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ABSTRACT

Approximate Bayesian methods can mitigate overconfidence in ReLU networks.
However, far away from the training data, even Bayesian neural networks (BNNs)
can still underestimate uncertainty and thus be overconfident. We suggest to fix
this by considering an infinite number of ReLU features over the input domain
that are never part of the training process and thus remain at prior values. Perhaps
surprisingly, we show that this model leads to a tractable Gaussian process (GP)
term that can be added to a pre-trained BNN’s posterior at test time with negligible
cost overhead. The BNN then yields structured uncertainty in the proximity of
training data, while the GP prior calibrates uncertainty far away from them. As
a key contribution, we prove that the added uncertainty yields cubic predictive
variance growth, and thus the ideal uniform (maximum entropy) confidence in
multi-class classification far from the training data.

1 INTRODUCTION

Calibrated uncertainty is crucial for safety-critical decision making by neural networks (NNs)
(Amodei et al., 2016). Standard training methods of NNs yield point estimates that, even if they
are highly accurate, can still be severely overconfident (Guo et al., 2017). Approximate Bayesian
methods, which turn NNs into Bayesian neural networks (BNNs), can be used to address this issue.
Kristiadi et al. (2020) recently showed that for binary ReLU classification networks, far away from
the training data (more precisely: when scaling any input x with a scalar α > 0 and taking the limit
α → ∞), the uncertainty of BNNs can be bounded away from zero. This is an encouraging result
when put in contrast to the standard point-estimated networks, for which Hein et al. (2019) showed
earlier that the same asymptotic limit always yields arbitrarily high (over-)confidence. Neverthe-
less, BNNs can still be asymptotically overconfident (albeit less so than the standard NNs) since the
aforementioned uncertainty bound can be loose. This issue is our principal interest in this paper. An
intuitive interpretation is that ReLU NNs “miss out on some uncertainty” even in their Bayesian for-
mulation, because they fit a finite number of ReLU features to the training data, by “moving around”
these features within the coverage of the data. This process has no means to encode a desideratum
that the model should be increasingly uncertain away from the data.

In this work, we “add in” additional uncertainty by considering an infinite number of additional
ReLU features spaced at regular intervals away from the data in the input and hidden spaces of the
network. Since these features have negligible values in the data region, they do not contribute to
the training process. Hence, we can consider a prior for their weights, chosen to be an independent
Gaussian, and arrive at a specific Gaussian process (GP) which covariance function is a generaliza-
tion of the classic cubic-spline kernel (Wahba, 1990). This GP prior can be added to any pre-trained
ReLU BNN as a simple augmentation to its output. Considering the additive combination of a
parametric BNN and GP prior together, we arrive at another view of the method: It approximates
the “full GP posterior” that models the residual of a point-estimated NN (Blight & Ott, 1975; Qiu
et al., 2020). In our factorization, the BNN models uncertainty around the training data, while the
GP prior models uncertainty far away from them. By factorizing these two parts from each other,
our formulation requires no (costly) GP posterior inference, and thus offers lightweight, modular
uncertainty calibration. See Fig. 1 for illustration.

Theoretical analysis is a core contribution of this work. We show that the proposed method (i)
preserves the predictive performance of the base ReLU BNN. Furthermore, it (ii) ensures that the
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Figure 1: Toy classification with a BNN and our method. Shade represents confidence, the suffix
“ZO” stands for “zoomed-out”. Far away from the training data, vanilla BNNs can still be overcon-
fident (a, c). Our method fixes this issue while keeping predictions unchanged (b, d).

surrounding output variance asymptotically grows cubically in the distance to the training data, and
thus (iii) yields uniform asymptotic confidence in the multi-class classification setting. These results
extend those of Kristiadi et al. (2020) in so far as their analysis is limited to the binary classification
case and their bound can be loose. Furthermore, our approach is complementary to the method
of Meinke & Hein (2020) which attains maximum uncertainty far from the data for non-Bayesian
point-estimate NNs. Finally, our empirical evaluation confirms our analysis and shows that the
proposed method also improves uncertainty estimates in the non-asymptotic regime.

2 BACKGROUND

2.1 BAYESIAN NEURAL NETWORKS

Let f : RN ×RD → RC defined by (x,θ) 7→ f(x;θ) =: fθ(x) be a neural network. Here, θ is the
collection of all parameters of f . Given an i.i.d. dataset D := (xm, ym)Mm=1, the standard training
procedure amounts to finding a point estimate θ∗ of the parameters θ, which can be identified in the
Bayesian framework with maximum a posteriori (MAP) estimation1

θ∗ = arg max
θ

log p(θ | D) = arg max
θ

M∑
m=1

log p(ym | fθ(xm)) + log p(θ).

While this point estimate may yield highly accurate predictions, it does not encode uncertainty over
θ, causing an overconfidence problem (Hein et al., 2019). Bayesian methods can mitigate this issue,
specifically, by treating the parameter of f as a random variable and applying Bayes rule. The
resulting network is called a Bayesian neural network (BNN). The common way to approximate
the posterior p(θ | D) of a BNN is by a Gaussian q(θ | D) = N (θ | µ,Σ), which can be
constructed for example by a Laplace approximation (MacKay, 1992b) or variational Bayes (Hinton
& Van Camp, 1993). Given such an approximate posterior q(θ | D) and a test point x∗ ∈ RN ,
one then needs to marginalize the parameters to make predictions, i.e. we compute the integral
y∗ =

∫
h(f(x∗;θ)) q(θ | D) dθ, where h is an inverse link function, such as the identity function for

regression or the logistic-sigmoid and softmax functions for binary and multi-class classifications,
respectively. Since the network f is a non-linear function of θ, this integral does not have an analytic
solution. However, one can obtain a useful approximation via the following network linearization:
Let x∗ ∈ RN be a test point and q(θ | D) = N (θ | µ,Σ) be a Gaussian approximate posterior.
Linearizing f around µ yields the following marginal distribution over the function output f(x∗):2

p(f(x∗) | x∗,D) ≈ N (f(x∗) | f(x∗;µ)︸ ︷︷ ︸
=:m∗

,J>∗ ΣJ∗︸ ︷︷ ︸
=:V∗

), (1)

where J∗ is the Jacobian of f(x∗;θ) w.r.t. θ at µ. (In the case of a real-valued network f , we use
the gradient g∗ := ∇θf(x∗;θ)|µ instead of J∗.) This distribution can then be used as the predictive
distribution p(y∗ | x∗,D) in the regression case. For classifications, we need another approximation
since h is not the identity function. One such approximation is the generalized probit approximation

1In the statistical learning view, log p(ym | fθ(xm)) is identified with the empirical risk, log p(θ) with the
regularizer. The two views are equivalent in this regard.

2See Bishop (2006, Sec. 5.7.1) for more details.
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(Gibbs, 1997; Spiegelhalter & Lauritzen, 1990; MacKay, 1992a):

p(y∗ = c | x∗,D) ≈ exp(m∗c κ∗c)∑C
i=1 exp(m∗i κ∗i)

, for all c = 1, . . . , C, (2)

where for each i = 1, . . . , C, the real numbers m∗i is the i-th component of the vector m∗, and
κ∗i := (1 + π/8 v∗ii)

−1/2 where v∗ii is the i-th diagonal term of the matrix V∗. These approxi-
mations are analytically useful, but can be expensive due to the computation of the Jacobian matrix
J∗. Thus, Monte Carlo (MC) integration is commonly used as an alternative, i.e. we approxi-
mate y∗ ≈ 1

S

∑S
s=1 h(f(x∗;θs)) with θs ∼ q(θ | D). Finally, given a classification predictive

distribution p(y∗ | x∗,D), we define the predictive confidence of x∗ as the maximum probability
conf(x∗) := maxc∈{1,...,C} p(y∗ = c | x∗,D) over class labels.

