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ABSTRACT

We present a deep learning model for high-resolution probabilistic precipitation
forecasting over an 8-hour horizon in Europe, overcoming the limitations of radar-
only deep learning models with short forecast lead times. Our model efficiently
integrates multiple data sources - including radar, satellite, and physics-based nu-
merical weather prediction (NWP) - while capturing long-range interactions, re-
sulting in accurate forecasts with robust uncertainty quantification through consis-
tent probabilistic maps. Featuring a compact architecture, it enables more efficient
training and faster inference than existing models. Extensive experiments demon-
strate that our model surpasses current operational NWP systems, extrapolation-
based methods, and deep-learning nowcasting models, setting a new standard
for high-resolution precipitation forecasting in Europe, ensuring a balance be-
tween accuracy, interpretability, and computational efficiency. Code is available
at https://github.com/rafapablos/RainPro.

1 INTRODUCTION

Recent advances in artificial intelligence have generated significant interest in deep learning for
weather forecasting (Rasp et al., 2024; An et al., 2024). Deep learning excels at handling complex,
large-scale, high-dimensional data, making it well-suited for capturing intricate, nonlinear patterns
in spatio-temporal systems (Manzhu Yu & Li, 2024). Although deep learning has achieved remark-
able success in both nowcasting (Gao et al., 2024b; Gong et al., 2024) and medium-range forecasting
(Lam et al., 2023; Price et al., 2024), significant challenges remain. Deep learning models for now-
casting are often limited to very short lead times (up to two hours). In contrast, medium-range
models, which predict broader atmospheric dynamics for up to 10 days, typically operate at coarser
resolutions and are influenced by precipitation-specific biases in the training datasets (Lavers et al.,
2022). As a result, they struggle to capture small-scale precipitation features, like local showers,
often leading to the exclusion of precipitation forecasts in medium-range models (Lam et al., 2023).

This work addresses the challenge of forecasting precipitation for up to 8 hours at high spatio-
temporal resolutions, bridging the gap between nowcasting and medium-range forecasting. Fore-
casting over an 8-hour horizon is critical for timely predictions that help mitigate risks like flooding
and optimize resource management in agriculture, energy, or transportation. This task is particularly
difficult due to the stochastic and sparse nature of precipitation, especially over extended lead times.
Designing a deep learning model for this task requires addressing skewed and intermittent precipi-
tation distributions, incorporating multi-sensor data, and ensuring robust uncertainty quantification.

Most existing deep learning-based nowcasting methods focus on generating radar-like precipitation
forecasts (Ravuri et al., 2021; Gao et al., 2024b), but these become increasingly challenging and less
accurate with longer lead times. Instead, probabilistic models emphasize uncertainty estimation and
provide a more accurate and practical representation of rainfall at varying intensities. The MetNet
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family of models (Sønderby et al., 2020; Espeholt et al., 2022; Andrychowicz et al., 2023) repre-
sents state-of-the-art deep learning-based systems for probabilistic precipitation forecasting. These
models produce high-resolution forecasts for 8-24 hours in the United States, outperforming oper-
ational NWP systems. They achieve efficient probabilistic forecasting using cross-entropy loss on
precipitation bins, requiring only one forward pass rather than an ensemble. However, this approach
neglects the ordinality between bins. In addition, they rely on lead time conditioning, where the
model generates forecasts for only one lead time at a time. While this approach is fully paralleliz-
able across multiple GPUs, it significantly increases inference computational demands. Moreover,
training MetNet requires substantial computational resources and is limited to the United States.

We propose RainPro-8, an efficient deep learning model to estimate rainfall probabilities over 8
hours by determining the probability of different levels of precipitation at a given location and time.
RainPro-8 is an efficient model based on MetNet-3 (Andrychowicz et al., 2023) that uses less than
20% of MetNet-3’s training parameters to achieve 8-hour high-resolution precipitation forecasting
across Europe — a region characterized by diverse climates, complex terrain, and highly variable
precipitation dynamics (Ehmele et al., 2020). Its training objective explicitly accounts for the ordi-
nality between precipitation bins. Lastly, it demonstrates that it is possible to generate all lead times
simultaneously by downweighing later lead times during training, greatly enhancing inference ef-
ficiency and improving temporal consistency. RainPro-8 model shows substantial improvements
over traditional precipitation forecasting methods, including NWP models and extrapolation-based
techniques, as well as deep-learning nowcasting models, across various rain intensities for the next
8 hours. Evaluation on the widely used SEVIR (Veillette et al., 2020) benchmark also demonstrates
strong and robust performance beyond 8-hour multi-source tasks. Our main contributions include:

• We propose an efficient neural architecture and training strategy designed to integrate multi-
source data with varying temporal and spatial resolutions. The model produces consistent
probabilistic predictions across all forecast lead times in a single forward pass, enabling
efficient and improved forecasts.

• We conduct an extensive empirical evaluation demonstrating that RainPro-8 outperforms
existing operational forecasting methods by 65% and achieves significant improvements
over state-of-the-art deep learning nowcasting models. We further provide comprehensive
ablation studies and model attribution analysis to quantify the impact of key design choices
and input modalities.

• We demonstrate the versatility of RainPro by adapting it to radar-only 2-hour precipita-
tion prediction on the SEVIR benchmark, where it achieves state-of-the-art performance
compared to both deterministic and generative nowcasting approaches.

2 RELATED WORK

Traditional methods for weather forecasting are mostly numerical weather prediction (NWP) mod-
els, which simulate atmospheric dynamics using mathematical equations, also as ensembles over
multiple simulations (Toth & Kalnay, 1997). NWP models demand significant compute, especially
for ensembles, which restricts their spatial and temporal resolution. Their spin-up time results in
poor performance for short lead times (Ma et al., 2021). Extrapolation-based methods, e.g. PyS-
TEPS (Pulkkinen et al., 2019), RainyMotion (Ayzel et al., 2019) are limited to reduced forecast
lengths due to their assumptions on constant motion and intensity (van Nooten et al., 2023).

Deep learning formulates precipitation nowcasting as a spatio-temporal prediction (An et al., 2024).
Approaches in this area include the use of convolutions in recurrent networks (Shi et al., 2015;
2017b; Wang et al., 2023b; Ma et al., 2024), the U-Net architecture (Ayzel et al., 2020; Fernández
& Mehrkanoon, 2021; Zhang et al., 2023; Trebing et al., 2021), transformers (Gao et al., 2024b; Wu
et al., 2024), diffusion models (Leinonen et al., 2023; Gao et al., 2024a; Yu et al., 2024; Gong et al.,
2024), and adversarial training (Ravuri et al., 2021). Some work improves loss functions to tackle
data imbalance, blurriness, and sparsity in precipitation nowcasting models (Xu et al., 2024a; Ko
et al., 2022; Yan et al., 2024). Still, most efforts focus on short-term forecasts (1 to 3 hours) using
only radar, where reduced lead time eliminates the need for multiple data sources, large contexts, or
accounting for higher uncertainty associated with 8-hour predictions.
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Limited work exists for lead times beyond 3 hours. The Weather4Cast competition (Gruca et al.,
2022) tackles 8-hour precipitation forecasting from satellite alone, but it has shown limited success
compared to traditional methods (Li et al., 2023) due to challenges in estimating current precipitation
from satellite imagery and resolution issues compared to radar. For 6-hour precipitation nowcasting,
NPM (Park et al., 2024) relies solely on satellite data without data fusion, while Nowcast-to-Forecast
(An, 2023) combines satellite and radar but is limited by a biased rainy-day dataset. Kim et al. (2024)
only compare hourly forecasts to extrapolation baselines, which are ineffective for longer-term pre-
dictions. TAFFNet (Wang et al., 2023a) provides 12-hour predictions but neglects uncertainty and
relies on radar and NWP data at equal resolutions not always available in practice.

