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Abstract
Large language models (LLMs) are powerful
tools but are often expensive to deploy at scale.
LLM query routing mitigates this by dynamically
assigning queries to models of varying cost and
quality to obtain a desired tradeoff. Prior query
routing approaches generate only one response
from the selected model and a single response
from a small (inexpensive) model was often not
good enough to beat a response from a large (ex-
pensive) model due to which they end up overus-
ing the large model and missing out on poten-
tial cost savings. However, it is well known that
for small models, generating multiple responses
and selecting the best can enhance quality while
remaining cheaper than a single large-model re-
sponse. We leverage this idea to propose BEST-
Route, a novel routing framework that chooses
a model and the number of responses to sample
from it based on query difficulty and the quality
thresholds. Experiments on real-world datasets
demonstrate that our method reduces costs by up
to 60% with less than 1% performance drop.

1. Introduction
Large language models (LLMs) have revolutionized natural
language processing (NLP) by delivering state-of-the-art
performance across a wide range of tasks, from language
understanding to creative writing, code generation, and be-
yond (Zhao et al., 2023). Their widespread deployment in
applications like ChatGPT (OpenAI, a) and other conversa-
tional agents (Zheng et al., 2023; Zhang et al., 2024a;b) has
made them a cornerstone of modern NLP systems. However,
the superior performance of these models often comes with
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substantial computational costs, driven by their large sizes
and autoregressive text generation, making their deploy-
ment a challenge for both developers and users (Yu et al.,
2022). The growing demand for LLM-backed services has
spurred the development of innovative solutions to achieve
efficiency without sacrificing quality.

The rising costs of LLM inference have spurred efforts to
develop smaller, more cost-effective models such as self-
consistency (Wang et al., 2023) and re-ranking (Chuang
et al., 2023). However despite several innovations in this
space (Dubey et al., 2024; Abdin et al., 2024), small models
continue to come up short in terms of response quality when
compared to the largest, most powerful models (see Figure 3
where y-axis measures response quality). Therefore an
alternate line of work has focused on combining multiple
models, small and large, to balance response quality and
cost (Ding et al., 2024; Ong et al., 2024; Kim et al., 2023;
Chen et al., 2023). Broadly speaking these works seek to
leverage the small models to respond to easier queries while
saving the large models for the more challenging queries
thereby reducing costs without loss of response quality. In
particular there are three sub-areas where this principle has
been applied: 1) Query routing (e.g. Ong et al. (2024))
where a classifier/scorer rates the difficulty of an input and
selects models accordingly, 2) Speculative decoding (e.g.
Kim et al. (2023)) where a small (drafter) model returns
candidate response tokens that are accepted/rejected by the
large (verifier) model, and 3) Model cascades ( e.g. Chen
et al. (2023)) where the query passes through the models
sequentially, from the cheapest to the most costly, until
either a satisfactory response is obtained or a pre-defined
max number of models of the cascade is reached.

This work focuses on query routing and seeks to combine
model selection with adaptive allocation of computing re-
sources at test-time (Snell et al., 2024) to obtain notable re-
sponse quality improvements compared to prior work while
achieving substantial cost reduction. We observe that a ma-
jor drawback of many prior query routing approaches is
that they are unable to leverage extra compute and scale up
the performance of the smaller (lower cost) models in their
portfolio. Therefore they often end up routing all but the
easiest queries to large models and thus provide little cost
savings (this is shown in prior work (Ding et al., 2024) and
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Figure 1. System overview of BEST-Route: Best-of-n Enhanced Sampling and Test-time Route Optimization.

in a couple of the baseline routing approaches in Figure 3).

We propose Best-of-n Enhanced Sampling and Test-time
Route Optimization (BEST-Route), a novel LLM routing
framework that effectively balances cost and quality through
two key innovations. First, a cost-efficient multi-headed
router dynamically assesses query difficulty to select the
appropriate model and allocate computational resources.
Second, a test-time optimal compute strategy leverages best-
of-n sampling (Stiennon et al., 2020; Nakano et al., 2021) to
enhance small-model performance. This ensures that easy
queries are routed to smaller, cheaper models with minimal
sampling, while harder queries benefit from the advanced
capabilities of larger models. Our framework employs a
flexible model orchestration pipeline to adapt to varying
cost-quality requirements. Specifically, our router predicts
the likelihood that a small model, with best-of-n sampling,
can generate responses comparable to a powerful reference
model (e.g., GPT-4o). This enables the selection of the op-
timal small-model and sampling strategy combination, en-
suring high-quality responses at minimal cost. Unlike prior
work with static sampling policies, our router adaptively
determines the number of samples (and hence the compute
allocation) needed for a small model to match the quality
of the reference large model at the lowest cost. The overall
routing framework is illustrated in Figure 1. Experiments
on large-scale, real-world datasets (Section 5) demonstrate
that our method achieves up to 60% cost reduction with less
than 1% performance degradation, significantly improving
upon prior routing techniques and contributing toward more
efficient LLM service deployment.

The main contributions of this work are: 1) Cost-efficient
router design: We propose a query difficulty-aware routing
framework that allocates computational resources dynam-
ically to achieve effective cost-accuracy trade-offs while

adding minimal overhead. 2) Test-time optimal compute
strategy: We introduce a best-of-n sampling mechanism, al-
lowing the router to select the most effective response which
improves performance while still saving costs. 3) Scalable
real-world evaluations: We demonstrate the effectiveness
of our approach on large-scale datasets, achieving signifi-
cant cost savings with minimal response quality drop.

