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ABSTRACT

We introduce a new Reflective Generative Model (RGM), which obtains OpenAI
o3-mini’s performance via a novel Reflective Generative Form. This form fo-
cuses on high-quality reasoning trajectory selection and contains two novelties:
1) A unified interface for policy and process reward model: we share the back-
bone network and use task-specific heads for reasoning trajectory predicting and
scoring respectively, introducing only 50M extra parameters for trajectory scor-
ing. 2) Eliminating the reliance on process-level annotation: we provide a
self-supervised process reward model (SPRM), which can directly learn the high-
quality reasoning trajectory selection from the outcome reward. Equipped with the
reflective generative form, RGM is naturally suitable for test-time scaling based
on the controllable thinking length. Experiments show that our RGM, equipped
with only 50M additional parameters in SPRM, outperforms policy models with
72B extra reward models, thereby enabling QwQ-32B to outperform OpenAI o3-
mini on AIME24 (84.2 vs. 79.6) and HMMT25 (53.1 vs. 53.0). Code will be
available.

1 INTRODUCTION

Over the past two years, the field of Large Language Models (LLMs) has experienced rapid advance-
ments, marked by the emergence of increasingly sophisticated models. Notable developments in-
clude OpenAI’s GPT-4, Google’s Gemini, Meta’s LLaMA series, Alibaba’s Qwen, and DeepSeek’s
R1, which have collectively pushed the boundaries of natural language understanding and gener-
ation. This progress is attributed to innovations in model architectures and training techniques,
enabling LLMs to process and generate content across various formats.

Recent analyses suggest that OpenAI’s o3 model achieves its advanced reasoning and coding capa-
bilities through Test-Time Scaling (TTS) techniques such as massive sampling, candidate scoring,
and search over multiple reasoning paths (Labs, 2025; Zeff, 2024). For instance, during ARC-AGI
and competitive coding evaluations, o3 was shown to generate up to 1024 candidate samples for
each query (Chollet, 2024; OpenAI, 2025). These inference-time strategies mark a significant shift
from traditional one-pass models, enabling o3 to adapt dynamically to novel tasks and achieve near-
human performance in reasoning benchmarks.

TTS approaches can be categorized into two types: internal TTS and external TTS. Internal TTS
(also called sequential TTS in Zeng et al. (2025)) strategies use CoT for longer thinking processes
(Guo et al., 2025; OpenAI, 2024), which benefits from Long-CoT Supervised Fine-Tuning and re-
inforcement learning. Recent internal TTS methods (Guo et al., 2025) mainly suffer from the false
positive reasoning process, as the outcome reward will misclassify the correct answer with incorrect
reasoning during the training stage. External TTS (also called parallel TTS in Zeng et al. (2025))
is proposed for selecting the correct reasoning process. Prominent external TTS algorithms include
Best-of-N sampling, Beam Search, and Diverse Verifier Tree Search, using the reward model as
the verifier to select high-quality reasoning trajectories. Researchers (Lightman et al., 2023) have
shown that the Process Reward Model (PRM) is more effective in performance boosting compared
with the Outcome Reward Model (ORM). However, Wang et al. (2023); Guan et al. (2025) point out
that training a high-quality PRM remains costly, primarily due to the lack of accurate process-level
annotations. Moreover, during the inference stage, introducing an additional LLM-based PRM intro-
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Figure 1: Comparison between the previous external TTS framework (a) and our RGM (b).

duces significant extra parameters and computational overhead, which severely limits the practical
deployment of external TTS.

This paper focuses on external TTS and proposes a new Reflective Generative Form for high-quality
reasoning trajectory selection. Specially, the proposed new form shares the backbone of the policy
model and process reward model, providing a more efficient scoring process with little parameter
and computational overhead. Besides, a Self-supervised Process Reward Mode(SPRM) is intro-
duced for self-supervised training to eliminate the reliance on process-level supervision. Based on
the Reflective Generative Form, the proposed RGM can improve the performance by increasing the
controllable thinking length during inference. Compared with the existing external TTS framework
with LLM based PRM, our proposed RGM introduces a unified form for both training and infer-
ence, achieving a more streamlined pipeline with significantly reduced computational and parameter
overhead (Fig. 1). Experiment results show that RGM achieves comparable performance to Ope-
nAI o1-mini and o3-mini with 7B and 32B parameters. And our SPRM with only 50M parameters
outperforms existing 72B level reward models.

In summary, the main contributions of this paper are as follows:

• We provide a new Reflective Generative Form for high-quality reasoning trajectory se-
lection, which enables a single network to achieve both reasoning trajectory prediction and
selection with Zero process-level annotation.

• We provide both qualitative and quantitative analysis for the aha moment and generaliza-
tion capability of the proposed new form. These exhaustive discussions will effectively
benefit the community for future research.

• RGM outperforms existing 72B reward models with only 50M SPRM, and achieves com-
parable performance to OpenAI o3-mini with only 32B policy models.

2 RELATED WORKS

Test-Time Scaling. Test-Time Scaling (TTS) is a technique that leverages additional computa-
tional resources at inference time to tackle challenging problems. TTS can be divided into two
categories: internal TTS and external TTS. Internal TTS introduces the long Chain-of-Thought
(CoT) to generate answers based on the detailed reasoning process. OpenAI o1(Jaech et al., 2024)
and DeepSeek R1(Guo et al., 2025) introduce a thinking process to plan the solution and guide the
final answer. Jin et al. (2024); Yeo et al. (2025) have shown that long CoT can help models correct
mistakes by themselves and decompose complex problems more effectively. However, Chen et al.
(2024b;a) have highlighted the risk of overthinking, where excessively long reasoning trajectories
may lead to performance degradation. On the other hand, external TTS scales up inference through
search-based strategies and auxiliary reward models. A common approach is the Best-of-N strategy
(Lightman et al., 2023; Brown et al., 2024; Wang et al., 2023). Fine-grained step level searching
methods have also been explored, such as Beam Search (Liu et al., 2025; Snell et al., 2024), Diverse
Verifier Tree Search (Beeching et al.) and Monte Carlo Tree Search (MCTS) (Zhang et al., 2024;
Guan et al., 2025; Luo et al., 2024). These methods search at the step level and utilize Process
Reward Models (PRMs) to guide the reasoning trajectory step-by-step. Beyond search strategies,
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recent work emphasizes that the quality of the reward model is a crucial factor in external TTS (Guan
et al., 2025).

