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ABSTRACT

Time-series forecasting models often encounter drastic changes in a given period
of time (i.e., abrupt changes) which generally occur due to unexpected or unknown
events. Despite their scarce occurrences in the training set, abrupt changes incur
loss (i.e., MSE) that significantly contributes to the total loss. Therefore, they
act as noisy training samples and prevent the model from learning generalizable
sequence patterns, namely the normal states. Based on such an intuition, we pro-
pose a reweighting framework that down-weights the losses incurred by abrupt
changes and up-weights those by normal states. For the reweighting framework,
we first define a measurement termed Local Discrepancy (LD) which measures
the degree of abruptness of a change in a given period of time. Then, we cal-
culate how frequently the temporal changes appear in the training set based on
LD (i.e., estimated LD density). Since normal states generally appear frequently
compared to the abrupt changes, they achieve higher LD density. Using such a
property, we reweight the losses proportionally to the estimated LD density. Our
reweighting framework is applicable to existing time-series forecasting models
regardless of the architectures. Through extensive experiments on 12 time-series
forecasting models over eight datasets with various in-output sequence lengths,
we demonstrate that applying our reweighting framework reduces MSE by 10.1%
on average and by up to 18.6% in the state-of-the-art model.

1 INTRODUCTION

As vast records are collected over time in diverse fields, the demand to predict the future based
on the previous sequential data has led to efforts to solve the time-series forecasting problem in
various applications such as energy (Ahmad et al., 2014), economics (Granger & Newbold, 2014),
traffic (Vlahogianni et al., 2014), weather (Salman et al., 2015), environment pollution (De Vito
et al., 2008) and mechanical system monitoring (Zhou et al., 2021). Previous studies focused on
addressing the well-known challenges of time-series forecasting such as finding reliable depen-
dencies from intricate and entangled temporal patterns (Wu et al., 2021; Oreshkin et al., 2019) or
extending the forecasting time (i.e., long-term forecasting) (Zhou et al., 2022; Liu et al., 2022; Wu
et al., 2021; Zhou et al., 2021). For example, recent studies focused on improving the Transformer-
based (Vaswani et al., 2017) models to address the long-term forecasting by taking the advantage
of the long-term capacity of the self-attention mechanism and reducing quadratic computational
costs (Li et al., 2019; Zhou et al., 2021; Wu et al., 2021; Liu et al., 2022).

Despite the remarkable improvements of the previous studies, even the state-of-the-art models take
little account of the abrupt changes in time-series data. Abrupt change refers to the drastic change
of target values (either increase or decrease) beyond the extent of the changes observed in the recent
past. These abrupt changes are challenging, if not impossible to predict based solely on previous
observations of the target variable, as they are generally caused by unexpected and external events
(e.g., natural disaster and war). Such changes break the auto-correlation structures, the periodic
relationships between target variables, which are essential for a time-series forecaster to predict
futures. One straightforward remedy is to laboriously collect external variables (e.g., annotations
of external events) and enforce a model to learn the relationship between the collected variables
and the target variables (i.e., cross-correlation). However, utilizing additional variables without
thorough verification causes the model to learn a spurious correlation between variables, which
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(a) Normal state at Training (b) Abrupt change at Training (c) Abrupt change at Test (d) Imbalanced training loss

Figure 1: We observe that the state-of-the-art forecaster correctly predicts the target values during
the training phase over both (a) normal states and (b) abrupt changes, respectively. However, (c)
illustrates that the model fails to correctly predict the abrupt change during the test phase. (d) shows
imbalanced loss when the training samples are sorted by MSE loss of each sample in the early
training phase. Our important finding is that the training samples with abrupt change (b) occupy the
large portion of total loss. On the other hand, training samples within the normal states (a) have a
relatively small loss. This leads the model to focus less on the normal states during training.

worsens the generalization ability. Moreover, some abrupt changes have unknown causes (e.g.,
sensor malfunction), which cannot be addressed by simply collecting external variables.

While forecasting abrupt changes is known to be challenging (Moniz et al., 2017; Hou et al., 2021),
even worse, another significant issue of abrupt changes is that they limit the generalization perfor-
mance of forecasting models during the test phase. Deep learning models are known to correctly
predict all training samples regardless of the noisy labels by simply memorizing them (i.e., over-
fitting) (Zhang et al., 2016). Our finding is that recent time-series forecasting models can easily
memorize even abrupt changes in which the output sequence shows the different temporal charac-
teristics (e.g., mean, variance, and periodic structure) with the input sequence. To be more specific,
Figure 1(a) and (b) show that the model correctly predicts the target values during the training phase
in both normal states (i.e., trend or periodicity of input sequence maintained in the output sequence)
and abrupt changes, respectively. However, Figure 1(c) illustrates that the model fails to correctly
predict the abrupt change during the test phase. The main reason is that the model is heavily over-
fitted to the abrupt changes since they take a significant portion of the total loss value compared to
the ones in normal states (Figure 1(d)).

Based on such an intuition, we propose a simple yet effective reweighting framework that encour-
ages the model to balance the imbalanced loss between abrupt changes and normal states as shown in
Figure 2. Generally, time-series datasets do not provide explicit labels as to when the abrupt changes
occur. Moreover, explicitly bisecting time stamps into abrupt changes and normal states is challeng-
ing since the definition of abrupt change may be vague depending on perspectives. Thus, we define
a measurement termed Local Discrepancy (LD) which is used to determine how much a change in
a given period of time is abrupt. By sliding a fixed-size window over the training time-series data,
we compute the statistical difference between the in-output sequences as LD. Then, based on the
observation that abrupt changes rarely appear in the training samples while normal states comprise
the majority of the training set, we count the frequency of temporal changes based on LD. We divide
the LD values into a predefined number of bins which are smoothed by kernel density estimation
(i.e., estimated LD density). By obtaining low LD density for the abrupt changes and high ones for
the normal states, we reweight loss values proportional to the estimated LD Density, which we term
our method as ReLD. This enables to emphasize the normal states which are the ones a model should
learn for enhancing the forecasting capability.

In summary, the main contributions of our work are as follows:

• We reveal that the abrupt changes significantly degrade the time-series forecasting perfor-
mance by taking most of the loss values.

• We propose a simple yet effective reweighting framework that adjusts the balance of MSE
loss based on LD density, namely ReLD.

• Our reweighting framework consistently improves the performance of twelve existing time-
series models on eight datasets, which reduces MSE by 10.1% on average and up to 18.6%
when applied to the state-of-the-art model.

• ReLD also outperforms methods addressing the noisy samples such as smoothing, outlier
filtering, and error-based baselines with a significant margin.
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Figure 2: (a) We trained a model with a training series including four abrupt changes (red-shaded
regions). (b) While the losses caused by the abrupt changes are considerably high in the early
training phase, they are reduced significantly after several epochs of training. (d) After the losses
by abrupt changes are decreased, however, we observe that the test losses rather increase, implying
the degraded generalization capability. (c) We mitigate such an issue by proposing a reweighting
framework that down-weights the losses of samples containing the abrupt changes (blue arrow)
and up-weights normal samples (red arrow). (d) The model trained with our proposed reweighting
framework achieves lower test MSE compared to that of the model without our framework.

2 RELATED WORK

2.1 DEEP LEARNING MODELS FOR TIME-SERIES FORECASTING

Deep learning-based models that have shown successful results in various domains have been ac-
tively applied to the time-series forecasting problem, which was originally dominated by classic
statistical-based models (Anderson, 1976). Typically, previous time-series forecasting models lever-
age RNNs to learn the temporal dependencies inherent in time series (Bahdanau et al., 2014). In
addition, models using CNNs or those combined with RNNs have appeared to focus on the local
characteristics of time series (Bai et al., 2018). Recent studies focused on addressing two main
challenges: 1) extending forecasting time (Zhou et al., 2022; Liu et al., 2022; Wu et al., 2021;
Zhou et al., 2021) and 2) facilitating learning of entangled temporal dependencies (Wu et al., 2021;
Oreshkin et al., 2019). As the demand for long-term planning and early warning in the real-world
applications has increased, long-term forecasting has become essential. Thus, transformer-based
forecasting models, which are known to effectively learn global temporal patterns, have emerged.
These studies proposed sparse attention mechanisms to reduce the computational cost of the canon-
ical attention mechanism when processing long sequences. Another trend is to apply the time-series
decomposition techniques to a deep learning model in an end-to-end training manner. While it
was originally used for the time-series analysis, a model trained in such an approach is effective to
capture the temporal dependencies which are considered as compositions of multiple signals. The
previous studies have demonstrated their effectiveness on various time-series datasets across mul-
tiple domains. However, they do not deal with how the locally appearing anomalous patterns (i.e.,
abrupt changes) of time series affect the generalization capability of models.

