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Abstract

Crack segmentation datasets make great efforts to ob-
tain the ground truth crack or non-crack labels as clearly as
possible. However, it can be observed that ambiguities are
still inevitable when considering the marginal non-crack re-
gion, due to low contrast and heterogeneous texture. To
solve this problem, we propose a novel clustering-inspired
representation learning framework, which contains a two-
phase strategy for automatic crack segmentation. In the first
phase, a pre-process is proposed to localize the marginal
non-crack region. Then, we propose an ambiguity-aware
segmentation loss (Aseg Loss) that enables crack segmenta-
tion models to capture ambiguities in the above regions via
learning segmentation variance, which allows us to further
localize ambiguous regions. In the second phase, to learn
the discriminative features of the above regions, we propose
a clustering-inspired loss (CI Loss) that alters the supervi-
sion learning of these regions into an unsupervised clus-
tering manner. We demonstrate that the proposed method
could surpass the existing crack segmentation models on
various datasets and our constructed CrackSeg5k dataset.

1. Introduction
Concrete structure health monitoring plays an essential role
in industrial scenarios [24, 29, 32, 45], of which crack seg-
mentation is the last and indispensable stage. With ag-
ing concrete structures, the need for maintenance increases,
which would lead to poor health conditions or structural de-
ficiencies if not addressed properly [20, 22]. For this reason,
we argue that it is necessary to repair cracks before the onset
of serious deterioration so as to lighten the manual main-
tenance burden [5]. However, the ambiguity in marginal
non-crack regions is still inevitable due to low contrast, het-
erogeneous texture, and the uncertainty of the segmented
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Figure 1. The ambiguity problem in marginal non-crack regions.
(a) Blue indicates crack regions and red is marginal non-crack re-
gions. Due to the unclear crack boundary, the labels of marginal
non-crack regions are likely to be ambiguous (a close look at the
marginal region is present in the orange box). (b) T-SNE feature
visualizations of the crack pixels (blue) in crack regions and non-
crack pixels (red) in marginal non-crack regions.

region without domain knowledge. Considering this, pixel-
level segmentation of cracks remains challenging [3, 7, 63].

Nowadays, substantial progress of deep learning tech-
niques also promotes research on crack segmentation tasks
[8, 32, 41]. For instance, DeepCrack [67] proposes a multi-
stage fusion for crack segmentation, which is derived from
the commonly used encoder-decoder architecture (SegNet
[2]). Inspired by ViT [51], Crackformer [32] proposes a
crack transformer network to capture long-range interac-
tions for fine-grained crack segmentation. By exploiting
boundary information, JTFN [8] exploits crack boundary
as an additional supervision for crack segmentation tasks.
However, theses methods have a crucial limitation: the in-
ability to extract discriminative features due to ambiguity in
marginal non-crack regions. That is, unlike objects in the
natural image, there might be no salient structure bound-
ary due to low contrast between crack and non-crack re-
gions. Thus, it is challenging for crack segmentation mod-



els to extract the discriminative features, when encountering
ambiguous labels in marginal non-crack regions. To ver-
ify this, Fig. 1 (b) visualizes the features of image pixels
within crack regions and marginal non-crack regions. It can
be observed that each class of pixels projected in the fea-
ture space spreads over a wide area, and crack/non-crack
features are mixed and close to the class boundary. There-
fore, unlike the previous methods that only focus on learn-
ing crack boundaries, we argue that there is room for im-
proving the crack segmentation performance by addressing
ambiguity in marginal non-crack regions.

In this paper, we propose a clustering-inspired repre-
sentation learning framework, called CIRL, to address the
above problem in a two-phase manner. Specifically, in the
first phase, we first localize marginal non-crack regions in
our pre-process. Then, to capture ambiguity in the above
regions, we propose a novel ambiguity-aware segmentation
loss, namely Aseg Loss, which is based on Wasserstein dis-
tances [1] for learning segmentation variance. With the
help of learned variance, we are allowed to further deter-
mine ambiguous regions. Intuitively, these ambiguous re-
gions are likely to have ambiguous labels, which makes it
hard for the crack segmentation model to learn the discrim-
inative feature. Considering this, in the second phase, we
start a new perspective that alters the existing supervised
learning for ambiguous regions as an unsupervised cluster-
ing manner, and draw inspiration from the consensus: local
neighbors in the feature space are more likely involved in
the same cluster and should have more similar predictions
than other features [10, 59]. Based on these, we propose
a clustering-inspired loss, namely CI Loss, which aims to
let local neighbor features involve similar predictions while
features farther away have dissimilar predictions. Notably,
the proposed method can be conveniently implemented on
the top of most crack segmentation models. Moreover, the
flexibility of the proposed method can promote crack seg-
mentation models to more precisely segment crack regions
by integrating Aseg and CI Loss. In summary, our main
contributions include:

• To the best of our knowledge, this is the first work to
consider ambiguity in marginal non-crack regions. For
this cause, this paper proposes a two-phase clustering-
inspired representation learning (CIRL) framework to es-
cape from the disturbance of those ambiguous labels.