Process Reward Model. Process Reward Models (PRMs) focus on evaluating LLMs at the step
level. Lightman et al. (2023) unveil that this fine-grained guidance can lead to better TTS per-
formance compared with the global-level Outcome Reward Model (ORM). However, accurately
identifying logical errors in LLM outputs remains challenging, and PRMs require high-quality task-
specific annotated data for training. To this end, recent works Wang et al. (2023) leverage Monte
Carlo estimation to automatically assign step-level scores using only the final answers as supervi-
sion. Zhang et al. (2024); Guan et al. (2025) iteratively synthesizes data by MCTS and fine-tuning
both LLMs and PRMs, improving performance across both models. Tan et al. (2025) follow the
LLM-as-a-judge method and introduce a new LLM to annotate the reward of each step. Nonethe-
less, Zhang et al. (2025) point out that labels generated by Monte Carlo estimation can be noisy, as
incorrect reasoning processes may still yield correct final answers. They further propose a hybrid
approach that combines both Monte Carlo estimation with the LLM-as-a-judge.

3 PROBLEM FORMULATION

This paper aims to find a high-quality reasoning trajectory more efficiently at inference time based
on TTS. We first summarize the general inference forms for standard LLMs (policy models) and
existing TTS methods, and then formally define our proposed Reflective Generative Form.

1) LLMs without TTS. The model directly generates an answer based on the input query Q. This
basic inference form can be formulated as:

answer = LLManswer(Q). (1)

TTS based methods can be categorized into two types: sequential scaling based internal TTS and
parallel scaling based external TTS.

2) Internal TTS. The internal TTS first generates a reasoning trajectory by Long-CoT using
LLMthink, and then predicts the final answer with this trajectory using LLManswer, which can be
expressed as:

answer = LLManswer(LLMthink(query)). (2)

To be specific, recent methods (e.g. DeepSeek R1(Guo et al., 2025)) use the same policy model for
both LLMthink and LLManswer.

3) External TTS. Firstly, the Long-CoT generation is extended by generating multiple reasoning
trajectories and answers in parallel. Then, a reward model (e.g. PRM) is used to score and select the
best result (Lightman et al., 2023; Liu et al., 2025). This inference form can be described as:

answer = argmax
i∈[1,k]

LLMPRM

(
[LLManswer(LLMthinking(query))]i

)
, (3)

where [∗]i denotes the i-th candidate among k parallel generations.

Though existing external TTS methods have been proven to obtain considerable performance en-
hancement, they still encounter several problems: (1) Extra Computation: PRM contains individual
parameters from the policy model (LLMthink and LLManswer), which introduces additional huge
computation. (2) Expensive Annotation: It is difficult to obtain the large-scale reasoning trajectory
annotations for PRM training.

Reflective Generative Form. To address the extra computation and expensive annotation issues,
we propose a new Reflective Generative Form focusing on the efficient and label-free reasoning
trajectory selection. The proposed Reflective Generative Form is shown in follows,

answer = LLManswer︸ ︷︷ ︸
share backbone

(
argmax
i∈[1,k]

LLMSPRM︸ ︷︷ ︸
share backbone

(
[LLMthinking︸ ︷︷ ︸

share backbone

(query)]i
))

(4)
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Figure 2: The training and inference framework of Reflective Generative Models.

Firstly, we share the backbone of the policy model and PRM in a single network, which enables
reasoning trajectory generation and scoring in a unified interface for parallel prediction. The score
measures the quality of each reasoning trajectory, and the trajectory with higher score is selected
as the high-quality candidate in TTS. This unified interface is proved to be effective for parame-
ter reduction in our experiments. Secondly, we introduce a novel Self-supervised Process Reward
Model (SPRM) to eliminate the reliance on process-level annotation, which can be optimized with
only outcome-level annotation in a self-supervised manner. In particular, we only implement the
SPRM for the LLMthink selection, which can further improve the inference efficiency during the
real implementation.

4 APPROACH

4.1 UNIFIED INTERFACE IN REFLECTIVE GENERATIVE FORM

Our proposed Reflective Generative Form establishes a unified interface for the policy model and
the PRM. For the policy model, we employ reasoning LLMs that contain the thinking process in
response, delineated by the ‘<think>’ and ‘</think>’ tokens. For the PRM, we introduce a
Self-supervised Process Reward Model (SPRM), which shares the same backbone as the policy
model but incorporates an additional lightweight SPRM head. The SPRM head is implemented by
a binary classifier consisting of two linear layers and a dropout layer: Linear(c, 2c) → ReLU →
Dropout(0.5) → Linear(2c, 1), where c is the channel of the input hidden states. An overview of
the joint framework is illustrated in Fig. 2(a).

Within this unified form, the policy model first generates multiple thinking processes as the reason-
ing trajectories. Subsequently, the SPRM evaluates each thinking process for reasoning trajectory
selection. The evaluation procedure contains two steps:

1. Step Segmentation. We segment each reasoning trajectory using tokens that are already sup-
ported by the policy model’s tokenizer, eliminating the need to introduce additional step-specific to-
kens or fine-tune the LLM for step-format outputs. Specifically, we treat tokens containing ‘.\n\n’
as step-tokens and split the trajectory accordingly. Additionally, we retain only the first token in
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any sequence of consecutive step-tokens and ignore the step-token appearing at the beginning of the
trajectory, as it does not contain valuable information.