MetNet-3 (Andrychowicz et al., 2023) is a leading deep learning model for precipitation forecasting,
delivering 24-hour forecasts with high spatio-temporal resolution in the U.S. by integrating radar,
weather station, satellite imagery, assimilated weather states, and other data in a transformer-based
architecture. However, its training requires significant time and resources, involving hundreds of
Tensor Processing Units (TPUs) for multiple days. Its reliance on high-quality data available only
for the contiguous U.S. and the lack of public access to its code and data restrict its broader use.
In this work, we show how to adapt its approach to problem formulation, data preprocessing, and
training optimization for smaller and more efficient models and specific data requirements.

Medium-range forecasting models like GraphCast (Lam et al., 2023), Pangu-Weather (Bi et al.,
2023), or GenCast (Price et al., 2024) rely on reanalysis datasets like ERA5 (Hersbach et al., 2020),
which suffer from low resolution, delays, and biases, especially in surface variables and precipitation
(Lavers et al., 2022). Precipitation, highly variable and challenging to predict, is underrepresented in
such models (Rasp et al., 2024), with most failing to integrate critical observational data like radar.
While some models, like NeuralGCM (Yuval et al., 2024), incorporate global precipitation predic-
tions, they lack the high resolution and operational frequency needed for our setting. Other work
(Xu et al., 2024b) has tried to address the gap between nowcasting and medium-range forecasting,
but model performance drops at high temporal resolutions and focuses only on low precipitation.

3 RAINPRO-8 METHOD

3.1 PROBABILISTIC PRECIPITATION FORECASTING

Precipitation forecasting is a spatiotemporal prediction problem, where the goal is to predict Tout
future radar frames Y based on a sequence of Tin past radar frames X:

X = [Rt]
0
t=−Tin+1 ∈ RTin×H×W ,

Y = [Rt]
Tout
t=1 ∈ RTout×H×W ,

(1)

where Rt represents the precipitation intensity at timestep t based on radar maps of size H ×W .

Radar data alone is insufficient for accurate precipitation forecasting over 8 hours because its
ground-based systems limit its coverage and cannot capture atmospheric conditions beyond wa-
ter vapor. Additional data sources like satellite or NWP offer broader coverage and a more com-
prehensive representation of the atmosphere. Such additional sources introduce challenges due to
differences in temporal frequency and spatial resolution, requiring careful preprocessing and align-
ment as detailed in Appendix A. The generalized input X , with heterogenous sources Sources, is
given by:

X =
⋃

S∈Sources

[St]
0
t=−Tin s+1, (2)

where St ∈ RCs×Hs×Ws represents a frame from the data source S, characterized by a specific
number of channels, spatial dimensions, and resolution.

In addition to spatiotemporal accuracy, a critical priority are probabilistic forecasts: What is the
probability of a specific amount of rainfall at a given location and time? Commonly, quantifying
uncertainty involves generating multiple forecasts for ensembles to calculate probabilities, suffering
from substantial computational demands. Instead of ensemble methods, our approach directly pre-
dicts the probability distribution of precipitation intensities, similar to MetNet 1-3 (Sønderby et al.,
2020; Espeholt et al., 2022; Andrychowicz et al., 2023). Our goal is to generate accurate probability
maps to capture uncertainty and variability in precipitation patterns, instead of radar-like outputs,
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which become less reliable over longer lead times. To model probabilities for different precipitation
intensity classes I , we redefine the target as probability maps for each precipitation intensity class:

Y =

Tout⋃
t=1

|I|⋃
c=1

Pt,c ∈ RTout×|I|×H×W , (3)

where I is the set of intensity classes that divides the possible precipitation intensities into ranges or
bins, and Pt,c is the probability map for Rt with respect to class Ic.

In MetNet, Pt,c = P (Rt ∈ Ic) predicts the probability of precipitation intensity within predefined
ranges, trained under cross entropy loss. However, this approach ignores the intrinsic order of the
intensity classes, which we address with our proposed Ordinal Consistent loss.

3.2 ORDINAL CONSISTENT LOSS

To generate probabilistic forecasts that preserve ordinality among precipitation classes, we model
Pt,c as P (Rt ≥ min(Ic)). To ensure monotonicity (Pt,c ≤ Pt,c−1), we reformulate Pt,c using
Bayes’ theorem, given that P (Rt ≥ min(Ic−1)|Rt ≥ min(Ic)) = 1, and redefine the model outputs:

Pt,c = P (Rt ≥ min(Ic))

=
P (Rt ≥ min(Ic)|Rt ≥ min(Ic−1))× P (Rt ≥ min(Ic−1))

P (Rt ≥ min(Ic−1)|Rt ≥ min(Ic))

= P (Rt ≥ min(Ic)|Rt ≥ min(Ic−1))× Pt,c−1

(4)

Model output P (Rt ≥ min(Ic)|Rt ≥ min(Ic−1)) for each intensity class c guarantees monotonic
probabilities Pt,c that respect the inherent order of precipitation classes. For the lowest intensity
class, the model outputs P (Rt ≥ min(I1)). This approach, as in Fernandes & Cardoso (2018) for
semantic segmentation, improves both interpretability and consistency in the generated forecasts.
For any class, probability Pt,c is the cumulative product of model outputs for all preceding classes:

Pt,c = P (Rt ≥ min(Ic) | Rt ≥ min(Ic−1))× Pt,c−1

=

c∏
j=2

P (Rt ≥ min(Ij) | Rt ≥ min(Ij−1))× P (Rt ≥ min(I1))
(5)

The loss uses target binary masks indicating whether Rt ≥ min(Ic) for each class and timestep. The
loss between the target masks and predicted probabilities is Binary Cross Entropy (BCE) without re-
duction to yield a per-pixel loss for each spatial location, class, and timestep. The ordinal consistent
mask for every sample (Rt ≥ min(Ic−1)) ensures that for each intensity class c, the loss is averaged
only over pixels where the previous class is activated, encouraging the model to take advantage of
class ordinality. Note that the loss is not averaged over prediction pixels that lack ground truth values
(Rt(h,w) = −1), typically missing due to the limited coverage of radar data.

L =
1

|S|
∑

(t,c,h,w)∈S

BCE(t, c, h, w), where S = {(t, c, h, w) : Rt(h,w) ≥ min(Ic−1)} (6)

3.3 SINGLE-PASS PREDICTIONS

Precipitation nowcasting becomes significantly harder as lead times increase, which can negatively
impact the model training. Auto-regressive models focus on one step at a time for stability but
struggle when input sources differ from targets. MetNet tackles this with lead time conditioning,
which supports multiple sources, but this approach significantly reduces inference efficiency and
may cause temporal inconsistencies between lead times.

