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Abstract

Collusion between learning agents is increasingly becoming a topic of concern with
the advent of more powerful, complex multi-agent systems. In contrast to existing
work in narrow settings, we present a general formalisation of collusion between
learning agents in partially-observable stochastic games. We discuss methods for
intervening on a game to mitigate collusion and provide theoretical as well as
empirical results demonstrating the effectiveness of three such interventions.

1 Introduction

In recent years, the progress of multi-agent learning has prompted a number of concerns about the
risk that AI systems might learn to collude in various settings [1, 9, 10]. As such techniques continue
to be developed and deployed, it will be critical to have reliable methods for detecting and mitigating
collusion, especially in high-stakes domains such as algorithmic trading [7, 2] and cybersecurity
[19, 21]. While a number of domain-specific definitions of collusion exist [18, 15], they fail to
address collusion in the general case of learning agents in complex environments.

We first introduce a formal definition of collusion in partially-observable stochastic games, a general
model for real-world multi-agent AI systems (Section 3). We then discuss an approach for designing
mechanisms to reduce collusion and use it to propose three mechanisms for provably reducing
collusion in the iterated prisoner’s dilemma (Section 4). We support our theoretical results empirically
using independent Q-learning (Section 5). Proofs and further details are contained in the appendices.

Most prior work focuses on instances of algorithmic collusion in online marketplaces, with several
types of learning agents having been shown to set prices above the competitive market equilibrium in
a variety of settings [9, 10, 24, 17]. Mechanisms for preventing this include synchronous learning
[2, 4], decentralised learning [1], and adversarial training [6, 1]. In this work, we generalise collusion
beyond the marketplace setting and propose mechanisms for intervening on elements of the game
rather than the learning process. As in [9, 10, 2, 14, 1, 24, 17], we define collusion in terms of agents’
realised utilities. A more detailed discussion of additional related work can be found in Appendix A.

2 Partially-Observable Stochastic Games

We formalise collusion in the context of partially-observable stochastic games (POSGs) [16]. A
POSG is defined by a tuple (S, I, T,N,A,R,Ω, O, γ) where S is a state space, I is a distribution
over initial states, T : S × A → ∆(S) is a transition function mapping state-action pairs to
distributions over states, and N = {1, ..., n} is a set of agents. For each i ∈ N , Ai is a set of actions,
Ri : S × A × S → R is a reward function, and Ωi is a finite set of possible observations. Finally,
O : A× S → ∆(Ω) is an observation function and γ ∈ [0, 1) is a discount factor.
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The game starts in an initial state s0 ∼ I . At time t, each agent i receives an observation oit ∈ Ωi

from joint observation ot = (o1t , . . . , o
n
t ), sampled with probability O(ot | st, at−1). Each agent i

then chooses an action ait based on probabilities given by their policy πi(ait | oit, . . . , oi0), resulting
in the joint action at = (a1t , . . . , a

n
t ). Given at, the game transitions to the next state st+1 with

probability T (st+1 | st, at) and each agent i receives a reward rit = Ri(st, at, st+1). This is repeated
for a finite or infinite number of time steps or until some terminal state is reached. Given a joint
policy π = (π1, . . . , πn), we say a trajectory in the game τ = (s0, o0, a0, s1, r1, o1, a1 . . . ) follows
π if, abusing notation, at ∼ π(· | ot, . . . , o0) =

∏
i πi(· | oit, . . . , oi0). We define the value of a state

s for agent i as V i
π(s) = Eπ[

∑T
t=0 γ

trit | s0 = s], the expected discounted return of following π
from s. In this work, we assume T = ∞. We then define the value of a joint policy π for agent i as
U i(π) = Es∼I [V

i
π(s)], the expected value of the initial state when following π.

3 Formalising Collusion

Collusion can be informally defined as actors secretly and intentionally working together for their
mutual benefit at the expense of others [26]. While some elements of this definition translate to the
more general case of AI collusion in POSGs, not all aspects are directly applicable.

Secrecy. Collusion is commonly considered to require a secret agreement because it may involve
violating the rules or spirit of the game in some way (e.g. undermining competition in a market) [25].
The harms from collusion, however, exist irrespective of whether the collusive agreement is secretive.
For this reason, we don’t require that collusion involves agents coordinating covertly.