2. Trajectory Score Prediction. After using step-tokens to mark the end of individual reasoning
steps, we evaluate each step based on the representation of the corresponding step-token. Since the
representation in the last layer mainly captures the logits prediction for a single token, we use the
hidden representations from the second-to-last layer of the policy model to provide richer contextual
information of the entire step. These representations are then fed into the SPRM head to predict
process scores for each step. When calculating the final score, Lightman et al. (2023) proposes to
use the product of process scores. However, this results in lower final scores for longer reasoning
trajectories. Thus, we further use the geometric mean of the process scores to eliminate the influence
step numbers.

Sfinal =

(
N∏

n=1

Scoren

) 1
N

=

(
N∏

n=1

SPRM(ftokenn
)

) 1
N

, (5)

where N denotes the total number of steps, and ftokenn is the representation of the n-th step-token
obtained from the policy model. Scoren is the SPRM’s process score for n-th step.

Through this unified interface, a single network can generate reasoning trajectories and score them
in parallel, enabling joint training in an end-to-end manner. This design facilitates a straightforward
and efficient training pipeline for on-policy PRM learning, where both the policy model and the
SPRM continuously refine their parameters from shared experiences, thereby improving the overall
quality of the generated trajectories.

4.2 OPTIMIZATION OF REFLECTIVE GENERATIVE FORM

During optimization, we train the policy model and the SPRM head simultaneously. For the pol-
icy model, we adopt Group Relative Policy Optimization (GRPO) following Shao et al. (2024). To
optimize the SPRM head, we propose a Self-supervised Process Reward Loss (SPR Loss), which
enables learning process discrimination ability only from outcome reward (e.g. final answer correct-
ness). The SPR Loss is formulated as follows,

LSPR =
1

N

N∑
n=1

I(y = ŷn) ∗BCELoss(Scoren, ŷn), where ŷn = I(Scoren > 0.5), (6)

where I is the indicator function, n denotes the step-tokens, Scoren is SPRM’s process score on
step n, ŷn is the pseudo label from SPRM on step n, and y denotes whether the final answer from
the policy model is correct. Since a correct final answer may include incorrect intermediate steps
and vice versa (Lightman et al., 2023), we optimize the process score based on both final answer
correctness and the pseudo label from SPRM. Specifically, we only update the steps when the pseudo
label is consistent with the final answer’s correctness. This dynamic filtering allows the model to
avoid noisy samples and focus on the most representative steps of correct and incorrect solutions.
Thus, by enlarging the score gap between correct and incorrect steps, SPRM can progressively learn
the process evaluation ability with only final annotations.

4.3 INFERENCE WITH REFLECTIVE GENERATIVE FORM

In the inference stage, our Reflective Generative Form is naturally suitable for TTS where the SPRM
can provide guidance for selecting the high-quality reasoning trajectory from the policy model.
The total inference process divides into three steps(shown in Fig. 2(b)): (1) For the given ques-
tion, the policy model first samples k thinking processes as the candidate reasoning trajectories:
think1, think2, . . . , thinkk. (2) The SPRM evaluates the steps in each process and obtains the final
score by the geometric mean of corresponding process scores: S1, S2, . . . , Sk. (3) The reasoning
trajectory with the highest final score is chosen and guides the policy model to answer the question
(Eq.7).

answer = LLManswer(thinki∗), where i∗ = argmax(S1, S2, . . . , Sk) (7)

5
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4.4 DISCUSSION WITH OTHER METHODS

Comparison with other PRMS. Recent works (Rafailov et al.; Chen et al., 2025; Zhong et al.,
2024; Yuan et al., 2024) can also generate process reward with only final answers. However, Rafailov
et al.; Zhong et al. (2024) require the reference model in Reinforcement Learning to help calculate
the reward, which is mainly used for improving the training efficiency of the policy model. Chen
et al. (2025); Yuan et al. (2024) require training additional LLM-based reward models (e.g., Llama-
3-70B-Instruct in Chen et al. (2025) and ImplicitPRM-8B in Yuan et al. (2024)). Overall, these
methods still depend on external LLMs as the reward model, thus assigning the process evaluation
capability to an additional model. In comparison, our method unifies the process reward model and
the policy model within a single LLM, thereby integrating both reasoning and evaluation capabilities
into a single model.

Comparison with other External TTS methods. Recent works Toshniwal et al. (2025); Qi et al.
(2025) also focus on External TTS. Toshniwal et al. (2025) integrates both response generation
and evaluation into a single LLM by feeding the model’s own responses back to itself through
manually designed prompts. Qi et al. (2025) trains an additional reward model to jointly evaluate
multiple sampled trajectories. However, these approaches still fail to fully unify the generation and
evaluation processes. In Toshniwal et al. (2025), it requires manually designed prompts. Besides,
its generation and evaluation process are decoupled: the model must be queried multiple times
to compare candidate responses, and its evaluation requires an autoregressive reasoning process,
which introduces additional computational cost. Meanwhile, Qi et al. (2025) still requires training
an additional LLM for evaluation. In contrast to them, our RGM unifies generation and evaluation
in both model architecture and inference pipeline, requiring neither additional models nor extra
forward passes.

