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Probabilistically-sound beam search with masked language models

Anonymous

Abstract

Beam search with masked language models
(MLMs) is challenging in part because joint
probability distributions over sequences are
not readily available, unlike for autoregressive
models. Nevertheless, estimating such dis-
tributions has applications in many domains,
including protein engineering and ancient
text restoration. We present probabilistically-
sound methods for beam search with MLMs.
First, we clarify the conditions under which
it is theoretically-sound to perform text in-
filling with MLMs using standard beam
search. When these conditions fail, we provide
a probabilistically-sound modification with
no additional computational complexity and
demonstrate that it is superior to the aforemen-
tioned beam search in the expected conditions.
We then present empirical results comparing
several infilling approaches with MLMs across
several domains.

1 Introduction

Autoregressive language models (LMs) have show-
cased exceptional ability across many tasks. Yet, in
specific contexts where bidirectionality is crucial,
such as protein language modeling and ancient text
restoration, masked language models (MLMs) re-
main prevalent. However, MLMs still face a signifi-
cant challenge in these settings: while MLMs learn
conditional distributions of single tokens, applica-
tions to the aforementioned domains often require
knowledge of the probability of multiple tokens
jointly.

The key challenge lies in computing the joint
distribution p(x) over sequences x given only the
MLM-learned conditionals p(xi|x−i), where x−i

denotes the context sequence x with the entry at
index i removed. The Hammersley-Clifford-Besag
(HCB) theorem yields a direct algebraic construc-
tion of a joint distribution p(x) which is valid in
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Figure 1: Overview of the proposed HCB beam search
compared to standard beam search for text infilling.

the case when the MLM-learned distributions are
compatible—that is, there exists a joint distribution
which factors into the conditionals exactly (Henni-
gen and Kim, 2023).

In practical applications, a heuristic approxima-
tion based on the chain rule of autoregressive LMs
is used for infilling with MLMs (Shen et al., 2020;
Assael et al., 2022; Cowen-Breen et al., 2023b;
Tran and Hy, 2023):

p(x) ≈
n∏

i=1

p(xi|x:i, [M]i:) (1)

where the notation [M]i: indicates that mask tokens
are present from indices i onwards.

Our first contribution is demonstrating that Equa-
tion 1 is valid if and only if a conditional indepen-
dence assumption about the MLM-learned condi-
tionals is satisfied and providing the conditions
under which this assumption holds, assuming com-
patibility. We state these conditions in Theorem 1:

Theorem 1 (Informal). Suppose that p represents
a model which achieves zero training loss on the
MLM objective. Then, on the training distribution,
the learned conditionals are both compatible and
satisfy the conditional independence assumption.

We hypothesize that there may be two regimes,
as a consequence of theorem 1: a regime where
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training loss is small enough that the heuristic
approach of Equation 1 may be reasonable, and
a regime where the conditional independence as-
sumption may not hold, in which another approach
is needed.

Our second contribution is providing a modifi-
cation of Equation 1 which holds for the second,
possibly under-trained regime. Based on the HCB
theorem, this modification relaxes the conditional
independence assumption by including an adjust-
ment term to correct for possible dependencies, and
it requires no additional forward passes through the
model.

Evidently, not all MLMs of interest lie in the
regime where Equation 2 is reasonable: we find
empirically that our modification outperforms stan-
dard beam search for certain models, including
BERT-base. In developing RoBERTa, Liu et al.
(2019) suggest that BERT was under-trained, which
aligns with our experimental observation that the
conditional independence assumption seems more
reasonable for RoBERTa than for BERT.

2 Text infilling

Empirically, we evaluate Equation 1 and our modi-
fication of it on the task of text infilling involving
predicting a missing span of text given its con-
text, which is well-motivated in the domains of
protein language modeling and ancient text restora-
tion (Zhu et al., 2019).

Much existing work in text infilling focuses on
developing custom architectures and training from
scratch (Sun et al., 2017; Ippolito et al., 2019; Shen
et al., 2020; Donahue et al., 2020). In some do-
mains, however, pretrained MLMs may be avail-
able in instances where limits on available data or
compute prohibit training new text infilling mod-
els. Manuscript restoration is a prototypical exam-
ple: training data is often restricted by copyright
(Graziosi et al., 2023), and full trainings can be
computationally expensive, yet various pretrained
MLMs for ancient languages are available (Bam-
man and Burns, 2020; Assael et al., 2022; Cowen-
Breen et al., 2023a; Riemenschneider and Frank,
2023). Another example is protein language mod-
els (PLMs): the computational footprint of fine-
tuning PLMs becomes a barrier for many research
groups (Hu et al., 2021; Sledzieski et al., 2023).
Despite the challenges posed by data and compute,
effective infilling remains an important task for
ancient text restoration and protein engineering.