2.2 RELU AND GAUSSIAN PROCESSES

The ReLU activation function ReLU(z) := max(0, z) (Nair & Hinton, 2010) has become the de-
facto choice of non-linearity in deep learning. Given arbitrary real numbers c, it can be generalized
as ReLU(z; c) := max(0, z − c), with the “kink” at location c. An alternative formulation, useful
below, is in terms of the Heaviside function H as ReLU(z; c) = H(z − c)(z − c). We may define
a collection of d such ReLU functions evaluated at some point in R as the function φ : R → RK
with z 7→ (ReLU(z; c1), . . . ,ReLU(z; cK))>. We call this function the ReLU feature map; it can
be interpreted as “placing” ReLU functions at different locations in R.

Consider a linear model g : R × RK → R defined by g(x;w) := w>φ(x). Suppose φ regularly
places the K generalized ReLU functions centered at (ci)

K
i=1 over [cmin, cmax] ⊂ R, where cmin <

cmax. If we consider a Gaussian prior p(w) := N
(
w
∣∣0, σ2K−1(cmax − cmin)I

)
over the weights

w then, as K goes to infinity, the distribution over g(x) is a Gaussian process with mean 0 and
covariance (using the shorthand gx := g(x) and x̄ := min(x, x′); full derivation in Appendix A):

lim
K→∞

cov(gx, gx′) = σ2H(x̄− cmin)

(
1

3
(x̄3 − c3min)− 1

2
(x̄2 − c2min)(x+ x′) + (x̄− cmin)xx′

)
=: k1(x, x′; cmin, σ

2),

for x̄ ≤ cmax. Since this expression does not depend on cmax, we consider the limit cmax → ∞.
The resulting covariance function is the cubic spline kernel (Wahba, 1990).

3 METHOD

Hein et al. (2019) showed that the confidence of point-estimated ReLU networks (i.e. feed-forward
nets which use piecewise-affine activation functions and are linear in the output layer) approaches
1 with increasing distance from the training data. For binary classification, Kristiadi et al. (2020)
showed that Gaussian-approximated ReLU BNNs f instead approach a constant confidence bounded
away from 1, but not necessarily close to the maximum uncertainty value of 1/2. Thus, just being
Bayesian as such does not fix overconfidence entirely. A close look at their proof suggests that the
issue is a structural limitation of the deep model itself: for any input x∗ and a sufficiently large scalar
α, both the mean and standard deviation of the output f(αx∗) are linear functions of x∗. Intuitively,
this issue arises because the net only has finitely many ReLU features available to “explain” the data,
and thus it “lacks” ReLU features for modeling uncertainty away from the data.

In this section, we will utilize the cubic spline kernel to construct a new kernel and method that,
intuitively speaking, adds an infinite number ReLU features away from the data to pre-trained BNNs.
This construction adds the “missing” ReLU features and endows BNNs with super-quadratic output
variance growth, without affecting predictions. All proofs are in Appendix B.

3.1 THE DOUBLE-SIDED CUBIC SPLINE KERNEL

The cubic spline kernel constructed above is non-zero only on (cmin,∞) ⊂ R. To make it suit-
able for modeling uncertainty in an unbounded domain, we set cmin = 0 and obtain a kernel
k1
→(x, x′;σ2) := k1(x, x′; 0, σ2) which is non-zero only on (0,∞). Doing an entirely analogous
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(a) D = 6 (b) D = 20 (c) D = 60 (d) D = ∞

Figure 2: The construction of our kernel in 1D, as the limiting covariance of the output of a Bayesian
linear model with D ReLU features. Grey curves are ReLU features while thin red curves are
samples. Red shades are the ±1 standard deviations of those samples.

construction with infinitely many ReLU functions pointing to the left, i.e. ReLU(−z; c), we obtain
the kernel k1

←(x, x′;σ2) := k1
→(−x,−x′;σ2), which is non-zero only on (−∞, 0). We combine

both into the kernel

k1
↔(x, x′;σ2) := k1

←(x, x′;σ2) + k1
→(x, x′;σ2),

which covers the whole real line (the value at the origin k1
↔(0, 0) is zero)—see Figure 2. For

multivariate input domains, we define

k↔(x,x′;σ2) :=
1

N

N∑
i=1

k1
↔(xi, x

′
i;σ

2) (3)

for any x,x′ ∈ RN with N > 1. We here deliberately use a summation, instead of the alternative
of a product, since we want the associated GP to add uncertainty anywhere where at least one input
dimension has non-vanishing value.3 We call this kernel the double-sided cubic spline (DSCS)
kernel. Two crucial properties of this kernel are that it has negligible values around the origin and
for any x∗ ∈ RN and α ∈ R, the value k↔(αx∗, αx∗) is cubic in α.

3.2 RELU-GP RESIDUAL

Let f : RN × RD → R be an L-layer, real-valued ReLU BNN. Suppose we place infinitely many
ReLU features by following the previous construction. Then, we arrive at a zero-mean GP prior
GP(f̂ (0) | 0, k↔) of some real-valued function f̂ (0) : RN → R over the input space RN . We
can use this GP to model the “missing” uncertainty which, due to the lack of its presence, makes f
overconfident far-away from the data. We do so in a standard manner by assuming that the “true”
latent function f̃ is the sum of f and f̂ (0):

f̃ := f + f̂ (0), where f̂ (0) ∼ GP(f̂ (0) | 0, k↔). (4)

Under this assumption, given an input x∗, it is clear that f̂ (0) does not affect the expected output of
the BNN since the GP over f̂ (0) has zero mean. However, f̂ (0) do additively affect the uncertainty
of the BNN’s output f∗ := f(x∗) since if we assume that f∗ ∼ N (E f∗, var f∗), then it follows that
f̃∗ ∼ N (E f∗, var f∗ + k↔(x∗,x∗)). Hence, the random function f̂ (0), resulting from placing an
infinite number of ReLU features in the input space, indeed models the uncertainty residual of the
BNN f . We thus call our method ReLU-GP residual (RGPR).

Unlike previous methods for modeling residuals with GPs, RGPR does not require a posterior in-
ference since intuitively, the additional infinitely many ReLU features are never part of the training
process—their “kinks” are pointing away from the data. So even if we were to actively include them
in the training process somehow, they would have (near) zero training gradient and just stay where
and as they are. The following statements illustrate this intuition more formally in GP regression
under the linearization (1) by assuming w.l.o.g. that the kernel values over the dataset are negligible
(by shifting and scaling until the data is sufficiently close to 0 ∈ RN ).

3By contrast, a product k↔(x,x′;σ2) is zero if one of the k1↔(xi, x
′
i;σ

2) is zero.
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Proposition 1. Suppose f : RN×RD → R defined by (x,θ) 7→ f(x;θ) is a ReLU regression BNN
with a prior p(θ) = N (θ | 0,B) and D := {xm, ym}Mm=1 is a dataset. Let f̂ (0) and f̃ be defined
as in (4), and let x∗ ∈ RN be arbitrary. Under the linearization of f w.r.t. θ around 0, given that
all x1, . . . ,xM are sufficiently close to the origin, the GP posterior of f̃∗ := f̃(x∗) is given by

p(f̃∗ | x∗,D) ≈ N (f̃∗ | f(x;µ), g>∗ Σg∗ + k↔(x∗,x∗)), (5)
where µ and Σ are the mean and covariance of the posterior of the linearized network, respectively,
and g∗ := ∇θf(x∗;θ)|0.

The previous proposition shows that the GP prior of f̂ (0) does not affect the BNN’s approximate
posterior—f̃ is written as a posteriori f plus a priori f̂ (0). Therefore, given a pre-trained BNN f
with its associated posterior p(θ | D) ≈ N (θ | µ,Σ), we can simply add to its output f(x∗;θ)

(with θ ∼ p(θ | D)) a random number f̂ (0)(x∗) ∼ GP(f̂ (0) | 0, k↔(x∗,x∗)). We henceforth
assume that f is a pre-trained BNN.

While the previous construction is sufficient for modeling uncertainty far away from the data, it
does not model the uncertainty near the data region well. Figure 3(a) shows this behavior: placing
infinitely many ReLU features over just the input space yields uncertainty that is not adapted to the
data and hence, far away from them, we can still have low variance. To alleviate this issue, we
additionally place infinite ReLU features on the representation space of the point-estimated fµ(·) =
f( · ;µ), which indeed encodes information about the data since f is a trained BNN, as follows.

