 0.780.830.70 0.910.930.87 0.580.700.43 0.310.330.27 0.130.170.10 0.130.270.03 0.080.100.07 0.020.070.00

o3-mini 0.820.900.70 0.890.930.83 0.890.930.83 0.800.900.73 0.590.700.53 0.520.570.50 0.190.270.10 0.130.230.03 0.110.170.03 0.070.100.03

Table 10: Superstring

1 2 3 4 5 6 7 8 9 10

QwQ-32B 1.001.001.00 0.920.970.87 0.280.330.20 0.190.230.13 0.170.230.10 0.060.130.00 0.080.130.03 0.010.030.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.580.700.33 0.240.400.10 0.160.230.07 0.120.230.07 0.100.170.07 0.030.030.03 0.020.030.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.320.470.20 0.080.130.03 0.020.030.00 0.010.030.00 0.000.000.00 0.010.030.00 0.000.000.00 0.010.030.00 0.000.000.00 0.000.000.00

GPT-4o 0.810.830.77 0.470.570.30 0.110.170.07 0.100.170.03 0.060.100.03 0.160.270.03 0.060.100.03 0.120.130.10 0.070.100.03 0.030.070.00

Claude-3.7-Sonnet 0.991.000.97 0.971.000.93 0.780.900.70 0.510.570.47 0.680.770.60 0.740.800.70 0.770.800.73 0.880.930.83 0.820.900.77 0.740.800.70

DeepSeek-V3 0.800.830.73 0.520.670.37 0.490.530.43 0.460.530.40 0.440.530.40 0.400.570.30 0.240.370.13 0.220.270.17 0.080.100.03 0.020.030.00

DeepSeek-V3-2503 0.991.000.97 0.890.930.83 0.780.830.73 0.610.670.57 0.530.600.40 0.370.400.33 0.210.230.20 0.170.170.17 0.260.270.23 0.130.170.10

DeepSeek-R1 1.001.001.00 0.991.000.97 0.940.970.93 0.810.900.73 0.800.830.73 0.610.770.53 0.370.500.20 0.310.330.30 0.110.170.07 0.130.170.10

o1-mini 0.910.970.87 0.590.730.47 0.480.530.43 0.200.230.17 0.100.130.07 0.030.070.00 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00

o3-mini 1.001.001.00 1.001.001.00 0.981.000.97 0.890.900.87 0.740.770.70 0.310.370.23 0.040.070.03 0.010.030.00 0.000.000.00 0.000.000.00

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 11: QDE

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.721.000.30 0.560.800.17 0.190.270.07 0.160.230.07 0.030.030.03 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.840.900.77 0.620.700.50 0.110.130.10 0.080.100.07 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.490.530.43 0.230.270.17 0.030.070.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.670.700.60 0.430.570.33 0.080.100.07 0.030.030.03 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 0.961.000.87 0.970.970.97 0.780.800.77 0.590.670.47 0.100.130.07 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-V3 0.970.970.97 0.890.930.83 0.380.400.37 0.190.300.10 0.040.070.03 0.020.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-V3-2503 1.001.001.00 1.001.001.00 0.680.700.63 0.640.730.57 0.300.370.20 0.170.200.13 0.080.130.00 0.010.030.00 0.080.130.00 0.000.000.00

DeepSeek-R1 1.001.001.00 1.001.001.00 1.001.001.00 0.971.000.93 0.820.900.77 0.680.730.63 0.270.330.20 0.170.200.13 0.090.130.07 0.030.070.00

o1-mini 0.570.700.50 0.590.630.50 0.440.630.33 0.460.500.43 0.110.170.07 0.030.070.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

o3-mini 0.940.970.90 0.991.000.97 0.940.970.93 0.961.000.90 0.810.870.77 0.660.770.53 0.300.430.20 0.270.300.20 0.270.300.23 0.130.170.10

Table 12: 3DM

1 2 3 4 5 6 7 8 9 10

QwQ-32B 1.001.001.00 0.981.000.97 0.930.970.90 0.940.970.93 0.330.830.07 0.060.100.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.871.000.77 0.420.570.23 0.090.130.03 0.000.000.00 0.000.000.00 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.430.570.27 0.090.100.07 0.020.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.640.830.53 0.240.370.17 0.130.200.03 0.100.130.07 0.020.070.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 0.960.970.93 0.840.900.80 0.760.800.67 0.590.700.43 0.210.330.13 0.090.100.07 0.070.100.03 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-V3 0.740.830.57 0.320.470.23 0.080.130.00 0.030.100.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-V3-2503 0.940.970.93 0.760.870.70 0.490.600.43 0.310.470.10 0.070.100.03 0.030.070.00 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1 1.001.001.00 1.001.001.00 0.981.000.97 0.971.000.93 0.930.970.90 0.910.970.83 0.910.970.87 0.570.670.50 0.270.370.17 0.020.030.00

o1-mini 0.870.930.83 0.890.900.87 0.810.870.73 0.770.830.73 0.380.470.30 0.260.270.23 0.110.200.07 0.010.030.00 0.000.000.00 0.000.000.00

o3-mini 0.630.700.60 0.860.930.80 0.720.770.67 0.710.800.57 0.570.600.53 0.560.700.43 0.380.530.30 0.300.370.23 0.230.230.23 0.200.230.17

Table 13: TSP

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.610.800.50 0.410.530.30 0.420.530.30 0.560.600.50 0.260.300.23 0.190.270.13 0.020.070.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.880.900.87 0.620.730.53 0.300.400.23 0.130.200.03 0.020.030.00 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.930.960.90 0.340.400.27 0.120.200.07 0.070.100.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.970.970.97 0.760.800.73 0.590.670.50 0.400.470.33 0.220.330.10 0.160.230.03 0.080.100.07 0.020.070.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 1.001.001.00 0.981.000.97 0.900.930.83 0.830.900.77 0.860.900.80 0.800.830.73 0.540.700.47 0.510.530.50 0.080.100.03 0.060.100.00

DeepSeek-V3 0.981.000.93 0.900.900.90 0.740.830.60 0.620.770.50 0.490.670.33 0.490.730.33 0.170.230.13 0.070.130.00 0.020.030.00 0.000.000.00