Our work provides a robust solution for both LLM service
providers and end-users, offering a flexible framework that
balances cost and performance. By leveraging adaptive
routing and test-time optimization, we advance the field of
cost-efficient LLM inference, enabling broader accessibility
and adoption of LLM-backed applications.

2. Related Work
Efficient Machine Learning (ML) Inference. Large lan-
guage models (LLMs) have revolutionized natural language
processing and related fields, offering remarkable effec-
tiveness and generalizability. However, their increasing
size comes at the cost of significant computational de-
mands and prohibitive expenses for both training and de-
ployment (Treviso et al., 2023; Bender et al., 2021). To
address inference costs, prior research has focused on static
efficiency optimizations such as model pruning (Hassibi
et al., 1993; LeCun et al., 1989), quantization (Jacob et al.,
2018; Vanhoucke et al., 2011), knowledge distillation (Hin-
ton et al., 2015; Urban et al., 2016), and neural architecture
search (Elsken et al., 2019; Zoph & Le, 2016). While these
techniques produce smaller, lower-cost models, they offer
fixed trade-offs between accuracy and efficiency, limiting
their adaptability. Given that LLMs are expected to serve
a wide range of tasks with varying accuracy and cost con-
straints, dynamic optimization approaches are essential to

2



BEST-Route: Adaptive LLM Routing with Test-Time Optimal Compute

enable more flexible and cost-effective inference (Ding et al.,
2022; 2025).

LLM Routing. LLM routing has become an effective ap-
proach to provide dynamic optimization among multiple
LLMs by striking good balances between overall response
quality and incurred costs. In Ding et al. (2024); Ong
et al. (2024), authors propose effective routing strategies
to dynamically allocate queries between one strong-and-
expensive LLM and one weak-yet-cheap LLM to reduce
inference costs while maintaining high performance. Recent
work extends the binary routing framework to accommo-
date a large set of LLMs. Srivatsa et al. (2024) investi-
gates the feasibility of routing queries to the most suitable
LLM from a selected set of models based on input features.
FORC (Šakota et al., 2024) predicts the cost and perfor-
mance of multiple LLMs using a meta-model and assigns
queries to suitable models for optimized cost-performance
trade-offs. ZOOTER (Lu et al., 2023) uses reward models
to route queries to the most suitable LLMs, achieving high
accuracy and reduced computational overhead. While ef-
fective, these routing approaches cannot utilize additional
compute to enhance the performance of smaller, lower-cost
models, particularly when the performance gap between
models is substantial.

Test Time Optimal Compute. Test-time optimal compute
techniques (Snell et al., 2024) such as best-of-n sampling
is effective for improving outcomes on challenging queries.
These methods allow the model to explore multiple poten-
tial responses, increasing the likelihood of generating high-
quality answers. In Brown et al. (2024), the authors observe
that increasing the number of sampled responses boosts the
probability of finding correct solutions for hard queries, es-
pecially in tasks like coding and mathematics. Similarly,
Chen et al. (2024a) finds out that increasing the number of
LLM calls improves performance on “easy” queries and
highlights the importance of adapting compute strategies to
query difficulty. More recently, Gui et al. (2024); Jinnai et al.
(2024) demonstrates the effectiveness of best-of-n sampling
for aligning LLM outputs to human preferences by selecting
the best response among multiple samples. However, this
line of work primarily focuses on scaling the test-time com-
pute of a single LLM, missing the opportunity of harnessing
the respective strengths of multiple models.

Other Multi-LLM Inference Techniques. Speculative
decoding (Leviathan et al., 2023; Kim et al., 2023; Chen
et al., 2024b; Narasimhan et al., 2024) speeds up decoding
of expensive LLMs by invoking small decoders on the “easy”
decoding steps. Unlike LLM routing, which optimizes query
traffic distribution among multiple LLMs to balance cost
and performance, speculative decoding solely focuses on
accelerating the decoding process within a single expensive
model by mitigating the inefficiencies of auto-regressive

text generation. Model Cascades (Chen et al., 2023; Gupta
et al., 2024; Yue et al., 2023) performs inference by sequen-
tially calling LLMs with effective post-hoc deferral rules
based on either the confidence scores or answer consistency
of weaker LLMs. More recently, a line of work studies
how to combine the capacity from different LLMs to fur-
ther improve response quality. Mixture-of-Agents (Wang
et al., 2024b) leverages the collective strengths of multiple
LLMs by introducing a layered architecture where agents
iteratively refine responses. PackLLM (Mavromatis et al.,
2024) introduces a test-time fusion approach that minimizes
perplexity to determine the contribution of each model in a
weighted ensemble. However, these approaches typically
call more than one LLM for a single query and can incur
significant computational overheads.

3. Problem Formulation
3.1. Motivation

Varying Query Difficulty. Queries naturally vary in dif-
ficulty according to their complexity, ambiguity, and task
requirements. For example, a query like “Rewrite the sen-
tence so that it’s in the present tense –‘She had worked at the
company for the past 3 years’.” is straightforward and can
be accurately resolved by a smaller or less capable model.
In contrast, a more complex query like “Can you summarize
the implications of quantum entanglement on secure commu-
nication?” requires nuanced understanding and reasoning,
demanding the capabilities of a larger, more powerful model
or additional test-time compute resources such as sampling
multiple responses. In Ding et al. (2024); Ong et al. (2024),
authors demonstrate that complex or ambiguous tasks bene-
fit from the broader knowledge and reasoning capabilities of
larger models, and therefore difficult queries can be routed
to larger and more capable LLMs to maintain response qual-
ity, while easy queries can be served by smaller LLMs to
achieve significant cost savings.