• Propose an ambiguity-aware segmentation loss (Aseg
Loss) that enables crack segmentation models to capture
ambiguity in marginal non-crack regions via learning seg-
mentation variances.

• A clustering-inspired loss (CI Loss) achieves the goal of
CIRL by altering the existing supervised learning into
ambiguous regions as an unsupervised clustering manner.

• Extensive experiments verify the superiority of the pro-
posed methods on public datasets and our constructed

CrackSeg5k dataset.

2. Related work
2.1. Crack segmentation

With the great progress of deep models on nature image
segmentation tasks, researchers make great efforts to apply
these models to crack segmentation tasks [29, 36, 41, 58,
65]. For example, considering the great success of fully
convolutional networks (FCN) [36], the variant of FCN has
a surge in achieving end-to-end network training for crack
segmentation tasks. Typically, Yang et al. [60] exploit the
VGG-19 network[49] as the decoder, and integrate the FCN
model for crack segmentation in pavements and concrete
walls. Subsequently, Wang et al. [54] design a new FCN-
based model for obtaining local information in crack seg-
mentation tasks. Moreover, DeepCrack [67] shows its supe-
riority over the existing methods, which adopt an encoder-
decoder network by following the SegNet [2] for crack seg-
mentation in various real-world scenarios. Later, U-Net
[46] attracts widespread attention in the development of
crack segmentation tasks due to its simplicity. Specifically,
Liu et al. [35] prove that U-Net is more elegant, robust,
and effective than other deep models for crack segmenta-
tion tasks. By combining with squeeze and excitation mod-
ule [18], existing work [33] implements an improved U-Net
with a pre-trained ResNet-34 [16]. Since ViT [51] shows its
great power in general semantic segmentation tasks, Crack-
former [32] is proposed to integrate self-attention mecha-
nism for capturing long-range interactions for fine-grained
crack segmentation tasks. Moreover, JTFN [8] and BACS
[31] exploit crack edge as an additional supervision for
crack segmentation. In addition, Marmanis et al. [38] and
Liu et al. [34] integrate semantic segmentation and edge de-
tection to further reduce the semantic ambiguity in remote
sensing tasks. Similarly, Zhou et al. [64] employ boundary
information as an additional assistance for producing more
consistent outputs.

2.2. Crack segmentation loss

To better learn the discriminative features, different kinds
of losses are proposed for crack segmentation. DeepCrack
[67] designs the multi-scale cross-entropy losses to enhance
the model to extract discriminative features at different
scales. Moreover, previous studies [12, 43] reveal that dice
Loss and focal Loss have advantages in crack segmentation
tasks. Both of them can help the crack segmentation model
to overcome the imbalance problem between crack and non-
crack pixels and learn a better feature space, so that differ-
ent pixels can be successfully classified. Further, a pixel-
based adaptive weighted cross-entropy loss in conjunction
with Jaccard distance is proposed to facilitate high-quality
pixel-level road crack segmentation applications [26]. To



preserve the continuity of cracks, Pantoja-Rosero et al. [44]
design a new connectivity-oriented loss by considering a
more reasonable crack topology.

2.3. Deep clustering learning

Due to the fact that our method aims to perform unsuper-
vised clustering learning for ambiguous regions, we give a
brief review of related research on this scope. Recent deep
clustering methods can be roughly divided into two groups:
alternately or simultaneously learning the feature represen-
tation and cluster assignments. In the first group, DAC [4]
and DCCM [56] can serve as typical examples that alter-
nately update cluster assignments and between-sample sim-
ilarity. Many methods in the second group try to maximize
mutual information between samples and their augmenta-
tions [10]. Inspired by contrastive learning, many unsu-
pervised clustering works [9, 62] combine InfoNCE [42] to
learn a better feature space. Interestingly, NNCLR [13] pro-
vides a new manner that uses nearest neighbors in the latent
space as positives in contrastive learning. However, it suf-
fers from those negative pairs that may contain the samples
from the same class. Besides, since it performs augmenta-
tion at the image level, it is hard to directly be applied to
pixel-level crack segmentation tasks.

Our proposed CIRL shares the same purpose as the pre-
vious methods that focus on ambiguity in crack segmenta-
tion. However, ours is distinct from these methods in three-
fold: (1) This paper focuses on marginal non-crack regions,
instead of crack boundary. Thus, our method is less sen-
sitive than edge-based or boundary key point-based meth-
ods when facing annotation errors. (2) The proposed Aseg
Loss can help our network learn segmentation variances of
marginal non-crack regions, which can further localize am-
biguous regions. (3) The proposed CI Loss addresses am-
biguous region problems in pixel-level crack segmentation
tasks, and it constructs two features sets for unsupervised
clustering learning, instead of positive and negative pairs in
existing contrastive clustering learning.