DeepSeek-V3-2503 1.001.001.00 0.940.970.90 0.961.000.87 0.830.870.80 0.700.770.67 0.660.700.57 0.390.470.27 0.100.100.10 0.010.030.00 0.010.030.00

DeepSeek-R1 1.001.001.00 0.991.000.97 0.970.970.97 0.991.000.97 0.870.870.87 0.780.800.77 0.620.670.57 0.240.300.20 0.030.100.00 0.000.000.00

o1-mini 0.840.900.73 0.890.930.87 0.670.770.60 0.570.630.43 0.340.470.23 0.370.430.23 0.180.300.07 0.010.030.00 0.000.000.00 0.000.000.00

o3-mini 0.790.870.73 0.620.670.53 0.530.630.47 0.280.330.20 0.310.370.23 0.300.470.17 0.300.370.20 0.190.200.17 0.120.170.07 0.070.130.00

Table 14: Hamiltonian Cycle

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.941.000.90 0.870.930.83 0.800.930.70 0.620.670.57 0.330.400.23 0.160.200.10 0.030.100.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.690.730.67 0.360.400.27 0.240.400.13 0.090.130.03 0.000.000.00 0.010.030.00 0.020.030.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.700.730.67 0.260.400.13 0.090.100.07 0.080.130.03 0.010.030.00 0.000.000.00 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.730.730.73 0.390.430.33 0.220.270.17 0.120.200.07 0.090.130.00 0.010.030.00 0.060.100.00 0.000.000.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 0.991.000.97 0.800.900.70 0.740.830.67 0.640.770.53 0.320.500.17 0.230.270.20 0.270.330.20 0.160.270.10 0.100.100.10 0.020.070.00

DeepSeek-V3 0.830.900.77 0.440.530.30 0.140.200.10 0.160.170.13 0.090.170.00 0.060.070.03 0.060.100.00 0.060.100.00 0.010.030.00 0.010.030.00

DeepSeek-V3-2503 0.991.000.97 0.820.900.77 0.510.530.50 0.380.530.27 0.160.270.07 0.140.170.13 0.090.100.07 0.100.170.07 0.060.070.03 0.030.070.00

DeepSeek-R1 1.001.001.00 1.001.001.00 0.971.000.93 0.910.970.83 0.760.930.63 0.640.730.57 0.490.570.43 0.360.400.27 0.170.230.13 0.040.100.00

o1-mini 0.720.800.57 0.710.770.67 0.540.600.50 0.400.470.33 0.190.230.17 0.230.300.13 0.120.170.10 0.080.100.03 0.040.070.00 0.000.000.00

o3-mini 0.820.830.80 0.840.900.77 0.710.770.63 0.710.830.60 0.630.730.57 0.590.670.50 0.440.500.37 0.320.430.27 0.200.330.10 0.220.230.20

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 15: Bin Packing

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.880.930.80 0.830.870.77 0.460.570.40 0.080.200.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.260.330.17 0.030.070.00 0.010.030.00 0.030.070.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.300.330.23 0.030.030.03 0.040.100.00 0.030.100.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.830.900.73 0.440.500.40 0.340.370.33 0.180.200.13 0.040.100.00 0.020.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 0.981.000.97 0.890.930.83 0.580.700.43 0.390.400.37 0.070.170.00 0.010.030.00 0.010.030.00 0.030.070.00 0.010.030.00 0.000.000.00

DeepSeek-V3 0.660.730.60 0.460.500.40 0.440.500.37 0.370.400.33 0.060.130.00 0.040.070.03 0.020.030.00 0.000.000.00 0.010.030.00 0.000.000.00

DeepSeek-V3-2503 1.001.001.00 0.870.930.80 0.740.830.67 0.620.670.57 0.180.270.10 0.180.230.13 0.090.130.03 0.020.070.00 0.020.030.00 0.000.000.00

DeepSeek-R1 1.001.001.00 1.001.001.00 1.001.001.00 0.981.000.97 0.800.900.73 0.640.770.57 0.490.530.47 0.290.430.20 0.060.100.03 0.030.070.00

o1-mini 0.670.800.43 0.580.630.50 0.520.570.47 0.330.400.27 0.310.500.20 0.190.230.13 0.070.100.03 0.000.000.00 0.020.070.00 0.010.030.00

o3-mini 0.720.830.60 0.670.800.57 0.620.670.57 0.480.570.33 0.410.470.37 0.290.430.17 0.240.470.13 0.170.270.10 0.420.470.33 0.280.330.20

Table 16: 3-COL

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.961.000.90 0.910.930.87 0.780.870.73 0.560.670.50 0.340.430.27 0.100.130.07 0.010.030.00 0.010.030.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.490.570.43 0.510.570.43 0.030.070.00 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.400.500.30 0.170.200.13 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.600.630.57 0.390.530.30 0.030.100.00 0.010.030.00 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 0.760.870.67 0.700.730.67 0.220.330.07 0.170.200.13 0.090.100.07 0.040.070.03 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-V3 0.670.700.63 0.600.630.53 0.130.200.07 0.120.170.10 0.030.070.00 0.020.070.00 0.020.070.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-V3-2503 0.800.870.73 0.900.930.87 0.480.630.40 0.640.730.57 0.320.370.30 0.160.200.07 0.160.230.07 0.090.200.00 0.020.030.00 0.000.000.00

DeepSeek-R1 0.991.000.97 1.001.001.00 0.971.000.93 0.970.970.97 0.880.930.80 0.720.770.67 0.720.800.67 0.510.670.40 0.220.270.17 0.040.070.03

o1-mini 0.610.700.50 0.760.870.70 0.570.700.43 0.620.670.60 0.370.430.33 0.270.300.23 0.340.400.27 0.170.230.07 0.030.070.00 0.020.070.00

o3-mini 0.981.000.97 0.910.930.87 0.961.000.90 0.840.870.83 0.780.870.70 0.720.800.67 0.710.800.60 0.610.800.47 0.510.530.47 0.290.300.27