For each l = 1, . . . , L − 1 and any input x∗, let Nl be the size of the l-th hidden layer of fµ and
h(l)(x∗) =: h

(l)
∗ be the l-th hidden units. By convention, we assume that N0 := N and h(0)

∗ := x∗.
We place for each l = 0, . . . , L− 1 an infinite number of ReLU features on the representation space
RNl , and thus we obtain a random function f̂ (l) : RNl → R distributed by the Gaussian process
GP(f̂ (l) | 0, k↔). Now, given that N̂ :=

∑L−1
l=0 Nl, we define the function f̂ : RN̂ → R by

f̂ := f̂ (0) + · · · + f̂ (L−1). This function is therefore a function over all representation (including
the input) spaces of fµ, distributed by the additive Gaussian process GP(f̂ | 0,

∑L−1
l=0 k↔). In

other words, given the representations h∗ := (h
(l)
∗ )L−1

l=0 of x∗, the marginal over the function output
f̂(h∗) =: f̂∗ is thus given by

p(f̂∗) = N
(
f̂∗

∣∣∣∣∣ 0,
L−1∑
l=0

k↔

(
h

(l)
∗ ,h

(l)
∗ ;σ2

l

))
. (6)

Figure 3(c) visualizes the effect of this definition. The low-variance region modeled by the random
function f̂ becomes more compact around the data and can be controlled by varying the kernel
hyperparameter σ2

l for each layer l = 0, . . . , L − 1. Finally, we can then model the residual in (4)
using f̂ instead, i.e. we assume f̃ = f + f̂ .

The generalization of RGPR to BNNs with multiple outputs is straightforward. Let f : RN ×RD →
RC be a vector-valued, pre-trained, L-layer ReLU BNN. We assume that the sequence of random
functions (f̂c : RN̂ → R)Cc=1 is independent and identically distributed by the previous Gaussian
process GP(f̂ | 0,∑L−1

l=0 k↔). Thus, defining f̂∗ := f̂(h∗) := (f̂1(h∗), . . . , f̂C(h∗))
>, we have

p(f̂∗) = N
(
f̂∗

∣∣∣∣∣0,
L−1∑
l=0

k↔

(
h

(l)
∗ ,h

(l)
∗ ;σ2

l

)
I

)
. (7)

Furthermore, as in the real-valued case, for any x∗, the GP posterior p(f̃∗ | x∗,D) is approximately
(under the linearization of f ) given by the Gaussians derived from (1) and (7):

p(f̃∗ | x∗,D) ≈ N
(
f̃∗

∣∣∣∣∣ fµ(x∗),J
>
∗ ΣJ∗ +

L−1∑
l=0

k↔

(
h

(l)
∗ ,h

(l)
∗ ;σ2

l

)
I

)
. (8)

Although the derivations above may appear involved, it is worth emphasizing that in practice, the
only overheads compared to the usual MC-integrated BNN prediction step are (i) a single additional
forward-pass over fµ, (ii) L evaluations of the kernel k↔ and (ii) sampling the C-dimensional
Gaussian (7). Note that their costs are negligible compared to the cost of obtaining the standard
MC-prediction of f . We refer the reader to Algorithm 1 for a step-by-step pseudocode.
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Figure 3: Variance of f̂ (6) as a function of x∗. When f̂ is a function over neural network repre-
sentations of the data (b), it captures the data region better than when f̂ is only defined on the input
space (a). Increasing the kernel hyperparameters (here we assume they have the same value for all
layers) makes the low-variance region more compact around the data (c).

Algorithm 1 MC-prediction using RGPR. Differences from the standard procedure are in red.

Input:
Pre-trained multi-class BNN classifier f : RN ×RD → RC with posterior p(θ | D). Test point
x∗ ∈ RN . Prior variance hyperparameters (σ2

l )L−1
l=0 of f̂ . Inverse link function h. Number of

MC samples S.
1: {h(l)

∗ }L−1
l=1 = forward(fµ,x∗) . Compute representations of x∗ via a forward pass on fµ

2: vs(x∗) =
∑L−1
l=0 k↔(h

(l)
∗ ,h

(l)
∗ ;σ2

l ) . Compute the prior variance of f̂
3: for s = 1, . . . , S do
4: θs ∼ N (θ | µ,Σ) . Sample from the (approximate) posterior of f
5: fs(x∗) = f(x∗;θs) . Forward pass on f using the sampled parameter
6: f̂s(x∗) ∼ N (f̂(h∗) | 0, vs(x∗)I) . Sample from the marginal (7)
7: f̃s(x∗) = fs(x∗) + f̂s(x∗) . Compute f̃(x∗;θs)
8: end for
9: return S−1

∑S
s=1 h(f̃s(x∗)) . Make prediction by averaging

4 ANALYSIS

Here, we will study the theoretical properties of RGPR. Our assumptions are mild: we (i) assume that
RGPR is applied only to the input space and (ii) use the network linearization technique. Assumption
(i) is the minimal condition for the results presented in this section to hold—similar results can also
easily be obtained when hidden layers are also utilized in RGPR. Meanwhile, assumption (ii) is
necessary for tractability—in Section 6 we will validate our analysis in general settings.

The following two propositions (i) summarize the property that RGPR preserves the original BNN’s
prediction and (ii) show that asymptotically, the marginal variance of the output of f̃ grows cubically.

Proposition 2 (Invariance in Predictions). Let f : RN×RD → RC be any network with posterior
N (θ | µ,Σ) and f̃ be obtained from f via RGPR (4). Then under the linearization of f , for any
x∗ ∈ RN , we have Ep(f̃∗|x∗,D) f̃∗ = Ep(f∗|x∗,D) f∗.

Proposition 3 (Asymptotic Variance Growth). Let f : RN × RD → RC be a C-class ReLU net-
work with posteriorN (θ | µ,Σ) and f̃ be obtained from f via RGPR over the input space. Suppose
that the linearization of f w.r.t. θ around µ is employed. For any x∗ ∈ RN with x∗ 6= 0 there exists
β > 0 such that for any α ≥ β, the variance of each output component f̃1(αx∗), . . . , f̃C(αx∗)

under p(f̃∗ | x∗,D) (8) is in Θ(α3).

As a consequence of Proposition 3, in the binary classification case, the confidence of αx∗ decays
like 1/

√
α far away from the training data. This can be seen using the (binary) probit approximation.

Thus, in this case we obtain the maximum entropy in the limit of α→∞. In the following theorem
we formalize this statement in the more general multi-class classification setting.

Theorem 4 (Uniform Asymptotic Confidence). Let f : RN × RD → RC be a C-class ReLU
network equipped with the posterior N (θ | µ,Σ) and let f̃ be obtained from f via RGPR over the

6
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Table 1: Performances of RGPRs compared to their respective base methods on the detection of
far-away outliers. Error bars are standard deviations of ten trials. For each dataset, best values over
each vanilla and RGPR-imbued method (e.g. LLL against LLL-RGPR) are in bold.

MNIST CIFAR10 SVHN CIFAR100

Methods MMC ↓ AUR ↑ MMC ↓ AUR ↑ MMC ↓ AUR ↑ MMC ↓ AUR ↑

BNO 88.2±1.1 87.0±2.7 22.0±0.2 100.0±0.0 22.1±0.3 100.0±0.0 10.5±0.1 99.6±0.0

LLL 99.9±0.0 9.8±0.7 17.4±0.0 100.0±0.0 27.5±0.1 99.6±0.0 5.9±0.0 99.9±0.0
LLL-RGPR 16.6±0.1 100.0±0.0 15.1±0.1 100.0±0.0 15.1±0.0 100.0±0.0 4.2±0.0 100.0±0.0

KFL 57.2±3.0 96.0±0.8 69.5±2.5 81.2±2.5 64.9±2.3 90.9±1.6 41.1±2.3 81.7±1.5
KFL-RGPR 28.2±0.2 99.8±0.0 27.5±0.2 99.1±0.1 27.5±0.2 99.6±0.0 13.9±0.1 97.5±0.2

SWAG 83.2±5.5 55.3±20.8 50.5±13.1 97.4±2.5 59.6±9.7 97.5±1.9 96.0±5.0 9.6±11.9
SWAG-RGPR 27.9±0.3 99.8±0.1 27.6±0.2 99.9±0.0 27.5±0.1 99.9±0.0 17.4±0.9 78.5±1.6

SVDKL 59.1±0.6 99.7±0.0 46.1±0.4 99.3±0.1 48.5±0.5 99.4±0.0 55.3±1.8 80.9±1.6
SVDKL-RGPR 22.1±0.2 100.0±0.0 22.1±0.1 100.0±0.0 22.0±0.1 100.0±0.0 9.8±0.1 100.0±0.0

input space. Suppose that the linearization of f and the generalized probit approximation (2) is used
for approximating the predictive distribution p(y∗ = c | αx∗, f̃ ,D) under f̃ . Then for any input
x∗ ∈ RN with x∗ 6= 0 and for every class c = 1, . . . , C,

lim
α→∞

p(y∗ = c | αx∗, f̃ ,D) =
1

C
.