Intention. Collusion is typically thought of as involving some agents intentionally working together
for mutual benefit [25]. Existing conceptions of intention in artificial systems assume rationality or
notions of desire, belief, goals, and plans [20]. We assume none of this. Plus, a lack of intent does not
mitigate the harms from collusive behaviour. Therefore, our definition is agnostic to agents’ intent.

Mutual Benefit at the Expense of Others. In order for a behaviour to be collusive, there must be
at least two colluding agents who benefit and at least one victim agent who is harmed.

Putting the above intuitions together, we arrive at the following definition: A group of agents colludes
against a victim if they act to jointly benefit at the victim’s expense. More formally, we define two
types of collusion.

Definition 1. Let G be a POSG. Let victims V and colluders C be disjoint, non-empty subsets of N
with |C| ≥ 2. Given joint policies π, π′ in G, π′ is weakly collusive relative to π for colluders C
against victims V if and only if, for all i ∈ V , U i(π′) < U i(π) and for all j ∈ C, U j(π′) > U j(π).
π′ is strongly collusive relative to π if, in addition, both π and π′ are Nash equilibria (NE) of G.2

A B C D

A 1, 1, 1 0, 0, 0 0, 0, 0 0, 0, 0

B 0, 0, 0 2, 2, 0 0, 0, 0 0, 0, 0

C 0, 0, 0 0, 0, 0 3, 3, 1 0, 0, 0

D 0, 0, 0 0, 0, 0 0, 0, 0 2, 2, 2

Figure 1: A three-agent game in which two
agents select actions that also determine the
utility of an actionless third agent.

Unlike previous work [1, 3, 5], our definition does
not distinguish between tacit and explicit collusion
as our primary concern is preventing harms from col-
lusion, no matter its type. Weak collusion makes no
claim about agents’ intentions, communication, or ra-
tionality; it is defined only in terms of utility. On one
hand, this is desirable, as it applies to cases of tacit
collusion and complex multi-agent settings in which
learning agents might not converge to rationally op-
timal policies. On the other hand, it is also useful
to consider cases in which all agents act rationally,
which is the motivation for defining strong collusion.

3.1 Selecting a Non-Collusive Baseline

Definition 1 presents collusion as a relation between two policies. Consequently, claiming a given
policy is collusive requires specifying an alternative non-collusive baseline. Indeed, baselines are

2Recall that π is a Nash equilibrium of G if and only if πi ∈ argmaxπ̃i∈Πi U i(π−i, π̃i) for every i ∈ N .
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used to identify real-world instances of collusion as well: in the oligopoly setting, for example, the
free market equilibrium price is commonly used as the baseline for evaluating whether price offerings
are collusive [9, 10, 2, 14, 1, 24, 17]. In the general case, however, selecting a non-collusive baseline
is nontrivial because it requires making a normative decision about which policies are preferable.

Consider the game in Figure 1. Which policies are collusive depends on the baseline selected. If
(A,A) is chosen as the baseline, then (B,B) is collusive while (C,C) is not, since in (B,B) two
agents benefit at the expense of the third. Yet if (D,D) is chosen as the baseline, then (B,B) is no
longer collusive and (C,C) is. Without further specification, it is not clear which of these policies
– if any – ought to be considered collusive. Such specification might use a social welfare function
w : Rn → R to aggregate agents’ utilities or appeal to notions such as fairness or the status quo. In
practice, selecting a baseline depends on the desired behaviours in the system.

4 Interventions to Mitigate Collusion

We now consider possible interventions for mitigating collusion, defined as a modification of at least
one element in the POSG (S, I, T,N,A,R,Ω, O, γ). An intervention can thus be viewed as function
f : G → G between POSGs. Often, we will also want to consider the cost of such interventions using
an additional function c : G × G → R, though for reasons of scope we do not do so in this work.

While relatively abstract, the above formalism captures many real-world mechanisms for mitigating
collusion. For example, anti-trust laws to prohibit competing firms from sharing information with
one another can be modelled as limiting firms’ observations or actions, with certain costs to enforce
each. In what follows we illustrate three possible interventions in the context of the iterated prisoners’
dilemma (IPD) with negative externalities, modelled as a simple POSG.