Table 17: Min Sum Square

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.770.800.70 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.010.030.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.230.430.10 0.000.000.00 0.040.070.00 0.070.100.03 0.060.100.03 0.040.130.00 0.020.070.00 0.060.100.03 0.010.030.00 0.060.070.03

GPT-4o-mini 0.740.800.67 0.620.770.50 0.030.070.00 0.070.100.03 0.080.100.07 0.030.070.00 0.030.070.00 0.020.070.00 0.020.030.00 0.040.130.00

GPT-4o 0.940.970.90 0.820.870.80 0.460.530.37 0.560.600.53 0.440.530.40 0.480.530.43 0.040.070.03 0.010.030.00 0.010.030.00 0.010.030.00

Claude-3.7-Sonnet 0.981.000.97 0.840.930.80 0.830.900.80 0.730.800.70 0.790.870.70 0.640.700.60 0.590.630.50 0.670.730.57 0.620.670.53 0.140.200.07

DeepSeek-V3 0.870.930.80 0.900.930.83 0.840.900.80 0.580.630.53 0.580.630.53 0.480.570.43 0.070.100.03 0.170.230.07 0.070.170.00 0.020.030.00

DeepSeek-V3-2503 1.001.001.00 0.480.570.40 0.710.770.67 0.590.630.50 0.620.670.57 0.610.700.50 0.220.230.20 0.290.370.23 0.020.030.00 0.000.000.00

DeepSeek-R1 1.001.001.00 0.880.900.83 0.640.730.57 0.460.530.37 0.470.530.33 0.390.430.30 0.130.170.10 0.130.170.10 0.070.130.00 0.020.030.00

o1-mini 0.620.670.57 0.700.800.63 0.270.300.23 0.180.270.10 0.140.230.10 0.100.130.07 0.030.100.00 0.060.070.03 0.020.070.00 0.010.030.00

o3-mini 0.690.800.60 0.380.470.23 0.380.470.33 0.390.500.23 0.520.600.47 0.300.370.23 0.440.500.33 0.240.270.20 0.030.070.00 0.180.230.13

Table 18: Bandwidth

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.961.000.90 0.910.930.90 0.901.000.83 0.840.930.70 0.760.870.60 0.660.770.60 0.630.670.60 0.300.400.20 0.200.300.13 0.060.070.03

DeepSeek-R1-32B 0.931.000.83 0.830.870.80 0.870.930.80 0.670.830.53 0.540.700.47 0.490.570.43 0.380.400.37 0.110.130.07 0.140.170.10 0.030.070.00

GPT-4o-mini 1.001.001.00 0.941.000.90 0.940.970.93 0.840.870.83 0.780.800.77 0.470.570.40 0.460.470.43 0.200.230.17 0.140.200.10 0.030.070.00

GPT-4o 1.001.001.00 0.961.000.90 0.971.000.93 0.941.000.87 0.780.870.67 0.620.670.57 0.600.670.53 0.220.300.17 0.100.130.07 0.020.030.00

Claude-3.7-Sonnet 1.001.001.00 0.961.000.90 0.961.000.90 0.870.900.83 0.780.870.67 0.660.730.60 0.620.670.57 0.280.330.17 0.110.130.07 0.020.030.00

DeepSeek-V3 1.001.001.00 0.981.000.97 0.991.000.97 0.930.970.90 0.740.900.63 0.630.770.53 0.560.630.50 0.340.400.30 0.230.330.17 0.030.070.00

DeepSeek-V3-2503 1.001.001.00 0.910.930.90 0.890.900.87 0.620.670.57 0.580.630.53 0.570.600.53 0.430.500.33 0.330.400.27 0.170.200.13 0.040.070.03

DeepSeek-R1 1.001.001.00 0.900.930.83 0.931.000.90 0.880.930.80 0.830.900.80 0.680.770.57 0.590.670.47 0.340.430.30 0.240.300.20 0.070.100.03

o1-mini 0.740.800.70 0.740.830.60 0.840.870.83 0.820.870.77 0.820.870.77 0.680.700.67 0.590.630.53 0.330.370.30 0.240.330.20 0.060.070.03

o3-mini 0.800.830.77 0.880.930.83 0.820.930.77 0.900.930.87 0.720.800.60 0.580.700.43 0.520.530.50 0.200.230.17 0.170.200.13 0.080.100.07

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 19: Max Leaf Span Tree

1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.730.830.57 0.930.970.87 0.280.400.20 0.060.070.03 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-R1-32B 0.200.300.03 0.240.370.13 0.180.270.13 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o-mini 0.260.330.17 0.190.400.07 0.010.030.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

GPT-4o 0.490.570.40 0.530.600.47 0.290.370.23 0.240.300.20 0.080.100.07 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00 0.000.000.00

Claude-3.7-Sonnet 1.001.001.00 0.991.000.97 0.960.970.93 0.820.930.70 0.710.830.57 0.590.630.57 0.120.200.07 0.000.000.00 0.000.000.00 0.000.000.00

DeepSeek-V3 0.790.830.77 0.880.930.80 0.890.930.80 0.690.800.57 0.560.600.50 0.260.330.20 0.270.430.13 0.090.170.00 0.020.030.00 0.010.030.00

DeepSeek-V3-2503 0.900.970.80 0.860.900.83 0.760.800.67 0.390.430.33 0.180.300.10 0.220.270.13 0.280.330.23 0.170.200.13 0.070.130.00 0.020.030.00

DeepSeek-R1 0.970.970.97 0.991.000.97 0.880.900.87 0.630.770.53 0.390.430.37 0.180.230.13 0.210.230.20 0.010.030.00 0.010.030.00 0.000.000.00

o1-mini 0.700.730.67 0.530.530.53 0.570.570.57 0.170.200.10 0.020.030.00 0.020.030.00 0.000.000.00 0.000.000.00 0.010.030.00 0.000.000.00

o3-mini 0.770.830.70 0.680.730.63 0.660.670.63 0.660.700.60 0.420.500.30 0.260.270.23 0.190.230.17 0.160.330.07 0.110.170.03 0.090.170.03

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

I PERFORMANCE OVER PROBLEMS

In this section, we present the performance of LLMs on each problem across different levels.