Sub-optimal Model Utilization. While several works
have explored leveraging query difficulty variation by rout-
ing queries to appropriate models, they face limitations that
prevent them from fully utilizing available LLM infrastruc-
ture for maximum gains. Many approaches focus solely on
routing between two models—one small and one large (Kag
et al., 2022; Ding et al., 2024; Ong et al., 2024). This is
a reasonable starting point, as the binary case is easier to
analyze, and early LLM inference platforms offered only a
limited selection of models. However, with platforms like
Hugging Face (HuggingFace) now providing a diverse range
of LLMs across the cost-quality spectrum, routing across all
available models is crucial for achieving the best trade-off.

While some works (Šakota et al., 2024; Shnitzer et al., 2023;
Srivatsa et al., 2024) attempt to route among more than
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two models, they often fail to fully utilize smaller models,
frequently defaulting to querying the largest model. Our
experiments in Section 5 confirm this trend. A common
technique for enhancing small-model response quality is
best-of-n sampling, where multiple responses are gener-
ated, and the best one is selected (Stiennon et al., 2020;
Nakano et al., 2021). However, prior approaches are often
too costly and time-consuming for real-time inference due
to the extensive usage of large (LLM-based) reward models
(Lambert et al., 2024). To address this, we first develop
a low-cost best-of-n sampling method to enhance small-
model response quality at inference time. We then train a
router to select the optimal model and number of responses,
achieving the best quality at the lowest cost.

3.2. Problem Setting

We propose a routing framework for efficiently serving user
queries using multiple large language models (LLMs) with
varying cost and quality, such as those offered by popular
LLM serving platforms (HuggingFace; OpenAI, b). Our
system consists of a powerful reference model, Mref (e.g.,
GPT-4o), and a set of smaller, more cost-efficient models,
M. Given a query q, we can directly return one response
from Mref or return the best-of-n responses from a model in
M. A router must efficiently select the model and sample
count to minimize inference costs while preserving response
quality near that of Mref, with minimal added latency/cost
overheads. It is worth noting that we always route each
query to a single LLM during inference rather than employ-
ing an ensemble (Jiang et al., 2023) or a cascade (Chen et al.,
2023), both of which involve multiple LLM calls per query
and can lead to substantial computational overheads.

3.3. Evaluation Metric

Response Quality. Automatically evaluating text genera-
tion remains a challenging and extensively researched prob-
lem. Traditional metrics like BLEU and ROUGE, origi-
nally developed for machine translation and summarization,
often exhibit weak alignment with human judgment and
have limited applicability across diverse NLP tasks (Blagec
et al., 2022). Recent studies (Jiang et al., 2023; Wang et al.,
2024a) suggest that LLMs, when properly prompted or fine-
tuned, can provide more human-aligned evaluations. In this
work, we adopt armoRM (Wang et al., 2024a), a fine-tuned
Llama3-8B model, to assess response quality. armoRM
ranks highly on advanced evaluation model benchmarks
(Lambert et al., 2024) and, due to its relatively small size
(8B), enables feasible large-scale evaluation. We also inde-
pendently demonstrate the effectiveness of armoRM scores
in Appendix C.

Inference Cost. The cost of running a model can be mea-
sured using various metrics, such as FLOPs, latency, or mon-

etary expenses. While FLOPs offer a hardware-independent
measure, they do not always correlate well with practical
concerns like wall-clock latency, energy usage, or finan-
cial costs, which are more relevant to end users (Dao et al.,
2022). For LLM service users, inference costs primarily
consist of input and output token expenses, calculated by
multiplying the respective token counts by their unit prices
(see Table 6). In this work, we quantify inference costs in
USD and also report the latency of our routing framework
as part of our evaluation.

4. Routing Framework
We first develop a memory efficient approach for best-of-n
sampling from LLMs and then design a router that selects
the appropriate LLM and number of samples for each query.

4.1. Memory Efficient Best-of-n Sampling

Best-of-n sampling (Stiennon et al., 2020; Nakano et al.,
2021; Gui et al., 2024; Brown et al., 2024) enhances LLM
response quality by generating n candidates and selecting
the best, leveraging output variability to better align with
quality expectations. A straightforward option for best-of-n
sampling is to score each response using human evaluators
or LLM-as-a-judge systems (Zheng et al., 2023), but inte-
grating human scorers is impractical for real-time inference,
and LLM-based scoring adds substantial compute and mem-
ory costs. Instead, we use a smaller proxy reward model
to approximate these costly scoring methods and efficiently
select the best response.

Given an input query q, and n responses
s1(q), s2(q), . . . , sn(q) obtained from the same LLM, let
RGT(q, s(q)) denote the ground truth quality score of a
response s, obtained via an expensive scoring approach such
as human or LLM-as-a-judge scoring and let Rproxy(q, s(q))
denote the score from the proxy reward model. We will use
the notation RGT(s(q)), Rproxy(s(q)) for brevity.

We aim to select the best out of n responses as per the ground
truth reward RGT(s(q)). Thus, if the ordering of responses
is preserved under the proxy model i.e. Rproxy(si(q)) >
Rproxy(sj(q)) whenever RGT(si(q)) > RGT(sj(q)) then it
can be used for best-of-n sampling.