3. Method

In this section, we introduce the proposed two-phase CIRL
that contains two consecutive phases. Specifically, we start
with the motivation of CIRL in Sec. 3.1. Next, the first
phase focuses on learning the ambiguity in marginal non-
crack regions, so as to localize the ambiguous regions
(Sec. 3.2). The second phase then alters supervised learning
into unsupervised clustering learning for ambiguous regions
(Sec. 3.3). Fig. 3 provides an overview of our approach.

3.1. Motivation

CIRL starts from an intuitive idea: due to the low contrast
between crack and non-crack regions, there is ambiguity in

Sub-training sets 1 2 3 4
Performance gap (F1-score) -3.12 % 3.48 % 2.93% 1.79%

Table 1. The performance gaps come from the training of includ-
ing/excluding marginal non-crack regions on four sub-training sets
randomly splited from the training set of CrackSeg5k. The above
results are obtained from the same test set in CrackSeg5k.

Image GT KL Our

Figure 2. The learned variance map by KL Divergence and CIRL.

marginal non-crack regions. Thus, the labels of these re-
gions are likely to be unclear, making it hard for existing
crack segmentation models to learn discriminative features.

To verify this intuition, we conduct an experiment on
the CrackSeg5k dataset. Specifically, we first train Crack-
former [32] on CrackSeg5k under the supervision of Binary
Cross Entropy (BCE) Loss [11], and extract the features of
image pixels within crack regions and marginal non-crack
regions from the randomly selected training samples. In our
pre-process, given the ground-truth crack segmentation map
ygt, the marginal non-crack region map M is obtained via
dilation operations in Opencv1, shown as follows:

M = dilate(ygt)− ygt, (1)

where dilate(·) denotes dilation operations with the kernel
size of 5× 5. After that, we use t-SNE [50] to visualize the
features of crack and non-crack pixels with different colors
in Fig. 1 (b). It can be observed that some crack pixels and
non-crack pixels are entangled in the feature space. The
reason behind this is that some pixels of marginal non-crack
regions have the same appearance as crack pixels. Thus, it
is unwise to directly exploit the labels of these regions when
training crack segmentation models.

With the above discussion, we now provide an addi-
tional experiment to reveal that a well-designed solution is
needed for marginal non-crack regions in crack segmenta-
tion tasks. Firstly, we randomly split the training set of
CrackSeg5k into four sub-training sets. Then, we exploit
the above sub-training sets to train Crackformer with the
supervision of BCE Loss in two manners: 1) exploiting the
labels of marginal non-crack regions for training. 2) exclud-
ing marginal non-crack regions from training by referring to
Eq. 1. Table 2 shows the inconsistent performance gap be-
tween two manners. The reason behind this is that some
ambiguous regions may have a negative effect by directly

1https://opencv.org/
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Figure 3. Our method contains two sequential phases: (1) Our network first introduces a std head for estimating standard deviations
along with segmentation under the supervision of our ambiguity-aware segmentation loss (LAseg). Then, the learned variance map help
us to localize ambiguous regions in marginal non-crack regions. (2) We further alter the existing supervised learning problem for these
ambiguous regions into an unsupervised clustering manner. Then, a clustering-inspired loss (LCI) is proposed to help our network escape
from the disturbance of those ambiguous labels and learn discriminative features. The Std head is removed, and only the backbone and Seg
head are needed for prediction. Thus, our framework does not introduce extra computation and memory at inference.

using their labels in the training of crack segmentation mod-
els, while the other regions can improve the above models
by providing more training samples at the pixel level. To
better understand this, the visualization of our localized am-
biguous regions can be found in Fig 2. Intuitively, ambigu-
ous regions in marginal non-crack regions should be further
localized and treated separately from the other regions.

3.2. Phase I: Learning the ambiguity in marginal
non-crack regions

Based on the previous discussion, in the first stage, we aim
to estimate the segmentation confidence along with segmen-
tation, so as to capture ambiguity in marginal non-crack re-
gions. To achieve this, for the pixel at the position (i, j) of
the input image, our network predicts a probability distribu-
tion PΘ

i,j(y) instead of one single label. Herein, we simply
assume that each predicted label (i.e., single-variate) at the
pixel level obeys an independent Gaussian distribution. And
then, we have the following equation:

PΘ
i,j(y) =

1√
2πσ̂2

i,j

e
− (y−y

p
i,j)

2

2σ̂2
i,j (2)

where Θ is the set of learnable parameters including back-
bone, seg head, and std head, shown in Fig. 3. ypi,j and
σ̂i,j denotes the predicted label and estimated standard de-
viation at the position (i, j) of an input image, respectively.
When σ̂i,j is very close to 0, it indicates that our network
has a large confidence in the current predicted label. Note
that, our std head is implemented by a fully-connected layer
on top of the backbone, as shown in Fig. 3. Accordingly,
the corresponding ground-truth label ygti,j can also be formu-
lated as a Gaussian distribution N (ygti,j , σ