0.25 0.50 0.75
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.2 0.4 0.6 0.8

Mean

0.0 0.3 0.6 0.9

Median

0.4 0.6 0.8

Optimality Gap

Figure 12: 3SAT

0.2 0.4 0.6
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.30 0.45 0.60

Mean

0.00 0.25 0.50 0.75

Median

0.45 0.60 0.75

Optimality Gap

Figure 13: Vertex Cover

0.25 0.50 0.75
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.25 0.50 0.75

Mean

0.00 0.25 0.50 0.75

Median

0.25 0.50 0.75 1.00

Optimality Gap

Figure 14: Superstring

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.2 0.4 0.6

Mean

0.00 0.25 0.50 0.75

Median

0.4 0.6 0.8

Optimality Gap

Figure 15: QDE

0.00 0.25 0.50 0.75
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.2 0.4 0.6 0.8

Mean

0.0 0.3 0.6 0.9

Median

0.4 0.6 0.8

Optimality Gap

Figure 16: 3DM

0.25 0.50 0.75
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.15 0.30 0.45 0.60

Mean

0.00 0.25 0.50 0.75

Median

0.45 0.60 0.75

Optimality Gap

Figure 17: TSP

0.2 0.4 0.6
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.15 0.30 0.45 0.60

Mean

0.00 0.25 0.50 0.75

Median

0.45 0.60 0.75 0.90

Optimality Gap

Figure 18: Hamiltonian Cycle

0.0 0.2 0.4 0.6
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.2 0.4 0.6

Mean

0.00 0.25 0.50 0.75

Median

0.4 0.6 0.8 1.0

Optimality Gap

Figure 19: Bin Packing

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.2 0.4 0.6

Mean

0.00 0.25 0.50 0.75

Median

0.4 0.6 0.8

Optimality Gap

Figure 20: 3-COL

0.0 0.2 0.4 0.6
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.2 0.4 0.6

Mean

0.0 0.2 0.4 0.6

Median

0.4 0.6 0.8

Optimality Gap

Figure 21: Min Sum Square

0.0 0.2 0.4 0.6
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.15 0.30 0.45

Mean

0.0 0.2 0.4 0.6

Median

0.60 0.75 0.90

Optimality Gap

Figure 22: Max Leaf Span Tree

0.48 0.56 0.64 0.72
QwQ-32B

DeepSeek-R1-32B
GPT-4o-mini

GPT-4o
Claude-3.7-Sonnet

DeepSeek-V3
DeepSeek-V3-2503

DeepSeek-R1
o1-mini
o3-mini

IQM

0.50 0.55 0.60 0.65

Mean

0.5 0.6 0.7 0.8

Median

0.35 0.40 0.45 0.50

Optimality Gap

Figure 23: Bandwidth

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

J TOKENS

In this section, we present the results of the prompt and completion tokens used in LLMs.