Here, we examine the capabilities of MLMs
to infill directly, primarily by infilling tokens se-
quentially through an adaptation of beam search to
MLMs, although we compare additionally to other
sampling schemes, such as nucleus sampling and
sampling with temperature.

It should be noted that our methods only apply
to settings where the number of missing tokens is
fixed, as opposed to the more general setting ad-
dressed by Shen et al. (2020), among others. That
said, fixing the number of missing tokens is rea-
sonable in the case of infilling damaged texts or
missing amino acids.1

3 Background and related work

3.1 Beam search
Beam search is a form of decoding which incremen-
tally adds successive tokens to a set of candidate
token sequences, maintaining a fixed number of
candidate sequences x = (x1, . . . , xn) of highest
joint probability p(x). For autoregressive models,
the chain rule,2

log p(x) =

n∑
i=1

log p(xi|x:i), (2)

allows for the implementation of beam search
shown in Algorithm 1.

Algorithm 1 Autoregressive beam search. Given a
beam size B > 0, returns a collection of generated
sequences S of length n.

Initialize S = {(0, ∅)}
for i ∈ {1, . . . , n} do

for (ℓ, (x1, . . . , xi−1)) ∈ S do
f(·)← log p(·|x1, . . . , xi−1) (1 forward pass.3)
Append to S: (ℓ+ f(x), (x1, . . . , x)) for every x.

end for
S ←{the B sequences (x1, . . . , xi) of S w/ highest ℓ}

end for
return S

3.2 Challenges with MLM beam search
A major barrier to conducting beam search with
MLMs is that MLMs are not language models a
priori, and thus it is less obvious that a joint distri-
bution p(x) exists and can be computed in terms

1In the case of damaged inscriptions, domain experts posit
an estimated number of missing characters based on physical
distance (Bruun and Edmondson, 2014).

2In what follows, we generally omit right-context tokens
from p(·|·) for readability, but we note that modified forms of
all of the following equations hold when p is further condi-
tioned on right-context.
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of known quantities. If one is willing to tolerate
compatibility and a conditional independence as-
sumption4 of the form

p(xi|x:i, [M]i:) ≈ p(xi|x:i) (3)

then Equation 2 implies an expression for the
joint:5

log p(x) ≈
n∑

i=1

log p(xi|x:i, [M]i:) (4)

where we use the notation [M]i:k to indicate that
[MASK] tokens occupy the indices from i to k.
Equation 4 is the foundation for the implementation
of beam search shown in Figure 2 with the standard
scoring function.

The approximation in Equation 3 is equivalent
to the assumption that the distribution of xi con-
ditioned on the given context x:i is independent
of the information that mask tokens occupy the
indices from i to n. It is unlikely that this assump-
tion holds true in practice,6 as passing mask tokens
to the model will alter the output distribution in
general.

Therefore, to be probabilistically sound, this
equation should include a term correcting for the
potential dependency between xi and [M]i:. In-
cluding this term conveniently incurs almost no
additional computational cost, to be described in
section 4.

3.3 Constructing joint distributions from
conditionals

Approximating the joint distributions of MLMs
is an active area of research. Hennigen and Kim
(2023) compare several joint distribution approx-
imation schemes and find that when the MLM-
learned conditional distributions are compatible—
that is, there exists a joint distribution which fac-
tors into the conditionals exactly—the HCB theo-
rem provides a direct algebraic construction of a
joint distribution p(x) from a set of conditionals
p(xi|x−i), up to a normalizing constant.

Theorem 2 (HCB). Suppose that p is a probability
distribution with full support over the space An of

4This is an assumption that we investigate theoretically
in section 7. Note that, while Equation 3 may seem intu-
itively clear, it might be similarly intuitive that the condition-
als learned by BERT are compatible, but this is far from true
(Young and You, 2023).