Instead, we make single-pass predictions to generate all forecast timesteps in one forward pass,
reducing resource requirements, accelerating training convergence and inference, and improving
temporal consistency in the outputs. The model encodes timestamps into the channel dimension,
with the output B(TC)HW reshaped to B T C HW , where T represents all timesteps.
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MetNet-3 uses lead time sampling for more frequent use of samples with shorter lead times during
training. In contrast, we propose lead time weights, where all lead times are included in every
training sample, but are weighted in the loss function to reduce the impact of longer lead times. This
ensures that the model still prioritizes earlier lead times during training, and improves performance
across the entire range of lead times, including the more challenging longer ones. Thus, we multiply
the pixel-wise loss function by lead time weight Wt, normalized from an exponential distribution
with decay rate α, determining the relative weight of the first timestep over the last one.

weightsexp[t] = exp(−α× t) (7)

weightsnorm[t] =
weightsexp[t]∑

weightsexp[t]
(8)

Wt =
weightsnorm[t]

weightsnorm
(9)

where weightsexp is the weights based on exponential decay, weightsnorm is the normalized weights,
and Wt is the rescaled weights so the total loss scale remains consistent with the unweighted case.

3.4 ARCHITECTURE

We design our architecture to forecast precipitation for a 512×512km2 patch. Assuming an average
precipitation displacement rate of 1km per minute (Sønderby et al., 2020), we use 512km of spatial
context on every side of the target patch (15362km2) to provide our model with enough input context
for all 8-hours of lead time. We use a U-Net (Ronneberger et al., 2015) with MaxViT (Tu et al., 2022)
blocks to efficiently process multi-resolution data (Figure 1), similar to MetNet-3 (Andrychowicz
et al., 2023). Key differences include single-pass predictions without lead time conditioning (Section
3.3), early downsampling in the encoder, halving internal channels, and removing topographical
embeddings, all contributing to a reduced parameter count of 36.7M from the original 227M.
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Figure 1: RainPro-8 architecture, optimized for reduced parameter count and efficiency, integrating
multiple data sources of varying resolution for simultaneous prediction of all lead times.

The architecture begins with data fusion on the encoder, using Space-to-Depth convolutions
(Sunkara & Luo, 2023) and ResNet blocks (He et al., 2016). Input data is transformed from
BTCHW to B(TC)HW and merged with sources at matching resolutions. To balance efficiency
and performance, we only use the full input context of 512km at 8km and 16km inputs, and lower
input context of 256km at 4km resolution. The encoder aggregates features for each resolution into a
low-resolution representation while preserving skip connections for the U-Net decoder. To improve
memory efficiency, we apply downsampling before ResNet blocks instead of after.
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The low-resolution representation is processed by 12 MaxViT blocks. Based on Vision Transformer
(Dosovitskiy et al., 2021), they combine local neighborhood and global gridded attention aggre-
gate information across the full 15362km2 input patch. The decoder, using Transposed Convolu-
tions (Long et al., 2015) and ResNet blocks, reconstructs high-resolution probability maps from the
MaxViT output, while leveraging encoder skip connections. All forecast timesteps and intensity
classes are generated by outputting P (Rt ≥ min(Ic)|Rt ≥ min(Ic−1)) (Section 3.2) in a single
forward pass with timestamps encoded into the channel dimension (Section 3.3). For geographical
alignment, representations are padded and cropped at each resolution. For example, 4km represen-
tations are padded equally on all sides before concatenating with 8km inputs, and MaxViT output
is cropped to the target region with extra context for upsampling, later cropped to 5122km2 for the
final output.

4 EXPERIMENTS

RainPro-8 is implemented with PyTorch (Ansel et al., 2024) and PyTorch Lightning (Falcon & team,
2025), trained for 100k steps using a batch size of 16, validating every 2,000 steps. Training uses
a static learning rate of 3E-4, AdamW optimizer with a weight decay of 0.1 and betas (0.9, 0.999),
Exponential Moving Average (EMA) decay of 0.99975, dropout of 0.1, maximum stochastic depth
(Huang et al., 2016) of 0.2, and lead time decay rate of 10. We use 256 channels throughout the
entire network, totaling 36.7 million parameters. Any other network hyperparameters follow those
of MetNet-3 (Andrychowicz et al., 2023). The model with the lowest validation loss is selected.
Training is performed on an NVIDIA H100 SXM5 GPU and requires approximately 13 hours (cf.
App. F).

We use multiple data sources as input to our precipitation forecasting model, each matched to its
supported spatial resolutions. RainViewer1 radar composites serve as high-resolution ground truth
at 4km and 8km resolutions to capture local detail and broader context. Satellite imagery from
EUMETSAT2 provides cloud-related features at 8km resolution, and NOAA’s GFS3 provides atmo-
spheric variables and precipitation forecasts at 16km resolution. Topographical information from
Copernicus DEM4 is incorporated at 4km resolution. To ensure consistency across these heteroge-
neous sources, all datasets are resampled to achieve spatial and temporal alignment. They further
undergo normalization, clipping, and binning to handle varying scales and precipitation skewness.
The data cover one year and over one million samples, with defined training, validation, and testing
splits to ensure reliable model evaluation. Details on data, preprocessing, and samples in App. A.

We use Critical Success Index (CSI) (Schaefer, 1990) at different thresholds, a standard accuracy
metric in precipitation nowcasting (Andrychowicz et al., 2023; Gao et al., 2024b; Gong et al., 2024),
and Continuous Ranked Probability Score (CRPS) (Hersbach, 2000), which assesses alignment of
predicted probability distribution with observed values, rewarding sharp and reliable predictions.
Fractions Skill Score (FSS) (Roberts & Lean, 2008) accounts for intensity shifts and offers tolerance
to translation and deformation. Frequency Bias Index (FBI) (Termonia et al., 2018) quantifies over-
and underforecasting, but not forecast quality. We also report Mean Absolute Error (MAE) and
Mean Squared Error (MSE), but note that they are sensitive to high frequency of no-rain cases
and thus less suitable for skewed distributions (Andrychowicz et al., 2023) (cf. App. B.1). Taking
inspiration from the thresholding approach in MetNet (Espeholt et al., 2022), intensity-based metrics
use the mean of the highest activated bucket of the cumulative output distribution. A bucket is
activated if its predicted probability mass exceeds the corresponding threshold, where thresholds are
computed for each bucket and lead time using the validation set. This approach effectively captures
rare high-precipitation events, which tend to have lower predicted probability masses.

1https://www.rainviewer.com/
2https://user.eumetsat.int/data/satellites/meteosat-second-generation
3https://registry.opendata.aws/noaa-gfs-bdp-pds
4https://registry.opendata.aws/copernicus-dem
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Table 1: Performance (CSI, FSS), bias (FBI), error (MAE, MSE) across lead times and intensities.