5 RELATED WORK

The mitigation of the asymptotic overconfidence problem has been studied recently. Although Hein
et al. (2019) theoretically demonstrated this issue, their proposed method does not fix this issue for
α large enough. Kristiadi et al. (2020) showed that any Gaussian-approximated BNN could mitigate
this issue even for α = ∞. However, the asymptotic confidence estimates of BNNs converge
to a constant in (0, 1), not to the ideal uniform confidence. In a non-Bayesian framework, using
Gaussian mixture models, Meinke & Hein (2020) integrate density estimates of inliers and outliers
data into the confidence estimates of an NN to achieve the uniform confidence far away from the
data. Nevertheless, this property has not been previously achieved in the context of BNNs.

Modeling the residual of a predictive model with GP has been proposed by Blight & Ott (1975);
Wahba (1978); O’Hagan (1978); Qiu et al. (2020). The key distinguishing factors between RGPR
and those methods are (i) RGPR models the residual of BNNs, in contrast to that of point-estimated
networks, (ii) RGPR uses a novel kernel which guarantees cubic uncertainty growth, and (iii) RGPR
requires no posterior inference. Nevertheless, whenever those methods uses our DSCS kernel,
RGPR can be seen as an economical approximation of their posterior: RGPR estimates uncertainty
near the data with a BNN, while the GP-DSCS prior estimates uncertainty far away from them.

A combination of weight- and function-space models has been proposed in the context of non-
parametric GP posterior sampling. Wilson et al. (2020) proposed to approximate a function as the
sum of a weight-space prior and function-space posterior. In contrast, RGPR models a function as
the sum of weight-space posterior and function-space prior in the context of parametric BNNs.

6 EMPIRICAL EVALUATIONS

Our goal in this section is (i) to validate our analysis in the preceding section: we aim to show that
RGPR’s low confidence far-away from the training data is observable in practice, and (ii) to explore
the effect of the hyperparameters of RGPR to the non-asymptotic confidence estimates. We focus
on classification—experiments on regression are in Appendix D.

7
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6.1 ASYMPTOTIC REGIME

We use standard benchmark datasets: MNIST, CIFAR10, SVHN, and CIFAR100. We use LeNet
and ResNet-18 for MNIST and the rest of the datasets, respectively. Our main reference is the
method based on Blight & Ott (1975) (with our kernel): We follow Qiu et al. (2020) for combining
the network and GP, and for carrying out the posterior inference. We refer to this baseline as the
Blight and Ott method (BNO)—cf. Appendix C for an exposition about this method. The base
methods, which RGPR is implemented on, are the following recently-proposed BNNs: (i) last-layer
Laplace (LLL, Kristiadi et al., 2020), (ii) Kronecker-factored Laplace (KFL, Ritter et al., 2018), (iii)
stochastic weight averaging-Gaussian (SWAG, Maddox et al., 2019), and (iv) stochastic variational
deep kernel learning (SVDKL, Wilson et al., 2016). All the kernel hyperparameters for RGPR are
set to 1. In all cases, MC-integral with 10 posterior samples is used for making prediction.

To validate Theorem 4, we construct a test dataset artificially by sampling 2000 uniform noises in
[0, 1]N and scale them with a scalar α = 2000. The goal is to distinguish test points from these
outliers based on the confidence estimates. Since a visual inspection of these confidence estimates
as in Figure 1 is not possible in high dimension, we measure the results using the mean maximum
confidence (MMC) and area under ROC (AUR) metrics (Hendrycks & Gimpel, 2017). MMC is
useful for summarizing confidence estimates, while AUR tells us the usefulness of the confidences
for distinguishing between inliers and outliers.

The results are presented in Table 1. We observe that the RGPR-augmented methods are significantly
better than their respective base methods. In particular, the confidences drop, as shown by the MMC
values. We also observe in Table 3 (Appendix D) that the confidence estimates close to the training
data do not significantly change. These two facts together yield high AUR values, close to the
ideal value of 100. Moreover, most RGPR-imbued methods achieve similar or better performance
to BNO baseline, likely be due to uncertainty already presents in the base BNNs. However, these
confidences on far-away points are not quite the uniform confidence due to the number of MC
samples used—recall that far away from the data, RGPR yields high variance; since the error of
MC-integral depends on both the variance and number of samples, a large amount of samples are
needed to get accurate MC-estimates. See Figure 5 (Appendix D) for results with 1000 samples: in
this more accurate setting, the convergence to the uniform confidence happens at finite (and small)
α. Nevertheless, this issue not a detrimental to the detection of far-away outliers, as shown by the
AUR values in Table 1.

6.2 NON-ASYMPTOTIC REGIME

The main goal of this section is to show that RGPR can also improve uncertainty estimates near
the data by varying its kernel hyperparameters. For this purpose, we use a simple hyperparameter
optimization using a noise out-of-distribution (OOD) data, similar to Kristiadi et al. (2020), to tune
(σ2
l )—the details are in Section C.2. We use LLL as the base BNN.

First, we use the rotated-MNIST experiment proposed by Ovadia et al. (2019), where we measure
methods’ calibration at different rotation angle, see Figure 4. LLL gives significantly better perfor-
mance than BNO and RGPR improves the performance further. Moreover, we use standard OOD
data tasks where one distinguishes in-distribution from out-distribution samples. We do this with
CIFAR10 as the in-distribution dataset against various OOD datasets (more results in Appendix D).
As shown in Table 2, LLL outperforms for CIFAR10 BNO and RGPR further improves LLL.

7 CONCLUSION

We have shown that adding “missing uncertainty” to ReLU BNNs with a carefully-crafted GP prior
that represents infinite ReLU features fixes the asymptotic overconfidence problem of such net-
works. The core of our method is a generalization of the classic cubic-spline kernel, which, when
used as the covariance function of the GP prior, yields a marginal variance which scales cubically in
the distance between a test point and the training data. Our main strength lies in the simplicity of the
proposed method: RGPR is relative straightforward to implement, and can be applied inexpensively
to any pre-trained BNN. Furthermore, extensive theoretical analyses show that RGPR provides sig-
nificant improvements to previous results with vanilla BNNs. In particular, we were able to show
uniform confidence far-away from the training data in multi-class classifications. On a less formal
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Figure 4: Rotated-MNIST results (averages of 10 predictions). x-axes are rotation angles. In (a), all
methods achieve similar accuracies.

Table 2: OOD data detection. Datasets in bold face are the in-distribution datasets.