5For a more detailed derivation, see Appendix A.
6See theorem 3 for a sufficient condition.

n-element sequences over an arbitrary alphabet A.
Then for any two sequences x,y ∈ An,

p(x)

p(y)
=

n∏
i=1

p(xi|x1, . . . , xi−1, yi+1, . . . , yn)

p(yi|x1, . . . , xi−1, yi+1, . . . , yn)

Theorem 2 yields an immediate expansion for
log p(x) which is analogous to Equation 2:

log p(x) ∼
n∑

i=1

log p(xi|x:i,yi:)

− log p(yi|x:i,yi:)

(5)

where ∼ indicates equality up to addition of a con-
stant in x. Following Hennigen and Kim (2023),
we refer to y as the pivot. When the conditional dis-
tributions are compatible, Equation 5 should yield
orderings of sequences x by their probabilities p(x)
in a manner which is consistent across choice of
pivots.

In actuality, the conditional distributions learned
by BERT do not appear to be compatible (Young
and You, 2023; Hennigen and Kim, 2023). When
the MLM-learned conditional distributions are not
compatible, the Arnold-Gokhale (AG) construction
provides an algorithm for returning the joint distri-
bution which most nearly factors into the learned
conditionals (Arnold and Gokhale, 1998). Henni-
gen and Kim (2023) find that the AG construction
achieves the lowest perplexity when compared to
a number of baselines; however, it is severely lim-
ited by the computational cost it incurs: memory
requirements of V n for a vocabulary of size V and
n missing tokens.

4 Methods

Our primary observation is that the HCB theo-
rem (Theorem 2) yields a straightforward correc-
tion to the standard beam search induced by Equa-
tion 4 which incurs almost no additional computa-
tional cost.7 Although the conditional distributions
learned by BERT are not exactly compatible, they
are empirically compatible enough to improve the
accuracy of beam search in certain instances. Our
hope is that these methods will be useful for infill-
ing when the implementation of the AG construc-
tion is intractable.

7Code for our experiments can be found at
https://anonymous.4open.science/r/hcb_
beam_search/

https://anonymous.4open.science/r/hcb_beam_search/
https://anonymous.4open.science/r/hcb_beam_search/
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Algorithm 2 Infilling beam search with a MLM. Given x, a sequence of length n with masked positions
j, ..., k and a beam size B > 0, return a collection of generated sequences S with masked positions filled
in from vocabulary V . Uses a scoring function f(·) to evaluate a candidate beam extension.

Initialize S = {(0, ∅)}
for j ∈ {i, . . . , k} do

for (ℓ, (xi, . . . , xj−1)) ∈ S do
Append to S: (ℓ+ f(x), (xi, . . . , x)) for every x ∈ V .

end for
S ← {the B sequences (xj , . . . , xi) of S w/ highest ℓ}

end for
return S

Scoring functions f for various beam search implementations:

Standard : f(·) = log p(·|x:i, [M]i:k,xk:)

HCB : f(·) = log p(·|x:i, [M]i:k,xk:)− log p([M]i|x:i, [M]i:k,xk:)

HCB with pivot yi:k : f(·) = log p(·|x:i,yi:k,xk:)− log p(yi|x:i,yi:k,xk:)

Based on Theorem 2 and Equation 5, we propose
the following modification to Equation 3:

log p(x) ∼
n∑

i=1

log p(xi|x:i, [M]i:)

− log p([M]|x:i, [M]i:)

(6)

where ∼ again indicates equality up to addition of
a constant. This correction term guarantees prob-
abilistic soundness of the type ensured by Equa-
tion 2 and requires no additional forward passes to
compute, as the tensor p(·|x:i, [M]i:) is computed
with a single forward pass. Although the value of
p([M]|x:i, [M]i:) does not have an immediately ob-
vious intuitive meaning, this quantity empirically
contains enough signal8 to demonstrate improve-
ments over baselines and several ablations, as we
demonstrate in section 6.

4.1 Choosing a pivot
For the purposes of sampling and infilling, the pivot
y can be any sequence in the support of p. However,
we find that some pivots lead to better performance
than others (Figure 3). During the computation of
Equation 6, the pivot y is injected into the text as
context. Therefore, we find it important that the
pivot is reasonably in-distribution as context for
the model, regardless of the position where it is
injected.

The MLM training procedure makes one par-
ticular choice of pivot especially in-distribution

8In particular, we find that it depends strongly on the con-
text, x:i.

for any context: the sequence of mask tokens
y = ([M], . . . , [M]). Throughout MLM training,
mask locations are re-randomized, meaning that the
MLM is likely to encounter sequences of masks
as context in many positions across all examples
in the train set. The probability p([M]|x<i,y>i)
decreases drastically during training, as [M] never
occurs as a label.9 Nonetheless, using this quantity
improves infilling accuracy across different models
in various domains. We perform ablation studies to
verify this probability captures genuine information
about the context, rather than random noise.