Example 1 (Iterated Prisoner’s Dilemma with Negative Externalities). Two agents repeatedly play
the matrix game in Figure 2 with action space A = {C,D}, S = {s}, and discount factor γ. Each
round t, agent i receives reward Ri(a1t , a

2
t ). An actionless third agent receives the negative sum of

the two agents’ payoffs. We assume that agents possess m rounds of memory and condition their
action ait on observations oit−k = at−k for 1 ≤ k ≤ m. We denote the resulting POSG by IPD(γ,m)
and take the non-collusive baseline to be the strategy πB in which both agents unconditionally play
D, repeating the only Nash equilibrium in the one-shot game.

C D

C 2, 2,−4 0, 3,−3

D 3, 0,−3 1, 1,−2

Figure 2: The prisoner’s dilemma with
negative externalities.

Given πB , we highlight two classic collusive strategies
that we hope to prevent agents from playing in IPD(γ, 1).
The first is Grim Trigger πi

GT in which agent i repeatedly
plays C until their opponent plays D, after which they
always play D. The second is Tit-for-Tat πi

TFT in which
agent i first plays C and then mimics their opponent’s
previous action. πGT and πTFT denote the strategy profiles
in which both agents use the given strategy. Both profiles
result in agents repeatedly playing C, colluding against
the third agent.

In what follows, we describe three interventions that prevent rational agents from playing these
strategies: adding noise to observations (akin to real-world imperfect information), restricting agents’
actions spaces (akin to real-world regulation), and modifying agents’ payoffs (akin to real-world
practices of altering incentives to shape behavior). Proofs of each proposition are in Appendix C.

Definition 2 (Noisy Observation Intervention). We modify the observation function O such that with
probability p drawn independently for each agent in each round, agents observe their opponent’s
action incorrectly. Formally, O(st+1, (a

1
t , a

2
t )) = (o1, o2), where o1 is (a1t , a

2
t ) with probability

(1− p) and (a1t ,¬a2t ) otherwise, and analogously for o2 (where ¬C = D and ¬D = C). We denote
this intervention by NOI(p).

Proposition 1. Applying NOI(p) to IPD(γ, 1) removes πGT as a NE if p > 2−
√

1
γ + 2 and πTFT as

a NE if p > 2γ−1
4γ .

In particular, NOI(p) with p = 2−
√
3 ≈ 0.267 is sufficient to prevent rational agents from playing

both πGT and πTFT, no matter the value of γ.
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Figure 3: Proportion of 3,000 Q-learning simulations resulting in a weakly collusive joint strategy,
stratified by initial joint action. 10% and 90% quantiles of a 300-sample bootstrap are shaded.

Definition 3 (Action Space Restriction). In each round, with probability p drawn independently
for each agent, we modify agent i’s action space Ai to be {D}. If the agent’s policy selects C, this
choice is overridden. We denote this intervention by ASR(p).
Proposition 2. Applying ASR(p) to IPD(γ, 1) removes πGT as a NE if p > 1− 1√

2γ
and πTFT as a

NE if p ̸= 1− 1
2γ .

In particular, applying ASR(p) with p = 1− 1√
2
≈ 0.293 is sufficient to prevent rational agents from

playing both πGT and πTFT, so long as γ ̸= 1√
2

.

Definition 4 (Payoff Matrix Modification). We modify R such that R(C,D) = (0, 3 + k,−3− k)
and R(D,C) = (3 + k, 0,−3− k). We denote this intervention by PMM(k).
Proposition 3. Applying PMM(k) and NOI(p) to IPD(γ, 1) removes πGT as a NE if p ≥
k−

√
k2+8k+12

2 + 2.

Note that the bound above only depends on k, not γ. For example, if k = 1, a value of p = 5−
√
21

2 ≈
0.209 is sufficient. As k tends to ∞, the requisite value for p tends to 0. This example demonstrates
how multiple interventions may be combined to remove a collusive equilibrium.