Since we only want the proxy model to preserve the rank-
ing of responses, we train Rproxy by minimizing a pairwise
ranking loss on a set P of training pairs constructed as
P = {(s, s′)|RGT(s) > RGT(s

′)}. The loss function is

Lrank = − 1

|P|
∑

(s,s′)∈P

log σ
(
Rproxy(s)−Rproxy(s

′)
)
, (1)

where σ(x) = 1
1+e−x is the sigmoid function. The loss

formulation is obtained from previous reward modeling
work (Ouyang et al., 2022).
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Figure 2. armoRM score of response selected through best-of-n
sampling using our proxy reward model consistently increases.

To construct the training set P , we generate n = 20 sample
responses S = {s1(q), s2(q), . . . , s20(q)} for each training
query q ∈ Q and compute RGT(s(q)) using the armoRM
score (Wang et al., 2024a). While armoRM ranks highly on
benchmarks like RewardBench (Lambert et al., 2024), our
framework supports any LLM or human judge as ground
truth. Next, we select three responses per query: worst
(sworst), median (smedian), and best (sbest), and form two
pairs: (sworst, smedian) and (smedian, sbest). We obtain such
paris for all queries and aggregate them to form P which is
used to train Rproxy by minimising Equation (1).

Note that n responses from each query can generate
(
n
2

)
pairs but many pairs may have similar quality scores, mak-
ing fine-grained ranking difficult and hindering training
performance. We use only the worst, median, and best
responses to prioritize pairs with the largest ground truth
score differences. Since best-of-n sampling focuses on
selecting the highest-quality response, minor misclassifica-
tions among similar-quality pairs has minimal impact. Our
approach ensures that the proxy reward model effectively
guides high-quality sampling while reducing training com-
plexity.

During inference, for a given query q, we (1) generate n
sample responses S = {s1(q), s2(q), . . . , sn(q)}, (2) com-
pute the proxy scores for each sample: Rproxy(si(q)) for
i = 1, 2, . . . , n, and (3) select the response with the highest
proxy score s∗ = argmaxs∈S Rproxy(s). Figure 2 plots the
average armoRM score (RGT) for the best-of-n responses
selected by our proxy reward model for the test set (see
Section 5) with varying n. The consistent increase in ar-
moRM score as n increases shows that Rproxy works as
expected. In particular it is not seen to suffer from reward
hacking (Skalse et al., 2022) (i.e. poor correlation with RGT)
often seen when optimizing imperfect proxy rewards.

4.2. Test-time Optimal LLM Routing

Recall from Section 3.2 that the goal of routing is to select
either a powerful reference model Mref (e.g., GPT-4o) and
return a single response from it, or select a smaller model

Algorithm 1 BEST-Route
Input: Query q, Maximal sample number n, Match proba-

bility threshold t, Proxy reward model Rproxy;
Models {M1, ...,MK}, Reference model Mref;
Average output lengths avg output length[M ];
Input and output token prices input token price[M ],

output token price[M ];
Output: Final response.
/* 1. Compute Match Probabilities: */
foreach M ∈ {M1, ...,MK} do

for i = 1 to n do
match prob[(M, i)] ←

MultiHeadRouter.predict match prob(q,M, i,Mref)

/* 2. Filter and Compute Costs: */
valid comb← ∅

foreach (M, i) ∈ match prob do
if match prob[(M, i)] ≥ t then

costs[(M, i)] ← i × avg output length[M ] ×
output token price[M ] + q.input length ×
input token price[M ]
valid comb← valid comb ∪ {(M, i)}

/* 3. Select Optimal Combination: */
if valid comb ̸= ∅ then

(M∗, i∗)← argmin(M,i)∈valid comb costs[(M, i)]

else
(M∗, i∗)← (Mref, 1)

/* 4. Execute Sampling Strategy: */
Draw i∗ samples {s1, ..., si∗} from M∗ for query q and

compute s∗small ← argmaxs∈{s1,...,si∗} Rproxy(s)
return s∗small

from the setM and return the best-of-n responses from it
using the sampling approach described above. The key intu-
ition here is that for many small models, sampling multiple
responses and selecting the best is often still cheaper than
sampling a single response from the reference model (see
Section 5 for cost breakups). We will describe the router
design by first introducing a pair-wise router for routing be-
tween two models, then extending it to a matrix-of-routers
that can route between more than two models, and finally
describing our multi-headed router which is a single router
that approximates the matrix-of-routers while signficantly
reducing cost/latency overheads.

Pair-Wise Router. Given a query q and two candidate
inference options—a large reference model Mref (e.g., GPT-
4o) and a smaller model Msmall (e.g., Llama-3.1-8b), and a
specific value of n, we can augment Msmall with best-of-n
sampling by generating n samples and then selecting the
best using our proxy reward model as,

s∗small = argmax
s∈S

Rproxy(s), S = {s1(q), s2(q), . . . , sn(q)},

(2)
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We want our router to estimate the likelihood of s∗small being
at least as good as sref, the response from Mref, under the
ground-truth reward, RGT. Therefore for each training query
q, we generate a label

yn(q) = Pr[RGT(s
∗
small) ≥ RGT(sref)] (3)

Our pair-wise router is trained to minimize the cross entropy
loss,

Lpair = − 1

|Q|
∑
q∈Q

(yn(q) log pn(q) + (1− yn(q)) log(1− pn(q))) ,

(4)
where pn(q) is the probability predicted by the router that
the best-of-n response, from Msmall is as good as a single
response from Mref for that value of n, termed as match
probability.