5 Experimental setup

5.1 Models

For English text data, we use the MLMs (# params)
BERT-base (110M), BERT-large (340M), Distil-
BERT (66M), and RoBERTa (125M) (Devlin et al.,
2019; Sanh et al., 2019; Liu et al., 2019). For an-
cient texts, we use the MLMs Ithaca (49M) and
Desformers (126M) (Assael et al., 2022; DeVaul,
2023), two character-level BERT models trained
on ancient Greek. For protein language modeling,
we use ESM2 (8M) (Lin et al., 2023).

5.2 Metrics

To assess text infilling results, we use top-k ac-
curacy, BLEU score10, and BERTScore (Papineni

9See Figure 7 for how p([M]) changes during BERT train-
ing

10When there are only k < 4 tokens to infill, we employ
BLEU-k.
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et al., 2001; Zhang et al., 2020). We do not compute
perplexity, which, for arbitrary scoring schemes,
requires calculation of an intractable normalization
constant. In contrast, top-k accuracy and BLEU are
directly computable. Following Shen et al. (2020),
we use top-1 predictions of each infilling scheme
and the ground truth span to compute BLEU score
and BERTScore.

5.3 Datasets

In English, we perform infilling experiments on
three datasets: the Brown corpus (Nelson Francis
and Kucera, 1979), the Stanford Natural Language
Inference dataset (SNLI) (Bowman et al., 2015),
and the extreme summarization dataset (XSUM)
(Narayan et al., 2018). This allows us to addition-
ally test varying amounts of context: the datasets
have an average of 452, 19, and 28 tokens of con-
text per example, respectively. For ancient lan-
guage models, we perform infilling experiments
on the Packhard Humanities Institute’s database
of ancient Greek inscriptions11, collected by Som-
merschield* et al. (2021). For protein language
models, we perform infilling experiments on a sub-
set of protein sequences from UniProt (UniProt,
2008).

Each experiment consists of selecting a random
subset of k contiguous indices from a test example
and performing infilling according to HCB beam
search. We run experiments with varying values
of k, beam size, and pivot choices. Additionally,
we take advantage of MLMs’ non-autoregressive
nature and infill tokens in order of highest MLM
confidence (best-to-worst), following Schick and
Schütze (2021) and Assael et al. (2022).

5.4 Baselines

We compare HCB beam search (both left-to-right
and best-to-worst) to a number of zero-shot infilling
baselines. The first is the standard MLM beam
search of Algorithm 2 with the “Standard” f , for
which we also consider both left-to-right and best-
to-worst beam searches.

We also compare our method to adapted versions
of several popular sampling schemes including nu-
cleus sampling (Holtzman et al., 2020) and sam-
pling with temperature (Ackley et al., 1985). Since
such schemes are designed to sample, instead of
to search, they inherently involve fewer forward
passes through the model than beam search. We

11https://inscriptions.packhum.org/

therefore specifically compare HCB beam search
with beam size B to these hybrid sampling-search
schemes in which we sample and store in memory
B candidate samples for each token. This approach
ensures that the same number of forward passes is
used by each scheme, therefore resulting in the
same time and space complexity of each method.

5.5 Ablations

To test that the estimated probability of the mask
token p([M]) is not simply random noise, as we
found a pivot of mask tokens is crucial for the
success of HCB beam search, we perform two ab-
lations.

Ablation 1 (Context Scramble): First, we test
the hypothesis that p([M]|x) is sensitive to the
given context x. To do so, we track the values
of the last 1,000 calls to p([M]|x(i)) for the most
recent contexts seen (x(1), . . . ,x(1,000)), and for
the ablation, we replace the value of p([M]|x) in
Algorithm 2 (“HCB” f ) with a random element of
the previous 1,000 calls.

Ablation 2 (Random Token Swap): Second, we
test the hypothesis that p([M]|x) is sensitive to the
input [M]. To do so, we replace [M] with a com-
pletely random token y, and replace the computa-
tion of p([M]|x) in HCB beam search with p(y|x).

6 Results

6.1 English language models

In our English language experiments with BERT-
base, we observe a consistent relative ranking of
methods: HCB Best-to-Worst > HCB Left-to-
Right > Standard Best-to-Worst > Standard Left-
to-Right. This ranking persists across metrics (top-
k accuracy and BLEU; Table 3), number of miss-
ing tokens (2 through 5; Table 2), datasets (Brown,
SNLI, XSUM; Table 1), and beam sizes (5 and 20;
Figure 2).