5 Experiments

We supplement our theoretical results by empirically investigating how the proposed interventions
affect agents’ propensity to learn collusive behaviours more generally, beyond πGT and πTFT. We
train two independent Q-learning (IQL) agents for 10,000 Q-updates to play IPD(γ, 1) under each of
the three interventions. We repeat each simulation 3,000 times for each value of p and observe the
final policies under each possible initial joint action. We demonstrate PMM(k) using k = 6. We set
discount factor γ = 0.9, learning rate α = 0.1, and exploration rate ϵ = 0.1.

Figure 3 shows the proportion of the 3,000 simulations that result in a weakly collusive joint strategy
relative to πB. We focus on weak collusion to reflect the fact that IQL agents are imperfect, sometimes
finding policies that are not Nash equilibria. We find that as p increases, the prevalence of collusion
falls quickly to near zero under ASR(p) and NOI(p) + PMM(6). Although small values of p cause
the agents to find collusive policies more often under NOI(p), any value of p above the maximum

theoretical threshold provided above (2−
√

1
0.9 + 2 ≈ 0.236) reduces the propensity for collusion.

The prevalence of collusion notably decreases under NOI(p) only for initial joint action (C,C)
because many collusive policies are inherently unstable under the other initial joint actions.

6 Conclusion

In this work, we defined collusion between learning agents in POSGs and provided three mechanisms
for effectively mitigating it in the iterated prisoner’s dilemma with negative externalities. Future work
ought to analyse these interventions in more complex POSGs and consider the problem of preventing
collusion while minimising the costs of the given intervention.
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A Additional Related Work

There is a rich literature on algorithmic collusion as it pertains to marketplaces. It is a challenging
space because existing definitions and laws do not clearly extend to cases in which decisions are
made by algorithms [18, 8, 5]. Some studies assert that collusion requires firms coordinating to
increase their profits at consumers’ expense [11]. Others define it only in terms of participating agents’
realised utilities relative to what they would expect under perfect competition [9, 10, 2, 14, 1, 24, 17].
This paper adopts the latter approach but focuses on more general settings in which baselines are less
straightforward.

Examples of algorithmic collusion have been demonstrated in various situations. The German retail
gasoline market, for example, provided evidence for price-setting algorithms causing an increase
in prices [3]. Simulated markets with Q-learning agents have also been shown to promote supra-
competitive prices, even if agents can only imperfectly monitor one another [9, 10, 24]. Other work,
however, challenges these findings, raising doubts about learning agents’ ability to collude outside
of sandbox environments [11, 22, 12] or claiming that the results are artifacts of learning failures
[13]. In the view of this paper, learning failures still constitute (weak) collusion. This is supported by
the fact that collusive strategies may still emerge from Q-learning without punishment schemes to
enforce them [28]. Furthermore, even suboptimal pricing algorithms interacting in a marketplace can
lead to tacit collusion [7].

There is some work proposing mechanisms for mitigating collusion in specific settings. In the case of
e-commerce platforms, for instance, promoting certain sellers over others via “buy-boxes” can be an
effective intervention [23, 6]. Likewise, there are methods for detecting and preventing collusion in
multiplayer online gaming [27]. Synchronous learning, in which agents are able to perfectly estimate
counterfactual outcomes, has also been shown to make collusive outcomes less likely [2]. Equalising
agents’ relative learning rates during training may help as well [4]. Finally, because collusion becomes
harder to sustain as the number of agents increases, decentralised learning – sometimes combined
with adversarial agents rewarded for promoting social welfare – can be a powerful approach for
deterring collusive behaviours [1, 9]. In this work, we consider a variety of mechanisms that intervene
directly on the features of a POSG, rather than the agents’ learning processes.
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B Construction of Action Space Restriction Intervention

In a POSG, formalising ASR(p) is not as simple as restricting A because A cannot change as the
game goes on. However, one can formalise ASR(p) by modifying S, I, T,R,O. The following is
a formal construction of ASR(p) in IPD(γ, 1). First, expand the state space to capture whether or
not each agent’s last action was restricted, S = {s00, s01, s10, s11}. s00 indicates that there were no
restrictions; s01 indicates that Agent 2 was restricted; s10 indicates that Agent 1 was restricted; s11
indicates that both were restricted. Set initial state I = s00. Then the transition function T dictates
when restrictions are put in place:

T (st, (a
1
t , a

2
t )) =


s00 with probability (1− p)2

s01 with probability (1− p)p

s10 with probability p(1− p)

s11 with probability p2

To ensure that agents observe the restricted actions instead of the intended actions, modify the
observation function as follows:

O(s′, (a1t−1, a
2
t−1)) =


((a1t−1, a

2
t−1), (a

1
t−1, a

2
t−1)) if s′ = s00

((D, a2t−1), (D, a2t−1)) if s′ = s10

((a1t−1, D), (a1t−1, D)) if s′ = s01

((D,D), (D,D)) if s′ = s11

Finally, to ensure that rewards are dictated by the restricted actions instead of the intended actions,
modify the reward function as follows:

R(st, (a
1
t , a

2
t ), s

′) =


R(st, (a

1
t , a

2
t ), s

′) if s′ = s00

R(st, (D, a2t ), s
′) if s′ = s10

R(st, (a
1
t , D), s′) if s′ = s01

R(st, (D,D), s′) if s′ = s11

C Proofs

Before proving Propositions 1, 2 and 3, we derive the value of IPD(γ, 1) for agent i, given a generic
joint strategy π = (π1(a1t−1, a

2
t−1), π

2(a1t−1, a
2
t−1)). Since there are four possible values for the

joint action tuple (a1t−1, a
2
t−2) = o1t = o2t , the policy of each agent i is defined by four values:

πi
CC ≜ Pr(ait = D | oit = (C,C))

πi
CD ≜ Pr(ait = D | oit = (C,D))

πi
DC ≜ Pr(ait = D | oit = (D,C))

πi
DD ≜ Pr(ait = D | oit = (D,D)).

We define a joint policy π = ([π1
CC , π

1
CD, π1

DC , π
1
DD]T , [π2

CC , π
2
CD, π2

DC , π
2
DD]T ). For example,

πB =


111
1

 ,

111
1


 , πGT =


011
1

 ,

011
1


 , πTFT =


010
1

 ,

001
1


 , πC =


000
0

 ,

000
0


 .

We denote combinations of two strategies π1 and π2 as π1,2. For example, if Agent 1 plays π1
B and

Agent 2 plays π2
TFT, we say π = πB,TFT. We can find the value of a joint action – (C,C) below – for

agent i in closed form by solving the Bellman equation:

V i
π(C,C) = Ri(C,C) + γE(a1

t ,a
2
t )∼π

[
V i
π(a

1
t , a

2
t ) | (a1t−1, a

2
t−1) = (C,C)

]
.
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Forming analogous value equations for the other three joint actions yields a system of four linear
equations. The interventions we propose affect the probabilities π(a1t , a

2
t | a1t−1, a

2
t−1) and therefore

impact the values of joint strategies π.

Proof. Proposition 1. Given the modified observation function, transition probabilities between joint
actions from round t− 1 to round t take the following form:

Pr(a1t = C, a2t = C | a1t−1 = C, a2t−1 = C) =

(1− p)2

(1− p)p
p(1− p)

p2


T (1− π1

CC)(1− π2
CC)

(1− π1
CC)(1− π2

DC)
(1− π1

CD)(1− π2
CC)

(1− π1
CD)(1− π2

DC)


Deriving similar forms for other joint actions yields the following matrix equation of joint action
values: V 1

π (C,C)
V 1
π (C,D)

V 1
π (D,C)

V 1
π (D,D)


︸ ︷︷ ︸

V 1
π

=

R1(C,C)
R1(C,D)
R1(D,C)
R1(D,D)


︸ ︷︷ ︸

R1

+γPW

V 1
π (C,C)

V 1
π (C,D)

V 1
π (D,C)

V 1
π (D,D)



where

P = I ⊗

(1− p)2

(1− p)p
p(1− p)