BNO LLL LLL-RGPR

Datasets MMC ↓ AUR ↑ MMC ↓ AUR ↑ MMC ↓ AUR ↑

CIFAR10 96.9±0.1 - 92.7±0.1 - 90.3±0.1 -
SVHN 69.0±0.0 93.6±0.1 45.3±0.0 96.4±0.1 44.0±0.0 96.0±0.1
LSUN 76.6±0.0 90.8±0.1 56.8±0.1 92.8±0.1 51.5±0.1 93.7±0.1
CIFAR100 80.0±0.0 86.3±0.1 64.1±0.0 88.3±0.1 60.3±0.0 88.3±0.1
UniformNoise 75.9±0.4 94.3±0.1 36.7±0.2 99.0±0.0 25.4±0.1 99.8±0.0
Noise 61.5±0.4 96.3±0.1 41.8±0.2 97.6±0.1 40.5±0.2 97.4±0.1

note, our construction, while derived as a post-hoc addition to the network, follows a pleasingly
simple intuition that bridges the worlds of deep learning and non-parametric/kernel models: The
RGPR model amounts to considering a non-parametric model of infinitely many ReLU features,
only finitely many of which are trained as a deep ReLU network.
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APPENDIX A DERIVATIONS

A.1 THE CUBIC SPLINE KERNEL

Recall that we have a linear model f : [cmin, cmax] × RK → R with the ReLU feature map
φ defined by f(x;w) := w>φ(x) over the input space [cmin, cmax] ⊂ R, where cmin < cmax.
Furthermore, φ regularly places the K generalized ReLU functions centered at (ci)

K
i=1 where

ci = cmin + i−1
K−1 (cmax − cmin) in the input space and we consider a Gaussian prior p(w) :=

N
(
w
∣∣0, σ2K−1(cmax − cmin)I

)
over the weight w. Then, as K goes to infinity, the distribution

over the function output f(x) is a Gaussian process with mean 0 and covariance

cov(f(x), f(x′)) = σ2 cmax − cmin

K
φ(x)>φ(x′) = σ2 cmax − cmin

K

K∑
i=1

ReLU(x; ci)ReLU(x′; ci)

= σ2 cmax − cmin

K

K∑
i=1

H(x− ci)H(x′ − ci)(x− ci)(x′ − ci)

= σ2 cmax − cmin

K

K∑
i=1

H(min(x, x′)− ci)
(
c2i − ci(x+ x′) + xx′

)
, (9)

where the last equality follows from (i) the fact that both x and x′ must be greater than or equal to
ci, and (ii) by expanding the quadratic form in the second line.

Let x̄ := min(x, x′). Since (9) is a Riemann sum, in the limit of K → ∞, it is expressed by the
following integral

lim
K→∞

cov(f(x), f(x′)) = σ2

∫ cmax

cmin

H(x̄− c)
(
c2 − c(x+ x′) + xx′

)
dc

= σ2H(x̄− cmin)

∫ min{x̄,cmax}

cmin

c2 − c(x+ x′) + xx′ dc

= σ2H(x̄− cmin)

[
1

3
(z3 − c3min)− 1

2
(z2 − c2min)(x+ x′) + (z − cmin)xx′

]

where we have defined z := min{x̄, cmax}. The term H(x̄ − cmin) has been added in the second
equality as the previous expression is zero if x̄ ≤ cmin (since in this region, all the ReLU functions
evaluate to zero). Note that

H(x̄− cmin) = H(x− cmin)H(x′ − cmin)

is itself a positive definite kernel. We also note that cmax can be chosen sufficiently large so that
[−cmax, cmax]d contains for sure the data, e.g. this is anyway true for data from bounded domains
like images in [0, 1]d, and thus we can set z = x̄ = min(x, x′).

APPENDIX B PROOFS

Proposition 1. Suppose f : RN×RD → R defined by (x,θ) 7→ f(x;θ) is a ReLU regression BNN
with a prior p(θ) = N (θ | 0,B) and D := {xm, ym}Mm=1 is a dataset. Let f̂ (0) and f̃ be defined
as in (4), and let x∗ ∈ RN be arbitrary. Under the linearization of f w.r.t. θ around 0, given that
all x1, . . . ,xM are sufficiently close to the origin, the GP posterior of f̃∗ := f̃(x∗) is given by

p(f̃∗ | x∗,D) ≈ N (f̃∗ | f(x;µ), g>∗ Σg∗ + k↔(x∗,x∗)), (5)
where µ and Σ are the mean and covariance of the posterior of the linearized network, respectively,
and g∗ := ∇θf(x∗;θ)|0.

Proof. Under the linearization of f w.r.t. θ around 0, we have

f(x;θ) ≈ f(x; 0)︸ ︷︷ ︸
=0

+∇θf(x;θ)|0︸ ︷︷ ︸
=:g(x)

>θ = g(x)>θ.
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Now, the definition of RGPR implies that we have

f̃(x) ≈ g(x)>θ + f̂ (0)(x); f̂ (0)(x) ∼ N (0, k↔(x,x)).

Following O’Hagan (1978), we thus obtain the following GP prior over f̃ , which marginal is

f̃(x) ∼ N (f̃(x) | 0, g(x)>Bg(x) + k↔(x,x)).

Suppose we write the dataset as D = (X,y) whereX is the data matrix and y is the target vectors,
and x∗ ∈ RN is an arbitrary test point. Let k↔ := (k↔(x∗,x1), . . . k↔(x∗,xM ))>, let K↔ :=
(K+σ2I) withKij := k↔(xi,xj) and σ2 > 0 sufficiently large be the (regularized) kernel matrix,
and let G := (g(x1), . . . , g(xM )) be the matrix of training “features”. As Rasmussen & Williams
(2005, Sec. 2.7) suggests, we have then the following GP posterior mean and variance

E(f̃(x∗) | D) = g(x∗)
>µ+ k↔K

−1
↔ (y − g(x∗)

>µ) (10)

var (f̃(x∗) | D) = k↔(x∗,x∗) + k>↔K
−1
↔ k↔ + r>(B−1 +GK−1

↔ G
>)−1r, (11)

whereµ := (B−1+GK−1
↔ G

>)−1GK−1
↔ y and r := g(x∗)−GK−1

↔ k↔. Since all training points
x1, . . . ,xM are sufficiently close to the origin, by definition of the DSCS kernel, we have k↔ ≈ 0
andK−1

↔ ≈ 1/σ2I . These imply that

µ ≈ (B−1 + 1/σ2GG>)−1(1/σ2Gy) and r ≈ g(x∗).

In particular, notice that µ is approximately the posterior mean of the Bayesian linear regression on
f (Bishop, 2006, Sec. 3.3). Furthermore (10) and (11) become

E(f̃(x∗) | D) ≈ g(x∗)
>µ = f(x∗;µ)

var (f̃(x∗) | D) ≈ k↔(x∗,x∗) + g(x∗)
> (B−1 + 1/σ2GG>)−1︸ ︷︷ ︸

=:Σ

g(x∗),

respectively. Notice in particular that Σ is the posterior covariance of the Bayesian linear regression
on f . Thus, the claim follows.

Proposition 2 (Invariance in Predictions). Let f : RN×RD → RC be any network with posterior
N (θ | µ,Σ) and f̃ be obtained from f via RGPR (4). Then under the linearization of f , for any
x∗ ∈ RN , we have Ep(f̃∗|x∗,D) f̃∗ = Ep(f∗|x∗,D) f∗.

Proof. Simply compare the means of the Gaussians p(f̃∗ | x∗,D) in (8) and p(f∗ | x∗,D) in
(1).

To prove Proposition 3 and Theorem 4, we need the following definition. Let f : RN × RD → RC
defined by (x,θ) 7→ f(x;θ) be a feed-forward neural network which use piecewise affine activation
functions (such as ReLU and leaky-ReLU) and are linear in the output layer. Such a network is
called a ReLU network and can be written as a continuous piecewise-affine function (Arora et al.,
2018). That is, there exists a finite set of polytopes {Qi}Pi=1—referred to as linear regions f—such
that ∪Pi=1Qi = RN and f |Qi

is an affine function for each i = 1, . . . , P (Hein et al., 2019). The
following lemma is central in our proofs below (the proof is in Lemma 3.1 of Hein et al. (2019)).

Lemma 5 (Hein et al., 2019). Let {Qi}Pi=1 be the set of linear regions associated to the ReLU
network f : RN × RD → RC , For any x ∈ RN with x 6= 0 there exists a positive real number β
and j ∈ {1, . . . , P} such that αx ∈ Qj for all α ≥ β.