We observe that BERTScore values are largely
consistent across beam search methods (Table 3),
likely due to the relatively small number of tokens
being infilled in each example, but HCB consis-
tently outperforms standard beam search.

Note that standard left-to-right beam search out-
performs our nucleus sampling-beam search hy-
brid, consistent with the findings of (Shaham and
Levy, 2022), as well as all other sampling-based
methods.

https://inscriptions.packhum.org/
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Model BERT-base RoBERTa

B
HCB

Standard
11.43 25.29
10.63 25.81

S
HCB

Standard
7.49 13.66
7.08 14.56

X
HCB

Standard
9.86 23.21
9.18 24.52

Table 1: Comparison of HCB vs. standard beam search
on the Brown B , SNLI S and XSUM X datasets,
across models. We only show best-to-worst, since left-
to-right was strictly worse in each case.

Across models, we note that the various beam
search methods rank similarly when using BERT-
large and DistilBERT, but RoBERTa stands out as
a case where standard beam search outperforms
HCB beam search. For a given model, we also find
that the ranking of methods is consistent across
values of k for top-k accuracy (Figure 2).

6.2 Domain-specific language models

Ancient texts. In experiments infilling two miss-
ing characters with Desformers, standard beam
search outperforms HCB beam search in top-1 ac-
curacy, but HCB shows significant improvements
for larger top-k values (Table 5). However, HCB’s
performance with this model decreases when infill-
ing larger gaps relative to the standard method.12

With Ithaca, HCB beam search shows consistent
improvement over standard beam search across dif-
ferent gap sizes (Table 5).
Protein sequences. In experiments infilling be-
tween two and five missing amino acids in a pro-
tein sequence using ESM2, we find that HCB
beam search shows comparable, albeit lower perfor-
mance to standard beam search (Appendix B, Ta-
ble 9). Thus, it appears that for protein sequences,
the conditional independence assumption may hold
better than for human language, leading to rela-
tively strong standard beam search performance;
this is further explored in section 7.

6.3 Pivot design

To explore how performance of HCB beam search
depends on the choice of pivot, we extensively
tested all two-character pivots for seven-character
infills with a beam size of 20 for Ithaca. Testing
every possible pivot choice is made possible by
Ithaca’s small 34-token vocabulary. With over 800

12On gap sizes larger than three characters, HCB is infe-
rior to standard beam search across all experiments with this
model.

trials per pivot, we observe that the special token “-
”, which corresponds to a missing character, is very
clearly the best performing pivot choice, achieving
accuracy similar to standard beam search. Two
other special tokens “#” and “<” perform about
20% worse as HCB pivots, and the 31 remaining to-
kens perform over 50% worse than standard beam
search (Figure 3). We also exhaustively tested all
pivots for ESM2, observing that the best choice of
pivot appears to be the token “[CLS]”.

Notably, Ithaca’s architecture does not include
the mask token in its output probability distribution;
thus the missing character token, which is scattered
randomly throughout train and test examples, is
the token which remains most in-distribution when
injected as a pivot into random positions. Similarly,
for ESM2, we observe that some special tokens
perform noticeably better as pivots than regular
tokens. These results could suggest that special
tokens, which do not add disruptive context, are
better candidates for pivots.

6.4 Ablations

Ablation 1 dramatically worsens the performance
of HCB beam search, as we show in Table 7. Ab-
lation 2 also deteriorates the performance of HCB
beam search, although by less than that of ablation
1.

We conclude that p([M]|x) is sensitive to both
the context x and input token [M], and hypothe-
size that this contributes to the success of HCB
beam search. Since results are far worse when we
randomly replace x than when we randomly re-
place [M], we hypothesize that the context x is a
more important factor to the success of HCB beam
search.

7 Discussion

In Section 6, we see that HCB beam search
achieves comparable performance to standard
beam search across languages and that superior-
ity of either method is usually model-dependent,
rather than data-dependent: for instance, HCB
beam search consistently outperforms standard
beam search with BERT-base, but consistently un-
derperforms with RoBERTa, across datasets, as
shown by Table 1.