2.2 ROBUSTNESS AGAINST NOISY SAMPLES AND DATA IMBALANCE

As aforementioned, deep learning models perfectly classify samples even with wrong annotations
(i.e., noisy samples) by simply memorizing them during the training phase (Zhang et al., 2016).
Similarly, the abrupt changes in time-series forecasting are generally occurred by unexpected or
unknown events, making them challenging to forecast correctly solely based on the previous time
series. Due to this fact, perfectly forecasting them during the training phase indicates that the models
simply memorized them which are in fact noisy samples in the time-series data. Addressing such
noisy samples has been explored widely in image classification (Han et al., 2018; Li et al., 2020a;
Song et al., 2019; Zhang & Sabuncu, 2018), especially utilizing the fact that data samples with
small loss are likely to be annotated with clean labels (Arpit et al., 2017). For example, Generalized
Cross-Entropy assigns less emphasis on the gradients of samples which show weak agreement be-
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tween predicted labels and the ground truth labels since they are likely to be noisy samples (Zhang
& Sabuncu, 2018). While reweighting approaches are effective to address noisy samples, such
aforementioned studies are not originally designed to mitigate the data imbalance. In time-series
forecasting, the number of abrupt changes is excessively scarce compared to that of normal states,
necessitating to consider the data imbalance in addition to the noisy samples.

Addressing the data imbalance has been studied extensively in diverse fields such as image classi-
fication (Cao et al., 2019; Kang et al., 2020; Liu et al., 2019; Duggal et al., 2021), regression (Ren
et al., 2022; Yang et al., 2021), object detection (Lin et al., 2017; Oksuz et al., 2020; Li et al., 2020b),
and semantic segmentation (Jung et al., 2021; Choi et al., 2020). Their main intuition is to empha-
size the training of the minor samples based on the frequency of each class. For example, Yang
et al. (Yang et al., 2021) proposed the label distribution smoothing method that addresses the data
imbalance in the image regression task. To tackle such data imbalance in time-series forecasting due
to the scarce temporal patterns, few studies proposed an augmentation approach (Moniz et al., 2017)
or modified model architectures (Hou et al., 2021). However, when addressing the data imbalance,
they did not take account of models being overfitted to the scarce abrupt changes during the training
phase. In this regard, we propose a reweighting framework that takes both issues into account: 1)
abrupt changes work as noisy samples, and 2) they cause the data imbalance.

3 METHOD

3.1 PRELIMINARY

We first describe the forecasting task in a rolling window setting (Li et al., 2019; Zhou et al., 2021;
Wu et al., 2021; Liu et al., 2022), which covers all possible in-output sequence pairs of the entire
time series S = {s1, . . . , sT | st ∈ Rm}, where T is the length of observed series and m denotes
the number of variables at time t. Univariate and multivariate time-series forecasting addresses
time-series data with m = 1 and m > 1, respectively. By sliding a fixed-size window on S,
we obtain the windows D = {(Xt,Yt)}Nt=1, which are divided into two parts: input sequence
Xt = {st−I , . . . , st−1} with given length I and output sequence Yt = {st, . . . , st+O−1} with
length O to predict. A forecaster f predicts the most probable length-O sequence in the future
given the past length-I sequence by learning temporal dependencies in S. We mainly address the
loss imbalance caused by the in-output sequence pairs which include a large discrepancy between
adjacent Xa and Ya compared to other Xt and Yt pairs where a is the time stamp with an abrupt
change. However, since most time-series datasets do not provide a label for the abrupt change, we
propose a training framework in an unsupervised setting.

3.2 LOCAL DISCREPANCY

We propose the Local Discrepancy (LD) based on a statistical difference in order to measure how
two adjacent in-output sequences, Xt and Yt, are different from each other. We define LD as follows:

LocalDis(Xt,Yt) =
X̄t − Ȳt√

s2X̄t

I +
s2Ȳt

O + ε

:= vt, (1)

where X̄t is the sample mean and sX̄t
is the sample standard deviation of Xt. Statistical tests are gen-

erally used to determine whether means of two samples (i.e., groups of data points in a sequence)
are identical or not (Welch, 1938). In this regard, we leverage t-statistic1, a scalar value, as nor-
malized discrepancy to measure how much two adjacent groups of samples are distinct. Figure 3
describes how LD reflects the different types of local temporal changes in time-series data (e.g.,
(a) normal changes, (b) fluke point, (c) frequency change, and (d) trend shift). The LD values of
normal states oscillate within a certain range (see (a) red line), but the LD values of abrupt changes
is beyond the range of normal LD. The periodicity and boundedness of LD in normal periodic series
are theoretically discussed in Appendix A.

As aforementioned, the definition of abrupt change may be vague depending on perspectives. Thus,
rather than bisecting the time stamps into abrupt changes and normal states, we utilize LD values

1Other statistics such as KPSS and t-squared can be used as LD. However, when we conduct a preliminary
experiment, the t-statistic measures better than others. We further discuss the details in Section 5.
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Figure 3: The four examples of temporal changes locally seen in time series data: (a) normal,
(b) fluke, (c) frequency change, and (d) trend shift. Local discrepancy computed by the sliding
window captures the three abrupt changes beyond the bounds (red line) seen in normal states. In
the estimated LD density distribution, training samples with abrupt changes are visibly fewer than
training samples with normal state and are sparsely distributed with large absolute local discrepancy.

as weights of reweighting framework to mitigate the impact of abrupt changes in training phase. In
other words, losses of training samples which have large absolute vt values will be down-weighed
since we consider them to be close to the abrupt change. By computing LD over the training dataset
Dtrain and each of m dimensions, we obtain the dataset Dtrain = {(Xt,Yt, vt)}Nt=1 containing
local discrepancy vt ∈ Rm for prediction time t and for each of m dimensions. We then assign
the weight wt = c

|vt|+1 ∝ 1
|vt|+1 ∈ Rm to each training sample inversely to LD value of sample

in Dtrain with constant c as scaling factor. Finally, we calculate the reweighted MSE loss Lw as
follows:

Lw(Yt, Ŷt) =
1

m ·O
·

m∑
j=1

wj
t

O−1∑
i=0

·(sjt+i − ŝjt+i)
2 (2)

where Ŷt is forecasting results of f conditioned on Xt. Through this simple reweighting framework
which assigns weight inversely to LD values, namely invLD, we down-weight the loss of abrupt
changes (large absolute LD) and up-weight the loss of normal states (small absolute LD), following
the observation that the original MSE loss in the presence of abrupt changes is much larger than the
loss at the normal state. Reweighting MSE only based on LD, however, does not take into account
the property that normal states frequently appear while the abrupt changes are rarely included in
the time-series data. We further improve our reweighting framework by considering such frequency
differences between abrupt changes and normal states.

3.3 DENSITY-BASED REWEIGHTING FOR TIME-SERIES FORECASTING

Time series often exhibit both short-term and long-term repeating patterns (Lai et al., 2018) by
periodicity, and taking them into account is crucial for making accurate predictions. Let’s consider
a time series which has large shifts in a short period, but repeated. We can assume such large shifts
are part of the normal states considering their frequent occurrences. However, this temporal pattern
is down-weighted because of their large LD values regardless of the number of occurrences. In other
words, invLD based on the inverse of LD (i.e., wt ∝ 1

|vt| ) will not only down-weight the loss values
of abrupt changes but also those of normal states, which the model should learn to properly forecast.
Therefore, we improve the time-series forecasting by considering the frequency of temporal changes
(i.e., LD density) when reweighting loss values in time-series forecasting.

Inspired by deep imbalanced regression (Yang et al., 2021), we use the kernel density estimation to
address the missing regions between continuous LD spaces. Through the estimated density of LD
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Figure 4: For the real-world dataset (ETTh1), we visualize the estimated LD density distribution
and the averaged MSE loss of samples in each LD bin after training a forecaster for one epoch. Our
density-based re-weighting framework effectively down-weights (blue arrow) the losses on abrupt
changes (low density and large LD) and up-weights (red arrow) those on normal states (high density
and small LD).

p̃(v), we assign the weight wt = c · p̃(vt) ∝ p̃(vt) and use these weights to train a model as Lw

described in Equation 2. Figure 4 demonstrates that our final reweighting framework based on LD
density, ReLD, mitigates the imbalanced loss problem in a real-world dataset. The procedure of our
framework is described in Appendix D.