Matrix-of-Routers. Let there be K small models in the set
M. We can train K ×N distinct pair-wise routers, in our
matrix-of-routers. Each router predicts the match probabil-
ity between a smaller model with best-of-n sampling and
Mref for a specific value of n (1 ≤ n ≤ N ).

Cost-Efficient Multi-Head Router. Training and deploying
K ×N separate pair-wise routers is computationally expen-
sive. To address this, we propose a cost-efficient multi-head
router design.

Specifically, we leverage a shared BERT-style backbone
Routershared encodes the query q into a shared representation
hq and train K×N lightweight classification heads Headk,n
separately to predict:

pk,n(q) = σ
(
w⊤

k,nhq + bk,n
)

1 ≤ k ≤ K, 1 ≤ n ≤ N (5)

where σ(x) = 1
1+e−x is the sigmoid function, wk,n is the

weight vector, bk,n is the bias term, and pk,n(q) denotes the
probability that the best-of-n response, from the kth model
inM is as good as a single response from Mref for that n.

At inference time, users can set thresholds on pk,n(q) to
balance cost and accuracy. Higher thresholds favor the
reference model, improving quality at increased costs. Mul-
tiple small-model and best-of-n combinations can meet a
given threshold. BEST-Route effectively selects among
them using cost estimation to ensure high-quality responses
at minimal cost.

Specifically, total cost comprises prompt and response costs,
computed as the product of token count and unit token
price for inputs and outputs, respectively. Since output
length is unknown at inference, we estimate it using average
training data lengths. We demonstrate that this estimation
has low error and can effectively support the development
of efficient routing frameworks (see Appendix B.1).

The overall test-time optimal LLM routing framework is
as depicted in Algorithm 1. We first use the Multi-Head
Router to predict the match probability for each model and

best-of-n sampling strategy against the reference model.
Secondly, we identify combinations where the predicted
match probability meets or exceeds the threshold and com-
pute the incurred cost for each valid combination 1. Next,
from the valid combinations, we select the one with the
smallest estimated cost. If no combination satisfies the
threshold, we use the reference model with one single call.
Lastly, for the selected model and sampling strategy, we
draw the desired number of samples, evaluate them using
the proxy reward model, and return the response with the
highest proxy score.

5. Evaluation
5.1. Evaluation Setup

Dataset. We introduce a large-scale dataset covering
diverse tasks, including question answering, coding, and
safety evaluation, with examples collected from multiple
sources (see Appendix A.1). The dataset consists of 10K
instruction examples, split into 8K/1K/1K for training, val-
idation, and testing. We evaluate BEST-Route across 8
popular LLMs—GPT-4o, GPT-3.5-turbo, Llama-3.1-8B,
Mistral-7B, Mistral-8x7B, Phi-3-mini, Phi-3-medium, and
Codestral-22B—by generating 20 responses per example.
We further perform out-of-distribution (OOD) evaluation of
BEST-Route using MT-Bench (Zheng et al., 2023).

Router and Proxy Reward Model. We use DeBERTa-
v3-small (He et al., 2020) (44M) as the backbone to train
our Multi-Head Router, while the proxy reward model is
fine-tuned from OpenAssistant RM 2, a DeBERTa-v3-large
model (300M). We train both Multi-Head Router and the
proxy reward model with the corresponding loss from Sec-
tion 4 for 5 epochs and use the validation set to choose the
best checkpoints for final evaluation. All inference experi-
ments are conducted using paid API access from OpenAI 3,
AzureML 4, and Mistral AI 5, while router training and in-
ference are performed on an NVIDIA A100 GPU (80GB
RAM). Codes will be released upon acceptance of this work.

Evaluation Metrics. We assess response quality using
armoRM scores (Wang et al., 2024a) and measure efficiency
based on incurred inference costs, which include input and
output token pricing (see Table 6). We also report trained
router performance using BLEU and ROUGE in Section 5.5.

1Input tokens are only charged once because most modern
LLMs support returning multiple responses at once for a given
query. For example, you can set the “num return sequences” hyper-
parameter for HuggingFace LLMs to tune the number of indepen-
dently computed returned sequences for each query.

2https://huggingface.co/OpenAssistant/reward-model-
deberta-v3-large-v2

3https://openai.com/api/pricing/
4https://azure.microsoft.com/en-us/pricing/details/phi-3/
5https://mistral.ai/technology/#pricing
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Figure 3. Routing performance results.

Baselines. We compare BEST-Route against 3 routing
baselines from prior work (Srivatsa et al., 2024), includ-
ing (1) N-class Routing – a BERT-based router aiming
to predict the best LLM for a given input query, (2) N-
label Routing – a BERT-based router predicting all capa-
ble LLMs and selecting the cheapest one, (3) Clustering-
based Routing – fitting K-Means clustering model to query-
specific features and routing queries to the optimal LLM
corresponding to their assigned cluster. We further consider
Model Cascade baselines (Yue et al., 2023) and report re-
sults in Appendix B.2. All baseline details are provided
in Appendix A.2.

Experiments. We investigate our test-time optimal LLM
routing framework. We evaluate the routing performance
in Section 5.2 (Figure 3 and Table 1), validate that the
router is indeed adaptively distributing queries between dif-
ferent LLMs to achieve good cost-v.s.-accuracy trade-offs
in Section 5.3, demonstrate that our routing framework is
of negligible compute overhead in Section 5.4, examine the
router generalizability in Section 5.5, show that our cost
estimation is of low estimation error in Appendix B.1, and
present more performance results compared to model cas-
cade baselines in Appendix B.2. Our code is available at
https://github.com/microsoft/best-route-llm.