2
i,j) with its stan-

dard deviation σi,j → 0. Then, this gaussian distribution
can be viewed as: P gt

i,j(y) = δ
(
y − ygti,j

)
, where δ(·) in-

dicates Dirac delta function. And then, the proposed Aseg

Loss can be formulated as follows:

LAseg =

H∑
i=1

W∑
j=1

DW

(
PΘ
i,j(y)∥P

gt
i,j(y)

)
λ+ σ̂2

i,j

=

H∑
i=1

W∑
j=1

∥∥ypi,j − ygti,j
∥∥2
2
+ σ̂2

i,j

λ+ σ̂2
i,j

(3)

where H and W indicate the height and width of an in-
put image. The effect of the hyper-parameter λ will be ex-
plained later. Herein, we exploit Wasserstein distance as the
distance metric DW (·) and minimize the distance between
PΘ
i,j(y) and P gt

i,j(y). Meanwhile, DW

(
PΘ
i,j(y)∥P

gt
i,j(y)

)
can be unfolded by the following proposition:

Proposition 1 As previously discussed, given that P gt
i,j(y)

is the Dirac delta function as:

δ
(
y − ygti,j

)
= lim

µ→ygt
i,j ,Σ→0

N (µ,Σ), (4)

an easy-to-compute term for DW

(
PΘ
i,j(y)∥P

gt
i,j(y)

)
can be

derived as the following equation:

DW

(
PΘ
i,j(y)∥P

gt
i,j(y)

)
=

∥∥ypi,j − ygti,j
∥∥2
2
+ σ̂2

i,j . (5)

Proof 1 Suppose that we have two multivariate Gaussians
N1(µ1,Σ1) and N2(µ2,Σ2) in Rn, then the Wasserstein
distance between two distributions can be derived as fol-
lows:

W 2
2 (N (µ1,Σ1) ,N (µ2,Σ2))

= ∥µ1 − µ2∥2 + tr

(
Σ1 +Σ2 − 2

(√
Σ1Σ2

√
Σ1

) 1
2

)
(6)

Now, by letting δ
(
y − ygti,j

)
and N (ypi,j , σ̂

2
i,j) substitute in

the above equation, we are allowed to obtain Proposition 1.

Notably, the reason for adopting the Wasserstein distance
instead of KL-Divergence [17] is that the latter heavily re-
lies on an indispensable intersection between two distribu-
tions [1]. In addition, when ypi,j is predicted accurately,



i.e.,
∥∥ypi,j − ygti,j

∥∥ → 0, a smaller variance is expected to
be produced by our our network. Based on this point, a
term λ+ σ̂2

i,j is added in Eq. 3 for the following reason: due
to the ambiguity in marginal non-crack regions, when the
predicted label is not consistent with the ground-truth la-
bel, i.e.,

∥∥ypi,j − ygti,j
∥∥2
2
>λ, the minimization of LAseg will

enforce our network to produce the larger variance σ̂2
i,j .

For numerical stability, we actually predict the log variance
ŝ = log σ̂2

i,j and reformulate Eq. 3 as follows:

LAseg =

H∑
i=1

W∑
j=1

DW

(
PΘ
i,j(y)∥P

gt
i,j(y)

)
λ+ exp(ŝ)

=

H∑
i=1

W∑
j=1

∥∥ypi,j − ygti,j
∥∥2
2
+ exp(ŝ)

λ+ exp(ŝ)
.

(7)

Now, with the learned variance σ̂2
i,j = exp(ŝ), an input

pixel at the position (i, j) is grouped into ambiguous re-
gions by the following equation:

Ai,j =

{
1, case σ̂2

i,j > γ and Mi,j == 1
0, case σ̂2

i,j ≤ γ or Mi,j == 0
, (8)

where γ is a hyper-parameter that serves as a threshold. Ac-
cording to Eq. 1, Mi,j = 1 indicates that the current pixel
belongs to marginal non-crack regions.

3.3. Phase II: From supervised learning to unsuper-
vised learning for ambiguous regions

With the help of the previous stage, we are allowed to local-
ize ambiguous regions, which are supposed to have ambigu-
ous labels. Thus, an uncontrollable effect will be caused
when directly using these labels in the training process. For
this purpose, in the second stage, we proposed clustering-
inspired loss (CI Loss), which works in an unsupervised
features clustering manner with an intuitive idea: features
that are located close/farther in feature space should have
consistent/inconsistent predictions.