One plausible hypothesis is that each beam
search variant performs well when certain assump-
tions hold, and the validity of these assumptions is
determined by the training procedure. For instance,
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Top-1 Accuracy (%) Top-5 Accuracy (%)
Number of missing tokens 2 3 4 5 2 3 4 5

HCB Left-to-Right 28.84 10.46 3.23 0.92 38.88 15.01 4.75 1.36
HCB Best-to-Worst 29.76 11.29 3.66 1.02 39.73 16.2 5.4 1.56

Standard Left-to-Right 26.43 8.93 2.69 0.74 36.8 13.77 4.3 1.21
Standard Best-to-Worst 28.27 10.21 3.18 0.86 38.18 15.08 4.88 1.36

Pure sampling 23.71 6.77 1.58 0.3 28.78 7.92 1.73 0.33
Sampling with T=0.25 26.1 8.41 2.46 0.68 34.23 11.08 3.18 0.84
Sampling with T=0.50 25.89 8.23 2.22 0.68 33.38 10.61 2.96 0.78
Sampling with T=0.75 25.09 7.63 1.99 0.46 31.54 9.42 2.43 0.53

Nucleus sampling, p=0.9 24.31 7.23 1.87 0.4 27.91 8.49 2.08 0.45

Table 2: Top-k % accuracy at infilling consecutive missing tokens on 100K examples from Brown corpus, using
BERT-base with beam size 5 and number of missing tokens ranging from 2 to 5.

BLEU BERTScore F1
Number of missing tokens 2 3 4 5 2 3 4 5

HCB Left-to-Right 28.74 10.33 3.25 0.93 99.47 99.02 98.66 98.36
HCB Best-to-Worst 29.55 11.13 3.63 1.03 99.46 99.02 98.72 98.32

Standard Left-to-Right 26.42 8.94 2.68 0.74 99.39 98.96 98.63 98.29
Standard Best-to-Worst 28.15 10.05 3.12 0.89 99.43 98.98 98.64 98.29

Table 3: BLEU score at infilling a random number (uniform between 2 and 5) of missing tokens on 100K examples
from Brown corpus, across models, with beam size 5.

5 10 15 20

20.0%

30.0%
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50.0%

BERT-base

5 10 15 20

BERT-large

5 10 15 20

DistilBERT
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Figure 2: Performance of HCB beam search versus standard beam search methods across three English MLMs and
DistilBERT, with beam size 20. Note that RoBERTa appears to be suffering from the beam search curse, as noted
by Meister et al. (2020).

Model BERT-base BERT-large DistilBERT RoBERTa
HCB Left-to-Right 10.86 11.92 6.12 24.74
HCB Best-to-Worst 11.43 12.58 6.44 25.29

Standard Left-to-Right 9.7 11.31 5.87 24.98
Standard Best-to-Worst 10.63 12.32 6.39 25.81

Ablation 1 (Context Scramble) 4.63 4.08 2.06 9.86
Ablation 2 (Random Token Swap) 9.71 11.16 5.23 17.61

Table 4: Top-1 % accuracy at infilling a random number (uniform between 2 and 5) of missing tokens on 100K
examples from Brown corpus, across models, with beam size 5. For ablations, we show only best-to-worst results
since they strictly outperformed left-to-right results.

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-10 Accuracy (%)
Beam size 10 15 20 10 15 20 10 15 20

Desformers HCB 51.66 52.18 52.59 63.11 62.58 62.27 67.88 69.67 66.56
Desformers Standard 55.21 56.08 56.62 60.79 60.80 60.98 64.88 66.29 63.43

Top-1 Accuracy (%) Top-10 Accuracy (%) Top-20 Accuracy (%)
Number of missing tokens 5 6 7 5 6 7 5 6 7

Ithaca HCB 68.91 61.97 53.82 85.33 79.42 72.33 87.71 81.81 75.14
Ithaca Standard 68.87 61.86 53.75 85.24 79.38 71.21 87.68 81.83 75.17

Table 5: Top-k accuracy for infilling tasks on inscription datasets. (Top) Desformers top-k accuracy on 10K examples
infilling two missing tokens using [MASK] pivot. (Bottom) Ithaca top-k accuracy on 6K examples infilling using
beam size 20 and “-” pivot
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Figure 3: Difference in Ithaca infilling accuracy across
all choice of pivots

given a probability distribution p on fixed-length
sequences x, the claim that

log p(x) =

n∑
i=1

log p(xi|x:i, [M]i:)

holds for all n and all x is equivalent to the claim
that xi is conditionally independent of [M]i: given
x<i. Therefore, standard beam search considers
the true joint probability p(x) exactly when this
conditional independence holds.