Model Radar-only? CSI (↑) FSS (↑) FBI (≈ 1) MAE (↓) MSE (↓)

RainPro-8 (ours) × 0.279 0.537 1.262 0.126 1.503
MetNet-3* × 0.270 0.517 1.318 0.132 1.620
GFS × 0.110 0.253 0.780 0.164 1.453
PySTEPS

√
0.149 0.364 0.983 0.162 2.324

RainPro-8R
√

0.229 0.449 1.346 0.144 1.735
Earthformer

√
0.111 0.267 0.163 0.110 1.358

SimVP
√

0.122 0.287 0.189 0.118 1.340

4.1 PERFORMANCE EVALUATION

RainPro-8 is benchmarked against global NWP GFS5, and PySTEPS (Pulkkinen et al., 2019) which
extrapolates radar echoes with a 512 km context. GFS forecasts are bilinearly interpolated to 2
km/px and temporally aligned to 10 min for radar comparison. No other deep-learning nowcasting
model can learn from all our input sources: Earthformer (Gao et al., 2024b) and SimVP (Gao et al.,
2022) operate only on radar with fixed resolution and coverage, and other data sources cannot be
handled by their architectures. For fairness, all models use the same input region (with added con-
text) but are evaluated only on the central target region, including a radar-only RainPro-8 variant
(RainPro-8R) to demonstrate that our approach provides further performance benefits beyond its
multiple data source capabilities. SimVP, which produces outputs matching its input length, is run
autoregressively with inputs interpolated from 4 km to 2 km to achieve the target resolution. Earth-
former is trained at 4 km due to attention limits, with outputs upsampled to 2 km for evaluation.
MetNet-3 (Andrychowicz et al., 2023) is challenging to evaluate due to its private code, reliance on
US-specific data, and substantial computational requirements (227M parameters trained on 512 TPU
v3 cores over 7 days). MetNet-3* is our faithful reimplementation of the architecture and training
described in the original paper, adapted to our data and compute constraints, presenting a repro-
ducible competitor under fair conditions. It incorporates lead time conditioning and cross-entropy
loss, and it only computes the loss on the high-resolution precipitation maps, not on accumulated
rain or NWP initial state since we do not perform densification from weather stations.

As shown in Table 1, RainPro-8 outperforms all competitors on both precipitation metrics, CSI and
FSS. RainPro-8 performs slightly better than MetNet-3*, and offers additional advantages: a 48× in-
ference speedup through single-step prediction and more coherent probability maps, enabled by the
ordinal-consistent loss that accounts for class ordinality in probabilistic forecasts. RainPro-8R sur-
passes existing radar-only baselines, demonstrating that our approach offers superior performance,
but also lagging behind RainPro-8 at longer lead times, underscoring the benefit of our multi-source
integration in our full model. FBI indicates that RainPro-8 slightly overpredicts precipitation, Earth-
former and SimVP significantly underpredict, and PySTEPS is the least biased. Although SimVP
and Earthformer achieve lowest MAE and MSE due to their MSE loss, these do not translate into
higher CSI or FSS, likely suffering from impact of the dominating no-rain class.

Figure 2 illustrates model performance (CSI) at different rain intensities and lead times up to eight
hours (further details in App. B.2). Our model demonstrates superior performance across lead times
and rainfall thresholds, from light to heavy rain. The skill gap with extrapolation-based PySTEPS
grows as lead times increase due to its assumption of constant motion and intensity. The skill gap
also widens with lead time, where Earthformer and SimVP lack sufficient input and probabilistic
output capabilities. RainPro-8R confirms the impact of lack of additional data sources over time. In
contrast, GFS shows a skill gap at shorter lead times because of its longer convergence time. Perfor-
mance is slightly lower for all models at higher precipitation intensities, likely due to complexity in
forecasting extreme weather, which often involves more chaotic and unpredictable patterns.

Figure 3 visualizes a 10002km2 cropped region of at least 4 target patches of 5122km2, at 3 lead
times (Europe-wide in App. D). RainPro-8 effectively captures areas with rainfall, both in intensity
and location, with some blurriness as lead time increases uncertainty. GFS shows major deviations

5https://registry.opendata.aws/noaa-gfs-bdp-pds
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Figure 2: Critical Success Index (CSI) across different thresholds and lead times.

from ground truth, with large differences in intensity and rain-covered areas. PySTEPS struggles to
capture changes in intensity or account for non-linear motion patterns at later lead times as it only
extrapolates the latest radar image. RainPro-8R, Earthformer, and SimVP cannot exploit additional
data, and the latter two suffer from MSE loss favoring no-rain events.
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Figure 3: Sample ground truth and forecasts for different models at selected lead times with origin at
2024-01-23 11:20 UTC in cropped region. Dark grey areas indicate regions beyond radar coverage.

4.2 ABLATION STUDIES

Table 2 shows ablation studies of our ordinal-consistent loss, single-pass predictions, lead time
weighting and multi-source input, compared to MetNet-3* using non-ordinal cross-entropy loss
and lead time conditioning (Andrychowicz et al., 2023). Results confirm the effectiveness of our
approach, and the contribution of each of our design choices and learning strategies. The slight
yet consistent gains of our model over the cross-entropy-based model (cf. App G) are due to the
latter enforcing ordinality only at inference time via cumulative probability computation, rather
than learning it during training. Compared to models using lead time conditioning, our single-pass
prediction not only improves inference speed (cf. App F) but also delivers superior performance
across metrics. Excluding lead time weights leads to a noticeable drop in performance. Finally, an
architecture capable of integrating all available data is key to top accuracy compared to radar-only
RainPro-8R.
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Table 2: Ablation loss function, timesteps per forward pass, lead time weights, data sources.

Model L Tsize OCltw Srcs. CRPS (↓) CSI (↑) FSS (↑)
RainPro-8 (ours) OC 48

√ √
0.06096 0.2791 0.5367

CE loss (no OC) CE 48
√ √

0.06098 0.2787 0.5357
Lead time conditioning OC 1 -

√
0.06203 0.2695 0.5191

No lead time weights OC 48 ×
√

0.06156 0.2733 0.5258
Radar-only (RainPro-8R) OC 48

√
× 0.06574 0.2289 0.4491

MetNet-3* CE 1 -
√

0.06199 0.2697 0.5173

4.3 PROBABILITY MAPS

RainPro-8 not only outperforms baselines in precipitation intensity forecasts but also quantifies un-
certainty for each intensity. Figure 4 displays probability maps and ground truth for two rain in-
tensities and lead times (same sample and crop as Figure 3), with intensities derived from these
probabilities. Uncertainty is higher for longer lead times and light rain, reflecting the challenge of
predicting scattered light rain far into the future at high resolution. Higher intensities are predicted
with lower probabilities because of their low likelihood, particularly at extended lead times. The
model ensures consistency by never assigning higher probabilities to higher precipitation levels.

Ground Truth
+1h 0m

Probability Map
+1h 0m

Ground Truth
+8h 0m

Probability Map
+8h 0m

0.2

0.4

0.6

0.8

1.0≥0.2 mm/h

≥2.0 mm/h

Figure 4: Ground truth and RainPro-8 probability map for different rain intensities and lead times,
origin at 2024-01-23 11:20 UTC. Dark grey areas indicate regions beyond radar coverage.