Given an input image I, let SI denote the feature set of
all pixels that belong to the ambiguous region by follow-
ing Eq. 8. Fm and Fn denote the features of two pixels
in SI , while having corresponding predict probabilities pm
and pn. Inspired by [14, 59], we define pm,n as the proba-
bility that Fm have a consistent prediction to Fn:

pm,n =
ep

T
mpn∑

Fq∈SI
ep

T
mpq

. (9)

For each feature Fm in SI , we define two sets: close neigh-
bor set Cm and farther feature set Om. The former selects
K-nearest neighbors of Fm from SI with cosine similarity
as the distance metric. The latter is constructed by exclud-
ing Cm and Fm from SI . Returning to our motivation, for

each feature Fm, the features in Om should have more no-
table inconsistent predictions than those in Cm. Based on
this, we define the likelihood function between Fm and Cm:

P (Cm | Fm, θB, θS) =
∏

Fn∈Cm

pm,n=
∏

Fn∈Cm

ep
T
mpn∑

Fq∈SI
ep

T
mpq

,

(10)
where θB and θS denotes the parameters of the backbone
and seg head in our network. Similarly, the likelihood func-
tion between Fm and Om can be defined as follows:

P (Om | Fm, θB, θS) =
∏

Fn∈Om

pm,n=
∏

Fn∈Om

ep
T
mpn∑

Fq∈SI
ep

T
mpq

.

(11)
Now, the goal of our clustering-inspired loss can be
achieved by minimizing the following negative log-
likelihood function:

ψ(Cm,Om) =−log P (Cm | Fm, θB, θS)

P (Om | Fm, θB, θS)
. (12)

Noting that, when SI is very large, it is inefficient and even
impractical to compute the above equation. Considering
this, we derive an upper bound as an alternative by the fol-
lowing proposition.

Proposition 2 Suppose that |Om| is significantly larger
than |Cm|, then we have an upper bound of ψ(Cm,Om),
given by

ψ(Cm,Om) = −log P (Cm | Fm, θB, θS)

P (Om | Fm, θB, θS)

≤ −
∑

Fn∈Cm

pTmpn +
|Cm|
|Om|

∑
Fk∈Om

pTmpk+ (|Cm|−|Om|) log |SI |

= ψ(Cm,Om)
(13)

Proof 2 According to Eq. 10-12, we have ψ(Cm,Om) :

= −
∑

Fn∈Cm

pTmpn+
∑

Fk∈Om

pTmpk + (|Cm|−|Om|) log

 ∑
Fq∈SI

ep
T
mpq


≤ −

∑
Fn∈Cm

pTmpn+
∑

Fk∈Om

pTmpk+(|Cm|−|Om|)

 ∑
Fq∈SI

pTmpq
|SI |

+log |SI |


≈ −

∑
Fn∈Cm

pTmpn+
∑

Fk∈Om

pTmpk+(|Cm|−|Om|)

 ∑
Fq∈Om

pTmpq
|Om|+ log |SI |


= −

∑
Fn∈Cm

pTmpn +
|Cm|
|Om|

∑
Fk∈Om

pTmpk+ (|Cm|−|Om|) log |SI |

= ψ(Cm,Om),
(14)

where the first inequality is hold by obeying the Jensen’s
inequality, as the logarithmic function log(·) is concave.



Since we have SI ≈ Cm ∪Om and |Om| ≫ |Cm|, the third
equation is obtained with the assumption that SI can be ap-
proximated by Om. Finally, considering the whole feature
set SI , our clustering-inspired loss is defined as follows:

LCI =
1

|SI |
∑

Fm∈SI

ψ(Cm,Om). (15)

With the help of LCI, we are able to perform unsuper-
vised clustering learning for ambiguous regions. Mean-
while, for the remaining regions, we adopt the commonly
used BCE Loss for the supervision. In this way, crack seg-
mentation models can escape from the disturbance of those
ambiguous labels and learn discriminative features. Finally,
our overall loss can be formulated as:

Ltotal = LBCE + βLCI, (16)

where the scalar β is used to balance the two loss functions.

4. Experiments
The essential experimental setup is described in Sec 4.1. To
find the most suitable parameters λ, γ, and β in CIRL, we
carry out a series of experiments on different parameters
in Sec. 4.2. Furthermore, to verify the effectiveness of our
proposed method, we not only compare it with the existing
crack segmentation models in Sec. 4.3, but also compare it
with other state-of-the-art segmentation losses in Sec. 4.4.
More importantly, in Sec. 4.5, our ablation study first ver-
ifies the advantage of the proposed ambiguity-aware seg-
mentation loss over the existing uncertainty-based methods.
Then, we provide evidence that the proposed clustering-
inspired loss outperforms the existing unsupervised cluster-
ing learning methods for crack segmentation tasks.

4.1. Experimental setup

In this paper, we carry out extensive experiments based
on our CrackSeg5k dataset, two public crack segmentation
datasets, one blood vessel segmentation dataset, and the cor-
responding implementation details.
CrackSeg5k. Our CrackSeg5k dataset is collected from the
nuclear power plants by a high-resolution camera, compris-
ing 2000 images with the size of 7360 × 4912. The width of
the crack in the collected images varies from 0.05 mm to 15
mm. Moreover, the collected images contain different kinds
of noise, such as various concrete types and light intensity.
To extend this dataset without compromising the resolution
and the ratio of the different classes, we directly slice these
images into 512 × 512 pixels, constructing a final dataset
with 5560 samples. By following the settings in [23], This
dataset is divided into training, validation, and testing sets
with 90%, 5%, and 5% ratios.
Crack500 [61]. There are 3368 images in the Crack500
dataset that contain crack images with various shapes and