5 EXPERIMENT

5.1 BASELINE & DATASET

We conduct experiments on the baseline models with different sizes and architectures, including
DeepScaleR-1.5B-Preview (Luo et al., 2025), DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025),
QWQ-32B(Team, 2025), Qwen3-32B (Team, 2025), and GPT-OSS-20B. For all models, we add
the SPRM head into the second-to-last layer while keeping the remaining architecture unchanged.
Our training dataset is sampled from multiple publicly available math-related sources, including
NuminaMath (Li et al., 2024), OpenR1-Math-220k, DeepScaleR (Luo et al., 2025), LIMR (Li et al.,
2025), and OREAL-RL (Lyu et al., 2025). During data cleaning, first, we use a difficulty classi-
fication model trained on the MATH dataset to filter out easy data. Then, we use the pass rate to
sample valuable data, following Li et al. (2025). We finally sampled 40k training examples. In the
training stage, the models are trained on 64 H200 GPUs with batch size of 128 and response length
of 32k. We train the models using GRPO and our proposed SPR loss for 80 iterations (140 steps for
QwQ-32B as explained in Sec5.4). In the inference stage, we use the sampling temperature of 1.0
for GPT-OSS-20B and 0.6 for other models. The output length is set to 38k for mathematical tasks
and 32k for other tasks. We denote RGMk for models reasoning with k candidates in Eq.7.

We evaluate our models on 4 challenging mathematical benchmarks: AIME2024/2025 (AIME,
2025), BRUMO25 (Balunović et al., 2025), and HMMT25 (Balunović et al., 2025). To verify the ro-
bustness and generalization on other general tasks, we further introduce an extra out-of-distribution
benchmark: LivecodeBench(240801-250201) (Jain et al., 2024) (for coding capability evaluation).

Following recent works Zou et al. (2025); Choudhury (2025), we use the results of BoN to test
the capability of PRMs. We adopt Pass@1 as the evaluation metric. For each problem, the model
generates only one final answer, and the Pass@1 score is computed as the proportion of correctly
solved problems. To improve the stability of the results, we repeat the evaluation 64 times and report
the average accuracy as the final score.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model TTS Mathematical Out-of-Distribution
AIME24 AIME25 BRUMO25 HMMT25 LiveCodeBench

Open-Source Models
s1-32B ✓ 56.7 50.0 - - -
R1-Distill-Qwen-32B - 72.6 49.6 68.3 33.3 57.2
GLM-Z1-32B-0414 - 80.8 63.6 - - 59.1
DeepSeek-R1-671B - 79.8 70.0 80.8 44.4 65.9

Closed-Source Models
Claude-3.5-Sonnet - 16.0 7.4 - - 37.2
GPT-4o-0513 - 9.3 11.6 - - 32.9
OpenAI o1-mini - 63.6 50.7 - - 53.8
OpenAI o1-1217 - 79.2 - - - 63.4
OpenAI o3-mini(med) - 79.6 74.8 80.0 53.0 67.4

DeepScaleR-1.5B - 43.1 30.0 37.4 19.3 22.9
+GRPO - 43.8 29.9 38.9 18.1 22.4
+RM-72B ✓ 50.7 33.2 41.4 16.7 24.2
+PRM-72B ✓ 52.5 34.6 42.0 18.2 22.4
+RGM8-5M ✓ 53.1(+0.6) 35.7(+1.1) 43.2(+1.2) 21.5(+3.3) 26.6(+2.4)

R1-Distill-Qwen-7B - 55.5 39.2 51.6 24.1 37.6
+GRPO - 54.7 41.2 52.3 25.0 39.4
+RM-72B ✓ 56.5 43.8 55.8 27.5 41.7
+PRM-72B ✓ 60.1 47.3 55.7 29.9 42.8
+RGM8-26M ✓ 66.3(+6.2) 48.3(+1.0) 56.9(+1.1) 33.4(+3.5) 44.1(+1.3)

QwQ-32B - 79.5 69.5 75.2 47.5 63.4
+GRPO - 79.9 70.5 75.8 47.1 63.4
+RM-72B ✓ 82.9 71.7 76.5 46.4 62.9
+PRM-72B ✓ 83.3 72.3 76.5 51.7 63.0
+RGM8-54M ✓ 84.2(+0.9) 73.4(+1.1) 78.1(+1.6) 53.1(+1.4) 64.0(+1.0)

Qwen3-32B - 81.4 72.9 78.0 51.9 64.1
+GRPO - 81.7 73.3 78.3 52.1 64.6
+RM-72B ✓ 80.5 74.4 79.2 52.3 63.3
+PRM-72B ✓ 82.9 77.1 83.5 56.7 64.9
+RGM8-54M ✓ 83.8(+0.9) 77.6(+0.5) 85.8(+2.3) 56.3(-0.4) 66.2(+1.3)

GPT-OSS-20B(med) - 80.0 72.1 71.2 55.5 67.9
+GRPO - 78.1 73.9 71.7 55.8 69.8
+RM-72B ✓ 80.8 77.7 71.8 60.4 68.4
+PRM-72B ✓ 82.2 78.1 73.1 58.9 69.5
+RGM8-17M ✓ 81.9(-0.3) 79.1(+1.0) 73.3(+0.2) 63.4(+3.0) 69.9(+0.4)

Table 1: Comparison of our RGM and other models. The best results are shown in bold.The values
in parentheses indicate the performance gain over other TTS methods. Lines start with ”RGM8-
XM” denotes our method and X denotes the number of parameters (in millions) of our SPRM.