Proposition 3 (Asymptotic Variance Growth). Let f : RN × RD → RC be a C-class ReLU net-
work with posteriorN (θ | µ,Σ) and f̃ be obtained from f via RGPR over the input space. Suppose
that the linearization of f w.r.t. θ around µ is employed. For any x∗ ∈ RN with x∗ 6= 0 there exists
β > 0 such that for any α ≥ β, the variance of each output component f̃1(αx∗), . . . , f̃C(αx∗)

under p(f̃∗ | x∗,D) (8) is in Θ(α3).

12
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Proof. Let x∗ ∈ RN with x∗ 6= 0 be arbitrary. By Lemma 5 and definition of ReLU network, there
exists a linear region R and real number β > 0 such that for any α ≥ β, the restriction of f to R
can be written as

f |R(αx;θ) = W (αx) + b,

for some matrixW ∈ RC×N and vector b ∈ RC , which are functions of the parameter θ, evaluated
at µ. In particular, for each c = 1, . . . , C, the c-th output component of f |R can be written by

fc|R = w>c (αx) + bc,

where wc and bc are the c-th row ofW and b, respectively.

Let c ∈ {1, . . . , C} and let jc(αx∗) be the c-th column of the Jacobian J(αx∗) as defined in (1).
Then by definition of p(f̃∗ | x∗,D), the variance of f̃c|R(αx∗)—the c-th diagonal entry of the
covariance of p(f̃∗ | x∗,D)—is given by

var(f̃c|R(αx∗)) = jc(αx∗)
>Σjc(αx∗) + k↔(αx∗, αx∗).

Now, from the definition of the DSCS kernel in (3), we have

k↔(αx∗, αx∗) =
1

N

N∑
i=1

k1
↔(αx∗i, αx∗i)

=
1

N

N∑
i=1

α3σ
2

3
x3
∗i

=
α3

N

N∑
i=1

k1
↔(x∗i, x∗i)

∈ Θ(α3).

Furthermore, we have

jc(αx∗)
>Σjc(αx∗) =

(
α(∇θwc|µ)>x+∇θbc|µ

)>
Σ
(
α(∇θwc|µ)>x+∇θbc|µ

)
.

Thus, jc(αx∗)>Σjc(αx∗) is a quadratic function of α. Therefore, var(f̃c|R(αx∗)) is in Θ(α3).

Theorem 4 (Uniform Asymptotic Confidence). Let f : RN × RD → RC be a C-class ReLU
network equipped with the posterior N (θ | µ,Σ) and let f̃ be obtained from f via RGPR over the
input space. Suppose that the linearization of f and the generalized probit approximation (2) is used
for approximating the predictive distribution p(y∗ = c | αx∗, f̃ ,D) under f̃ . Then for any input
x∗ ∈ RN with x∗ 6= 0 and for every class c = 1, . . . , C,

lim
α→∞

p(y∗ = c | αx∗, f̃ ,D) =
1

C
.

Proof. Let x∗ 6= 0 ∈ RN be arbitrary. By Lemma 5 and definition of ReLU network, there exists
a linear region R and real number β > 0 such that for any α ≥ β, the restriction of f to R can be
written as

f |R(αx) = W (αx) + b,

where the matrix W ∈ RC×N and vector b ∈ RC are functions of the parameter θ, evaluated at µ.
Furthermore, for i = 1, . . . , C we denote the i-th row and the i-th component ofW and b aswi and
bi, respectively. Under the linearization of f , the marginal distribution (8) over the output f̃(αx)
holds. Hence, under the generalized probit approximation, the predictive distribution restricted to R
is given by

p̃(y∗ = c | αx∗,D) ≈ exp(mc(αx∗)κc(αx∗))∑C
i=1 exp(mi(αx∗)κi(αx∗))

=
1

1 +
∑C
i 6=c exp(mi(αx∗)κi(αx∗)−mc(αx∗)κc(αx∗)︸ ︷︷ ︸

=:zic(αx∗)

)
,
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where for all i = 1, . . . , C,

mi(αx∗) = fi|R(αx;µ) = w>i (αx) + bi ∈ R,

and
κi(αx) = (1 + π/8 (vii(αx∗) + k↔(αx∗, αx∗)))

− 1
2 ∈ R>0.

In particular, for all i = 1, . . . , C, note that m(αx∗)i ∈ Θ(α) and κ(αx)i ∈ Θ(1/α
3
2 ) since

vii(αx∗) +k↔(αx∗, αx∗) is in Θ(α3) by Proposition 3. Now, notice that for any c = 1, . . . , C and
any i ∈ {1, . . . , C} \ {c}, we have

zic(αx∗) = (mi(αx∗)κi(αx∗))− (mc(αx∗)κc(αx∗))

= (κi(αx∗)wi︸ ︷︷ ︸
Θ
(

1/α
3
2

) −κc(αx∗)wc︸ ︷︷ ︸
Θ
(

1/α
3
2

) )>(αx∗) + κi(αx∗) bi︸ ︷︷ ︸
Θ
(

1/α
3
2

) −κc(αx∗) bc︸ ︷︷ ︸
Θ
(

1/α
3
2

) .

Thus, it is easy to see that limα→∞ zic(αx∗) = 0. Hence we have

lim
α→∞

p̃(y∗ = c | αx∗,D) = lim
α→∞

1

1 +
∑C
i 6=c exp(zic(αx∗))

=
1

1 +
∑C
i6=c exp(0)

=
1

C
,

as required.

APPENDIX C FURTHER DETAILS

C.1 THE BLIGHT AND OTT’S METHOD

The Blight and Ott’s method (BNO) models the residual of polynomial regressions. That is, suppose
φ : R → RD is a polynomial basis function defined by φ(x) := (1, x, x2, . . . , xD−1), k is an
arbitrary kernel, and w ∈ RD is a weight vector, BNO assumes

f̃(x) := w>φ(x) + f̂(x), where f̂(x) ∼ GP(0, k(x, x)).

Recently, this method has been extended to neural network. Qiu et al. (2020) apply the same idea—
modeling residuals with GPs—to pre-trained networks, resulting in a method called RIO. Suppose
that fµ : RN → R is a neural-network with a pre-trained, point-estimated parameters µ. Their
method is defined by

f̃(x) := fµ(x) + f̂(x), where f̂(x) ∼ GP(0, kIO(x,x)).

The kernel kIO is a sum of RBF kernels applied on the dataset D (inputs) and the network’s predic-
tions overD (outputs), hence the name IO—input-output. As in the original Blight and Ott’s method,
RIO also focuses in doing posterior inference on the GP. Suppose that m(x) and v(x) is the a poste-
riori marginal mean and variance of the GP, respectively. Then, via standard computations, one can
see that even though f is a point-estimated network, f̃ is a random function, distributed a posteriori
by

f̃(x) ∼ N
(
f̃(x)

∣∣∣ f̃µ(x) +m(x), v(x)
)
.

Thus, BNO and RIO effectively add uncertainty to point-estimated networks.

The posterior inference of BNO and RIO can be computationally intensive, depending on the num-
ber of training examples M : The cost of exact posterior inference is in Θ(M3). While it can be
alleviated by approximate inference, such as via inducing point methods and stochastic optimiza-
tions, the posterior inference requirement can still be a hindrance for a practical adoption of BNO
and RIO, especially on large problems.
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Figure 5: Average confidence as a function of α. Top: the vanilla LLL. Bottom: LLL with RGPR.
Test data are constructed by scaling the original test sets with α. Error bars are ±1 standard devia-
tion. Black lines are the uniform confidences. MC-integral with 1000 samples is employed.

C.2 HYPERPARAMETER TUNING

We have shown in the main text (both theoretically and empirically) that the asymptotic performance
of RGPR does not depend on the choice of its hyperparameters (σ2

l )L−1
l=0 . Indeed we simply set each

σ2
l to its default value 1 for all experiments and showed that RGPR could already fix the asymptotic

overconfidence problem effectively.

Nevertheless, Figure 3 gives us a hint that learning these hyperparameters might be beneficial for
uncertainty estimation. Intuitively, by increasing (σ2

l ), one might be able to make the high confi-
dence (low uncertainty) region more compact. However, if the values of (σ2

l ) were too large, the
uncertainty will be high even in the data region, resulting in underconfidenct predictions.