For this reason, we might expect standard beam
search to function well exactly when this condi-
tional independence holds. BERT’s training pro-
cedure is known to encourage this conditional in-
dependence (Devlin et al., 2019), and so we might
expect independence to be a more reasonable as-
sumption for more finely optimized BERT mod-
els, such as RoBERTa. Indeed, this hypothesis is
consistent with Table 1, which finds that standard
beam search outperforms HCB beam search over
all datasets considered when RoBERTa is used, but
not when BERT-base is used. We hypothesize this
may also explain why standard beam search out-
performs HCB beam search for ESM2.
Theorem 3. Suppose that x1, . . . ,xm are se-
quences of length n, and let P be their empirical
distribution. Let {Zij}i≤m,j≤n be auxiliary i.i.d.
Bernoulli random variables with parameter p > 0.
For each ground truth sequence xi, define a “par-
tially masked” sequence yi such that

yij =

{
xij Zij = 0

[M] Zij = 1

where [M] is an arbitrary symbol not contained in
the alphabet over which P has support.

Consider the (standard) MLM loss function13 on
functions p:

L(p) = EZ

 ∑
i,j:Zij=1

− log p(xij |yi
−j)


Then if p minimizes the training loss L(p), p satis-
fies the following conditional independence law:

p(xj |x<j , [M]>j) = p(xj |x<j);

and the conditional distributions p(xj |x−j) are
compatible.

Proof. See Appendix A.

8 Conclusion

In this work, we develop and apply theoretically-
sound methods to use pretrained MLMs for text
infilling, a task with important applications span-
ning a wide variety of domains. We clarify the
conditions under which it is theoretically sound to
perform text infilling with MLMs using standard
beam search. For instances when these conditions
do not hold, we introduce HCB beam search as
a probabilistically-justified modification with no
additional computational complexity and demon-
strate its superiority to standard beam search in
the expected conditions. Future work exploring
HCB beam search in the context of other MLMs
and in other domains can help further elucidate the
contexts in which HCB beam search is beneficial,
ultimately facilitating the adaptation of MLMs for
text infilling and related tasks in low data or com-
pute settings.

9 Limitations

One limitation of this method is that we do not
explicitly know whether conditional independence
assumptions hold or fail for a given model, de-
spite hypothesized heuristics. Another limitation is
the lack of intuition regarding the use of the mask
token as a pivot – future work should more rigor-
ously investigate optimal pivot choices and the in-
terpretability of these entities. Additionally, further
understanding the objective and training conditions

13In addition to masking random tokens, some MLM train-
ing objectives (e.g. BERT) include random replacement of
tokens. This property can be included by simply including
all such random transformations as elements of the training
dataset x1, . . . ,xm.
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under which an MLM satisfies conditional indepen-
dence assumptions is also needed. Finally, the pro-
posed HCB beam search relies on the presence of
some token in a given model’s output distribution
which flexibly behaves as in-distribution; while
some MLMs maybe include special characters in
their output layers, others may not. A potential
risk of our method is its ability to use MLMs out-
side of their original contexts, which could have
unforeseen consequences and lead to unpredictable
behavior.
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Appendix

A Proofs

Proof of Theorem 3. Log-loss is a strictly proper scoring function (Tibshirani, 2023), in that it is uniquely
minimized when p = P.14 From the fact that P is a probability distribution, it immediately follows that
the conditionals P (xj |x−j) are compatible. On the other hand, consider the events

P (xij = x|yi
<j = z<j ,y

i
>j = [M]>j)

for arbitrary x and z. As the event {yi
k = [M]} occurs if and only if Zik = 1, and thus with probability p

independently of x for all i ∈ [m], j ∈ [n], the conditional independence claim follows.

Proof that compatibility and conditional independence imply validity of Equation 4. By compatibility,
there exists a joint distribution p(x) whose conditional distributions are equal to those learned by the
MLM. By the chain rule and the assumption of conditional independence,

log p(x) =
n∑

i=1

log p(xi|x<i)

=
n∑

i=1

log p(xi|x:i, [M]i:)

On the other hand, if

log p(x) =
n∑

i=1

log p(xi|x:i, [M]i:)

for all n, then we recover the conditional independence assumption by induction on n.