4 EXPERIMENTS

This section demonstrates that our proposed framework consistently improves existing time-series
forecasting models regardless of the architectures. We apply our framework to 12 forecasting mod-
els and evaluate them on eight datasets which include four real-world forecasting applications: en-
ergy consumption, mechanical systems, weather, and pollution. Dataset analysis shows that our
proposed framework brings larger performance gains as the number of abrupt changes in a given
dataset increases. We also provide other experiments in the Appendix, which include results on
synthetic series (Appendix B.2), computational cost of methods (Appendix B.4), qualitative results
(Appendix E) and details for reproducibility (Appendix D).

4.1 EXPERIMENT SETTING

Dataset descriptions As mainstream benchmarks, ETT are widely used to evaluate long-term
forecasting methods (Zhou et al., 2021; Wu et al., 2021; Liu et al., 2022; Zhou et al., 2022) ETT
contains the crucial indicators (e.g., oil temperature, load, etc) collected from the electricity trans-
formers over two years, and are categorized into four datasets depending on the location (ETT1 and
ETT2) and interval (15 minutes and one hour). Electricity (ECL) dataset contains the hourly elec-
tricity consumption of 321 customers from 2012 to 2014. Weather dataset (Wea) is recorded every
10 minutes for a year, which contains 21 meteorological indicators (e.g., air temperature, humid-
ity, etc). Pump dataset (Pum) is collected from 52 sensors monitoring the water pump. AirQuality
dataset (De Vito et al., 2008), taken from the UCI repository, contains hourly averaged responses
obtained from five metal oxide chemical sensors of an air quality chemical multi-sensor device.

Comparison methods To verify that our reweighting framework works consistently in existing
forecasting models, we applied it to 12 forecasting models and reported the reduced forecasting
errors by applying ReLD. The baselines are roughly categorized into three groups: Transformer-
based (Zhou et al., 2022; Liu et al., 2022; Wu et al., 2021; Zhou et al., 2021; Kitaev et al., 2019; Li
et al., 2019; Vaswani et al., 2017), CNN-based (Bai et al., 2018), and RNN-based (Bahdanau et al.,
2014; Lai et al., 2018) models. We also include two univariate forecasting models: DeepAR (Salinas
et al., 2020) and N-BEATS (Oreshkin et al., 2019). We applied our ReLD to the baselines without
additional external data indicating abrupt changes or modifications of architectures.

Experiment details The forecasting performance is measured using the mean square error (MSE).
Note that we follow the evaluation protocol proposed by previous work (Zhou et al., 2021; Wu et al.,
2021), including normalization through the mean and standard deviation of the train dataset. We
conducted experiments on five different lengths of time series. All reported values are averaged MSE
from five independent experiments with different random initializations. Due to the space limit, the

6



Under review as a conference paper at ICLR 2023

Table 1: Multivariate results with different input length I and prediction lengths O. A lower MSE
indicates a better prediction and the best results in each row are bolded. Imp. means averaged MSE
reduction rate for a given model and dataset. Total denotes the averaged MSE reduction rate of a
given dataset across all baselines models. The full results, which include other ETT datasets and
confidence interval, are available in Appendix F.

Models FEDformer Pyraformer Autoformer Informer Reformer LSTNet LSTMa TCN

To
ta

l

I / O base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD

E
T

T
m

1

96/96 0.359 0.357 0.536 0.471 0.524 0.455 0.640 0.543 0.777 0.641 0.548 0.536 0.705 0.592 0.676 0.594

-1
2.

91
%336/168 0.385 0.379 0.563 0.506 0.534 0.500 1.224 0.751 0.840 0.689 0.632 0.577 0.871 0.648 0.938 0.913

336/336 0.403 0.396 0.697 0.573 0.561 0.514 1.390 1.008 0.987 0.895 0.798 0.686 1.125 0.681 1.148 1.126
336/720 0.501 0.480 0.904 0.682 0.560 0.528 1.333 1.078 1.122 1.003 0.925 0.817 0.978 0.828 1.277 1.238

Imp. -1.99% -16.17% -8.42% -25.11% -13.88% -9.16% -24.14% -4.95%

E
T

T
m

2

96/96 0.189 0.184 0.371 0.248 0.293 0.221 0.445 0.286 0.743 0.449 0.443 0.343 0.381 0.280 0.554 0.384

-2
1.

14
%336/168 0.343 0.279 0.566 0.551 0.309 0.284 2.283 1.453 1.208 0.836 0.950 0.830 1.178 0.601 1.868 1.956

336/336 0.338 0.319 1.601 1.330 0.508 0.364 2.479 1.764 2.239 1.425 1.610 1.019 1.479 0.745 2.769 2.773
336/720 0.432 0.394 5.476 5.037 0.502 0.411 6.580 5.777 3.068 2.827 6.130 4.449 3.083 2.381 3.204 3.187

Imp. -8.83% -15.15% -19.85% -28.29% -28.65% -24.85% -36.96% -6.57%

W
ea

th
er

-h

48/48 0.338 0.336 0.292 0.279 0.344 0.343 0.345 0.294 0.343 0.313 0.318 0.310 0.346 0.325 0.348 0.327

-4
.4

1%

48/96 0.403 0.400 0.393 0.358 0.464 0.446 0.453 0.443 0.526 0.416 0.414 0.386 0.409 0.387 0.450 0.424
96/192 0.458 0.447 0.421 0.398 0.516 0.491 0.530 0.498 0.659 0.673 0.464 0.461 0.420 0.416 1.018 1.005
168/336 0.510 0.516 0.454 0.440 0.612 0.566 0.592 0.568 0.841 0.782 0.490 0.473 0.473 0.452 1.147 1.209

Imp. -0.65% -5.55% -4.21% -6.79% -8.66% -3.41% -4.17% -1.88%

A
ir

Q
ua

lit
y 96/96 0.825 0.817 1.121 1.112 0.992 0.986 1.353 1.193 1.210 1.196 1.146 1.141 1.145 1.081 1.026 0.992

-3
.9

7%

336/168 0.811 0.808 1.193 1.115 0.911 0.922 1.796 1.595 1.473 1.345 1.231 1.156 1.644 1.376 1.246 1.163
336/336 0.892 0.872 1.224 1.214 0.962 0.933 1.758 1.706 1.473 1.396 1.399 1.388 1.352 1.206 1.301 1.284
336/720 0.997 0.953 2.196 1.982 1.129 1.079 2.914 2.985 1.723 1.671 1.826 1.921 2.475 2.333 1.442 1.426

Imp. -2.01% -4.47% -1.72% -5.87% -4.51% -0.52% -9.63% -3.09%

Pu
m

p

96/96 0.520 0.513 0.848 0.796 0.558 0.538 0.831 0.870 0.826 0.760 1.016 1.007 0.813 0.766 1.037 0.970

-7
.7

4%

336/168 0.550 0.536 0.851 0.843 0.597 0.581 1.705 1.527 1.094 0.856 1.327 1.202 0.909 0.816 1.109 1.077
336/336 0.593 0.564 0.922 0.951 0.661 0.621 1.676 1.492 0.966 0.918 1.654 1.292 0.934 0.859 1.521 1.208
336/720 0.723 0.580 1.370 1.283 0.707 0.619 1.704 1.699 1.328 1.218 1.608 1.642 1.464 1.244 2.075 1.546

Imp. -7.10% -2.61% -6.17% -4.28% -10.73% -7.49% -9.77% -13.85%

Table 2: Univariate results with different prediction lengths. The experimental settings are identical
to those of multivariate experiments.

Models FEDformer Pyraformer Autoformer N-BEATS Informer LogSparse Transformer DeepAR

To
ta

l

MSE base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD

E
T

T
m

1

96/96 0.036 0.035 0.082 0.058 0.058 0.052 0.085 0.066 0.105 0.083 0.105 0.058 0.089 0.060 0.179 0.085

-1
5.