4.4 ATTRIBUTION

We analyze RainPro-8 with Integrated Gradients (IG) (Sundararajan et al., 2017), as in MetNet-2
(Espeholt et al., 2022), attributing predictions to inputs to reveal how data sources are used. Rather
than isolating each source with separate experiments, we use IG to assess their relative importance
across lead times and variables (cf. App. C). Results show recent high-res radar drives short lead
times, while low-res radar gains value around 4 hours for broader coverage. Beyond 4 hours, satel-
lite data becomes more useful, though visible channels contribute little due to daytime limits. GFS
variables become more influential for longer lead times, with key contributors including wind com-
ponents, vertical velocity, storm motion parameters, specific humidity, and surface metrics such as
pressure and the Best Lifted Index (a measure of atmospheric instability), which are particularly
relevant for forecasting cloud movement, precipitation, and thunderstorms. GFS forecasts become
increasingly impactful at longer lead times, while less relevant for the first 4 hours.

4.5 RADAR-ONLY SHORT-TERM NOWCASTING (SEVIR BENCHMARK)

While RainPro-8 targets 8-hour high-resolution precipitation forecasts using multi-source data,
we also evaluate a radar-only short-term version (RainPro-2R) for 2-hour predictions on the SE-
VIR benchmark for direct comparison with existing nowcasting models (App. H). Table 3 shows
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RainPro-2R outperforms state-of-the-art deterministic models. Compared to generative models, it
achieves higher CSI and HSS (pixel-wise metrics) but lower pooled CSI and perceptual metrics
(LPIPS, SSIM), reported in Yu et al. (2024) (App. H). Pooled CSI only checks whether any pixel
within a neighborhood is hit, ignoring how many pixels match, whereas FSS rewards both correct
pixels and the fraction of pixels correctly predicted, giving a more nuanced measure of spatial ac-
curacy at full resolution (Figure 5). Perceptual metrics reflect a trade-off: sharper outputs sacrifice
per-pixel performance (Yan et al., 2024). RainPro-2R’s probabilistic predictions appear blurrier but
capture uncertainty and higher accuracy. RainPro-2R also outperforms DiffCast on CRPS and FSS
while being 13× faster at inference. These results highlight RainPro’s performance both for the
targeted 8-hour multi-source forecasting and SEVIR’s short-term radar-only nowcasting setting.

Table 3: SEVIR benchmark; best results in bold per category; ⋆ from DiffCast (Yu et al., 2024)

Method CSI (↑) CSI-p4 (↑) CSI-p16 (↑) HSS (↑) LPIPS (↓) SSIM(↑)

D
et

er
m

in
is

tic

RainPro-2R 0.3524 0.3834 0.4171 0.4501 0.2353 0.5966
PhyDnet⋆ 0.2560 0.2685 0.3005 0.3124 0.3785 0.6764
MAU⋆ 0.2463 0.2566 0.2861 0.3004 0.3933 0.6361
ConvGRU⋆ 0.2416 0.2554 0.3050 0.2834 0.3766 0.6532
SimVP⋆ 0.2662 0.2844 0.3452 0.3369 0.3914 0.6304
Earthformer⋆ 0.2513 0.2617 0.2910 0.3073 0.4140 0.6773

G
en

er
at

iv
e STRPM⋆ 0.2512 0.3243 0.4959 0.3277 0.2577 0.6513

MCVD⋆ 0.2148 0.3020 0.4706 0.2743 0.2170 0.5265
PreDiff⋆ 0.2304 0.3041 0.4028 0.2986 0.2851 0.5185
DiffCast⋆ 0.3077 0.4122 0.5683 0.4033 0.1812 0.6354
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Figure 5: CRPS and FSS across different neighborhoods, thresholds, and lead times.

5 CONCLUSION & FUTURE WORK

We introduce RainPro-8, a deep learning model for precipitation nowcasting that outperforms exist-
ing operational systems and deep learning nowcasting models. RainPro-8 addresses the challenges
of forecasting probabilistic predictions at different precipitation levels. It leverages multiple data
sources with an efficient model that forecasts all lead times simultaneously, exploiting ordinality of
precipitation levels. Going forward, RainPro-8 could be extended to explicitly address robustness
to missing data which is of particular importance in operational settings where some input source
could become absent, and to automatically learn thresholds.
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REPRODUCIBILITY STATEMENT

The code is publicly available at https://github.com/rafapablos/RainPro, along with
instructions for accessing data via the official sources. The paper provides comprehensive details
on the RainPro-8 framework, architecture, and evaluation, while the appendices serve as support-
ing material. Specifically, Section 3 describes the task definition, loss function, output generation,
and model architecture. Section 4 summarizes the training setup and hyperparameters (with fur-
ther details in Appendices E and F), data sources (including preprocessing and sample details in
Appendices A and I), and baselines, metric definitions, and performance comparisons (expanded in
Appendices B and G). Section 4 also presents visualizations (also in Appendix D), ablation studies,
attribution analyses (also in Appendix C), and an evaluation of a RainPro-8 variant adapted for the
benchmark task on a standard precipitation nowcasting benchmark (also in Appendix H).
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Fischer, Tias Guns, Petra Kralj Novak, and Grigorios Tsoumakas (eds.), Machine Learning and
Knowledge Discovery in Databases, pp. 443–459, Cham, 2023. Springer Nature Switzerland.
ISBN 978-3-031-26409-2.

14



Published as a conference paper at ICLR 2026

Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim Sal-
imans, Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. MetNet: A Neural Weather Model
for Precipitation Forecasting, 2020.

P. Termonia, C. Fischer, E. Bazile, F. Bouyssel, R. Brožková, P. Bénard, B. Bochenek, D. Degrauwe,
M. Derková, R. El Khatib, R. Hamdi, J. Mašek, P. Pottier, N. Pristov, Y. Seity, P. Smolı́ková,
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A DATASET

A.1 DATA SOURCES

We use RainViewer6 radar composite data over Europe, which consists of high-resolution rainfall
intensity measurements at 10-minute intervals and a resolution of 2 kilometers per pixel. Geostation-
ary satellite data is obtained from the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT)7, capturing cloud-related characteristics that significantly influence precip-
itation, despite its lower resolution (3-11km) and the challenges of correlating satellite and radar
data (Stock et al., 2024). Topographical data is retrieved from the Copernicus Digital Elevation
Model (DEM)8. Atmospheric observations and derived physical parameters are sourced from the
Global Forecast System (GFS)9, managed by the National Oceanic and Atmospheric Administra-
tion (NOAA) in the United States, with a spatial resolution of 28km and update frequency of 6
hours. In contrast, MetNet (Andrychowicz et al., 2023) uses HRRR, with 3km resolution, hourly
updates, and US-only coverage.

A.2 DATA PREPROCESSING

Each data source is modified to match the desired resolution for model input, either through upsam-
pling, such as GFS data from 28km/px to 16km/px, or downsampling, like radar data from 2km/px
to both 4km/px and 8km/px. The time dimension also presents challenges to consider. Satellite
data, for instance, has a 1-hour operational delay, making the most recent timestep available at -60
minutes. For the source gfs 16km, we select 122 channels representing multiple weather variables
at different pressure levels (Appendix I). As GFS is only initialized 4 times a day, we use the latest
forecast lead time as our initial state. The subsequent lead times form the gfs forecast 16km, from
which we use only the precipitation rate variable. Table 4 summarizes all data sources with the
corresponding spatial and temporal details.