cluttered backgrounds. We should note that this dataset in-
volve a large crack width range and low contrast between
crack and non-crack regions. Here, the number of training
images, validation images and testing images in this dataset
is 1896, 348 and 1124, respectively.
CrackTree200 [66]. This dataset contains 206 images that
captured from asphalt pavement. This dataset also suffer
from low contrast between cracks and the surrounding pave-
ment. By following previous work [8], we use 164 images
for training and the rest for testing in our experiments.
DRIVE [37]. To further verify the scalability of our
method, we also use DRIVE dataset, which is designed for
blood vessel segmentation on medical segmentation tasks.
This dataset only contains 40 retina images. The limited
number of training images can evaluate our model’s perfor-
mance on the small dataset. By following previous works
[8, 52], we set 20 images for training and 20 for testing.
Implementation details. We carry out our experiments in
PyTorch2 with a single NVIDIA RTX 3090. By follow-
ing previous work [8], we adopt horizontal flipping, random
cropping, and random rotation with 90◦, 180◦ and 270◦ as
our data augmentation strategies. Also, we have the same
settings as in [8] that all training samples are cropped to
256 × 256 during the training. Adam [21] is chosen as our
optimizer coupling with an initial learning rate of 10−3, a
weight decay of 5 × 10−4, and a mini-batch size of 2. For
these four datasets, the models are trained with 2000 epochs
in total. In addition, during the initial period of the train-
ing epochs, the learned variances are less informative when
the Std head is not properly learned. Thus, the initial 1000
epochs are the first stage, after which our model adopts the
joint supervision of LBCE and LCI (ref to Eq. 16).
Evaluation metrics. To evaluate the pixel-wise accuracy
for crack segmentation, we follow the existing works [8, 19,
47] and use F1 score, Precision, and Recall as our metrics.
It is worth noting that Precision and Recall are computed
by comparing predicted and ground-truth masks at the pixel
level. F1 score is computed as: F1 = 2Precision×Recall

Precision+Recall .

4.2. Sensitivity study on hyper-parameters

Four hyper-parameters have been introduced in this paper.
λ is used to help the model to capture ambiguity. γ is used
to localize ambiguous regions in the first phase,K is used to
define the size of the close neighbor set, and β is exploited
to balance the BCE Loss and CI Loss in the second phase.
The hyper-parameter sensitivity study on the CrackSeg5k
dataset with JTFN [8] as our base segmentation model is
introduced in Fig. 4. It can be observed the four hyper-
parameters λ, γ, K, and β across a wide range only have
1.5%, 0.8%, 2.0%, 1.8% F1 score decreases compared with
the highest, respectively, which demonstrates the potential
of our proposed method on real-world applications. Based

2https://pytorch.org/



Figure 4. Hyper-parameter sensitivity study of λ, γ, K, and β on CrackSeg5k dataset.

Method Venue CrackTree200 Crack500 DRIVE CrackSeg5K
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

UNet [46] MICCAI 79.16 78.95 78.42 62.22 68.85 61.83 82.74 80.59 81.41 61.49 57.19 56.28
VGG-UNet [40] CVPR 83.49 80.43 81.84 58.18 60.26 51.79 81.17 82.05 81.25 63.21 56.83 55.92

TopoNet [19] NeurIPS 81.85 77.80 79.03 66.81 62.68 60.06 82.94 80.29 81.36 61.39 56.25 57.72
DRU [55] ICCV 84.80 77.46 80.49 61.94 71.43 62.82 84.36 80.82 82.30 63.27 58.28 58.15

Crackformer [32] ICCV 84.13 81.93 83.42 69.13 66.24 64.75 83.05 81.19 83.25 66.29 59.19 58.83
JTFN [8] ICCV 85.87 82.58 84.19 68.81 69.06 65.76 82.71 83.40 82.81 65.14 58.33 58.42

JTFN + CIRL (Our) - 87.62 83.92 86.53 70.32 69.93 67.62 84.57 82.95 84.32 67.37 59.46 60.08

Table 2. Comparisons with the state-of-the-art crack segmentation methods on three crack datasets and one blood vessel dataset.

Image GT UNet VGG-UNet TopoNet DRU Crackformer JTFN Our

Figure 5. Demonstration of segmentation results comparisons on Crack500 dataset. From left to right: Input image, ground-truth masks,
results of the UNet, VGG-UNet, TopoNet, DRU, Crackformer, JTFN, and our results.

on these observations, we set λ = 0.3, γ = 0.4, K = 4× 5,
and β = 0.2 in our next experiments.

4.3. Comparison on crack segmentation models

In this section, our method is compared to several base-
lines including state-of-the-art segmentation methods. As
shown in Tab 2, when compared with the original JTFN,
CIRL obtains performance gain around 2.34 % and 1.86 %
with F1 score on the CrackTree200 and Crack500 dataset.
From these results, we could infer that the proposed CIRL
can work together with the boundary-preserving methods,
without sacrificing the gain of the supervision for the crack
boundary. Moreover, Fig. 5 shows segmentation examples
of CIRL and the other methods on the Crack500 dataset.