Borrowing the contemporary method in robust learning literature (Hendrycks et al., 2019; Hein et al.,
2019; Meinke & Hein, 2020, etc.) one way to train (σ2

l ) is by using the following min-max objective
which intuitively balances high-confidence predictions on inliers and low-confidence predictions on
outliers. LetH be the entropy functional,D the training dataset,Dout an outlier dataset, σ2 := (σ2

l ),
and λ ∈ R be a trade-off parameter. We define:

L(σ2) := E
x

(in)
∗ ∈D

H
(
p̃(y∗ | x(in)

∗ ,D;σ2)
)
− λ E

x
(out)
∗ ∈Dout

H
(
p̃(y∗ | x(out)

∗ ,D;σ2)
)
, (12)

where the predictive distribution p̃(y∗ | x∗,D;σ2) is as defined in Section 4 with its dependency
to σ2 explicitly shown. In this paper, for the outlier dataset Dout, we use noise dataset constructed
by Gaussian blur and contrast scaling as proposed by Hein et al. (2019). We found that this simple
dataset is already sufficient for showing good improvements over the default values (σ2

l = 1).
Nevertheless, using more sophisticated outlier datasets, e.g. those used in robust learning literature,
could potentially improve the results further. Lastly, we use the trade-off value of λ = 1 and
λ = 0.75 for our experiments with LeNet/ResNet-18 and DenseNet-BC-121, respectively since we
found that λ = 1 in the latter architecture generally make the network severely underconfident.

APPENDIX D ADDITIONAL EXPERIMENTS

D.1 CLASSIFICATION

We show the behavior of a RGPR-imbued image classifier (LLL) in terms of α in Figure 5. While
Table 1 has already shown that RGPR makes confidence estimates close to uniform, here we show
that the convergence to low confidence occurred for some small α. Furthermore, notice that when
α = 1, i.e. at the test data, RGPR maintains the high confidence of the base method.
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Table 3: Confidence over test sets (i.e. α = 1) in term of MMC. Values are averaged over ten trials.
Larger is better.

Methods MNIST CIFAR10 SVHN CIFAR100

BNO 99.2±0.0 96.9±0.0 98.5±0.0 82.1±0.1

LLL 98.5±0.0 92.6±0.1 91.6±0.0 74.6±0.1
LLL-RGPR 97.9±0.0 92.5±0.1 91.4±0.0 73.8±0.1

KFL 92.9±0.2 86.6±0.1 90.8±0.0 73.4±0.1
KFL-RGPR 91.7±0.1 86.5±0.1 90.7±0.0 72.8±0.2

SWAG 87.6±5.0 95.0±0.3 97.7±0.2 52.9±0.9
SWAG-RGPR 86.8±4.0 94.9±0.2 97.6±0.1 51.2±1.0

SVDKL 99.6±0.0 97.5±0.0 98.6±0.0 80.4±0.2
SVDKL-RGPR 99.6±0.0 97.5±0.0 98.6±0.0 79.9±0.1
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Figure 6: Toy regression with a BNN and additionally, our RGPR. Shades represent ±1 standard
deviation.

D.2 REGRESSION

To empirically validate our method and analysis (esp. Proposition 3), we present a toy regression
results in Figure 6. RGPR improves the BNN further: Far-away from the data, the error bar becomes
wider.

For more challenging problems, we employ a subset of the standard UCI regression datasets. Our
goal here, similar to the classification case, is to compare the uncertainty behavior of RGPR-
augmented BNN baselines near the training data (inliers) and far-away from them (outliers). The
outlier dataset is constructed by sampling 1000 points from the standard Gaussian and scale them
with α = 2000. Naturally, the metric we choose is the predictive error bar (standard deviation), i.e.
the same metric used in Figure 1. Following the standard practice (see e.g. Sun et al. (2019)), we
use a two-layer ReLU network with 50 hidden units. The Bayesian methods used are LLL, KFL,
SWAG, and stochastic variational GP (SVGP, Hensman et al., 2015) using 50 inducing points. Fi-
nally, we standardize the data and the hyperparameter for RGPR is set to 0.001 so that RGPR does
not incur significant uncertainty on the inliers.

The results are presented in Table 4. We can observe that all RGPRs retain high confidence estimates
over inlier data and yield much larger error bar compared to the base methods. Furthermore, as we
show in Table 5, the RGPR-augmented methods retain the base methods’ predictive performances in
terms of test RMSE. All in all, these findings confirm the effectiveness of RGPR in far-away outlier
detection.

D.3 NON-ASYMPTOTIC REGIME

Using (12), we show the results of a tuned-RGPR on standard out-of-distribution (OOD) data detec-
tion benchmark problems on LeNet/ResNet architecture in Tables 2 and 6. Furthermore, we show
results for deeper network (121-layer DenseNet-BC) in Table 7. We optimize (σ2

l ) using Adam
with learning rate 0.1 over each validation set and the noise dataset (both contain 2000 points) for
10 epochs. Note that this process is quick since no backpropagation over the networks is required.
In general tuning the kernel hyperparameters of RGPR lead to significantly lower average confi-
dence (MMC) over outliers compared to the vanilla method (LLL) which leads to higher detection
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Table 4: Regression far-away outlier detection. Values correspond to predictive error bars (averaged
over ten trials), similar to what shades represent in Figures 1 and 2. “In” and “Out” correspond to
inliers and outliers, respectively.

housing concrete energy wine

Methods In ↓ Out ↑ In ↓ Out ↑ In ↓ Out ↑ In ↓ Out ↑

LLL 0.405 823.215 0.324 580.616 0.252 319.890 0.126 24.176
LLL-RGPR 0.407 2504.325 0.329 3394.466 0.253 2138.909 0.129 1948.813

KFL 1.171 2996.606 1.281 2518.338 0.651 1486.748 0.291 475.141
KFL-RGPR 1.165 3909.140 1.264 4258.177 0.656 2681.780 0.292 2031.481

SWAG 0.181 440.085 1.192 2770.455 0.418 1066.044 0.181 77.357
SWAG-RGPR 0.186 2403.366 1.146 4693.273 0.428 2647.922 0.187 1947.677

SVGP 0.641 2.547 0.845 3.100 0.367 2.237 0.092 0.983
SVGP-RGPR 0.641 1973.506 0.845 1932.061 0.367 1931.299 0.095 1956.027

Table 5: The corresponding predictive performance to Table 4 in terms of the RMSE metric. Values
are averaged over ten trials. Smaller is better.

Methods housing concrete energy wine

LLL 7.361±3.050 42.039±6.260 6.228±1.864 0.423±0.048
LLL-RGPR 7.361±3.050 42.039±6.260 6.228±1.864 0.423±0.048

KFL 8.549±2.685 42.729±6.355 6.427±1.912 0.421±0.052
KFL-RGPR 8.466±2.732 42.608±6.400 6.413±1.908 0.422±0.050

SWAG 7.265±3.008 39.308±4.481 2.481±0.755 0.429±0.047
SWAG-RGPR 7.274±3.016 39.459±4.626 2.469±0.760 0.430±0.047

SVGP 14.512±4.751 50.657±7.193 5.697±1.443 0.381±0.057
SVGP-RGPR 14.512±4.751 50.657±7.193 5.697±1.443 0.381±0.057

performance (AUR). Finally, we show the calibration performance of RGPR on the DenseNet in
Table 8. We observe that the base BNN we use, LLL, does not necessarily give good calibration per-
formance. Applying RGPR improves this, making LLL better calibrated than the “gold standard”
baseline BNO.

We also compare LLL-RGPR to Deep Ensemble (DE) (Lakshminarayanan et al., 2017) which has
been shown to perform better compared to Bayesian methods (Ovadia et al., 2019). As we can see
in Table 10, LLL-RGPR is competitive to DE. These results further reinforce our finding that RGPR
is also useful in non-asymptotic regime.