5.2. Router Performance Results

We evaluate the effectiveness of routing queries across
LLMs with significant performance gaps (Figure 3), with
numerical results summarized in Table 1. Routing is in-
herently challenging as the reference model (e.g., GPT-4o)
dominates for most queries, making cost reduction difficult
without sacrificing quality.

Unlike BEST-Route, which enables adaptive cost-accuracy
trade-offs through a tunable threshold, N-class Routing and
Clustering-based Routing make fixed routing decisions, of-
fering no flexibility. As a result, they largely default to
using the reference model for nearly all queries, achieving

Cost
Reduction

(%)

Response Quality Drop (armoRM score)
w.r.t. always using GPT-4o (%)

N-label BEST-Route

10 0.63 0.19
20 1.17 0.21
40 3.26 0.47
60 5.08 0.80

N-class 0.07% cost reduction with 0% quality drop.
Clustering 0% cost reduction with 0% quality drop.

Table 1. Cost reduction v.s. performance drops. Performance drops
are computed w.r.t. always using the reference model (GPT-4o).
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Figure 4. Routing performance between GPT-4o and Phi-3-mini
with best-of-n sampling where n = 1, 3.

minimal cost savings. Similarly, N-label Routing struggles
to reduce costs while preserving response quality, leading
to over 5% performance drop at 60% cost reduction.

In contrast, BEST-Route consistently outperforms all base-
lines, achieving higher cost reductions with lower perfor-
mance degradation. Notably, BEST-Route achieves 60%
cost reduction with only a 0.8% quality drop, up to 4.28%
better than all baselines (Table 1).

We also examine the impact of best-of-n sampling (Fig-
ure 4) by comparing GPT-4o and Phi-3-mini at n = 1, 3.
The results show that best-of-n sampling significantly en-
hances routing performance, achieving better cost-accuracy
trade-offs. We further compare BEST-Route with best-of-n
sampling for each LLM (Figure 5). Best-of-n offers fixed
trade-offs for each model and n pair and often yields lower-
quality responses (e.g., 4.9% quality drop for Phi-3-mini,
1.1% for LLaMA-3.1-8B at n = 5). In contrast, BEST-
Route offers flexible trade-offs, achieving 20% cost reduc-
tion with only 0.21% quality drop, and 40% cost reduction
with 0.47% drop, with the max sampling number n = 5.
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Figure 6. Model usage before and after adding Codestral-22b on
coding queries.

5.3. Router Validation Results

We validate that BEST-Route effectively balances cost and
accuracy by adaptively routing queries between small and
large models and leveraging specialized models for further
gains. We conduct experiments on coding queries with
GPT-4o, GPT-3.5-turbo, Mistral-8x7b, and the specialized
coding model Codestral-22b, analyzing cost-performance
trade-offs and traffic distribution before and after adding
Codestral-22b.

As shown in Figure 6, when Codestral-22b is absent, BEST-

Cost
Reduction

(%)

Response Quality Drop (armoRM score)
w.r.t. always using GPT-4o (%)

Before
Adding Codestral-22b

After
Adding Codestral-22b

10 0.50 -0.10
20 0.77 -0.50
40 2.67 2.49
60 5.64 5.11

Table 2. Cost reduction v.s. performance drops on coding queries.
Performance drops are computed w.r.t. always using the reference
model (GPT-4o).
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Figure 7. Overhead analysis.

Cost
Reduction

(%)

Response Quality Drop (armoRM score)
w.r.t. always using GPT-4o (%)

N-label BEST-Route

10 0.88 0.25
20 2.29 0.43
40 4.41 1.56
60 5.89 1.59

N-class 0% cost reduction with 0% quality drop.
Clustering 0% cost reduction with 0% quality drop.

Table 3. OOD evaluation on MT-Bench. Performance drops are
computed w.r.t. always using the reference model (i.e., GPT-4o).

Route primarily selects Mistral-8x7b under strict cost con-
straints due to its low cost and reasonable accuracy (see
Table 6 in the Appendix). As the budget increases, queries
shift towards GPT-3.5-turbo and GPT-4o for improved ac-
curacy. However, after Codestral-22b is added, a significant
portion of coding queries is redirected from GPT-3.5-turbo
to the specialized model, leading to better cost-performance
trade-offs (Table 2). Notably, BEST-Route achieves up to
20% cost reduction while exceeding GPT-4o performance
(negative response quality drop in Table 2 corresponds to
response quality gain over always using GPT-4o). This
suggests that query routing can not only save cost but also
improve performance, consistent with prior findings for the
two-model case (Ding et al., 2024).

5.4. Router Latency

We measure the latency of BEST-Route and compare it
with the inference latency of different LLMs. We locally
deploy Llama-3.1-8b, Mistral-7b, and Phi-3-mini that we
use in our experiments to generate responses to user queries
for evaluation purpose. We do not measure the latency of
LLM APIs (e.g., GPT-3.5-turbo) because they introduce
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Cost
Reduction

(%)

Response Quality Drop w.r.t. always using GPT-4o (%)

BLEU ROUGE

N-label BEST-Route N-label BEST-Route

10 6.57 3.61 6.10 3.88
20 13.13 6.07 11.65 7.27
40 25.80 12.76 22.26 15.78
60 31.70 18.07 27.62 21.97

N-class 0.2% cost reduction with 0.7% quality drop. 0.2% cost reduction with 0.9% quality drop.
Clustering 0% cost reduction with 0% quality drop. 0% cost reduction with 0% quality drop.