We can see that CIRL delineates cracks better compared
with alternatives.

4.4. Comparison on segmentation losses

To further validate our method, we conduct a series of ex-
periments on the CrackSeg5k dataset and report quantita-
tive results with Precision, Recall, and F1 scores to verify
the effectiveness of CIRL. Herein, we adopt the JTFN [8] as
the base segmentation model. As the ultimate goal of CIRL
is to enhance the model’s ability to extract discriminative
features, we also compare it with other loss functions that
have the same intuition: including Focal Loss [30], Robust
Dice Loss [53], clDice Loss [48], Poly Loss [25], and Ro-
bust T-Loss [15]. Tab. 3 shows the results compared with



the existing loss functions. We can observe that CIRL out-
performs BCE Loss by a large margin. This benefits from
that the learned variances allow us to localize the ambigu-
ous regions. Then, CIRL can help the model escape from
the disturbance of those ambiguous labels by starting from
an unsupervised clustering manner for the above regions.

Method Venue Precision Recall F1
Focal Loss [30] ICCV 65.71 58.94 58.85

Robust Dice Loss [53] TMI 64.23 57.83 59.06
clDice Loss [48] CVPR 64.31 58.49 59.32
Poly Loss [25] ICLR 66.14 57.35 59.56

Robust T-Loss [15] MICCAI 65.72 58.14 58.84
CIRL (Our) - 67.37 59.46 60.08

Table 3. Comparisons of different loss functions on the Crack-
Seg5k with JTFN as the base segmentation model.

4.5. Ablation study

To examine the contribution of each component in our pro-
posed framework: Aseg Loss in Phase I and CI Loss in
Phase II, extensive experiments are performed on Crack-
Seg5k with JTFN [8] as the base segmentation model.
Evaluation on different phases To examine the contribu-
tion of each phase in our proposed framework, we provide a
series of experiments on CrackSeg5k with JTFN as the base
segmentation model.

Method Precision Recall F1
PhaseI 65.17 58.78 58.57

PhaseI + PhaseII 67.37 59.46 60.08

Table 4. Evaluation on different phases.

Table 4 shows that phase II refreshes the performance
achieved by phase I. The reason behind this effect is two-
fold: (i) In phase I, the proposed Aseg Loss allows us to
localize the ambiguous regions from marginal non-crack
regions. (ii) Then, our phase II is able to alter the exist-
ing supervised learning for the above ambiguous regions in
an unsupervised clustering manner, and learn discriminative
features with the help of CI Loss.
Evaluation on the CI Loss in Phase II. As expected, JTFN
[8] achieves better results by combining the CI Loss. Table 5
shows that it improves the precision, recall, and F1 score by
2.2%, 0.68%, and 1.51 over the current clustering learning-
based method, respectively. The reason behind this effect
is that our CI Loss performs contrastive clustering learning
between two feature sets, instead of positive and negative
pairs. In this regard, our method can alleviate the class col-
lision issue in the existing contrastive learning. Moreover,
Fig. 6 demonstrates that our loss helps the model to learn
discriminative features for marginal non-crack regions.

Method Venue Precision Recall F1
NNCLR [13] ICCV 65.45 58.91 58.95

CI Loss (Our) - 67.37 59.46 60.08

Table 5. Performance comparisons of CI Loss and NNCLR.

Crack pixels
Non-crack pixels

(a) NNCLR (b) Our

Figure 6. T-SNE visualization of the features in marginal regions.

5. Conclusion

In summary, the ambiguities in marginal non-crack regions
can hinder the performance of state-of-the-art crack seg-
mentation models. In this paper, a two-phase clustering-
inspired representation learning (CIRL) framework is pro-
posed for learning more accurate pixel-level crack segmen-
tation. The CIRL contains the ambiguity-aware segmenta-
tion loss (Aseg Loss) that enforces the network learns to
predict segmentation variance for each pixel. The resulting
variances allow us to localize the ambiguous region further.
Then, a clustering-inspired loss (CI Loss) is proposed for
learning the discriminative features of the above regions.
The experiments on crack segmentation tasks demonstrate
that our method outperforms state-of-the-art crack segmen-
tation approaches and loss functions. Since previous meth-
ods shows great power in a frequency domain for learning
discriminative features [39, 57], we plan to further consider
the feature-based data augmentation [6] and neuron-based
spiking network [27, 28] for crack segmentation tasks.
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Beyer. Topo-loss for continuity-preserving crack detection

using deep learning. Construction and Building Materials,
344:128264, 2022. 3

[45] Zhong Qu, Wen Chen, Shi-Yan Wang, Tu-Ming Yi, and
Ling Liu. A crack detection algorithm for concrete pave-
ment based on attention mechanism and multi-features fu-
sion. IEEE Transactions on Intelligent Transportation Sys-
tems, 23(8):11710–11719, 2021. 1