11
%336/168 0.083 0.066 0.129 0.122 0.088 0.072 0.077 0.070 0.181 0.158 0.192 0.161 0.221 0.196 0.200 0.199

336/336 0.081 0.076 0.194 0.184 0.090 0.085 0.134 0.125 0.263 0.227 0.367 0.304 0.274 0.247 0.382 0.432
336/720 0.109 0.102 0.337 0.275 0.143 0.112 0.144 0.112 0.391 0.349 0.474 0.381 0.479 0.443 0.498 0.418

Imp. -8.81% -14.61% -13.83% -15.20% -14.58% -24.42% -15.40% -14.05%

E
C

L

96/96 0.243 0.240 0.239 0.234 0.440 0.424 0.303 0.295 0.269 0.272 0.281 0.282 0.301 0.283 0.917 0.786

-3
.8

7%

336/168 0.304 0.299 0.255 0.253 0.486 0.482 0.328 0.311 0.709 0.705 0.330 0.335 0.404 0.373 1.018 1.024
336/336 0.355 0.345 0.306 0.296 0.463 0.439 0.425 0.386 0.801 0.743 0.399 0.316 0.443 0.424 1.202 1.280
336/720 0.469 0.448 0.336 0.321 0.606 0.616 0.544 0.497 0.824 0.781 0.372 0.339 0.442 0.413 1.302 1.331

Imp. -2.44% -2.70% -2.05% -6.40% -3.01% -6.97% -6.18% -1.22%

main paper only reports the averaged MSE while the Appendix F includes the full benchmarks along
with the confidence intervals.

4.2 MAIN RESULTS

As shown in Table 1, applying our reweighting framework reduces the MSE consistently in all ex-
isting time-series forecasting models across different datasets and varying length-averaged settings.
In addition, the lowest MSE in each setting was generally achieved by the models which applied
ReLD. We also observe that the performance improvements vary depending on the datasets. For
example, applying ReLD to the baselines achieves an average of 21.14% lower MSE compared to
the average of original errors on ETTm2. On the other hand, applying ReLD achieves only 3.97%
lower MSE on average with AirQuality dataset. We analyze such an issue in Section 4.4. As for the
univariate setting, we list the univariate results of two typical datasets in Table 2. Again, similar to
the results observed in multivariate datasets, applying ReLD enhances the forecasting performance
consistently regardless of the model architectures compared to baselines without ReLD. Moreover,
the lowest error for each setting was again achieved when ReLD was applied.

4.3 COMPARISONS WITH OTHER METHODS

Smoothing and outlier filtering methods Table 3 (a) compares our ReLD with two smooth-
ing and outlier filtering methods. Moving average (MA) and exponential MA (EMA) are widely
used smoothing techniques that remove noisiness and reduce values of outliers, allowing meaning-
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Table 3: Comparison with other methods which can deal with abrupt changes. We conduct experi-
ments using ETTm2 dataset on two recent state-of-the-art time-forecasting models.

G
ro

up
Models FEDformer Autoformer

Methods I → O 336 → 168 336 → 336 336 → 720 336 → 168 336 → 336 336 → 720 Imp.

Vanilla 0.3429 0.3381 0.4322 0.3095 0.5084 0.5022 -

(a)
Vanilla + MA 0.3552 0.3432 0.4178 0.3132 0.4310 0.5421 -0.72%
Vanilla + EMA 0.3637 0.3429 0.4039 0.3189 0.5161 0.5492 2.47%
Vanilla + Outlier (Gaussian) 0.2922 0.3303 0.4054 0.3839 0.4529 0.4675 -2.84%

(b) Vanilla + Focal-R 0.4028 0.3766 0.5037 0.3151 0.4453 0.5196 6.38%
Vanilla + flip Focal-R 0.2837 0.3223 0.4049 0.3108 0.3710 0.4704 -10.20%

(c) Vanilla + invLD 0.2817 0.3259 0.3962 0.2891 0.3431 0.4496 -13.22%
Vanilla + ReLD 0.2790 0.3191 0.3939 0.2838 0.3642 0.4110 -14.65%

ful temporal patterns to stand out. Similarly, outlier filtering also mitigates the influence of outliers
on learning the normal patterns. However, we observe that adopting such methods either shows in-
significant performance improvement or rather aggravates the time-series forecasting performance.
This result shows that addressing the abrupt change is a challenging task and the performance im-
provement obtained by our proposed method is not trivial. Details of the methods are described in
Appendix C.1.

Error-aware loss We also compare our method with error-based reweighting approaches. Focal-
R, the regression version of focal loss (Yang et al., 2021), allows a model to focus on samples with
relatively large loss while down-weighting loss on samples with small errors. It works in a way that
is contrary to our findings. We modified such an approach by putting negation on the input of Focal-
R, termed as flip Focal-R (Details in Appendix C.2). Table 3 (b) shows that the performance of
Focal-R is rather degraded while that of flip Focal-R improved. Such a result well demonstrates that
our intuition, de-emphasizing the samples with high loss, is valid. Also, we observe that utilizing
Focal-R fails to outperform our proposed method. We conjecture such superior performance of
ReLD is mainly due to reflecting the temporal changes and periodicity.

Ablation study of our reweighting framework We conduct the ablation study of our proposed
method by comparing our full framework ReLD and an approach which considers the LD values
only (invLD). Table 3 (c) shows that our full framework is superior to invLD. Additionally, we
observe that both approaches outperform the methods in (a) and (b).

4.4 DATASET ANALYSIS

Preserving the robustness on the abrupt changes Our reweighting framework improves time-
series forecasting performance by mitigating the loss imbalance mainly occurred due to abrupt
changes. Since we impose less emphasis on the abrupt changes during the training phase, utiliz-
ing our framework may limit the model’s ability to cope with the abrupt changes in the test phase.
However, we confirm that our proposed framework does not degrade the forecasting performance
on the abrupt changes. Table 4 reports the MSE of test samples by categorizing them into time
series with abrupt changes and those without abrupt changes. For the experiment, we generated
synthetic time-series dataset from sinusoidal function of t and injected abrupt changes into the si-
nusoidal series since the real-world dataset does not have labels for abrupt changes. We conducted
the experiments with four recent state-of-the-art time-series forecasting models. As originally in-
tended, applying our framework achieves larger MSE reduction rates (i.e., MSEN ) compared to the
ones without ReLD. As for the MSE of abrupt changes (i.e., MSEA), the MSEA of three models
decreased, and those of Pyraformer show competitive forecasting results. This result shows that our
ReLD improves the forecasting performance on normal samples while preserving the robustness on
the abrupt changes. This again demonstrates the general applicability of our work since it can be
applied to a given dataset regardless of the existence of abrupt changes.

Different performance gains across datasets From the multivariate results (Table 1) and uni-
variate results (Table 2), we found that the reduction rates of MSE vary depending on the datasets.
For an in-depth analysis, we present the correlation between the average of reduction rate and the
average of LD for each dataset using the scatter plot in Figure 5. We observed that there exists a
positive linear correlation between LD and the reduction rate, indicating that we obtain a higher
reduction rate of MSE as the average of LD increases in a given dataset. To further demonstrate
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Table 4: Forecasting results by categorizing time-series sequences into normal states and abrupt
changes. We observe that our ReLD significantly reduces MSE on normal states (MSEN ) while also
showing comparable MSE on abrupt changes (MSEA).

Prediction length 48 96 168 336 720 Averaged Imp.

Model Metric Base ReLD Base ReLD Base ReLD Base ReLD Base ReLD Total

Pyraformer MSEN 0.0702 0.0305 0.0580 0.0232 0.0547 0.0221 0.0449 0.0326 0.0379 0.0247 -47.67% -27.38%MSEA 0.4289 0.4168 0.5525 0.5905 0.6093 0.5882 0.4300 0.4350 0.2555 0.2665 1.21%

Autoformer MSEN 0.2063 0.1473 0.2560 0.1430 0.2137 0.1261 0.3645 0.1857 0.5099 0.3950 -37.06% -33.25%MSEA 0.7385 0.6946 0.9878 0.7312 0.8152 0.6541 0.8185 0.6224 0.8230 0.6776 -18.66%

N-BEATS MSEN 0.0472 0.0345 0.0592 0.0401 0.0469 0.0355 0.0646 0.0411 0.0517 0.0394 -28.73% -17.84%MSEA 0.3331 0.3794 0.6109 0.5375 0.5989 0.5944 0.4597 0.4197 0.2853 0.2909 -1.12%

Informer MSEN 0.1350 0.0538 0.0819 0.0341 0.0762 0.0344 0.2954 0.0492 0.5564 0.1775 -64.96% -51.84%MSEA 0.5547 0.4746 0.5625 0.6031 0.6011 0.5810 0.7533 0.4694 0.7724 0.3619 -20.28%

such a finding, we intentionally inject abrupt changes into the Traffic and ECL, the datasets which
showed the marginal improvements in the univariate setting. We obtained a larger reduction rate
of MSE with both Traffic and ECL including intentional abrupt changes compared to the original
datasets. This demonstrates that the marginal performance gain in both Traffic and ECL is due to the
few number of abrupt changes in the dataset. Note that datasets without such abrupt changes might
be well estimated with existing time-series forecasting models. However, we emphasize that using
ReLD does not degrade performance on such datasets, if not marginally improve it, due to a few
number of abrupt changes inevitably included in time-series datasets. On the other hand, throughout
the paper, we demonstrated that datasets including a non-trivial number of abrupt changes need im-
provements and using ReLD effectively improves the time-series forecasting performance on such
datasets. Abrupt changes in time-series data is unknown beforehand and our proposed framework
does not require whether there exists such changes in the dataset. In this perspective, applying
ReLD as default on existing models improves the time-series forecasting performance without prior
knowledge on the abrupt changes in a given dataset.

