
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THINKBOT: EMBODIED INSTRUCTION FOLLOWING
WITH THOUGHT CHAIN REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Embodied Instruction Following (EIF) requires agents to complete human instruc-
tion by interacting objects in complicated surrounding environments. Conven-
tional methods directly consider the sparse human instruction to generate action
plans for agents, which usually fail to achieve human goals because of the instruc-
tion incoherence in action descriptions. On the contrary, we propose ThinkBot
that reasons the thought chain in human instruction to recover the missing action
descriptions, so that the agent can successfully complete human goals by follow-
ing the coherent instruction. Specifically, we first design an instruction completer
based on large language models to recover the missing actions with interacted
objects between consecutive human instruction, where the perceived surrounding
environments and the completed sub-goals are considered for instruction comple-
tion. Based on the partially observed scene semantic maps, we present an object
localizer to infer the position of interacted objects for agents to achieve complex
human goals. Extensive experiments in the simulated environment show that our
ThinkBot outperforms the state-of-the-art EIF methods by a sizable margin in both
success rate and execution efficiency.

1 INTRODUCTION

Designing autonomous agents for diverse household tasks has been highly desired in research of
artificial intelligence for a long time. Recent advances in computer vision Wang et al. (2023a); Li
et al. (2023b) and natural language processing Brown et al. (2020); Ouyang et al. (2022) enable au-
tonomous agents to complete complex human requirements, because the appeared large pre-trained
models can comprehend human instruction and perceive the world accurately. Embodied instruction
following (EIF) Misra et al. (2017); Zhu et al. (2017); Gordon et al. (2018); Shridhar et al. (2020)
requires the agent to ground human instruction to consecutive task plans with feasible execution,
which necessitates high success rate and completion efficiency.

To accomplish the challenging EIF task, imitation learning Shridhar et al. (2020); Pashevich et al.
(2021); Singh et al. (2021); Song et al. (2022); Nguyen et al. (2021); Zhang & Chai (2021); Nguyen
& Okatani (2020); Suglia et al. (2021); Kim et al. (2021) is widely adopted to generate low-level
actions from historical observation and given instruction, while they fail to adapt to new scenarios
due to the insufficient pair-wise data between human instruction and low-level actions. To this
end, modular methods Blukis et al. (2022a); Min et al. (2022); Murray & Cakmak (2022); Inoue &
Ohashi (2022); Kim et al. (2023); Ding et al. (2022); Liu et al. (2022) decompose complex tasks to
high-level planning conditioned on instruction and low-level execution with predefined controllers.
However, human instruction is usually sparse with incoherence for action plan generation of agents.
For example, in Figure 1, humans may give the instruction ‘Prepare a spoon, Take a mug’ for
making cold brew coffee. In realistic scenarios, the mug may be stored in a fridge, and the agent
may need to open the fridge first to get the mug. Therefore, the dense instruction should be ‘Go
to the fridge, open the fridge, and take a mug’. Lacking coherent instruction usually disables the
agent to acquire feasible action sequences in execution, and the success rate across diverse tasks in
complicated indoor environments still remains low.

In this paper, we propose a ThinkBot agent to accurately complete diverse EIF tasks in interac-
tive environments. Unlike existing methods that directly employ the sparse human instruction for
agent action sequence generation, we recover the missing action descriptions for agent execution
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Go to the fridge Take a mug

Human Instruction

Open the fridge
Take a mug

Take a mugTake a mugTake a mug

The mug should be chilled, so it may be in the fridgePrepare a spoon 

 Previous

ThinkBot

Task: Please get a 
chilled mug for coffee

Figure 1: Comparison between conventional EIF methods (Prompter Inoue & Ohashi (2022)) and
our ThinkBot. Existing methods directly leverage sparse human instruction to generate action se-
quence, which usually get stuck due to the incoherence of instruction. Our ThinkBot recovers
missing action descriptions by reasoning the thought chain in sparse human instruction, and can
successfully complete challenging tasks.

by reasoning the thought chain in sparse human instruction. Therefore, coherent instruction can
be leveraged to generate more feasible agent actions in complex EIF tasks especially with long
sequences. More specifically, we first propose an instruction completer based on large language
models to predict the missing actions with interacted objects in the sparse human instruction, where
we carefully design prompts to consider the perceived objects in the surrounding environments and
the completed sub-goals in the task execution sequences. We then present a multimodal object lo-
calizer that predicts the position of the recovered missing objects based on the scene semantic maps,
where the mined object correlation is also leveraged to enhance the localization ability. Extensive
experiments on ALFRED Shridhar et al. (2020) show that our ThinkBot outperforms the state-of-
the-art EIF methods by a sizable margin in both success rate and execution efficiency. Our main
contributions can be summarized as follows:

• We propose a ThinkBot agent that reasons the thought chain in sparse human instruction
for coherence mining to successfully complete complex EIF goals.