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241, 2015. 2, 7

[47] Mojtaba Seyedhosseini, Mehdi Sajjadi, and Tolga Tasdizen.
Image segmentation with cascaded hierarchical models and
logistic disjunctive normal networks. In ICCV, pages 2168–
2175, 2013. 6

[48] Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina,
Ivan Ezhov, Alexander Unger, Andrey Zhylka, Josien PW
Pluim, Ulrich Bauer, and Bjoern H Menze. cldice-a novel
topology-preserving loss function for tubular structure seg-
mentation. In CVPR, pages 16560–16569, 2021. 7, 8

[49] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[50] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 3

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
6000–6010, 2017. 1, 2

[52] Feigege Wang, Yue Gu, Wenxi Liu, Yuanlong Yu, Shengfeng
He, and Jia Pan. Context-aware spatio-recurrent curvilinear
structure segmentation. In CVPR, pages 12648–12657, 2019.
6

[53] Guotai Wang, Xinglong Liu, Chaoping Li, Zhiyong Xu, Ji-
ugen Ruan, Haifeng Zhu, Tao Meng, Kang Li, Ning Huang,
and Shaoting Zhang. A noise-robust framework for auto-
matic segmentation of covid-19 pneumonia lesions from ct
images. IEEE Transactions on Medical Imaging, 39(8):
2653–2663, 2020. 7, 8

[54] Sen Wang, Xing Wu, Yinghui Zhang, Xiaoqin Liu, and Lun
Zhao. A neural network ensemble method for effective crack
segmentation using fully convolutional networks and multi-
scale structured forests. Machine Vision and Applications,
31:1–18, 2020. 2

[55] Wei Wang, Kaicheng Yu, Joachim Hugonot, Pascal Fua, and
Mathieu Salzmann. Recurrent u-net for resource-constrained
segmentation. In ICCV, pages 2142–2151, 2019. 7

[56] Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li,
Zhouchen Lin, and Hongbin Zha. Deep comprehensive cor-
relation mining for image clustering. In ICCV, pages 8150–
8159, 2019. 3

[57] Qinwei Xu, Ruipeng Zhang, Ziqing Fan, Yanfeng Wang, Yi-
Yan Wu, and Ya Zhang. Fourier-based augmentation with
applications to domain generalization. Pattern Recognition,
139:109474, 2023. 8

[58] Yang Xu, Yunlei Fan, and Hui Li. Lightweight seman-
tic segmentation of complex structural damage recognition



for actual bridges. Structural Health Monitoring, page
14759217221147015, 2023. 2

[59] Shiqi Yang, Shangling Jui, Joost van de Weijer, et al. At-
tracting and dispersing: A simple approach for source-free
domain adaptation. In NeurIPS, pages 5802–5815, 2022. 2,
5

[60] Xincong Yang, Heng Li, Yantao Yu, Xiaochun Luo, Ting
Huang, and Xu Yang. Automatic pixel-level crack detec-
tion and measurement using fully convolutional network.
Computer-Aided Civil and Infrastructure Engineering, 33
(12):1090–1109, 2018. 2

[61] Lei Zhang, Fan Yang, Yimin Daniel Zhang, and Ying Julie
Zhu. Road crack detection using deep convolutional neural
network. In ICIP, pages 3708–3712, 2016. 6

[62] Yuhui Zhang, Yuichiro Wada, Hiroki Waida, Kaito Goto,
Yusaku Hino, and Takafumi Kanamori. Deep clustering with
a constraint for topological invariance based on symmetric
infonce. Neural Computation, 35:1288–1339, 2023. 3

[63] Xiaoyu Zhao, Wenlian Huang, Jie Chen, Zhuangzhuang
Chen, and Jianqiang Li. Automatic thin crack segmentation
with deep context aggregation network. In 2022 Interna-
tional Conference on Advanced Robotics and Mechatronics
(ICARM), pages 206–212, 2022. 1

[64] Quan Zhou, Yong Qiang, Yuwei Mo, Xiaofu Wu, and Lon-
gin Jan Latecki. Banet: Boundary-assistant encoder-decoder
network for semantic segmentation. IEEE Transactions
on Intelligent Transportation Systems, 23(12):25259–25270,
2022. 2

[65] Shanglian Zhou, Carlos Canchila, and Wei Song. Deep
learning-based crack segmentation for civil infrastructure:
data types, architectures, and benchmarked performance.
Automation in Construction, 146:104678, 2023. 2

[66] Qin Zou, Yu Cao, Qingquan Li, Qingzhou Mao, and Song
Wang. Cracktree: Automatic crack detection from pavement
images. Pattern Recognition Letters, 33(3):227–238, 2012.
6

[67] Qin Zou, Zheng Zhang, Qingquan Li, Xianbiao Qi, Qian
Wang, and Song Wang. Deepcrack: Learning hierarchical
convolutional features for crack detection. IEEE transac-
tions on image processing, 28(3):1498–1512, 2018. 1, 2