p2


and

W =



(1− π1
CC)(1− π2

CC) (1− π1
CC)π

2
CC π1

CC(1− π2
CC) π1

CCπ
2
CC

(1− π1
CC)(1− π2

DC) (1− π1
CC)π

2
DC π1

CC(1− π2
DC) π1

CCπ
2
DC

(1− π1
CD)(1− π2

CC) (1− π1
CD)π2

CC π1
CD(1− π2

CC) π1
CDπ2

CC
(1− π1

CD)(1− π2
DC) (1− π1

CD)π2
DC π1

CD(1− π2
DC) π1

CDπ2
DC

(1− π1
CD)(1− π2

CD) (1− π1
CD)π2

CD π1
CD(1− π2

CD) π1
CDπ2

CD
(1− π1

CD)(1− π2
DD) (1− π1

CD)π2
DD π1

CD(1− π2
DD) π1

CDπ2
DD

(1− π1
CC)(1− π2

CD) (1− π1
CC)π

2
CD π1

CC(1− π2
CD) π1

CCπ
2
CD

(1− π1
CC)(1− π2

DD) (1− π1
CC)π

2
DD π1

CC(1− π2
DD) π1

CCπ
2
DD

(1− π1
DC)(1− π2

DC) (1− π1
DC)π

2
DC π1

DC(1− π2
DC) π1

DCπ
2
DC

(1− π1
DC)(1− π2

CC) (1− π1
DC)π

2
CC π1

DC(1− π2
CC) π1

DCπ
2
CC

(1− π1
DD)(1− π2

DC) (1− π1
DD)π2

DC π1
DD(1− π2

DC) π1
DDπ2

DC
(1− π1

DD)(1− π2
CC) (1− π1

DD)π2
CC π1

DD(1− π2
CC) π1

DDπ2
CC

(1− π1
DD)(1− π2

DD) (1− π1
DD)π2

DD π1
DD(1− π2

DD) π1
DDπ2

DD
(1− π1

DD)(1− π2
CD) (1− π1

DD)π2
CD π1

DD(1− π2
CD) π1

DDπ2
CD

(1− π1
DC)(1− π2

DD) (1− π1
DC)π

2
DD π1

DC(1− π2
DD) π1

DCπ
2
DD

(1− π1
DC)(1− π2

CD) (1− π1
DC)π

2
CD π1

DC(1− π2
CD) π1

DCπ
2
CD



.

Hence,
V 1
π = (I − γPW )−1R1.

If both agents play Grim Trigger, the starting joint action will be (C,C), which has the following
value for Agent 1:

V 1
πGT

(C,C) =
−3γp(γ − 1)(p− 1)− γp(2γ(p− 1)2 − p(γp− 1)) + 2(1− γ)(γp− 1)

(γ − 1)(γp− 1)(γ(p− 1)2 − 1)

If instead Agent 1 plays πB, the starting joint action will be (D,C), yielding Agent 1 the following
value:

V 1
πB,GT

(D,C) =
−γ(p− 1)− 3γ + 3

(γ − 1)(γp− 1)

For γ ∈ [0, 1),

V 1
πB,GT

(D,C) > V 1
πGT

(C,C) ⇐⇒ p > 2−
√

1

γ
+ 2.
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Similarly, if both agents play Tit-for-Tat, the starting joint action (C,C) has the following value for
Agent 1:

V 1
πTFT

(C,C) =
3γp− 2γ + 2

−2γ2p+ γ2 + 2γp− 2γ + 1

If instead Agent 1 unconditionally plays Cooperate πC, the starting joint action (C,C) has the
following value for Agent 1:

V 1
πC,TFT

(C,C) =
2(γp− 1)

γ − 1

For γ ∈ [0, 1),

V 1
πC,TFT

(C,C) > V 1
πTFT

(C,C) ⇐⇒ p >
2γ − 1

4γ
.

Hence, we have found conditions under which there exists a profitable deviation for Agent 1 from the
Grim Trigger and Tit-for-Tat strategies.

Proof. Proposition 2. Using this intervention with p > 0, the realised policy of agent i given
intended policy πi is

p

111
1

+ (1− p)

π
i
CC

πi
CD

πi
DC

πi
DD

 .

In this framework, to find the values we must solve

V i
p+(1−p)π = (I − γW )−1Ri,

with W as defined in the proof of Proposition 1. Suppose that agents play πGT. In this case, given
that the intervention may overwrite agents’ intended actions, the value V 1

p+(1−p)πGT
for Agent 1 is a

weighted average of starting joint actions values:

V 1
p+(1−p)πGT

≜(1− p)2V 1
p+(1−p)πGT

(C,C) + (1− p)pV 1
p+(1−p)πGT

(C,D)+

p(1− p)V 1
p+(1−p)πGT

(D,C) + p2V 1
p+(1−p)πGT

(D,D)

Solving the Bellman equation for the realised joint policy p+ (1− p)πGT yields

V 1
p+(1−p)πGT

=
−p2γ + 3pγ − p− 2γ + 2

p2γ2 − p2γ − 2pγ2 + 2pγ + γ2 − 2γ + 1
.