5.2 MAIN RESULTS

Table 1 summarizes the performance of our proposed RGM across four representative benchmarks.
The baseline is the models trained with only GRPO on our training set. To evaluate the effectiveness
of RGM, we compare it with two widely adopted large-scale reward models: Qwen2.5-Math-RM-
72B (an outcome reward model trained on 600k math problems) (Yang et al., 2024) and Qwen2.5-
Math-PRM-72B (a process reward model trained on 500k math problems) (Zhang et al., 2025).
These reward models are also applied to the baseline models with GRPO training. When testing
with TTS, we sample 8 candidates for each problem and predict the final answer based on the
best candidate using the reward model. As listed in Table 1, the baseline with GRPO has similar
results to the basic policy models. This is reasonable as we only trained the policy models with a few
iterations. After using RGM, our method consistently surpasses the baseline and the original models
by a significant margin, especially on mathematical tasks. This verifies that the main improvement
of RGM comes from our proposed SPRM. When comparing with other reward models, despite
having only million-level parameters, our RGM achieves comparable or even better performance
than billion-level reward models. Specifically, our RGM outperforms other 72B reward models on
AIME25, BRUMO25, and LiveCodeBench for all models. On AIME24 and HMMT25, our RGM
still surpasses other 72B reward models on most architectures. Finally, we also compare RGM with
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Figure 3: Evaluation of varying numbers of candidate reasoning trajectories.

Model Loss AIME24 LiveCodeBench

DeepScaleR-1.5B+RGM32
BCELoss 56.7 27.9
SPRLoss 57.9 28.1

R1-Distill-Qwen-7B+RGM32
BCELoss 69.1 43.9
SPRLoss 70.2 44.4

Table 2: Evaluation on SPRLoss.

several advanced open-source models (DeepSeek-R1-Distill-Qwen-32B, GLM-Z1-32B-0414 (GLM
et al., 2024), s1-32B (Muennighoff et al., 2025), and DeepSeek-R1-671B (Guo et al., 2025)) and
closed-source models (Claude-3.5-Sonnet-1022, GPT-4o-0522, OpenAI o1-mini, OpenAI o1-1217,
and OpenAI o3-mini-medium). Our RGM also surpasses all these advanced LLMs, Especially on
mathematical tasks, R1-Distill-Qwen-7B with RGM achieves performance comparable to OpenAI
o1-mini, and QwQ-32B with RGM achieves performance comparable to OpenAI o3-mini. These
demonstrates the ability of our RGM to improve the performance upper bound of advanced models.

In summary, the results demonstrate that: 1) With substantially fewer parameters and less train-
ing data, the proposed SPRM achieves superior performance. This highlights the effectiveness of
RGM in enhancing reasoning ability without the need for additional large-scale reward models. 2)
Although SPRM is trained only on mathematical data, the improvements in reasoning capability
generalize to other domains (e.g., Qwen3-32B improves from 64.6 to 66.2 on LiveCodeBench). Ap-
pendix A further demonstrates its generalization ability on Chinese tasks. These results confirm
that the reasoning gains from RGM are not limited to mathematical tasks. Instead, they generalize
robustly to other domains, highlighting RGM’s strong transferability.

5.3 ABLATION STUDY

The candidate number in SPRM. To examine the effect of the number of candidate reasoning
trajectories k, we report the results for different k in Fig. 3. The results of Qwen2.5-Math-RM-
72B and Qwen2.5-Math-PRM-72B are also listed. It is shown that a larger k results in a higher
performance. Besides, across different k and model sizes, SPRM consistently outperforms other
large scale reward models, indicating its strong ability to distinguish between high and low quality
reasoning trajectories. The detailed examples of SPRM are shown in Appendix.E

Effectiveness of self-supervised optimization. We evaluate the effectiveness of SPRLoss in Ta-
ble 2. Compared with using the final answer correctness as process-level supervision for PRM
training, our proposed self-supervised optimization method achieves larger performance gains on
both 1.5B and 7B models. Furthermore, Fig. 4 shows the prediction score gap between correct and
incorrect solutions. Compared to the BCELoss, SPRLoss demonstrates stronger discriminative ca-
pability with a larger score gap. This indicates that treating final answer correctness as process-level
labels introduces substantial label noise, which harms the optimization. In contrast, SPRLoss lever-
ages self-supervised signals to reduce the impact of noisy supervision, leading to stable and accurate
training.

The calculation of final score. In Eq. 5, we compute the final score using the geometric mean of
the process scores. In Table 3, we compare the geometric mean with two alternatives: the arithmetic
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DeepScaleR-1.5B+RGM R1-Distill-Qwen-7B+RGM

Training steps Training steps

S
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Figure 4: The prediction score gap between correct and incorrect solutions. The blue curve shows
the SPRLoss. The red curve shows the BCELoss.

Method AIME24 AIME25 BRUMO25 HMMT25
Product 44.2 31.1 40.0 17.9
Arithmetic mean 52.9 35.2 43.3 21.1
Geometric mean 53.1 35.7 43.2 21.5

Table 3: Evaluation on the calculation of final score on DeepScaleR-1.5B+RGM8..

DeepScaleR-1.5B+RGM R1-Distill-Qwen-7B+RGM QwQ-32B+RGM

Aha Moment

Aha Moment

Aha Moment

Qwen3-32B+RGM GPT-OSS-20B+RGM

Aha Moment
Aha Moment

Training steps Training steps Training steps Training steps Training steps

F
in

al
 s

co
re

s

Figure 5: The training process of SPRM. The blue and red curves denote the final score on correct
and incorrect reasoning trajectories. The green dashed line indicates the ”aha moment”.

mean and the direct product of scores. The results show that the geometric mean achieves the
best performance, , and there is a large gap between the product and the geometric mean of process
scores. This is expected, as for long reasoning trajectories, the score tends to diminish as the number
of steps increases, causing the final score to be overly sensitive to the response length. In contrast,
the geometric mean alleviates this bias by reducing the impact of trajectory length.