(a) Adding abrupt change

(b)

Adding abrupt changes
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Figure 5: Scatter plots showing the correlation between the averaged LD of each dataset and MSE
reduction rates of experiments on the multivarite and univariate settings. We observed that there
exists a positive linear correlation between LD and the MSE reduction rate. To further demonstrate
such a finding, we intentionally inject the abrupt changes highlighted as the red boxes in (a) and (b)
into the traffic and ECL datasets, respectively.

5 DISCUSSION & LIMITATIONS

In this paper, we reveal that abrupt changes between adjacent sequences deteriorate the generaliza-
tion performance of time-series forecasting models by occupying most of the losses despite their
scarce occurrence in the training set. To solve this problem, we propose a simple yet effective
reweighting framework that down-weights loss values of abrupt changes and up-weights those of
normal states based on LD density. Although our ReLD consistently enhances the performance on
real-world datasets, there are two limitations we found. First, we assume that an abrupt change is
caused by unobserved external variables. However, if we can have access to those variables, our
framework may not show performance improvement from the down-weighted losses of the abrupt
changes. We further discuss this limitation in Appendix B.1. Another limitation is that LD may be
formulated with other statistics that can capture temporal changes. We report the results of balancing
MSE using other statistics (e.g., t-squared for multivariate test and KPSS (Kwiatkowski et al., 1992)
for a stationarity test) in Appendix C.3 which shows that utilizing t-statistics (the statistic used in our
work) outperforms them. Rather than using predefined statistics to identify abrupt changes, training
learnable parameters for detecting them similarly done in time-series anomaly detection (Malhotra
et al., 2016; Audibert et al., 2020; Xu et al., 2021) would be another way to balance MSE against
abrupt changes.
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A THEORETICAL ANALYSIS OF RELD

As shown in Figure 3 of main paper, we can observe LD values oscillating within a certain range
similarly to original time series. We discuss the following points about this observation.

1. When the time series is sampled from a periodic function, LD is also a periodic function.
2. When the time series is sampled from a bounded periodic function, LD is bounded.

First, we can easily prove that LD is also periodic when the time series is sampled from a periodic
function, which the model should learn from data (i.e., normal states).

Theorem 1. If f is a periodic function that satisfies f(t) = f(t+ p),

LD(a, a+ L) =
m(a)−m(a+ L)√

s(a)
N + s(a+L)

N

(3)

is also a periodic function with period p, where m(a) = 1
N

∑
t∈I(a) f(t), s(a) =

1
N

∑
t∈I(a)(f(t)−

m(a))2, and I(a) = {a+ L
N · i}N−1

i=0 for range [a, a+ L] and sampling interval L/N .

To prove Theorem 1, we prove and use Proposition 1 and 2 with respect to the mean and the variance
of the periodic function.

Proposition 1. If f is a periodic function that satisfies f(t) = f(t+ p), m(a) = 1
N

∑
t∈I(a) f(t)

is also a periodic function with period p where I(a) = {a + L
N · i}N−1

i=0 for range [a, a + L] and
sampling interval L/N .

Proposition 2. If f is a periodic function that satisfies f(t) = f(t+p), s(a) = 1
N

∑
x∈I(a)(f(t)−

m(a))2 is also a periodic function with period p where I(a) = {a+ L
N · i}N−1

i=0 for range [a, a+L]
and sampling interval L/N .

By proposition 1 and 2, we prove Theorem 1 as follows:

LD(a+ p, a+ p+ L) =
m(a+ p)−m(a+ p+ L)√

s(a+p)
N + s(a+p+L)

N

=
m(a)−m(a+ L)√

s(a)
N + s(a+L)

N

= LD(a, a+ L)

Regarding the bound of LD, if we define LD by ignoring the variances (i.e., LD(a, a + L) =
m(a) − m(a + L)), we can obtain the bound 2 · B given that f is bounded function that satisfies
|f(t)| ≤ B for all t.

However, since we use the variance of input and output, LD can diverge when both variances of
input sequence and output sequence are equal to zero. There are two cases when the variance equals
to zero.

1. f is a constant function.
2. The window size L is N · p for data points, which are sampled from a periodic function f

with the period p and sampling interval L/N .

In the first case, since the time-series dataset has a constant target value, the prediction also remains
as the constant value, leading to a trivial solution. In the second case, the variance is no longer zero
if the window size L is adjusted.

In practice, we use epsilon ϵ as a numerical stabilizer to solve the case where variances are zero as
shown in Equation 1. Note that we do not use these bounds as thresholds in the proposed method.

Proofs for the Proposition 1 and 2 are as follows.
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Proposition 1. If f is periodic function that satisfy f(t) = f(t + p), m(a) = 1
N

∑
t∈I(a) f(t) is

also periodic function with period p where I(a) = {a+ L
N · i}N−1

i=0 for range [a, a+L] and sampling
interval L/N .

Proof:

m(a+ p) =
1

N

∑
t∈I(a+p)

f(t)

=
1

N

{
f(a+ p) + f(a+ p+

L

N
) + · · ·+ f(a+ p+ L− L

N
)

}
=

1

N

{
f(a) + f(a+

L

N
) + · · ·+ f(a+ L− L

N
)

}
= m(a)

Proposition 2. If f is periodic function that satisfy f(t) = f(t + p), s(a) = 1
N

∑
t∈I(a)(f(t) −

m(a))2 is also periodic function with period p where I(a) = {a + L
N · i}N−1

i=0 for range [a, a + L]
and sampling interval L/N .

Proof:

s(a+ p) =
1

N

∑
t∈I(a+p)

{f(t)−m(a+ p)}2

=
1

N

{
(f(a+ p)−m(a+ p))2 + (f(a+ p+

L

N
)−m(a+ p))2

+ · · ·+ (f(a+ p+ L− L

N
)−m(a+ p))2

}
=

1

N

{
(f(a)−m(a))2 + (f(a+

L

N
)−m(a))2 + · · ·+ (f(a+ L− L

N
)−m(a))2

}
= s(a)

B IN-DEPTH ANALYSIS ON RELD

This section provides various analysis for our reweighting framework.

B.1 ABRUPT CHANGE WITH EXTERNAL VARIABLES

We assumed that an abrupt change can be caused by unobserved and external events as we men-
tioned in Section 1 and Section 5. If the abrupt change can be predicted using an external variable,
down-weighting the loss of the abrupt change would get in the way of learning such correlation for
the model. However, utilizing additional variables without thorough verification causes the model to
learn a spurious correlation between variables, which worsens the generalization ability. Moreover,
some abrupt changes have unknown causes (e.g., sensor malfunction), which cannot be addressed
by simply collecting external variables. In fact, as shown in the Table 5, we observed that training
baseline models with external variables (i.e., Multivariate to Univariate denoted as Mul2Uni setting)
rather shows lower performance than training those with the target time series only (i.e., Univariate
to Univariate denoted as Uni2Uni setting). These results indicate that simply adding covariates does
not guarantee performance gains. Note that multivariate forecasting we mentioned in main paper is
multivariate to multivariate setting (i.e., Mul2Mul), which is different with Mul2Uni setting. In addi-
tion, applying our method on Mul2Uni outperformed the Uni2Uni in several cases (see Autoformer
96/96 and 336/168 of Table 5).