Table 4. Routing performance under BLEU and ROUGE. Performance drops are computed w.r.t. always using the reference model (i.e.,
GPT-4o).

additional delays due to network latency and queuing, and
inference latency is expected to be significantly higher than
that of the router.

The latency of BEST-Route primarily stems from three com-
ponents: (1) match probability prediction by the Multi-Head
Router, (2) LLM generation latency for producing n re-
sponses, and (3) best-of-n sampling overhead from using
the proxy reward model. As shown in Figure 7, the routing
overhead is negligible compared to LLM inference time.
For instance, at n = 20, match probability prediction takes
0.04s and best-of-n sampling adds 0.58s, making the total
overhead 18.7× faster than the fastest LLM (Llama-3.1-8b).
Moreover, increasing n has only a marginal impact on over-
all latency. As n grows from 1 to 20, LLM generation
latency increases by just 30% for Phi-3-mini, 53.7% for
Mistral-7b, and 59.3% for Llama-3.1-8b, demonstrating the
efficiency of our best-of-n sampling strategy.

5.5. Router Generalizability

To investigate the generalizability of BEST-Route, we eval-
uate the trained routers on the out-of-distribution (OOD)
dataset – MT-Bench (Zheng et al., 2023), and more metrics
(e.g., BLEU and ROUGE) in addition to armoRM scores.

As shown in Table 3, BEST-Route consistently outperforms
all baselines on MT-Bench. For example, it achieves 60%
cost reduction with only a 1.59% performance drop – up to
4.3% better than the strongest baseline. In contrast, N-class
and clustering-based routing often default to using GPT-4o,
yielding minimal cost savings, while N-label routing suffers
notable quality drops especially at high cost reduction rates.
Similarly, as shown in Table 4, we observe that BEST-Route
consistently achieves better trade-offs than all baselines
under both BLEU and ROUGE (e.g., N-label routing has
up to 31.7% BLEU drop at 60% cost reduction, vs. only
18.07% drop for BEST-Route). These results demonstrate
the robustness of BEST-Route under distribution shifts and
generalizability to alternative quality metrics.

6. Limitations
While BEST-Route effectively reduces inference costs while
maintaining high response quality, our approach has some
limitations that warrant further investigation:

Dependency on Proxy Reward Model Accuracy. Our best-
of-n sampling strategy relies on the proxy reward model
to rank generated responses effectively. Although our ex-
periments demonstrate strong alignment between the proxy
model and ground-truth evaluations, potential misalignment
in certain cases may result in suboptimal response selection.

Scalability to Extremely Large Model Pools. While BEST-
Route extends routing beyond binary selection to a diverse
set of models, its effectiveness in handling extremely large
model pools (e.g., hundreds of LLMs) remains unexplored.
Efficiently scaling our router design to such a vast space
may require additional optimizations.

7. Conclusion
In this work, we introduced BEST-Route, a novel frame-
work for adaptive LLM routing that optimizes inference
costs while maintaining high response quality. Our approach
combines a cost-efficient routing strategy with test-time opti-
mal compute through best-of-n sampling, enabling dynamic
model selection tailored to query difficulty. Through ex-
tensive evaluations on real-world datasets, we demonstrate
that BEST-Route achieves up to 60% cost reduction with
less than 1% performance drop, significantly outperforming
prior routing frameworks. Our multi-head router design
allows for fine-grained trade-offs between accuracy and ef-
ficiency, while our cost-aware best-of-n sampling strategy
further enhances response quality without unnecessary com-
putational overhead. Our findings suggest that BEST-Route
provides a flexible and effective solution for cost-efficient
LLM inference, paving the way for more accessible and
adaptive LLM services.
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Scenario Source # Examples

Question Answering MixInstruct 6,000

Coding
2K total

RewardBench 984
CodeUltraFeedback 1,016

Safety
2K total

RewardBench 740
BeaverTails 1,260

Total Mix 10,000

Table 5. Dataset statistics. It contains 10K examples and we randomly split the dataset into train/dev/test in 8K/1K/1K sizes.

Model
Inputs

($/1M Tokens)
Outputs

($/1M Tokens)

GPT-4o 5 15
GPT-3.5-turbo 3 6
Llama-3.1-8b 0.3 0.61

Mistral-7b 0.25 0.25
Mistral-8x7b 0.7 0.7
Phi-3-mini 0.3 0.9

Phi-3-medium 0.5 1.5
Codestra-22b 1 3

Table 6. LLM input and output token prices.

A. Experiment Details
A.1. Dataset

We introduce a new dataset to evaluate the effectiveness of different routing strategies across a wide range of tasks (e.g.,
question answering, coding, safety evaluation). We collect a large-scale set of instruction examples primarily from four
sources, as shown in Table 5. The broad range of tasks in the dataset enables us to train a generic routing framework that will
be effective across different scenarios. We sample 8K examples for training, 1K for validation, and 1K for testing. We then
run K = 8 popular LLMs – GPT-4o, GPT-3.5-turbo, Llama-3.1-8b, Mistral-7b, Mistral-8x7b, Phi-3-mini, Phi-3-medium,
and a specilized coding model Codestral-22b – to generate 20 responses on these 10k examples.