5.4 AHA MOMENT OF RGMS

Guo et al. (2025); Hu et al. (2025) propose that the ”aha moment” enables the model to perform self-
correction and self-reflection. In RGM, as we propose an SPRM head to evaluate itself, we define
an ”aha moment” as the step at which the SPRM starts to discriminate the correct and incorrect
reasoning trajectories. In Fig. 5, we present curves of the final evaluation scores from RGM for
correct and incorrect reasoning trajectories. At the initial phase of training, due to the prediction bias
of the initial model, the scores for both correct and incorrect samples increase rapidly, indicating that
the SPRM is dominated by the correct samples. Besides, the pseudo labels of the initial model also
contain noisy interference for optimization. However, we observe a step at which the optimization
behaviors for correct and incorrect reasoning trajectories begin to diverge, indicating that the SPRM
starts to acquire the ability to discriminate — the ”aha moment”. Formally, the ”aha moment” is
defined as the first training step at which the slope of the curve for correct trajectories becomes
positive while that for incorrect trajectories becomes negative.

This observation indicates that, under our unified training framework and self-supervised loss, the
bias issue can be mitigated. After this ”aha moment”, RGM iteratively learns to evaluate itself
with SPRLoss, resulting in a clear distinction between correct and incorrect reasoning trajectories
and thereby enabling effective external TTS. The typical ”aha moment” case study can be found in
Appendix.E. Specifically, since the ”aha moment” for QwQ-32B occurs around 60 steps, we further
train the model for additional 60 steps to ensure model convergence.
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5.5 PROCESS-LEVEL EVALUATION OF RGMS

To evaluate whether the improvements of RGMs come from process-level rewards, we conduct
an additional experiment in which only the score of the final step token is used (treating SPRM
as an outcome reward model). As shown in Table 4, incorporating step-level tokens within
the reasoning trajectory leads to notable improvements in final performance (4.6/0.7/0.7/2.7/0.9
on AIME24/AIME25/BRUMO25/HMMT25/LiveCodeBench). This highlights the importance of
process-level rewards in guiding reasoning.

Method AIME24 AIME25 BRUMO25 HMMT25 LiveCodeBench

Outcome-level 48.5 35.0 42.5 18.8 25.7

Process-level 53.1 35.7 43.2 21.5 26.6

Table 4: Performance of DeepScaleR-1.5B+RGM8.

Furthermore, we introduce a process-level TTS method based on Monte Carlo Tree Search (MCTS)
for evaluation. MCTS requires the reward model to select intermediate steps during the reasoning
process, rather than only evaluating the whole reasoning trajectory. The inference settings for this
experiment are provided in Appendix C. In Table 5, increasing the maximum number of searching
tokens to means more intermediate steps are selected by our SPRM. And the performance consis-
tently improves from 43.8 to 52.8 with increasing searching tokens. These results demonstrate the
effectiveness of SPRM in providing high-quality process-level guidance.

Searching Tokens(k) 0 40 80 120 160

Accuracy(%) 43.8 48.8 50.0 51.7 52.8

Table 5: Performance of DeepScaleR-1.5B+RGM with MCTS on AIME24. A larger searching
token number indicate more process steps are selected by our SPRM.

However, the performance of MCTS remains below that of the Best-of-N strategy reported in Ta-
ble 1. We attribute this gap primarily to the computational overhead of tree-based search, which
leads to incomplete exploration under our experimental settings. Specifically, long reasoning trajec-
tories in challenging tasks correspond to deep search levels in MCTS. This results in a very large
search space, as the total number of explored nodes grows rapidly with increasing depth. Conse-
quently, the computational overhead of MCTS becomes extremely high. Under a limited compute
budget, stopping the search at an early stage not only restricts the search space but also risks miss-
ing errors that appear in later steps of the reasoning trajectory, resulting in degraded performance.
Nevertheless, the observed gains over the baseline confirm the capability of our RGMs to identify
and search for better reasoning processes.

6 CONCLUSION

In this paper, we propose a novel Reflective Generative Form, which enables a single LLM to both
generate and select high-quality reasoning trajectories for Test-Time Scaling (TTS). Based on this
form, we present the reflective generative model (RGM). Specifically, we design a unified interface
that integrates the policy model and process reward model (PRM) within a single network, resulting
in low parameter overhead and efficient TTS inference. A self-supervised process reward model
(SPRM) is proposed to learn process-level evaluation with only final answer annotations. Exper-
iments show our QwQ-32B equipped with our RGM reaches comparable performance to OpenAI
o3-mini and our SPRM with million level parameters outperforms billion level reward models across
most tasks and models.
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A EXTEND ON CHINESE TASKS

We adopt C-Eval (Huang et al., 2023) to evaluate the Chinese QA capability of our RGM. During
inference, all tokens containing ‘\n’ are treated as step-tokens. As shown in Table 6, although
RGM is trained on English data, it consistently improves Chinese QA performance across all model
architectures. These results suggest that RGM provides stable gains without causing performance
degradation on unseen tasks, thereby demonstrating its applicability to more general scenarios.
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Model DeepScaleR-1.5B R1-Distill-Qwen-7B QwQ-32B Qwen3-32B GPT-OSS-20B(med)

Baseline 39.9 56.8 89.4 89.0 67.8

+RGM8 43.9 62.5 89.6 89.5 68.1

Table 6: Performance of RGM on C-Eval.

B ADDITIONAL ABLATION STUDIES

The threshold in SPRLoss. In Eq. 6, we adopt a hard threshold of 0.5 to obtain pseudo labels.
Here, we further compare two dynamic alternatives that use the sample-wise mean and median
as the threshold. The results are reported in Table 7. All three thresholding strategies achieve
comparable performance, while the hard threshold performs slightly better. We attribute this to the
fact that a fixed hard threshold provides a sample-independent and absolute criterion for pseudo-
label partitioning, enabling the predicted scores to be comparable across different samples.