If instead Agent 1 attempts to play πB, the starting joint action will be (D,C) with probability 1− p
and (D,D) with probability p. The weighted sum of the values of these two joint actions yields the
following value V 1

p+(1−p)πB, GT
for Agent 1:

V 1
p+(1−p)πB, GT

=
−2pγ + 2p+ 2γ − 3

γ − 1

We find that

V 1
p+(1−p)πB,GT

> V 1
p+(1−p)πGT

⇐⇒ p > 1− 1√
2γ

.

Following a similar procedure for πTFT, evaluating deviations to πB and πC, yields the following two
results:

V 1
p+(1−p)πC,TFT

> V 1
p+(1−p)πTFT

⇐⇒ p ∈ (0, 1− 1

2γ
)

V 1
p+(1−p)πB,TFT

> V 1
p+(1−p)πTFT

⇐⇒ p ∈ (1− 1

2γ
, 1)

Hence, there is a profitable deviation for Agent 1 if p ̸= 1− 1
2γ . Interestingly, when p = 1− 1

2γ , the
value of the policy played by Agent 1 against an opponent attempting to play Tit-for-Tat equals 2γ−3

γ−1 ,
independent of the policy chosen.
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Figure 5: Proportion of 3,000 Q-learning simulations that result in both agents finding the baseline,
Grim Trigger, or Tit-for-Tat policies for each intervention. Dashed vertical lines denote the theoretical
thresholds from Section 4. 10% and 90% quantiles of a 100-sample bootstrap are shaded.

Proof. Proposition 3. We calculate values V 1
π using the formula given in the proof of Proposition 1

V 1
π = (I − γPW )−1R1

with R1(C,C)
R1(C,D)
R1(D,C)
R1(D,D)

 =

 2
0

3 + k
1

 .

The modified payoff matrix can be found in Figure 4.

Solving as above, we find that if both agents play Grim Trigger, the value of the initial state (C,C)
for Agent 1 is

V 1
πGT

(C,C) =
−γp(γ − 1)(k + 3)(p− 1)− γp

(
2γ(p− 1)2 − p(γp− 1)

)
+ 2(1− γ)(γp− 1)

(γ − 1)(γp− 1)(γ(p− 1)2 − 1)
.

If instead Agent 1 plays πB, the starting joint action will be (D,C), yielding Agent 1 the following
value:

V 1
πB,GT

(D,C) =
−γ(p− 1)− (γ − 1)(k + 3)

(γ − 1)(γp− 1)

Solving, we find

V 1
πB,GT

(D,C) > V 1
πGT

(C,C) ⇐⇒ p >
γk + 4γ −

√
γ(γk2 + 4γk + 8γ + 4k + 4)

2γ
≜ p0(γ, k).

Since
dp0(γ, k)

dγ
=

√
γ(γk2 + 4γk + 8γ + 4k + 4)(k + 1)

γ2(γk2 + 4γk + 8γ + 4k + 4)
> 0, for γ > 0, k > 0,

we find that p0(1, k) > p0(γ, k) for all γ ∈ (0, 1). Hence, if

p > p0(1, k) =
k −

√
k2 + 8k + 12

2
+ 2,

Grim Trigger is guaranteed to not be a Nash equilibrium, regardless of the value of γ.

D Additional Empirical Results

C D

C 2, 2,−4 0, 3 + k,−3− k

D 3 + k, 0,−3− k 1, 1,−2

Figure 4: The modified prisoner’s dilemma under
PMM(k).

Figure 5 presents the results from our Q-learning
experiments with a specific focus on the collu-
sive strategies considered in Section 4, namely
πGT and πTFT. As in the graph above, we find
that each intervention applied using parameters
adhering to our theoretical results causes a re-
duction in agents’ propensities to find these poli-
cies and an increase in the prevalence of the
non-collusive baseline.
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