1000

2000

3000

Pr
om

pt

QwQ-32B
correct
wrong

1000

2000

3000 DeepSeek-R1-32B
correct
wrong

1000

2000
GPT-4o-mini

correct
wrong

1000

2000
GPT-4o

correct
wrong

1000

2000
Claude-3.7-Sonnet

correct
wrong

1 2 3 4 5 6 7 8 9 100

5000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10
0

5000

1 2 3 4 5 6 7 8 9 10

1000

2000

1 2 3 4 5 6 7 8 9 10

1000

2000

1 2 3 4 5 6 7 8 9 10

1000
2000
3000

1000

2000

Pr
om

pt

DeepSeek-V3
correct
wrong

1000

2000
DeepSeek-V3-2503

correct
wrong

1000

2000
DeepSeek-R1

correct
wrong

1000

2000
o1-mini

correct
wrong

1000

2000
o3-mini

correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 10

10000

20000

1 2 3 4 5 6 7 8 9 10
0

20000

1 2 3 4 5 6 7 8 9 100

10000

Figure 24: 3SAT

0

2500

5000

Pr
om

pt

QwQ-32B
correct
wrong

0

2500

5000
DeepSeek-R1-32B
correct
wrong

2000

4000
GPT-4o-mini

correct
wrong

2000

4000
GPT-4o

correct
wrong

2000

4000
Claude-3.7-Sonnet

correct
wrong

1 2 3 4 5 6 7 8 9 10

2500
5000
7500

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10

1000

2000

1 2 3 4 5 6 7 8 9 10
0

1000

2000

1 2 3 4 5 6 7 8 9 10

1000

2000

0

2000

4000

Pr
om

pt

DeepSeek-V3
correct
wrong

0

2000

4000
DeepSeek-V3-2503

correct
wrong

0

2000

4000
DeepSeek-R1

correct
wrong

2000

4000
o1-mini

correct
wrong

0

2000

4000
o3-mini

correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 100

10000

20000

1 2 3 4 5 6 7 8 9 10
0

20000

40000

1 2 3 4 5 6 7 8 9 10
0

50000

Figure 25: Vertex Cover

0

25000

50000

Pr
om

pt

QwQ-32B
correct
wrong

0

25000

50000
DeepSeek-R1-32B

correct
wrong

0

20000

40000

GPT-4o-mini
correct
wrong

0

20000

40000

GPT-4o
correct
wrong

0
25000
50000

Claude-3.7-Sonnet
correct
wrong

1 2 3 4 5 6 7 8 9 10
0

5000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10

2500

5000

1 2 3 4 5 6 7 8 9 10

1000
2000
3000

1 2 3 4 5 6 7 8 9 10

1000
2000
3000

0

25000

50000

Pr
om

pt

DeepSeek-V3
correct
wrong

0

25000

50000
DeepSeek-V3-2503

correct
wrong

0

25000

50000
DeepSeek-R1

correct
wrong

0

20000

40000

o1-mini
correct
wrong

0

20000

40000

o3-mini
correct
wrong

1 2 3 4 5 6 7 8 9 100

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 100

10000

20000

1 2 3 4 5 6 7 8 9 100

5000

10000

1 2 3 4 5 6 7 8 9 10
0

20000

Figure 26: Superstring

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

160
180
200

Pr
om

pt

QwQ-32B
correct
wrong

160
180
200

DeepSeek-R1-32B
correct
wrong

160

170
GPT-4o-mini

correct
wrong

160

170
GPT-4o

correct
wrong

180

190

Claude-3.7-Sonnet
correct
wrong

1 2 3 4 5 6 7 8 9 10
2500

5000

7500

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10

1000

2000

1 2 3 4 5 6 7 8 9 10
0

1000

2000

1 2 3 4 5 6 7 8 9 10

2000

4000

150

160

Pr
om

pt

DeepSeek-V3
correct
wrong

150

160
DeepSeek-V3-2503

correct
wrong

150

160

DeepSeek-R1
correct
wrong

170

180

o1-mini
correct
wrong

155
160
165

o3-mini
correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 100

10000

20000

1 2 3 4 5 6 7 8 9 100

10000

1 2 3 4 5 6 7 8 9 10
0

20000

40000

Figure 27: QDE

2000
4000
6000

Pr
om

pt

QwQ-32B
correct
wrong

2000
4000
6000 DeepSeek-R1-32B

correct
wrong

2000

4000
GPT-4o-mini

correct
wrong

2000

4000
GPT-4o

correct
wrong

2000

4000
Claude-3.7-Sonnet

correct
wrong

1 2 3 4 5 6 7 8 9 100

20000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10
1000

2000

3000

1 2 3 4 5 6 7 8 9 10

1000

2000

1 2 3 4 5 6 7 8 9 10

2000

4000

2000

4000

Pr
om

pt

DeepSeek-V3
correct
wrong

2000

4000
DeepSeek-V3-2503

correct
wrong

2000

4000
DeepSeek-R1

correct
wrong

2000

4000
o1-mini

correct
wrong

2000

4000
o3-mini

correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 10

10000

20000

1 2 3 4 5 6 7 8 9 100

10000

20000

1 2 3 4 5 6 7 8 9 100

20000

40000

Figure 28: 3DM

0

50000

Pr
om

pt

QwQ-32B
correct
wrong

0

50000

DeepSeek-R1-32B
correct
wrong

0

20000

40000
GPT-4o-mini

correct
wrong

0

20000

40000
GPT-4o

correct
wrong

0

20000

40000
Claude-3.7-Sonnet

correct
wrong

1 2 3 4 5 6 7 8 9 10
0

5000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10
0

5000

1 2 3 4 5 6 7 8 9 100

5000

10000

1 2 3 4 5 6 7 8 9 10
0

5000

10000

1 2 3 4 5 6 7 8 9 10

2000

4000

0

20000

40000

Pr
om

pt

DeepSeek-V3
correct
wrong

0

20000

40000
DeepSeek-V3-2503

correct
wrong

0

20000

40000
DeepSeek-R1

correct
wrong

0

20000

40000
o1-mini

correct
wrong

0

20000

40000
o3-mini

correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 10
5000

10000
15000

1 2 3 4 5 6 7 8 9 10
0

20000

1 2 3 4 5 6 7 8 9 100
20000
40000

Figure 29: TSP

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

2000

4000
Pr

om
pt

QwQ-32B
correct
wrong

2000

4000

DeepSeek-R1-32B
correct
wrong

2000

4000
GPT-4o-mini

correct
wrong

2000

4000
GPT-4o

correct
wrong

2000

4000
Claude-3.7-Sonnet

correct
wrong

1 2 3 4 5 6 7 8 9 10

2500
5000
7500

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10
0

5000

1 2 3 4 5 6 7 8 9 10

1000
2000
3000

1 2 3 4 5 6 7 8 9 10

1000

2000

1 2 3 4 5 6 7 8 9 10

2000

4000

2000

4000

Pr
om

pt

DeepSeek-V3
correct
wrong

2000

4000
DeepSeek-V3-2503

correct
wrong

2000

4000
DeepSeek-R1

correct
wrong

2000

4000
o1-mini

correct
wrong

2000

4000
o3-mini

correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 10

10000

20000

1 2 3 4 5 6 7 8 9 10
0

10000

20000

1 2 3 4 5 6 7 8 9 10
0

25000

50000

Figure 30: Hamiltonian Cycle

500

1000

Pr
om

pt

QwQ-32B
correct
wrong

500

1000
DeepSeek-R1-32B

correct
wrong

500

1000
GPT-4o-mini

correct
wrong

500

1000
GPT-4o

correct
wrong

500

1000
Claude-3.7-Sonnet

correct
wrong

1 2 3 4 5 6 7 8 9 100

20000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10
1000

2000

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10

1000

2000

3000

500

1000

Pr
om

pt

DeepSeek-V3
correct
wrong

500

1000
DeepSeek-V3-2503

correct
wrong

500

1000
DeepSeek-R1

correct
wrong

500

1000
o1-mini

correct
wrong

500

1000
o3-mini

correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 10

10000

20000

1 2 3 4 5 6 7 8 9 100

10000

1 2 3 4 5 6 7 8 9 100

20000

Figure 31: Bin Packing

500
1000
1500

Pr
om

pt

QwQ-32B
correct
wrong

500
1000
1500

DeepSeek-R1-32B
correct
wrong

500

1000

GPT-4o-mini
correct
wrong

500

1000

GPT-4o
correct
wrong

500

1000

1500 Claude-3.7-Sonnet
correct
wrong

1 2 3 4 5 6 7 8 9 10

2500

5000

7500

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10
500

1000
1500

1 2 3 4 5 6 7 8 9 10
500

1000

1500

1 2 3 4 5 6 7 8 9 10

1000
2000
3000

500

1000

Pr
om

pt

DeepSeek-V3
correct
wrong

500

1000

DeepSeek-V3-2503
correct
wrong

500

1000

DeepSeek-R1
correct
wrong

500

1000

o1-mini
correct
wrong

500

1000

o3-mini
correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 10

5000
10000
15000

1 2 3 4 5 6 7 8 9 100

10000

1 2 3 4 5 6 7 8 9 10
0

25000

50000

Figure 32: 3-COL

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

1000
2000
3000

Pr
om

pt

QwQ-32B
correct
wrong

1000
2000
3000

DeepSeek-R1-32B
correct
wrong

1000

2000

3000 GPT-4o-mini
correct
wrong

1000

2000

3000 GPT-4o
correct
wrong

1000

2000

3000 Claude-3.7-Sonnet
correct
wrong

1 2 3 4 5 6 7 8 9 10
2500

5000

7500

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10

1000

2000

1 2 3 4 5 6 7 8 9 10
1000
2000
3000

1 2 3 4 5 6 7 8 9 10

2000

4000

1000

2000

3000

Pr
om

pt

DeepSeek-V3
correct
wrong

1000

2000

3000 DeepSeek-V3-2503
correct
wrong

1000

2000

3000 DeepSeek-R1
correct
wrong

1000

2000

3000 o1-mini
correct
wrong

1000

2000

3000 o3-mini
correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 10
5000

10000
15000

1 2 3 4 5 6 7 8 9 10
0

10000

20000

1 2 3 4 5 6 7 8 9 10

20000

40000

Figure 33: Min Sum Square

2000

4000

Pr
om

pt

QwQ-32B
correct
wrong

2000

4000
DeepSeek-R1-32B
correct
wrong

1000
2000
3000

GPT-4o-mini
correct
wrong

1000
2000
3000

GPT-4o
correct
wrong

1000
2000
3000

Claude-3.7-Sonnet
correct
wrong

1 2 3 4 5 6 7 8 9 10

2500
5000
7500

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10

1000

2000

1 2 3 4 5 6 7 8 9 10
500

1000

1 2 3 4 5 6 7 8 9 10

1000
2000
3000

1000
2000
3000

Pr
om

pt

DeepSeek-V3
correct
wrong

1000
2000
3000

DeepSeek-V3-2503
correct
wrong

1000
2000
3000

DeepSeek-R1
correct
wrong

1000
2000
3000

o1-mini
correct
wrong

1000
2000
3000

o3-mini
correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 10

5000
10000
15000

1 2 3 4 5 6 7 8 9 10

2500
5000
7500

1 2 3 4 5 6 7 8 9 10
0

25000

50000

Figure 34: Max Leaf Span Tree

250

300

350

Pr
om

pt

QwQ-32B
correct
wrong

250

300

350 DeepSeek-R1-32B
correct
wrong

250

300

350
GPT-4o-mini

correct
wrong

250

300

350
GPT-4o

correct
wrong

300

350

Claude-3.7-Sonnet
correct
wrong

1 2 3 4 5 6 7 8 9 10

2500
5000
7500

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 100

5000

1 2 3 4 5 6 7 8 9 10
500

1000

1 2 3 4 5 6 7 8 9 10
500

1000

1500

1 2 3 4 5 6 7 8 9 10

1000
2000
3000

250

300

350

Pr
om

pt

DeepSeek-V3
correct
wrong

250

300

350 DeepSeek-V3-2503
correct
wrong

250

300

350
DeepSeek-R1

correct
wrong

250

300

350
o1-mini

correct
wrong

250

300

350
o3-mini

correct
wrong

1 2 3 4 5 6 7 8 9 10

2000

4000

Co
m

pl
et

io
n

1 2 3 4 5 6 7 8 9 10

2000

4000

1 2 3 4 5 6 7 8 9 100

10000

1 2 3 4 5 6 7 8 9 100

5000

10000

1 2 3 4 5 6 7 8 9 10
0

20000

40000

Figure 35: Bandwidth

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

K AHA MOMENTS

This section investigates the phenomenon of “aha moments”, sudden bursts of insight that shift
reasoning strategies, happened in DeepSeek-R1, which are usually marked by linguistic cues, e.g.,
“Wait, wait. That’s an aha moment I can flag here.”. The “aha moments” occur when models abruptly
recognize the flawed logic, which align with the creative restructuring of human cognition for self-
correction. Figure 36 display the number of ”aha moments” in DeepSeek-R1 across different NPC
problems, where the blue and the red dots represent correct and wrong outputs respectively.

1 2 3 4 5 6 7 8 9 100
20
40
60
80 3SAT

1 2 3 4 5 6 7 8 9 10

Vertex Cover

1 2 3 4 5 6 7 8 9 10

Superstring

1 2 3 4 5 6 7 8 9 10

QDE

1 2 3 4 5 6 7 8 9 100
20
40
60
80 3DM

1 2 3 4 5 6 7 8 9 10

TSP

1 2 3 4 5 6 7 8 9 10

Hamiltonian Cycle

1 2 3 4 5 6 7 8 9 10

Bin Packing

1 2 3 4 5 6 7 8 9 100
20
40
60
80 3-COL

1 2 3 4 5 6 7 8 9 10

Min Sum Square

1 2 3 4 5 6 7 8 9 10

Bandwidth

1 2 3 4 5 6 7 8 9 10

Max Leaf Span Tree

Figure 36: Number of aha moments in DeepSeek-R1

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

L SOLUTION ERRORS

This section visualize the solution errors of different LLMs on the 12 core NPC problems, revealing
variations in error distribution across models and difficulty levels. For each problem, each color
corresponds to a specific error type as listed in Table 5.

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR VERIFICATION ERROR 3SAT ERROR 1 3SAT ERROR 2

Figure 37: 3SAT

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

VERTEX COVER ERROR 1
VERTEX COVER ERROR 2

VERTEX COVER ERROR 4 VERTEX COVER ERROR 5

Figure 38: Vertex Cover

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR VERIFICATION ERROR SUPERSTRING ERROR 2 SUPERSTRING ERROR 3

Figure 39: Superstring

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

QDE ERROR 1 QDE ERROR 2 QDE ERROR 3

Figure 40: QDE

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

3DM ERROR 1 3DM ERROR 2 3DM ERROR 3

Figure 41: 3DM

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

TSP ERROR 1
TSP ERROR 2

TSP ERROR 3 TSP ERROR 4

Figure 42: TSP

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

HAM CYCLE ERROR 1
HAM CYCLE ERROR 2

HAM CYCLE ERROR 3
HAM CYCLE ERROR 4

HAM CYCLE ERROR 5

Figure 43: Hamiltonian Cycle

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

BIN PACKING ERROR 1 BIN PACKING ERROR 2 BIN PACKING ERROR 3

Figure 44: Bin Packing

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR VERIFICATION ERROR 3-COL ERROR 1