Table 4: Outputs and inputs for the precipitation forecasting model.

Variable Source Size
(px)

Res.
(km/px)

Size
(km)

Timesteps
(min) Channels

target 2km RainViewer 256 2 512 [10,20,...,480] 1
radar 4km RainViewer 256 4 1024 [-60,-50,...,0] 1
radar 8km RainViewer 192 8 1536 [0] 1
satellite 8km EUMETSAT 192 8 1536 [-120,-105,...,-60] 11
gfs 16km GFS 96 16 1536 [0] 122
gfs forecast 16km GFS 96 16 1536 [60,120,...,480] 1
xyz 4km DEM 256 4 1024 N/A 3
minute 4km - 256 4 1024 N/A 1

We tackle challenges such as varying data ranges and skewed distribution of precipitation intensities
using normalization, clipping, and binning. Min-max normalization is applied to all data sources, as
many variables are non-normally distributed. Radar reflectivity values (dBZ) are clipped to a range
of -1 to 64 to remove outliers. To address rainfall skewness, target radar maps are categorized into
predefined rain intensity classes for multi-label classification. Using the Marshall-Palmer equation
(Marshall & Palmer, 1948), dBZ values are converted to mm/h, with finer granularity for light rain
(≥ 0.1,≥ 0.2,≥ 0.4) and broader ranges for heavier rainfall (up to ≥ 25.0 mm/h) (Appendix E).
This approach captures subtle light rain variations while accounting for rare intense precipitation
events, aligning with the original dBZ distribution.

6https://www.rainviewer.com/
7https://user.eumetsat.int/data/satellites/meteosat-second-generation
8https://registry.opendata.aws/copernicus-dem
9https://registry.opendata.aws/noaa-gfs-bdp-pds
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A.3 SPLIT GENERATION

Data spans from December 2023 to November 2024 and is partitioned into training, validation, and
testing sets using multi-day cycles (12, 2, and 2 days, respectively). A 12-hour blackout period
between cycles prevents data leakage.

Samples are generated using a sliding window along the temporal dimension for non-overlapping
512×512km2 patches, ensuring alignment with the timesteps and spatial dimensions in Table 4. The
training set includes 1,063,658 samples, each with at least 50% radar coverage. During training, we
apply uniform random offsets of ±256km horizontally and vertically to patches to make the training
dataset as large as possible. Validation and test sets comprise 5,120 and 15,360 randomly selected
samples, respectively, including challenging cases with radar coverage below 50%. Although evalu-
ation is limited to pixels with radar coverage, boundary regions remain more challenging to predict
due to the absence of nearby radar coverage.
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B METRICS

B.1 METRIC DEFINITIONS

Critical Success Index (CSI) CSI, also known as the Threat Score, evaluates the accuracy of
event detection by comparing the correctly predicted precipitation events to all events that were
either predicted or actually occurred. It balances misses and false alarms, making it particularly
useful in rare-event forecasting like heavy rainfall. A value of 1 indicates perfect accuracy, while 0
indicates no skill.

CSI =
TP

TP + FP + FN
, (10)

where TP, FP, and FN are true positives, false positives, and false negatives, based on the threshold
(rate ≥ threshold). The thresholds at which the metric is evaluated are 0.5, 1, 2, 5, and 10 mm/h.

Continuous Ranked Probability Score (CRPS) CRPS measures the accuracy of the entire pre-
dicted cumulative distribution function (CDF) relative to the observed outcome. It generalizes MAE
for probabilistic forecasts, with lower values indicating better forecast reliability, sharpness, and
calibration. It rewards predictions that assign high probability to the correct intensity range.

CRPS =

|I|∑
c=1

[(P (Rt < min(Ic))− 1(Rt < min(Ic))]
2 × |Ic|, (11)

where c iterates over all intensity classes, min(Ic) is the lower end of class c, Rt is the target radar,
and P (Rt < min(Ic)) = 1− P (Rt ≥ min(Ic), based on the model probability Pt,c.

Fraction Skill Score (FSS) FSS provides an estimate of spatial accuracy by comparing the fore-
cast and observed precipitation fields over a local neighborhood, rather than point-wise accuracy.
FSS is particularly useful for evaluating high-resolution forecasts, as it accounts for small spatial
displacements in predicted precipitation. A perfect forecast yields an FSS of 1, while lower values
indicate poorer spatial agreement.

FSS = 1−
∑H

i=1

∑W
j=1(Fi,j −Oi,j)

2∑H
i=1

∑W
j=1 F

2
i,j +

∑H
i=1

∑W
j=1 O

2
i,j

, (12)

where Fi,j and Oi,j refer to the fraction of predicted positives and fraction of observed positives,
respectively, in the neighborhood of the (i, j) pixel. This metric is computed at different thresholds
(0.5, 1, 2, 5, and 10 mm/h) and neighborhood sizes (2km, 10km, and 20km). This metric also
requires binarization based on the computed thresholds.

Frequency Bias Index (FBI) FBI quantifies whether a model tends to overforecast or underfore-
cast precipitation events. A value greater than 1 indicates overprediction, while a value less than 1
indicates underprediction. While a bias of 1 is ideal, it doesn’t imply the forecast is accurate—just
that the frequency of forecasted events matches the observed frequency.

FBI =
TP + FP
TP + FN

, (13)

where TP, FP, and FN are true positives, false positives, and false negatives, based on the threshold
(rate ≥ threshold). The thresholds at which the metric is evaluated are 0.5, 1, 2, 5, and 10 mm/h.
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B.2 ADDITIONAL EVALUATION

Table 5: Critical Success Index (CSI) across different thresholds for precipitation forecasting mod-
els. Our model RainPro-8 outperforms all other models across different rain intensities.

CSI (↑)

Model 0.2 1.0 2.0 5.0 10.0

RainPro-8 (ours) 0.447 0.344 0.296 0.204 0.146
MetNet-3* 0.437 0.335 0.287 0.194 0.136
GFS 0.253 0.161 0.100 0.027 0.009
PySTEPS 0.271 0.180 0.141 0.090 0.062
RainPro-8R 0.398 0.292 0.245 0.164 0.112
Earthformer 0.265 0.125 0.088 0.039 0.015
SimVP 0.256 0.154 0.116 0.047 0.023

Table 6: Fraction Skill Score (FSS) across different thresholds for precipitation forecasting models
with a neighborhood size of 10km. Our model RainPro-8 outperforms all other models across
different rain intensities.

FSS-10km (↑)

Model 0.2 1.0 2.0 5.0 10.0

RainPro-8 (ours) 0.728 0.639 0.590 0.469 0.363
MetNet-3* 0.716 0.625 0.572 0.445 0.336
GFS 0.489 0.370 0.268 0.101 0.041
PySTEPS 0.552 0.430 0.369 0.283 0.225
RainPro-8R 0.665 0.554 0.496 0.378 0.275
Earthformer 0.509 0.279 0.211 0.116 0.056
SimVP 0.485 0.338 0.277 0.134 0.075

Table 7: Frequency Bias Index (FBI) across different thresholds for precipitation forecasting models.
Our model, RainPro-8, has a tendency to over-predict high-precipitation events, in contrast to GFS,
Earthformer, and SimVP, which consistently under-predict rainfall. PySTEPS appears the most
balanced in terms of bias, with over- and under-predictions occurring at similar rates—though this
does not translate to higher forecast accuracy.