B.2 RELD ON REPEATED CHANGES

To further understand our ReLD, we present a rectangular time series as a special case, which gener-
ally includes a large shift during a short period of time and shows increasing amplitude (see 1st row
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Table 5: Comparison between Mul2Uni and Uni2Uni forecasting on ETTm1 dataset.
Model Pyraformer Autoformer

Setting I → O 96 → 96 336 → 168 336 → 336 96 → 96 336 → 168 336 → 336

Uni2Uni 0.0821 ± 0.0289 0.1286 ± 0.0346 0.1941 ± 0.0523 0.0577 ± 0.0081 0.0881 ± 0.0284 0.0903 ± 0.0096
Uni2Uni + Ours 0.0576 ± 0.0079 0.1218 ± 0.0395 0.1843 ± 0.0507 0.0522 ± 0.0035 0.0723 ± 0.0068 0.0847 ± 0.0084
Mul2Uni 0.1757 ± 0.0372 0.2926 ± 0.0778 0.5920 ± 0.0591 0.0619 ± 0.0090 0.0799 ± 0.0188 0.1367 ± 0.0392
Mul2Uni + Ours 0.1137 ± 0.0295 0.2984 ± 0.1246 0.5533 ± 0.0761 0.0496 ± 0.0021 0.0674 ± 0.0071 0.1193 ± 0.0267

Figure 6: Two rectangular time series which include large shift in a short time. As in the first row,
if a rectangular pattern with a large change exists several times, ReLD learns it normally without
down-weighting it. However, if the periodicity is broken by sensor malfunctions in the third row,
ReLD mitigates impact of anomaly pattern in training phase.

of Figure 6). Although this series includes large shifts, we do not regard those as abrupt changes
defined in our paper since rectangular patterns are repeated (i.e., seasonal component). Also, the in-
creasing amplitude (i.e., trend component) is considered one of the trend types. Since we calculate
LD by sliding the window, the increasing amplitude does not change the LD values. For example,
the LD value of the window, which of size is large enough to cover period, has a value less than 0
(greater than 0 if the amplitude decreases) regardless of time. In this case, since the LD values of all
windows are similar, they will be given the same weights. Therefore, even if our method is applied,
we would observe more or less the same performance as shown in Rect-Normal dataset of Table 6.

Additionally, we conducted experiments by removing rectangles randomly from the dataset (see
3rd row of Figure 6). This can be considered abrupt changes (e.g., broken periodicity). We observe
that our ReLD brings performance gain in such cases (see Rect-Broken of Table 6). This again
demonstrates that our proposed method promotes the model to be robust to abrupt changes.

B.3 IMPACT OF THE IN-OUTPUT RATIO

We conducted an experiment by fixing the output length and changing the input length from 48 to
720 to explore the performance change according to the I/O ratio. We conducted experiments on the
three datasets, ETTh1, ETTh2, and ETTm1. Applying our method brings consistent performance
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Table 6: Rectangular Time Series with the increasing amplitude and the randomly broken periodic-
ity.

Models Pyraformer Autoformer Informer

MSE base our base our base our

R
ec

t-
N

or
m

al 96 0.2405 ± 0.0211 0.2468 ± 0.0243 0.9748 ± 0.4805 0.9131 ± 0.4100 0.5409 ± 0.0280 0.5480 ± 0.0316
168 0.2614 ± 0.0115 0.2652 ± 0.0102 1.4711 ± 0.9902 1.7147 ± 0.7723 1.3573 ± 0.1377 1.3556 ± 0.1068
336 0.3179 ± 0.0075 0.3193 ± 0.0062 0.5271 ± 0.2047 0.4492 ± 0.1558 1.2945 ± 0.0874 1.2764 ± 0.0891
720 0.4034 ± 0.0084 0.4088 ± 0.0089 2.7076 ± 0.4390 2.6447 ± 0.6276 1.6796 ± 0.0450 1.7306 ± 0.0614

Imp. 1.46% -1.72% 0.71%

R
ec

t-
B

ro
ke

n 96 0.4028 ± 0.0434 0.2343 ± 0.0061 0.9883 ± 0.1790 1.1399 ± 0.4871 0.5781 ± 0.0558 0.3912 ± 0.0463
168 0.3261 ± 0.0138 0.3020 ± 0.0174 1.7361 ± 0.8130 1.2914 ± 0.3595 0.5622 ± 0.0386 0.5227 ± 0.0178
336 0.2548 ± 0.0112 0.2579 ± 0.0155 0.7678 ± 0.1225 0.5648 ± 0.1603 0.5144 ± 0.0394 0.4988 ± 0.0494
720 0.3098 ± 0.0617 0.3037 ± 0.0427 2.0861 ± 0.1504 1.8670 ± 0.3713 0.5936 ± 0.0473 0.5569 ± 0.0390

Imp. -12.49% -11.80% -12.14%

Table 7: Impact of the ratio I/O on multivariate time series forecasting.
Models Pyraformer Autoformer Informer

Output-96 Input base our base our base our Imp.

ETTh1

48 0.6314 ± 0.0371 0.5166 ± 0.0104 0.4748 ± 0.0328 0.4675 ± 0.0504 1.0632 ± 0.2707 0.8125 ± 0.0679 -23.58%
96 0.6453 ± 0.0583 0.5345 ± 0.0073 0.4531 ± 0.0282 0.4452 ± 0.0153 0.9075 ± 0.0479 0.8476 ± 0.0532 -6.6%
168 0.6330 ± 0.0241 0.5604 ± 0.0145 0.4477 ± 0.0247 0.4594 ± 0.0426 0.8997 ± 0.0738 0.7928 ± 0.0698 -11.88%
336 0.7195 ± 0.0206 0.6310 ± 0.0293 0.4667 ± 0.0240 0.4826 ± 0.0188 1.1695 ± 0.2012 1.0384 ± 0.1830 -11.21%
720 0.7290 ± 0.0757 0.6540 ± 0.0191 0.6354 ± 0.0386 0.5057 ± 0.0673 1.6608 ± 0.1402 1.3866 ± 0.1341 -16.51%

ETTh2

48 1.5411 ± 0.1880 1.0982 ± 0.1702 0.3637 ± 0.0091 0.3394 ± 0.0051 1.7225 ± 0.1508 1.1461 ± 0.0743 -22.96%
96 1.6090 ± 0.0866 1.1733 ± 0.2271 0.3731 ± 0.0294 0.3464 ± 0.0102 3.4245 ± 0.4814 2.4505 ± 0.4804 -20.89%
168 1.7787 ± 0.2003 1.3081 ± 0.2461 0.4414 ± 0.0271 0.3833 ± 0.0069 5.6370 ± 0.8005 2.9705 ± 0.4835 -28.97%
336 1.7924 ± 0.2872 1.5560 ± 0.1676 0.4897 ± 0.0565 0.4174 ± 0.0517 6.2992 ± 0.9310 3.9496 ± 0.8050 -21.75%
720 2.0959 ± 0.1960 1.9368 ± 0.2612 0.6769 ± 0.1552 0.4701 ± 0.0869 9.1387 ± 2.0638 6.9792 ± 1.5690 -20.59%

ETTm1

48 0.5559 ± 0.0225 0.4922 ± 0.0134 0.5673 ± 0.0542 0.5182 ± 0.0396 0.6389 ± 0.0270 0.5925 ± 0.0348 -9.13%
96 0.5364 ± 0.0318 0.4713 ± 0.0299 0.5128 ± 0.0635 0.4545 ± 0.0410 0.6438 ± 0.0596 0.5367 ± 0.0439 -13.38%
168 0.5015 ± 0.0431 0.4174 ± 0.0176 0.4987 ± 0.0241 0.4603 ± 0.0636 0.6907 ± 0.0578 0.5677 ± 0.0281 -14.09%
336 0.4876 ± 0.0325 0.4316 ± 0.0171 0.5374 ± 0.0361 0.5053 ± 0.0462 0.8487 ± 0.0578 0.6078 ± 0.0541 -15.28%
720 0.4841 ± 0.0381 0.4546 ± 0.0224 0.5799 ± 0.0914 0.4988 ± 0.0384 1.0951 ± 0.1741 0.8007 ± 0.1602 -15.65%
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Table 8: The processing time of ReLD and training time of Autoformer during 1 epoch.
# of Windows Window size # of Series ReLD Preprocessing time (a) Training time (b) Ratio

Dataset (I + O) (seconds) (seconds per epoch) (a) / (a) + (b)

ETTh1 8449 192 (96 + 96) 7 0.18 38.12 0.47%
ETTh2 8449 192 (96 + 96) 7 0.17 39.11 0.43%
ETTm1 34369 192 (96 + 96) 7 0.69 154.68 0.44%
ETTm2 34369 192 (96 + 96) 7 0.68 160.31 0.42%

Weather-hour 5093 1056 (336 + 720) 21 0.63 121.19 0.52%
Pump 9610 672 (336 + 336) 35 1.22 125.30 0.96%
ECL 17741 672 (336 + 336) 1 0.08 94.67 0.08%

Traffic 11225 1056 (336 + 720) 1 0.07 99.05 0.07%

improvements, although there exists different performance gains depending on the input lengths as
shown in Table 7.