Figure 45: 3-COL

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

MIN SUM SQ ERROR 1 MIN SUM SQ ERROR 2 MIN SUM SQ ERROR 3

Figure 46: Min Sum Square

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

MLST ERROR 1
MLST ERROR 2

MLST ERROR 3
MLST ERROR 4

MLST ERROR 5

Figure 47: Max Leaf Span Tree

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 100

50

100 QwQ-32B

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1-32B

1 2 3 4 5 6 7 8 9 10

GPT-4o-mini

1 2 3 4 5 6 7 8 9 10

GPT-4o

1 2 3 4 5 6 7 8 9 10

Claude-3.7-Sonnet

1 2 3 4 5 6 7 8 9 100

50

100 DeepSeek-V3

1 2 3 4 5 6 7 8 9 10

DeepSeek-V3-2503

1 2 3 4 5 6 7 8 9 10

DeepSeek-R1

1 2 3 4 5 6 7 8 9 10

o1-mini

1 2 3 4 5 6 7 8 9 10

o3-mini

JSON ERROR
VERIFICATION ERROR

BANDWIDTH ERROR 1 BANDWIDTH ERROR 2 BANDWIDTH ERROR 3

Figure 48: Bandwidth

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

M ANALYSIS OF REASONING FAILURE CASES

DeepSeek-R1. Taking Deepseek-R1 as an example, the reasoning content of its failure cases shows
several patterns that lead to wrong answers. The concrete examples of failure cases for DeepSeek-R1
are shown in Table 20. Specifically, the typical reasoning failure cases include:

• Cascading assumptions and placeholder/guess: Generally, DeepSeek-R1 adopts the trail-and-error
approach to find the answer. Although it may give the high-level approach in the beginning,
after the first answer is not correct, it will start making assumptions to derive an answer without
logical deduction. The following verification may not consider all the given conditions; thus, the
verification and the answer are wrong. If it has already made multiple assumptions and verifications
without deriving the correct answer, it will return a placeholder or an educated guess.

• Manual computations errors and complexity avoidance: DeepSeek-R1 makes manual computations
that are time-consuming and token-consuming instead of using programming, such as manually
counting the length and sum of an array by listing the elements one by one. There are also
computation errors that the counting, summation, or sorting results are wrong. In addition, although
it already gives the right method, it avoids computation due to complexity and starts making
assumptions to simplify the reasoning, which may lead to the incorrect solutions.

• Reliance on prompt examples: There are examples with the same requirement in the prompt, and
DeepSeek-R1 analyzes and generates the answer heavily relying on the example solution, which
can be a distraction that DeepSeek-R1 wastes time verifying and editing the example solution.

• Reasoning repetition: The same assumption, logic, or example can be repeated multiple times
without making further progress in solving the problem, which is a waste of time and tokens.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Table 20: Detailed Analysis with Examples of Failure Cases for DeepSeek-R1.

Detailed Failure Reason Reasoning Content

cascading assumptions

... Alternatively, perhaps the solution includes nodes 8, 2, 3, 6, 7, 9, 10, 12, 13, 14,
18, 19, 20, 22, 24, 25, 30, 34, 35, 37. Let’s count these. That’s 20 nodes. ... Maybe
the solution is to select nodes 0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 22, 24,
25, 30, 34, 35, 37. Wait, but that’s more than 20. Need to pick 20. ... Wait, perhaps
the solution includes nodes 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 22, 24, 25, 30,
34, 35, 37. Let’s check: ...

placeholder/guess

... At this point, I’m not sure. Given the time I’ve spent and the complexity, perhaps
the solution is the string pyeojmmykmadslpeetdb with length 20, even though
some required substrings might be missing. But according to the problem statement,
there is a solution. So I’ll have to take a guess. ... But given the time I’ve spent and
the need to provide an answer, I’ll make an educated guess...

manual computation errors

Now, let’s count the number of elements. Each comma separates elements. So
between each number there’s a comma. Let’s count commas. But maybe it’s easier
to split by each element. Let’s do that step by step. Start from the first element: 1.
1; 2. 14; 3. 1; 4. 1; 5. 5; ... So there are 80 items.

complexity avoidance

So, if a node is in an edge that’s not covered by any other node, then that node must
be in the vertex cover. But checking that for each edge would be time-consuming.
Let’s look for edges that have a unique node. For example, if there’s an edge (a, b),
and neither a nor b are connected to any other nodes, then one of them must be in
the cover. But in a graph of 40 nodes, this is unlikely. So probably most nodes have
multiple edges.

reliance on prompt examples

... Wait, in the example problem, the solution included nodes 0, 2, 4, 5, 6, 7, 8,
9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. So maybe similar patterns here.
But the new problem’s edges are different. ... Alternatively, perhaps the solution is
similar to the example. The example’s solution includes nodes 0, 2, 4, 5, 6, 7, 8, 9,
13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. Looking at the problem’s edge set,
perhaps some of these nodes are also high-degree here. Let’s see. ... Wait, another
idea: the example solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20,
23, 25, 26, 30, 32, 34, 37. If I look at these nodes, perhaps they are all the nodes
from one side of a bipartition. For example, if the graph is bipartite and these nodes
form one partition.

reasoning repetition (example)

Looking at the edges, let’s see which nodes are involved a lot. For example, node 8
appears in edges like (8,18), (8,35), (8,21), (8,30), (8,39), etc. Maybe node 8 is a
hub. ... In the problem to solve, node 8 is involved in many edges, as per the edges
provided. So including 8 in the cover would cover a lot of edges. ... For example,
node 8 appears in a lot of edges. Including node 8 would cover many edges. ... For
example, many edges involve node 8. So including node 8 is a must.

reasoning repetition (logic)