FBI (≈ 1)

Model 0.2 1.0 2.0 5.0 10.0

RainPro-8 (ours) 1.140 1.137 1.142 1.268 1.636
MetNet-3* 1.124 1.136 1.160 1.364 1.821
GFS 1.602 1.177 0.700 0.292 0.127
PySTEPS 0.899 0.995 0.914 1.029 1.078
RainPro-8R 1.131 1.141 1.180 1.356 1.932
Earthformer 0.397 0.182 0.135 0.063 0.027
SimVP 0.384 0.244 0.197 0.074 0.034
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The following plots expand on the previous tables in terms of lead times.
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Figure 6: Critical Success Index (CSI) for Europe-wide precipitation forecasting models across
different thresholds and lead times.
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Figure 7: Fraction Skill Score (FSS) for Europe-wide precipitation forecasting models across differ-
ent thresholds and lead times with neighborhood size of 10km.
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Figure 8: Frequency Bias Index (FBI) for Europe-wide precipitation forecasting models across dif-
ferent thresholds and lead times.
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C INPUT ATTRIBUTION WITH INTEGRATED GRADIENTS

The following plots show the results obtained on the input attribution by using Integrated Gradients
from which the key findings were obtained in Section 4.4. Integrated Gradients estimates feature
importance by interpolating between a baseline and the actual input, averaging model gradients
along this path. The final attribution is obtained by scaling these averaged gradients by the input
difference, quantifying each feature’s contribution to predictions. To ensure meaningful attribution,
we use the minimum value of each feature as the baseline, as this results in near-zero precipitation
probabilities. We then aggregate feature attributions across space, time, and samples, yielding a
single importance score per feature.
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Figure 9: Attribution of radar 4km input timesteps over forecast lead time.
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Figure 10: Attribution of radar 8km over forecast lead time.
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Figure 11: Attribution of satellite 8km input timesteps over forecast lead time.
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Figure 12: Attribution of satellite 8km input variables over forecast lead time.
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Figure 13: Attribution of gfs 16km input variables over forecast lead time.
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Figure 14: Attribution of gfs forecast 16km input timesteps over forecast lead time.
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D VISUALIZATIONS

This section displays a Europe-wide comparison of forecast models and probability maps for
RainPro-8 at various precipitation levels, based on three different origins.
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Figure 15: Sample ground truth, RainPro-8, MetNet-3*, GFS, and PySTEPS, RainPro-8R, Earth-
former, and SimVP forecasts at selected lead times with origin at 2024-01-23 11:20 UTC.
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Figure 16: Probability map with corresponding ground truth for four different rain intensities and
two different lead times with origin at 2024-01-23 11:20 UTC.
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Figure 17: Sample ground truth, RainPro-8, MetNet-3*, GFS, and PySTEPS, RainPro-8R, Earth-
former, and SimVP forecasts at selected lead times with origin at 2024-04-19 06:00 UTC.
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Figure 18: Probability map with corresponding ground truth for four different rain intensities and
two different lead times with origin at 2024-04-19 06:00 UTC.
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Figure 19: Sample ground truth, RainPro-8, MetNet-3*, GFS, and PySTEPS, RainPro-8R, Earth-
former, and SimVP forecasts at selected lead times with origin at 2024-06-28 11:20 UTC.
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Figure 20: Probability map with corresponding ground truth for four different rain intensities and
two different lead times with origin at 2024-06-28 11:20 UTC.
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E INTENSITY CLASSES

Table 8 presents the intensity classes used by our model along with their distribution across different
splits. Note that both the validation and test sets contain significantly more missing values due to
patches with radar coverage below 50% to obtain Europe-wide forecasts.

Table 8: Intensity classes and distribution for each split.

Bucket (mm/h) Train (%) Validation (%) Test (%)

[0.0, 0.1) 79.64 57.44 57.05
[0.1, 0.2) 1.44 1.00 1.10
[0.2, 0.4) 2.25 1.62 1.87
[0.4, 0.6) 0.84 0.62 0.74
[0.6, 0.8) 0.51 0.37 0.44
[0.8, 1.0) 0.50 0.36 0.44
[1.0, 2.0) 0.84 0.63 0.73
[2.0, 3.0) 0.38 0.30 0.35
[3.0, 4.0) 0.19 0.15 0.17
[4.0, 5.0) 0.17 0.13 0.14
[5.0, 6.0) 0.06 0.05 0.05
[6.0, 7.0) 0.05 0.04 0.04
[7.0, 8.0) 0.04 0.04 0.03
[8.0, 9.0) 0.03 0.02 0.02
[9.0, 10.0) 0.02 0.02 0.02
[10.0, 15.0) 0.03 0.03 0.02
[15.0, 20.0) 0.02 0.02 0.01
[20.0, 25.0) 0.01 0.01 0.01
≥ 25.0 0.02 0.02 0.01
missing 12.97 37.15 36.78
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F COMPUTE RESOURCES

Training is performed on an NVIDIA H100 80GB SXM5 GPU with 26 vCPUs and 225 GiB RAM.
Table 9 shows the training and inference times for each experiment, including baselines and ablation
studies.

Table 9: Training and inference times for all models trained.

Experiment Training Time (h) Inference Time (s/sample)

RainPro-8 13:36 0.03
MetNet-3* 18:16 2.12
RainPro-8R 13:22 0.03
Earthformer 24:03 0.03
SimVP 6:36 0.12
RainPro-8 w/ CE loss (no OC) 15:52 0.03
RainPro-8 w/ lead time conditioning 18:06 2.10
RainPro-8 w/o lead time weights 13:21 0.03

G ROBUSTNESS ANALYSIS

The primary experiments in this work were conducted with a single training run due to the sub-
stantial computational resources required. While this setup provides a fair basis for comparison,
the closeness of certain results motivates an analysis of the variability that may arise from different
random seeds. Therefore, we conducted three independent runs for the two most comparable exper-
iments: RainPro-8 and its cross-entropy variant, RainPro-8 w/ CE loss (no OC). Table 10 reports the
mean and standard deviation across these runs for multiple evaluation metrics. The results show that
both models converge consistently, with RainPro-8 demonstrating a slight but consistent advantage
across all metrics.

Table 10: Aggregated results from three independent runs (mean ± std). Best results are highlighted
in bold.

Metric RainPro-8 RainPro-8 w/ CE loss (no OC)

CRPS 0.06096 ± 0.00004 0.06099 ± 0.00002
CSI 0.27923 ± 0.00054 0.27832 ± 0.00032
FSS 0.53663 ± 0.00119 0.53532 ± 0.00041
FBI 1.26048 ± 0.01224 1.26999 ± 0.00242
MAE 0.12593 ± 0.00102 0.12610 ± 0.00043
MSE 1.50463 ± 0.01819 1.52142 ± 0.01898
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H SEVIR NOWCASTING EXPERIMENTS

H.1 DATASET AND PREDICTION TASK

SEVIR (Veillette et al., 2020) is a widely used benchmark for precipitation nowcasting, containing
20,393 weather events of radar frame sequences of 4-hour duration covering 384 × 384 km2 (1
km/pixel) at 5-minute intervals. Following Diffcast (Yu et al., 2024), we formulate the prediction
task as forecasting 20 frames given 5 initial frames (5 → 20), and the spatial resolution is downsam-
pled to 128× 128 pixels to reduce computational cost.