B.4 COMPUTATIONAL COST OF RELD

Our reweighting framework requires a marginal amount of additional computational cost of calcu-
lating the weights for all input-output sequences before training. As shown in Table 8, the cost of
calculating the weights on datasets with multiple settings is less than 1% of the time it takes to train
with the dataset during one epoch. The absolute time was mostly less than 1 second.

C COMPARISON WITH OTHER METHODS

C.1 COMPARISON WITH SMOOTHING AND OUTLIER FILTERING

We compared our proposed method with 1) smoothing and 2) outlier filtering which are expected
to perform well with drastic changes (e.g., fluke) in time-series datasets. Smoothing techniques are
used to remove nosiness and reduce outliers, allowing meaningful temporal patterns to stand out.
Conventional methods include moving average (MA) smoothing as follows:

st =
(xt−k+1 + xt−k+2 + . . .+ xt)

k
(4)

where st is the smoothed observation at t and xt is the original observation. The other method is
exponential (EMA) smoothing calculated by Equation as follows:

st = α · xt + (1− α) · st−1 (5)

where α ∈ (0, 1). We smoothed the training time series and train forecasting models. To use outlier
filtering method for forecasting task, a simple way to detect outliers is to assume that the target value
follows a Gaussian and remove values that exceed a certain range of values. We train forecasters
after removing outliers which exceed a certain value.

C.2 COMPARISON WITH ERROR-BASED REWEIGHTING

As we mentioned in the main paper, we observed that abrupt changes significantly contribute to
the total loss in the training phase. In this situation, we can simply reweight a loss of sample that
have large error while considering the sample including abrupt change. Reweighting inversely to the
error may down-weight the loss of the abrupt change without additional LD calculation. In the main
paper, we presented two error-based methods: Focal-R and filp Focal-R. Focal-R loss is calculated as
σ (β |ei|)γ Li where ei is error of i-th sample, Li is loss of i-th sample, and σ(·) is sigmoid function.
β and γ are hyperparaters. In case of filp Focal-R, β is negative to flip the sigmoid function along
the y axis. Additionally, we provide L2 error-based reweighting results, namely invL2 which is
written as Li

ei+ϵ . In case of invL2, as the model forecasts accurately and thus the error of the normal
states is close to zero, the parameter moves with larger steps by up-weighted loss. Table 9 shows the
performance in the case of reweighting inversely to the error of each window.
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Table 9: Comparison with error-based reweighting (invL2) in the multivariate forecasting (Top) and
in the univariate forecasting (Bottom) using ETTh1 dataset.

Multivariate Pyraformer Autoformer Informer

I / O base invL2 ReLD base invL2 ReLD base invL2 ReLD

96 / 96 0.6453 ± 0.0583 0.6083 ± 0.0149 0.5345 ± 0.0073 0.4422 ± 0.0242 0.4458 ± 0.0212 0.4438 ± 0.0143 0.9084 ± 0.0485 0.8506 ± 0.0280 0.8031 ± 0.0317
336 / 168 0.8644 ± 0.0905 0.7842 ± 0.0250 0.7415 ± 0.0399 0.5042 ± 0.0515 0.4772 ± 0.0144 0.4906 ± 0.0263 1.3720 ± 0.2422 1.2150 ± 0.1333 0.8858 ± 0.0258
336 / 336 0.9328 ± 0.0341 0.9643 ± 0.0404 0.8895 ± 0.0548 0.5694 ± 0.1115 0.5450 ± 0.0886 0.5110 ± 0.0990 1.3425 ± 0.0725 1.2857 ± 0.0710 0.9850 ± 0.0308
336 / 720 0.9843 ± 0.0213 1.0003 ± 0.0228 0.9781 ± 0.0196 0.5348 ± 0.0212 0.5589 ± 0.0613 0.5207 ± 0.0106 1.3933 ± 0.0892 1.3735 ± 0.0386 1.1994 ± 0.0597

Imp. - -2.50% -9.17% - -1.08% -3.81% - -5.86% -21.89%

Univariate Pyraformer Autoformer Informer

I / O base invL2 ReLD base invL2 ReLD base invL2 ReLD

96 / 96 0.2074 ± 0.0728 0.1928 ± 0.0365 0.1831 ± 0.0533 0.0859 ± 0.0063 0.0861 ± 0.0031 0.0841 ± 0.0067 0.1203 ± 0.0730 0.1132 ± 0.0441 0.1020 ± 0.0472
336 / 168 0.1819 ± 0.0257 0.1750 ± 0.0581 0.1725 ± 0.0406 0.1077 ± 0.0130 0.0949 ± 0.0109 0.0999 ± 0.0072 0.0862 ± 0.0292 0.0946 ± 0.0244 0.0848 ± 0.0297
336 / 336 0.1716 ± 0.0597 0.1853 ± 0.0622 0.1649 ± 0.0426 0.1055 ± 0.0219 0.1135 ± 0.0198 0.1008 ± 0.0157 0.0862 ± 0.0025 0.0870 ± 0.0084 0.0897 ± 0.0165
336 / 720 0.1974 ± 0.0415 0.1746 ± 0.0312 0.1667 ± 0.0298 0.1352 ± 0.0207 0.1251 ± 0.0110 0.1244 ± 0.0270 0.2025 ± 0.0961 0.1800 ± 0.0945 0.1550 ± 0.0237

Imp. - -3.60% -9.09% - -2.88% -5.45% - -1.59% -9.06%

C.3 VARIANTS FOR LOCAL DISCREPANCY

We propose the Local Discrepancy (LD) based on the statistics formulated by a statistical test,
Welch’s t-test Welch (1938), in order to measure how two adjacent in-output sequences, Xt and Yt,
are different from each other. There may exist other metrics to measure the local discrepancy such
as multivariate t-statistic Hotelling (1992) (i.e., Hotelling’s t-squared statistic) and stationarity tests
(e.g., Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests Kwiatkowski et al. (1992)). We also report
the performance of our reweighting framework using a different metric other than t-statistics for
measuring the local discrepancy in Table 10. Hotelling’s t-squared statistic is a generalization of
Student’s t-statistic that is used in multivariate hypothesis testing. We can naturally utilize t-squared
statistic as LD for multivariate forecasting (i.e., s ∈ Rm and m > 1) as follows:

LocalDis(Xt,Yt) =
I ·O
I +O

(X̄t − Ȳt)
′Σ̂−1(X̄t − Ȳt) := v2t (6)

where the mean and covariance are defined as follows:

X̄t =
1

I

I∑
i=1

st−i, Ȳt =
1

O

O−1∑
i=0

st+i, Σ̂ =
(I − 1) Σ̂X̄ + (O − 1) Σ̂Ȳ

I +O − 2
,

Σ̂X̄ =
1

I − 1

I∑
i=1

(
st−i − X̄t

) (
st−i − X̄t

)′
, Σ̂Ȳ =

1

O − 1

O−1∑
i=1

(
st+i − Ȳ

) (
st+i − Ȳ

)′
.

We can interpret the time-series data in terms of stochastic processes. KPSS tests are used for testing
a null hypothesis that an observable time series is stationary around a deterministic trend (i.e., trend-
stationary) against the alternative of a unit root. When the given time series is trend stationary, the
KPSS statistic has small value, which is close to zero. Thus, to measure the degree of abruptness of
a change in a given period of time, we leverage the KPSS statistic as LD:

LocalDis(concat(Xt,Yt)) =
1

(I +O)2
·
O−1∑
i=−I

E2
t+i

σ̂2
:= vt (7)

where Et is partial sum of the residuals and σ̂2 is the estimate of the long-run variance of the residuals
as follows:

Ek =

t∑
k=1

ei, e = (et−I , et−I+1, . . . , eO−1)

where e means OLS residuals when regressing the concated in-output sequence (i.e.,
concat(Xt,Yt)). We observe that our reweighting framework consistently outperforms the ones
without our framework regardless of the statistics used for measuring the local discrepancy. While
we empirically confirmed that using t-statistic is more suitable for LD compared to KPSS or t-
Squared statistic, such result demonstrates that our framework can be used with any statistics mea-
sure the user deems appropriate.
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Table 10: Ablation study on variants of local discrepancy used in our reweighting framework. We
compare models which uses 1) KPSS, 2) t-squared, and 3) t-statistic. The t-statistic shows more
consistent and superior results compared to other statistics in the multivariate setting.

Dataset ETTh1 ETTh2 ETTm1

Model Predict-O 96 168 336 96 168 336 96 168 336 Imp.