A.2. Baselines

We consider three baselines from previous LLM routing work in the main evaluation section.

1. N-class Routing. A BERT-based router aiming to predict the best LLM for a given input query.

2. N-label Routing (Srivatsa et al., 2024). Similarly, a BERT-based router aiming to predict all LLMs capable for a given
input query and selecting the cheapest LLM if there are multiple candidates.

3. Clustering-based Routing (Srivatsa et al., 2024). We apply a K-Means clustering model to query-specific features
extracted from the training data using a TF-IDF vectorizer (Bafna et al., 2016) to identify discrete clusters. For each
cluster in the training set, the most effective LLM is selected. During inference, test set queries are routed to the optimal
LLM corresponding to their assigned cluster. We choose K = 50 by default as suggested in (Srivatsa et al., 2024).

We further compare BEST-Route with Model Cascades (Yue et al., 2023) to further demonstrate the effectiveness of our
approach. Results are summarized in Appendix B.2. Specifically, Model Cascades ranks all LLMs based on their average
inference costs on the training data, which are calculated as the sum of the prompt cost and the average response cost. For
each LLM in the cascade, we sequentially sample K responses and stop once the most consistent response i∗ achieves a
consistency score above a predefined threshold. The consistency score for a response i ∈ [K] is defined as the average of
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Model
Estimation Error

($ / query)

GPT-4o 0.0027
GPT-3.5-turbo 0.0006
Llama-3.1-8b 0.0001

Mistral-7b 0.0001
Mistral-8x7b 0.0001
Phi-3-mini 0.0002

Phi-3-medium 0.0003
Codestra-22b 0.0004

Table 7. LLM response cost estimation error.
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Figure 8. Routing performance results compared to model cascades baselines.

the agreement function values between i and j ∈ [K], expressed as

consistency(i) =
1

K

∑
j∈[K]

agree func(i, j).

Following (Yue et al., 2023), we set K = 5 and measure consistency using three agreement functions: exact match,
BLEU (Papineni et al., 2002), and ROUGE (Lin, 2004) scores. The most consistent response, i∗, is determined as

i∗ := argmaxi consistency(i) for i ∈ K.

B. Additional Experiments
B.1. Response Cost Estimation

In BEST-Route, we estimate the incurred response cost for a given LLM and best-of-n sampling strategy. The response
costs can be computed by multiplying the number of output tokens by the unit output token prices (see Table 6). We use the
average number of output tokens from the training split as the output length estimator for each LLM to estimate the cost. We
validate that our response cost estimation is of low error and hence can be used to effectively distinguish LLMs at different
cost levels for given queries (see Table 7). Specifically, the average estimation error for each query is less than $0.003 for all
8 LLMs and as low as $0.0001 for Llama-3.1-8b, Mistral-7b, and Mistral-8x7b, which demonstrates the robustness of our
cost estimation.

B.2. Performance Results Compared to Model Cascades

We compare BEST-Route with Model Cascades (Yue et al., 2023) to further demonstrate the effectiveness of our approach.
Results are summarized in Figure 8 and Table 8. All cascading approaches incur significantly higher costs to deliver equally
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Cost
Reduction

(%)

Response Quality Drop (armoRM score) w.r.t. always using GPT-4o (%)

Cascading
(exact match)

Cascading
(BLEU)

Cascading
(ROUGE) BEST-Route

10 7.26 5.60 6.10 0.19
20 7.26 5.69 6.22 0.21
40 7.26 6.23 6.90 0.47
60 7.26 6.61 7.02 0.80

Table 8. Cost reduction v.s. performance drops with model cascades baselines. Performance drops are computed w.r.t. always using the
reference model (GPT-4o).

good responses compared to the reference model, due to its cascading design which triggers more than one LLMs to resolve
a given query. Similarly, BEST-Route outperforms all model cascades baselines by delivering higher quality responses while
achieving higher cost savings. Specifically, BEST-Route achieves 60% cost reduction with 0.8% quality drop, which is up
to 6.46% better than all cascading-based routers.

C. armoRM Score - A Case Study
armoRM score (Wang et al., 2024a) is a comprehensive response quality metric that aggregates 19 evaluation perspectives,
including Helpfulness, Correctness, Coherence, and Verbosity. It is constructed by collecting ground-truth ratings for each
perspective, followed by normalization, de-biasing, and weighted summation into a unified score ranging from -1 to 1.

A small armoRM score increase can reflect meaningful improvements across multiple quality dimensions, as illustrated in
the following example.

Query: Is it normal to have a fever when I’m sick?

Response 1 (armoRM = 0.112): Yes, having a fever when you’re sick often indicates
that your body is fighting off an infection or illness. Fever is a natural
defense mechanism whereby your body’s temperature increases to create an
environment less conducive for pathogens to multiply.

Response 2 (armoRM = 0.127): Yes, it is common to have a fever when you’re sick.
A fever is your body’s natural response to fighting off an infection. It
indicates that your immune system is actively working to fight the pathogens
causing the illness. However, if your fever is above 101◦F (38.3◦C) and
persists for more than a couple of days, it’s a good idea to seek medical
advice to ensure there isn’t a more serious underlying condition.

Both Response 1 and 2 cover the perspective that “fever is a natural defense mechanism”. However, Response 2 further
enriches the argument by discussing the potential danger of persisting high fever and suggests to users to seek medical
advice in such cases, which could be life-critical in healthcare consultations and is missing from Response 1.
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