Inspecting the optimal hyperparameters (σ2
l ), we found that high kernel variances on higher layers

tend to be detrimental to the uncertainty estimate, as measured by (12), leading to low variance
values on those layers, cf. Table 9. Specifically, for the LeNet architecture, we found that having
high kernel variance on the input (the bottom-most layer) is desirable. Meanwhile, the first residual
block and the second dense block are the most impactful in terms of uncertainty estimation for the
ResNet and DenseNet architectures, respectively.
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Table 6: OOD data detection results using the hyperparameter tuning objective in (12). All values
are averages and standard deviations over 10 trials.

BNO LLL LLL-RGPR

Datasets MMC ↓ AUR ↑ MMC ↓ AUR ↑ MMC ↓ AUR ↑

MNIST 99.2±0.0 - 98.5±0.0 - 91.2±0.1 -
EMNIST 82.3±0.0 89.2±0.1 70.3±0.0 92.1±0.1 54.9±0.0 91.7±0.1
FMNIST 66.3±0.0 97.4±0.0 56.1±0.0 98.3±0.0 37.0±0.0 98.9±0.0
GrayCIFAR10 48.0±0.0 99.7±0.0 41.2±0.0 99.7±0.0 24.0±0.0 99.9±0.0
UniformNoise 96.7±0.0 95.2±0.1 92.3±0.1 94.6±0.1 43.3±0.2 99.2±0.0
Noise 12.9±0.1 100.0±0.0 12.9±0.1 100.0±0.0 12.8±0.1 100.0±0.0

SVHN 98.5±0.0 - 91.6±0.0 - 88.8±0.0 -
CIFAR10 70.9±0.0 95.0±0.0 40.7±0.0 97.2±0.0 36.5±0.0 97.7±0.0
LSUN 72.2±0.0 95.1±0.0 41.5±0.2 97.3±0.0 36.2±0.1 98.0±0.1
CIFAR100 71.8±0.0 94.1±0.0 42.1±0.0 96.7±0.0 37.7±0.0 97.3±0.0
UniformNoise 68.9±0.7 96.6±0.2 40.0±0.5 97.6±0.1 31.7±0.3 98.8±0.0
Noise 66.5±0.5 96.3±0.2 36.3±0.3 97.9±0.1 34.8±0.3 97.8±0.1

CIFAR100 82.2±0.2 - 74.6±0.2 - 69.5±0.2 -
SVHN 46.8±0.0 84.4±0.2 42.7±0.0 80.3±0.2 40.0±0.0 78.1±0.2
LSUN 53.5±0.0 80.3±0.2 39.8±0.1 82.6±0.2 33.0±0.1 83.7±0.2
CIFAR10 56.0±0.0 78.1±0.2 44.4±0.0 78.9±0.2 38.8±0.0 79.0±0.2
UniformNoise 31.6±0.4 93.3±0.2 21.4±0.2 94.7±0.2 9.6±0.1 99.1±0.1
Noise 51.9±0.6 81.3±0.4 47.5±0.7 77.1±0.5 44.4±0.6 74.8±0.5

Table 7: OOD data detection results using the hyperparameter tuning objective in (12) on DenseNet-
BC-121 network. All values are averages and standard deviations over 10 trials.

BNO LLL LLL-RGPR

Datasets MMC ↓ AUR ↑ MMC ↓ AUR ↑ MMC ↓ AUR ↑

CIFAR10 96.5±0.1 - 98.1±0.1 - 91.1±0.1 -
SVHN 86.7±0.0 83.5±0.1 83.2±0.0 91.3±0.1 68.8±0.0 83.6±0.2
LSUN 78.3±0.1 89.3±0.1 80.6±0.1 91.3±0.1 48.3±0.3 94.5±0.2
CIFAR100 82.4±0.0 86.0±0.1 85.2±0.0 88.9±0.1 57.5±0.0 90.3±0.2
UniformNoise 90.6±0.3 83.9±0.3 80.2±0.5 94.2±0.1 51.4±0.4 94.9±0.1
Noise 75.7±0.6 92.8±0.1 72.1±0.4 96.5±0.1 57.2±0.3 92.8±0.1

SVHN 89.9±0.0 - 97.8±0.0 - 93.9±0.0 -
CIFAR10 47.5±0.0 90.3±0.0 69.5±0.0 94.1±0.0 48.9±0.0 96.4±0.0
LSUN 38.7±0.1 92.9±0.1 67.7±0.0 94.7±0.0 46.1±0.2 97.3±0.1
CIFAR100 48.1±0.0 89.9±0.0 69.1±0.0 93.8±0.0 48.5±0.0 96.3±0.0
UniformNoise 65.9±0.5 85.8±0.1 63.6±0.5 97.3±0.1 50.4±0.4 97.2±0.1
Noise 32.0±0.3 95.2±0.1 30.7±0.3 99.5±0.0 29.2±0.3 99.0±0.1

CIFAR100 85.1±0.1 - 89.3±0.1 - 71.0±0.1 -
SVHN 70.8±0.0 72.8±0.2 74.0±0.0 76.1±0.1 56.4±0.0 67.0±0.1
LSUN 67.5±0.1 75.9±0.2 69.5±0.1 79.9±0.2 37.4±0.2 84.5±0.2
CIFAR10 72.3±0.0 70.6±0.1 74.8±0.0 74.9±0.1 48.3±0.0 74.8±0.1
UniformNoise 78.8±0.3 71.0±0.3 71.2±0.3 82.4±0.2 42.4±0.2 81.6±0.2
Noise 87.3±0.2 57.2±0.4 90.0±0.2 60.5±0.5 76.4±0.4 45.2±0.5

Table 8: Calibration performance of RGPR on DenseNet-BC-121. Values are expected calibra-
tion errors (ECEs), averaged over ten prediction runs. RGPR makes the base BNN (LLL) more
calibrated—even more than the “gold standard GP” in BNO.

Datasets BNO LLL LLL-RGPR

CIFAR10 17.053±0.637 20.758±0.745 7.451±0.200
SVHN 6.281±0.092 5.705±0.174 4.929±0.110
CIFAR100 22.423±0.416 23.630±0.430 6.244±0.216

18



Under review as a conference paper at ICLR 2021

Table 9: Optimal hyperparameter for each layer (or residual block and dense block for ResNet and
DenseNet, respectively) on LLL.

Datasets Input Layer 1 Layer 2 Layer 3 Layer 4

LeNet & ResNet-18
MNIST 2.596e+02 1.489e+00 2.563e-02 2.219e-02 -
CIFAR10 9.093e-03 3.173e+02 2.178e-01 1.229e-02 7.894e-03
SVHN 9.009e-03 5.559e+02 5.507e+00 1.390e-02 9.039e-03
CIFAR100 7.897e-03 1.001e+02 4.254e-01 9.106e-02 7.455e-03

DenseNet-BC-121
CIFAR10 1.635e-02 1.025e-01 1.102e+03 8.886e+00 2.476e+00
SVHN 7.224e-03 3.798e-02 1.113e+02 2.909e+00 7.807e-03
CIFAR100 1.016e-02 5.203e-02 1.233e+02 3.335e+00 6.716e-02

Table 10: Comparison between Deep Ensemble (DE) and LLL-RGPR in terms of AUR. Results for
DE are obtained from (Meinke & Hein, 2020) since we use the same networks and training protocol.

Datasets DE LLL-RGPR

MNIST
EMNIST 92.1 91.7±0.1
FMNIST 99.2 98.9±0.0
GrayCIFAR10 100.0 99.9±0.0
UniformNoise 97.9 99.2±0.0
Noise 100.0 100.0±0.0

CIFAR10
SVHN 90.3 96.0±0.1
LSUN 92.0 93.7±0.1
CIFAR100 88.2 88.3±0.1
UniformNoise 96.6 99.8±0.0
Noise 90.3 97.4±0.1

SVHN
CIFAR10 97.9 97.7±0.0
LSUN 97.9 98.0±0.1
CIFAR100 97.6 97.3±0.0
UniformNoise 95.6 98.8±0.0
Noise 98.2 97.8±0.1

CIFAR100
SVHN 83.2 78.1±0.2
LSUN 81.6 83.7±0.2
CIFAR10 76.3 79.0±0.2
UniformNoise 36.6 99.1±0.1
Noise 67.5 74.8±0.5
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