Method AIME24 AIME25 BRUMO25 HMMT25
Mean 50.0 35.0 45.0 21.1
Median 51.7 35.0 42.5 20.0
Hard 53.1 35.7 43.2 21.5

Table 7: Evaluation on the threshold in SPRLoss on DeepScaleR-1.5B+RGM8.

Independent reward model. In Table 8, we train an external outcome reward model and an RGM
without parameter sharing, as shown in Table 8. Compared with the outcome reward model, our
RGM has smaller total parameters (share backbone), simpler training pipeline (one stage training),
and higher performance.

As for the independent RGM, the results indicate that the shared-parameter and external models
achieve comparable performance improvement compared with the baseline (around 1% accuracy
difference). This slight bias is reasonable as we combine 2 tasks in a single model. Since the inde-
pendent reward model also leads to huge training cost (training 2 LLMs) and parameter cost(2X
parameter cost than RGM), This does not affect our main conclusion that our method offers a
lightweight and effective approach for External TTS.

Method Extra Param AIME24 AIME25 BRUMO25 HMMT25
Deepscaler-1.5B - 43.1 30.0 37.4 19.3

+Independent ORM 1.5B 51.7 33.3 41.7 18.9
+Independent RGM8 1.5B 54.7 36.7 43.8 21.9
+RGM8 5M 53.1 35.7 43.2 21.5

Table 8: Evaluation on independent reward models on DeepScaleR-1.5B+RGM8.

The position of SPRM. We add the SPRM to the second-to-last layer of the policy model. To
further examine the effect of its placement, Table 9 compares it with attaching the SPRM to the
final layer. The results showed that using the second-to-last layer can obtain better performance.
This behavior is expected. First, the final layer must directly compute similarity with the policy
classifier kernels for prediction, which limits its ability to retain contextual information. Second, us-
ing a single feature representation for two different classifiers introduces task interference, whereas
intermediate-layer features are more suitable for auxiliary objectives.

Comparison with majority. Table 10 further shows the comparison with majority voting. We
can see that our SPRM obtains better performance. Besides, our RGM is more flexible. For some
general scenarios (e.g., code generation), simple majority voting may not be applicable.
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Method AIME24 AIME25 BRUMO25 HMMT25
Last layer 48.8 34.6 41.3 18.8
Second-to-last layer 53.1 35.7 43.2 21.5

Table 9: Evaluation on the position of SPRM on DeepScaleR-1.5B+RGM8..

Method AIME24 AIME25 BRUMO25 HMMT25
Majority 50.4 34.0 41.7 20.3
RGM 53.1 35.7 43.2 21.5

Table 10: Comparison with majority voting on DeepScaleR-1.5B+RGM8..

The model design. In this paper, we implement SPRM using two linear layers. Table 11 further
analyzes different SPRM architectures: a single linear layer and a two-layer model with an additional
gating mechanism. The results indicate that a single linear layer is insufficient for reliable evaluation,
whereas a more expressive architecture yields better performance.

Method AIME24 AIME25 BRUMO25 HMMT25
Linear 48.5 35.5 38.9 20.0
Linear*2 + Gate 53.3 35.6 46.7 22.3
Linear*2 53.1 35.7 43.2 21.5

Table 11: Evaluation with different architectures of SPRM on DeepScaleR-1.5B+RGM8..

Comparison with ImplicitPRM. The ImplicitPRM (Yuan et al., 2024) also does not require pro-
cess annotations. However, it still depends on at least one additional reward model (the externally
trained 8B ORM) during prediction. In Table 12, we compare our RGM with ImplicitPRM-8B. The
results show that our RGM outperforms it while using fewer extra parameters. Moreover, similar
to previous PRMs, the ImplicitPRM requires a two-stage training and inference pipeline, while our
RGM unifies the process reward model and the policy model within a single LLM, enabling efficient
test time scaling.

Method Extra Param AIME24 AIME25 BRUMO25 HMMT25
Deepscaler-1.5B - 43.1 30.0 37.4 19.3

+ImplicitPRM 8B 52.5 35.5 40.8 20.0
+RGM8 5M 53.1 35.7 43.2 21.5

Table 12: Comparison with ImplicitPRM on DeepScaleR-1.5B+RGM8..

C DETAILS FOR MCTS

In the expanding stage, we expand 4 children for the selected node. Since the complete reasoning
trajectory is very long in challenging benchmarks, we generate 1024 tokens as 1 step in each node
to reduce the complexity of MCTS. Instead of performing full simulations to the end of a reasoning
trajectory, we directly use SPRM to estimate the value of current node during the searching stage.
This enables a more efficient evaluation at each step and is more suitable for evaluating the pro-
cess reward of our SPRM. To balance the computation cost, we set the maximum number of total
searching tokens during the MCTS process from 0 (without MCTS) to 160k for each question.

D DISCUSSION

Dependency of SPRM on Policy Models. Compared with existing pretrained reward models,
our proposed SPRM requires training on the target policy models, which introduces an additional
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training process when adapting to new policy models. However, we argue that such a design is
in fact necessary for building reliable reward models. Traditional pretrained reward models can
indeed be directly applied to unseen policy models, but they inevitably face the risk of out-of-
distribution mismatch when the output patterns of the target model deviate from those observed in
the reward model’s training data. For example, applying RM-72B on Qwen3-32B leads to a perfor-
mance drop of –1.2 on AIME24; applying PRM-72B on QwQ-32B results in a –1.1 performance
drop on HMMT25. To obtain better results, they still need to be finetuned to align the target model,
which results in a huge cost for training these large-scale LLMs. In contrast, our SPRM can be
trained together when optimizing the policy models, which actually results in no additional training
stages. Furthermore, SPRM adopts a lightweight architecture that converges within approximately
100 iterations. Thus, the training cost of SPRM is substantially lower than the optimization of the
policy model itself, making it both practical and efficient.