... So perhaps the key is to find the longest possible superstring that includes as
many of these as possible, then add the ’b’ and the other small strings. But the ’b’ is
a problem. Let’s think: the superstring must include ’b’ as a substring. Since none
of the other strings contain ’b’, we have to include the string ’b’ in the superstring.
So the superstring will have the ’b’ as a standalone. But how? ... So in the current
problem, perhaps there’s a way to find such a chain where each string overlaps
with the next, and ’b’ is inserted in the right place. But I’m stuck. Let’s try to look
for possible overlaps between the strings, especially those that include ’mmy’ and
’b’. Wait, the ’b’ must be present. How can ’b’ be included? Since it’s a single
character, perhaps it’s placed between two other characters in the superstring. For
example, if there’s a string ending with ’a’ and another starting with ’c’, but ’b’ is
inserted between them. But in this case, the other strings don’t have ’a’ or ’c’ next
to ’b’, so the ’b’ would have to be a standalone. So the superstring must contain ’b’
as a separate character. ... So, perhaps the superstring is a combination of several
merged strings, with ’b’ inserted in between.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Claude. Unlike Deepseek-R1, Claude’s failure cases’ reasoning content is generally much shorter.
Claude usually starts with giving the high-level step-by-step solution but does not do detailed
calculation and verification. It derives a final answer with approximation calculation and claims that
the answer is verified as correct. An example is shown in Table 21.

Table 21: Claude Failure Case.

Based on my analysis of the edge patterns, the following nodes would form an
effective vertex cover:
- 11 (connects to many nodes)
- 14 (high degree, covers many edges)
- 10 (connects to multiple nodes)
- 16 (appears frequently in edge list)
- 19 (connects to several nodes)
...
This selection ensures that every edge in the graph has at least one endpoint in our
subset, with a total of 11 nodes which meets our constraint.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

QwQ-32B. Table 22 illustrates a representative example of QwQ-32B’s deviation from the expected
output format. Although the prompt specifies the response format as json{"solution": ...},
the model frequently omits the prefix and outputs only {”solution”: ...}. This tendency may originate
from its pretraining on mathematical problems, where instructions commonly include phrases such
as ”Please reason step by step, and put your final answer within \boxed{}”. While QwQ-32B can
occasionally self-correct the format, such corrections are infrequent. Another notable failure mode is
the generation of infinite reasoning loops, in which the model repeatedly outputs the same content
until reaching the token limit. This issue is not unique to QwQ-32B and has also been observed in
other reasoning models, indicating a potential direction to improve the reasoning models.

Table 22: QwQ-32B Reasoning Representative Examples

Example Reasoning Content

Problem in Format Following ... All are present. So this should be a valid solution. Let me confirm again. Another
check: For X=5, we chose triple8 (5,13,29). That uses Y=13 and Z=29 ... So correct.
Yes, this seems to work. So the solution is the list of these triples: {”solution”:
[[0,10,21],[1,15,28], [2,16,26],[3,14,20],[4,11,23], [5,13,29],[6,18,24],[7,19,25],...]}

Self-Correction in Format Fol-
lowing

... Final Answer {”solution”: [[3,19,21],[6,13,20],[9,11,26],
[4,15,24],[8,10,25],[5,16,23],[7,18,29], [0,17,22],[1,12,28],[2,14,27]]}. Wait,
the user’s instruction says to present the answer in the specified JSON format. I
think the correct way is to just output the JSON without any extra text. So the final
answer is: json{”solution”: [[3,19,21],[6,13,20],[9,11,26],...]} Final Answer json
{”solution”: [[3,19,21],[6,13,20],[9,11,26],...]}

Infinite Reasoning Loop ... All are present. So this is a valid solution. The solution is the list of these triples. Fi-
nal Answer {”solution”: [[0,13,29],[1,12,28],[2,17,20], [3,10,26],[4,18,27],[5,14,23],
[6,11,25],[7,15,24],...]} Final Answer {”solution”: [[0,13,29],[1,12,28],[2,17,20],
[3,10,26],[4,18,27],[5,14,23],...]} Final Answer {”solution”: [[0,13,29],[1,12,28],...]}
... (repeated output continues)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

N COSTS OF THE EVALUATION

Table 23 displays the number of input token and completion token with their corresponding prices,
and the total cost of running online models once for all difficulty levels across core NPC problems.

Table 23: Cost for online models

Model Prompt Completion Cost

GPT-4o-mini 30964144 ($0.15/MTok) 9442548 ($0.6/MTok) $10.31
GPT-4o 30963606 ($2.5/MTok) 7786156 ($10/MTok) $155.27

Claude-3.7-Sonnet 33799101 ($3/MTok) 11186272 ($15/MTok) $269.19
DeepSeek-V3 31490957 (2RMB/MTok) 16178388 (8RMB/MTok) 192.41RMB

DeepSeek-V3-2503 31490957 (2RMB/MTok) 31808451 (8RMB/MTok) 317.45RMB
DeepSeek-R1 31512557 (4RMB/MTok) 95936418 (16RMB/MTok) 1661.03RMB

o1-mini 31360984 ($1.1/MTok) 35161551 ($4.4/MTok) $189.21
o3-mini 31199884 ($1.1/MTok) 110944621 ($4.4/MTok) $522.48

57

	Introduction
	Related Work
	Preliminaries
	Nondeterministic Polynomial-time Problem Challenge
	Problem Suite: npgym
	Solver Suite: npsolver
	Evaluation Suite: npeval

	Results
	Analysis of Performance
	Analysis of Tokens and Aha Moments
	Analysis of Solution Errors
	Analysis of Reasoning Failure Cases

	Conclusion
	Frequently Asked Questions (FAQs)
	Why Ever-Scaling and the Four Desiderata?
	Why Focusing on NP (Specifically NPC) Problems?
	Why Not Considering More Complex Test-time Scaling?
	Why Not Focusing on 3SAT Only?
	Determining the Difficulty Levels
	Selection of Models
	Laderboard

	Limitations and Negative Impacts
	Limitations and Future Work
	Negative Impacts

	Computational Complexity: P, NP and NP-complete
	Modules in NPPC
	Problem Suite: npgym
	Solver Suite: npsolver
	Evaluation Suite: npeval

	Prompts and Responses
	List of NP-complete Problems
	Hyperparameters
	Full Results over Problems
	Performance over Problems
	Tokens
	Aha Moments
	Solution Errors
	Analysis of Reasoning Failure Cases
	Costs of the Evaluation