Pyraformer 0.645 0.864 0.933 1.609 5.014 4.356 0.536 0.563 0.697 -
Pyraformer + KPSS 0.554 0.782 0.909 1.482 4.590 5.327 0.470 0.527 0.604 -5.84%
Pyraformer + t-squared 0.640 0.809 0.898 1.440 3.112 3.912 0.490 0.557 0.632 -9.84%
Pyraformer + t-statistic 0.534 0.742 0.889 1.173 3.976 3.281 0.471 0.506 0.573 -16.51%
Autoformer 0.442 0.504 0.569 0.386 0.439 0.494 0.524 0.534 0.561 -
Autoformer + KPSS 0.446 0.528 0.486 0.358 0.436 0.516 0.456 0.538 0.513 -3.68%
Autoformer + t-squared 0.454 0.521 0.515 0.357 0.403 0.436 0.503 0.548 0.512 -4.60%
Autoformer + t-statistic 0.444 0.491 0.511 0.351 0.413 0.424 0.455 0.500 0.514 -7.74%
Informer 0.908 1.372 1.343 3.400 5.796 3.901 0.640 1.224 1.390 -
Informer + KPSS 0.850 1.215 1.215 3.050 5.593 4.202 0.535 0.844 1.087 -11.41%
Informer + t-squared 0.871 1.262 1.234 2.796 4.393 3.419 0.594 0.992 1.195 -12.76%
Informer + t-statistic 0.856 1.113 1.151 2.462 4.723 3.788 0.543 0.751 1.008 -18.81%

D OUR FRAMEWORK DETAILS

D.1 IMPLEMENTATION DETAILS

We include 12 baselines to validate our ReLD. All models were implemented with PyTorch. As for
recent models (i.e., FEDformer2, Pyraformer3, Autoformer4, and Informer5), we used the official
code released by the original authors, rather than implementing from scratch. For a fair comparison
between ReLD and the existing framework, we set the same hyperparameters found in each work.
We trained all models from scratch to 10 epochs. To assign weights to all training samples in
ReLD, the LD is computed only once before training, and it takes only a negligible amount of time
compared to the training time. Most models, which leverage a generative decoding, take an average
of less than an hour to train on a TITAN-Xp GPU except for LSTMa which uses auto-regressive
decoding. The source code is available in the following address: https://tinyurl.com/
iclr3913.

D.2 PSEUDO CODE FOR RELD

Algorithm 1 ReLD: Reweighting framework based on Local Discrepancy Density

Require: Training set D = {(Xt,Yt)}Nt=1, bin size ∆b, symmetric kernel distribution k(v, v′)

Compute Local Discrepancy LD (Xt,Yt) =
X̄t−Ȳt√

s2
X̄t
I +

s2
Ȳt
O +ε

:= vt

Compute the empirical label density distribution p(v) based on ∆b and D
Compute the effective label density distribution p̃ (v′) :=

∫
V k (v, v′) p(v)dv

for all (Xt,Yt, vt) ∈ D do
Assign weight for each sample as wt ∝ c · p̃ (vt) (constant c as scaling factor)

end for
for all number of training iterations do

Sample a mini-batch {(Xb,Yb, wb)}Bb=1 from D
Forward {Xb}Bb=1 and get corresponding predictions {Ŷb}Bb=1

Do one training step using the weighted loss 1
B

∑B
b=1 Lwb

(Ŷb,Yb)
end for

2https://github.com/MAZiqing/FEDformer
3https://github.com/alipay/Pyraformer
4https://github.com/thuml/Autoformer
5https://github.com/zhouhaoyi/Informer2020
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Table 11: Performance change according to the number of bins.
Dataset ETTh1 ETTh2

Model # bins 336 → 336 96 → 96 Imp.

Autoformer - 0.5694 ± 0.1115 0.3859 ± 0.0260 -
Autoformer + ReLD 40 0.5245 ± 0.1543 0.3529 ± 0.0262 -8.55%

120 0.4907 ± 0.0337 0.3455 ± 0.0229 -10.47%
200 0.4903 ± 0.0610 0.3501 ± 0.0168 -9.28%
300 0.4881 ± 0.0413 0.3472 ± 0.0072 -10.03%
500 0.5130 ± 0.0529 0.3485 ± 0.0142 -9.69%

Table 12: Performance change according to the KDE kernel types.
Dataset ETTh1 ETTh2

Model KDE kernel 336 → 336 96 → 96 Imp.

Autoformer - 0.5694 ± 0.1115 0.3859 ± 0.0260 -
Autoformer + ReLD Gaussian 0.4903 ± 0.0610 0.3501 ± 0.0168 -9.28%

Triangle 0.4792 ± 0.0171 0.3453 ± 0.0232 -10.52%
Laplace 0.4786 ± 0.0380 0.3496 ± 0.0087 -9.41%

Table 13: Performance changes according to the KDE kernel size.
Dataset ETTh1 ETTh2

Model KDE kernel size 336 → 336 96 → 96 Imp.

Autoformer - 0.5694 ± 0.1115 0.3859 ± 0.0260 -
Autoformer + ReLD 5 0.4903 ± 0.0610 0.3501 ± 0.0168 -9.28%

10 0.4896 ± 0.0728 0.3466 ± 0.0018 -10.18%
15 0.4836 ± 0.0189 0.3567 ± 0.0293 -7.57%
20 0.4841 ± 0.0444 0.3482 ± 0.0383 -9.77%
25 0.4835 ± 0.0317 0.3490 ± 0.0166 -9.56%

Table 14: Performance change according to the KDE kernel sigma.
Dataset ETTh1 ETTh2

Model KDE kernel sigma 336 → 336 96 → 96 Imp.

Autoformer - 0.5694 ± 0.1115 0.3859 ± 0.0260 -
Autoformer + ReLD 1 0.5545 ± 0.1916 0.3521 ± 0.0189 -8.76%

2 0.4903 ± 0.0610 0.3501 ± 0.0168 -9.28%
4 0.5218 ± 0.1632 0.3586 ± 0.0567 -7.07%
8 0.4767 ± 0.0307 0.3435 ± 0.0172 -10.99%

16 0.4836 ± 0.0318 0.3494 ± 0.0310 -9.46%

We illustrate the pseudo code of the ReLD in Algorithm 1.

D.3 HYPERPARAMETER SENSITIVITY

We used KDE to smooth the LD distribution. Related parameters include the bin size that determines
how many sections continuous LD is divided into, KDE’s kernel type, kernel size and kernel sigma.
In our experiment, we set the bin size to 200, kernel type to Gaussian, and kernel size and sigma to
5 and 2, respectively, as default parameters. We conducted experiments on ETTh1 and ETTh2 to
observe the variance of performance according to each parameter. As shown in Table 11, Table 12,
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Table 13, and Table 14, we observe that our proposed method is robust to the hyper-parameters while
showing consistent performance improvements.

Input-336-Output-720

Input-336-Output-168Input-48-Output-48
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Figure 7: Forecasting results of Autoformer trained on ETTm1 with three different length settings:
Input-48-Output-48, Input-336-Output-168, and Input-336-Output-720. The blue line indicates the
forecasting results of the baselines without our ReLD and the red line indicates those with our ReLD.

ETTm2

Time

ETTm1 Weather

Figure 8: Forecasting results of Autoformer on three datasets: ETTm1, ETTm2, and Weather. The
first row shows the forecasting results of the baseline without our ReLD and the second row shows
those with our ReLD.

E QUALITATIVE RESULTS

This section visualizes the forecasting results using three criteria: in-output length (Figure 7), dataset
(Figure 8), and model architecture (Figure 9). All samples are from the test set of each dataset. The
solid black line denotes the input series and the dotted black line denotes the ground truth series that
a model should predict. For a reliable comparison, we plot the averaged forecasting results of the
independent models trained from different random initializations. The shaded part of the forecasting
result indicates the forecasting variation at a given time stamp. In Figure 7, we only report the mean
of forecasting results without the forecasting variation for better clarity.

As shown in Figure 7, our ReLD demonstrated enhanced forecasting results in both short-term and
long-term settings. We observe that applying ReLD significantly reduces the MSE loss regardless
of datasets (see Figure 8) and model architectures (Figure 9). For example, by applying ReLD
on Weather dataset (see Figure 8), the prediction variations (red-shaded regions) are fitted to the
fluctuations of the target times series which was underfitted without applying ReLD (blue-shaded
regions).

21



Under review as a conference paper at ICLR 2023

Autoformer

Time

Pyraformer SCINet

Figure 9: Forecasting results of the recent three models on the same sample in HULL series of
ETTm2. The first row shows the forecasting results of the baselines without our ReLD and the
second row shows those with our ReLD.
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