H.2 RAINPRO-2R

We modify RainPro-8 to create RainPro-2R, a radar-only variant suitable for short-term nowcasting.
RainPro-2R uses only radar frames as input, without additional data sources or spatial context with
respect to the targets. The model predicts 20 frames at a downsampled resolution of 128 × 128
pixels, while retaining the same three downsampling layers used in RainPro-8. Training follows the
Diffcast (Yu et al., 2024) pipeline, employing our ordinal consistent loss and single-step prediction
approach. RainPro-2R is trained using the Adam optimizer with a learning rate of 0.0001 for a total
of 200K iterations, and the model with the lowest validation loss is selected for evaluation.

The intensity classes that define the probability distribution are based on the SEVIR benchmark
thresholds: [0.0, 16.0, 31.0, 59.0, 74.0, 100.0, 133.0, 160.0, 181.0, 219.0, 255.0]. Given the shorter
lead times, the decay rate for the lead time weights is set to 2.

H.3 EVALUATION

To assess the accuracy of precipitation nowcasting, we evaluate RainPro-2R against both determin-
istic and stochastic generative models. Deterministic baselines include SimVP (Gao et al., 2022) and
Earthformer (Gao et al., 2024b), which employ a recurrent-free strategy to generate all frames simul-
taneously, as well as PhyDNet (Guen & Thome, 2020), MAU (Chang et al., 2021), and ConvGRU
(Shi et al., 2017a), which generate frames sequentially using recurrent strategies. For state-of-the-
art generative baselines, we include STRPM (Chang et al., 2022), MCVD(Voleti et al., 2022), and
PreDiff (Gao et al., 2024a).

Evaluation metrics follow prior work (Yu et al., 2024) and include Critical Success Index (CSI),
Heidke Skill Score (HSS), pooled CSI, and visual perception metrics LPIPS Zhang et al. (2018) and
SSIM Wang et al. (2004). In addition, we introduce the previously discussed Fraction Skill Score
(FSS) and Continuous Ranked Probability Score (CRPS).

Details on CSI, CRPS, and FSS are in Appendix B.1. Pooled CSI consists of computing CSI after
applying max-pooling to the predinctions and targets. Therefore, pooled CSI only checks whether
any pixel within a neighborhood is hit, ignoring how many pixels match.

The models are evaluated at thresholds of [16, 74, 133, 160, 181, 219] (Yu et al., 2024). Pooled CSI
is computed over 4×4 and 16×16 neighborhoods, and CRPS over 5×5 and 17×17 neighborhoods, to
have 2 or 8 pixels in each direction.

Heidke Skill Score (HSS) HSS measures forecast accuracy while accounting for correct hits ex-
pected by chance. The values range between -0.5 and 1.0, with scores greater than 0 indicating skill
by improving over a random forecast.

HSS =
2 (TP · TN − FN · FP)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
, (14)

where TP, FP, and FN are true positives, false positives, and false negatives, based on the threshold
(rate ≥ threshold).

Learned Perceptual Image Patch Similarity (LPIPS) LPIPS (Zhang et al., 2018) measures per-
ceptual similarity between predicted and observed images using deep network features. It can cap-
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ture differences in texture, structure, and high-level perceptual qualities. Lower LPIPS values indi-
cate predictions that are perceptually closer to the observations.

Structural Similarity Index Measure (SSIM) SSIM (Wang et al., 2004) evaluates image simi-
larity by comparing luminance, contrast, and structural information between predicted and observed
images. It reflects how well the predicted patterns match the true spatial structures. Higher SSIM
values indicate better preservation of structural and visual information in the forecast.
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I GFS INPUT VARIABLES

Table 11: Selected GFS variables as input to the model with their corresponding levels.
Var. Description Levels

4LFTX Best (4 layer) Lifted Index surface
ABSV Absolute Vorticity 100mb, 250mb, 500mb, 850mb, 1000mb
CAPE Convective Available Poten-

tial Energy
surface, 180-0mb, 90-0mb, 255-0mb

CFRZR Categorical Freezing Rain surface
CICEP Categorical Ice Pellets surface
CIN Convective Inhibition surface, 180-0mb, 90-0mb, 255-0mb
CLMR Cloud Mixing Ratio 250mb, 500mb, 850mb, 1000mb
CPOFP Percent frozen precipitation surface
CRAIN Categorical Rain surface
CSNOW Categorical Snow surface
CWAT Cloud Water entire atmosphere
DPT Dew Point Temperature 2m
DZDT Vertical Velocity (Geometric) 100mb, 250mb, 500mb, 850mb, 1000mb
GRLE Graupel 100mb, 250mb, 500mb, 850mb, 1000mb
GUST Wind Speed (Gust) surface
HGT Geopotential Height 100mb, 250mb, 500mb, 850mb, 1000mb, surface,

trop.
HPBL Planetary Boundary Layer

Height
surface

ICEG Ice Growth Rate 10m
ICETK Ice Thickness surface
ICMR Ice Water Mixing Ratio 250mb, 500mb, 850mb, 1000mb
LCDC Low Cloud Cover low cloud layer
LFTX Surface Lifted Index surface
MCDC Medium Cloud Cover middle cloud layer
MSLET (Eta model reduction) mean sea level
PLPL Pressure of level from which

parcel was lifted
255-0mb

PRATE Precipitation Rate surface
PRES Pressure surface, trop.
PRMSL Pressure Reduced to MSL mean sea level
PWAT Precipitable Water entire atmosphere
REFC Composite reflectivity entire atmosphere
RH Relative Humidity 100mb, 250mb, 500mb, 850mb, 1000mb, 2m, entire

atmosphere
RWMR Rain Mixing Ratio 100mb, 250mb, 500mb, 850mb, 1000mb
SNMR Snow Mixing Ratio 100mb, 250mb, 500mb, 850mb, 1000mb
SNOD Snow Depth surface
SPFH Specific Humidity 100mb, 250mb, 500mb, 850mb, 1000mb, 2m
TCDC Total Cloud Cover 250mb, 500mb, 850mb, 1000mb, entire atmosphere
TMP Temperature 100mb, 250mb, 500mb, 850mb, 1000mb, surface,

2m, trop.
UGRD U-Component of Wind 100mb, 250mb, 500mb, 850mb, 1000mb, 10m, trop.
USTM U-Component Storm Motion 6000-0m
VGRD V-Component of Wind 100mb, 250mb, 500mb, 850mb, 1000mb, 10m, trop.
VIS Visibility surface
VSTM V-Component Storm Motion 6000-0m
VVEL Vertical Velocity (Pressure) 100mb, 250mb, 500mb, 850mb, 1000mb
VWSH Vertical Speed Shear trop.
WEASD Water Equivalent of Accumu-

lated Snow Depth
surface

34



Published as a conference paper at ICLR 2026

J LLM USAGE

Large Language Models have been employed solely for proofreading and to polish writing.
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