Transfer of SPRM. Since different LLMs have different hidden-state dimensions, our SPRM
cannot be directly applied to a new model. To address this issue, we add a linear projection layer
before the SPRM head to align the feature dimensions, and we only finetune the lightweight SPRM
module. In Table 13, we transfer an SPRM trained on Qwen3-32B to DeepScaleR-1.5B. The results
show that, without requiring any training of the policy model, the SPRM learned from one model
can be effectively transferred to another.

Method AIME24 AIME25 BRUMO25 HMMT25
Deepscaler-1.5B 43.1 30.0 37.4 19.3

+SPRM 53.1 35.7 43.2 21.5
+SPRMfrom32B 52.2 37.1 45.5 21.1

Table 13: Evaluation on transferring SPRM from Qwen3-32B to DeepScaleR-1.5B.

Limitation. First, despite the promising performance, our method requires the policy model to
first generate k complete reasoning trajectories, which can introduce latency. This is a common
problem for External TTS methods. However, unlike other External TTS methods that typically set
k from 64 to 512, we only set k=8 in most experiments, which makes it easy to obtain results through
batch-parallel inference and thereby ensures latency comparable to the original model. Second, for
tasks that do not require reasoning or require very little reasoning (e.g., real-world fact-based QA or
simple questions), our RGM is less effective due to the lack of reasoning rajectories and step tokens.
However, in these cases, we believe the main bottleneck is the LLM’s knowledge rather than TTS.

E CASE STUDY

Case study of aha moment. We show an example in Fig. 6. We fix the reasoning trajectory and
use RGM before and after the aha moment for scoring. In this case, the model mistakenly confuses
εk and εk+1, resulting in an incorrect solution. Our model fails to recognize the error before the aha
moment, while the model after the aha moment can correctly discriminate it.

Case study of SPRM Fig. 7 shows the visualization of step-wise evaluation scores from SPRM.
It can be observed that SPRM effectively identifies low-quality processes generated by the policy
model, including logical error (e.g. the misunderstanding of b in step 58 of example 1) and calcula-
tion error (e.g., the incorrect computation 9 × 21 + 7 = 193 in step 32 of example 2). SPRM assigns
low scores to these low-quality steps. Since SPRM only outputs process scores, we additionally
provide post-descriptions within the dashed boxes for better clarity.

F LLM USAGE STATEMENT

We declare that the LLM was only used as a general-purpose writing assistant to improve the gram-
mar of the manuscript. The LLM did not contribute to the research ideation, methodology design,
experimental execution, data analysis, or result interpretation.
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Example of Aha Moment in SPRM

Question: Let the sequence of rationals 𝑥1, 𝑥2, . . . be defined such that 𝑥1 = 25
11 and [𝑥𝑘+1 =

1
3

(
𝑥𝑘 + 1

𝑥𝑘
− 1

)
]. 𝑥2025 can be expressed as 𝑚

𝑛 for relatively prime positive integers 𝑚 and 𝑛. Find the
remainder when 𝑚 + 𝑛 is divided by 1000.

Reasoning Trajectories:
. . .

Step:
Alternatively, perhaps make a substitution. Let me define 𝜇𝑘 = 1/𝜀𝑘. Then,
1/𝜀𝑘+1 = −1/𝜀𝑘 + (8/9)/𝜀𝑘2

Multiply both sides by 𝜀𝑘2:
𝜀𝑘 = −𝜀𝑘 + (8/9)
Thus,
𝜀𝑘 + 𝜀𝑘+1 = 8/9
But no, not quite.

Score: 0.52 (before Aha Moment) -> 0.12 (after Aha Moment).
Post-description: Encounter calculation error, model confuses 𝜀𝑘 and 𝜀𝑘+1 during the simplifi-
cation.

. . .

1313

Figure 6: Comparison of SPRM’s predictions before and after the aha moment. Only key steps are
listed. The error steps are marked in red.
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Example 1

Question: Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who own a set of golf
clubs, and 562 who own a garden spade. In addition, each of the 900 residents owns a bag of candy hearts. There are
437 residents who own exactly two of these things, and 234 residents who own exactly three of these things. Find the
number of residents of Aimeville who own all four of these things.

Reasoning Trajectories:
. . .

Step 5:
However, in this case, we have four sets: diamond rings (D), golf clubs (G), garden spade (S), and candy hearts
(C).

Score: 1.00. Define variables.

. . .

Step 58:
The number of residents who own exactly two things is b = 437. This includes those who own exactly two
things among D, G, S, and those who own exactly one thing in D, G, S and exactly one thing in C.

Score: 0.44. Post-description: Encounter logical error. As everyone owns C, b should not include those who
own exactly two things among D, G, S.

. . .

Final score: 0.00

Example2

Question: Find the sum of all integer bases 𝑏 > 9 for which 17𝑏 is a divisor of 97𝑏.

Reasoning Trajectories:
. . .

Step 30:
Therefore, possible bases are 21 and 49.

Score: 1.00. Post-description: The model successfully solved the question and the correct answer is
21+49=70.

. . .

Step 32:
Let me check 𝑏 = 21:
Compute (1721) : (1 ∗ 21 + 7 = 28)
Compute (9721) : (9 ∗ 21 + 7 = 186 + 7 = 193)
Check if 28 divides 193? Wait, no, because 28*7=196, which is more than 193. Wait, perhaps my earlier
assumption was wrong.

Score: 0.04. Post-description: Encounter calculation error. 9 × 21 + 7 should be 196 rather than 193.
This causes the model to discard 21.

. . .

Final score: 0.03

Figure 7: SPRM’s predictions on reasoning trajectories. Only key steps are listed. Correct and error
steps are marked in green and red.
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