B Additional figures

Model BERT-base BERT-large DistilBERT RoBERTa
HCB Left-to-Right 15.0 16.24 9.05 31.85
HCB Best-to-Worst 15.72 16.89 9.62 32.47

Standard Left-to-Right 14.02 15.95 9.03 32.4
Standard Best-to-Worst 14.87 16.72 9.65 33.15

Pure sampling 9.69 11.56 4.67 22.76
Sampling with T = 0.25 12.33 14.14 7.69 28.57
Sampling with T = 0.5 11.93 13.67 7.11 27.63
Sampling with T = 0.75 10.98 12.86 6.05 25.84

Nucleus sampling, p = 0.9 9.73 11.3 5.02 24.56

Table 6: Top-5 accuracy at infilling a random number (uniform between 2 and 5) of missing tokens on 100K
examples from Brown corpus, across models, with beam size 5.

14For instance, see the following blog post on a consistency theorem for BERT: https://machinethoughts.
wordpress.com/2019/07/14/a-consistency-theorem-for-bert/

https://machinethoughts.wordpress.com/2019/07/14/a-consistency-theorem-for-bert/
https://machinethoughts.wordpress.com/2019/07/14/a-consistency-theorem-for-bert/
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Model BERT-base BERT-large DistilBERT RoBERTa
HCB Left-to-Right 10.86 11.92 6.12 24.74
HCB Best-to-Worst 11.43 12.58 6.44 25.29

Ablation 1 Left-to-Right 4.1 3.83 1.86 9.42
Ablation 1 Best-to-Worst 4.63 4.08 2.06 9.86
Ablation 2 Left-to-Right 8.94 10.65 4.82 16.34
Ablation 2 Best-to-Worst 9.71 11.16 5.23 17.61

Table 7: Top-1 accuracy comparison of HCB beam search to ablations 1 and 2, across models, when infilling gaps
consisting of a (uniformly random) number of tokens between 2 and 5.

Model BERT-base BERT-large DistilBERT RoBERTa
HCB Left-to-Right 10.86 11.92 6.12 24.74
HCB Best-to-Worst 11.43 12.58 6.44 25.29

Standard Left-to-Right 9.7 11.31 5.87 24.98
Standard Best-to-Worst 10.63 12.32 6.39 25.81

Pure sampling 8.09 9.57 4.0 20.72
Sampling w/ T = 0.25 9.41 10.97 5.66 24.59
Sampling w/ T = 0.5 9.25 10.74 5.4 24.03

Sampling w/ T = 0.75 8.79 10.31 4.85 22.89
Nucleus sampling, p = 0.9 8.45 9.99 4.3 22.57

Ablation 1 (Context Scramble) 4.63 4.08 2.06 9.86
Ablation 2 (Random Token Swap) 9.71 11.16 5.23 17.61

Table 8: Top-1 accuracy at infilling a random number (uniform between 2 and 5) of missing tokens on 100K
examples from Brown corpus, across models, with beam size 5. For ablations, we show only best-to-worst results
since they strictly outperformed left-to-right results.

Figure 4: Comparison of HCB beam search with standard beam search, nucleus sampling, and pure sampling.
Evaluated on 10,000 examples from the SNLI dataset. When comparing nucleus sampling to beam search with
beam size B, we draw B samples for a fair comparison.

Figure 5: Comparison of HCB beam search with standard beam search. Evaluated on 10,000 examples each from
the SNLI and XSUM datasets.
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Top-1 Accuracy (%) Top-5 Accuracy (%)
Number of missing tokens 2 3 4 5 2 3 4 5

HCB Left-to-Right 6.16 2.12 0.91 0.46 16.79 5.80 2.41 1.16
HCB Best-to-Worst 6.36 2.30 1.02 0.53 16.95 6.03 2.53 1.19

Standard Left-to-Right 6.57 2.49 1.29 0.71 17.64 6.51 2.92 1.50
Standard Best-to-Worst 6.65 2.58 1.31 0.76 17.76 6.70 3.09 1.67

Table 9: Top-k accuracy at infilling consecutive missing tokens on 10K examples from UniProt dataset, using ESM2
with beam size 5 and number of missing tokens ranging from 2 to 5.
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Figure 6: Performance of HCB beam search compared to standard beam search for various choices of pivot. All
pivot experiments performed with beam size of 5 and gap size of 2.

0 5000 10000 15000 20000 25000 30000
Training Steps

10 7

10 6

10 5

Av
er

ag
e 

M
as

k 
To

ke
n 

Pr
ob

ab
ilit

y

Figure 7: Average P [M] for fixed random masks across 50 test examples over the course of BERT training