• We present an instruction completer based on large language models to generate the missing
actions with interacted objects, and propose an object localizer to predict the position of
objects for interaction.

• We conduct extensive experiments of diverse EIF tasks on ALFRED benchmark, and the
results demonstrate that our method achieves higher success rate and path-length-weighted
success rate than the state-of-the-art methods on unseen environments.

2 RELATED WORK

Embodied Instruction Following: Developing generalist agents that can follow human instruction
to complete diverse tasks in interactive environments is a long-standing goal. In the pursuit of this
goal, EIF has been widely studied in recent years for high generalizability and practicality. Prior arts
can be divided into two categories: end-to-end methods and modular methods. End-to-end methods
directly generate low-level actions conditioned on the current state of the environment and human
instruction Shridhar et al. (2020); Pashevich et al. (2021); Singh et al. (2021); Song et al. (2022);
Nguyen et al. (2021); Zhang & Chai (2021); Nguyen & Okatani (2020); Suglia et al. (2021); Kim
et al. (2021); Yang et al. (2018). For instance, Pashevich et al. Pashevich et al. (2021) developed
an episodic transformer to encode language inputs and the episode history of visual observation and
actions, which was decoded for action sequence generation with auto-regression. However, end-to-
end methods often struggle to generalize to unseen scenes due to insufficient pair-wise data between
instruction and low-level action sequences. To address this, modular methods Jia et al. (2022);
Blukis et al. (2022a); Min et al. (2022); Murray & Cakmak (2022); Inoue & Ohashi (2022); Kim
et al. (2023); Ding et al. (2022); Liu et al. (2022) plan high-level action sequences and execute them
with pre-defined local policies guided by online semantic maps, which are free of the pair-wise data
between instruction and low-level actions. In modular methods, selecting correct targets and actions
for navigation and interaction is important for searching efficiency and task success. Min et al. Min
et al. (2022) directly employed convolutional networks to predict the target position from current se-
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Prepare a spoon

Take a mug

Human Instruction

Prepare a spoon

Current FrameTask Observed Scene

Fridge: (x1, z1), Sink: (x2, z2) 

The mug should 
be chilled, so it 
may be in the 

fridge

Thought Chain Reasoning

Instruction Completer

Prepare a spoon
Go to the fridge
Open the fridge

Take a mug

Coherent Instruction
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Figure 2: The overall pipeline of ThinkBot, which consists of an instruction completer and an
object localizer. The instruction completer generates the coherent instruction with interacted objects
based on sparse human instruction and the current visual perception results, and the object localizer
predicts the position of the interacted object for manipulation and navigation.

mantic map, and Murray et al. Murray & Cakmak (2022) proposed a landmark classification model
based on BERT Kenton & Toutanova (2019) for target selection from original human instruction.
Inoue et al. Inoue & Ohashi (2022) predicted landmark objects according to offline co-occurrence
probabilities of objects evaluated by pre-trained language models, and Kim et al. Kim et al. (2023)
yield the detailed plan by incorporating the contextual information of natural language instructions.
Nevertheless, directly considering the sparse human instruction for agent action generation usually
fails to achieve human goals due to the instruction incoherence with missing action descriptions.

LLMs for Embodied Agents: Large language models (LLMs) Brown et al. (2020); Ouyang et al.
(2022) have demonstrated their capability in embodied AI tasks such as visual-language navigation
Qiao et al. (2023); Long et al. (2023); Shah et al. (2023); Zhou et al. (2023a); Georgakis et al.
(2022); Chen et al. (2022), object navigation Yu et al. (2023); Zhou et al. (2023b), open-world
exploration Wang et al. (2023b); Zhu et al. (2023); Chen et al. (2024), and embodied planning Mu
et al. (2023); Yao et al. (2022); Wu et al. (2023); Ahn et al. (2022); Huang et al. (2022a;b); Raman
et al. (2022); Singh et al. (2023); Lu et al. (2022), where the high generalizability across deployment
scenes and downstream tasks of LLMs enables embodied agents to achieve diverse human goals
in complex environments. With the rich commonsense embedded in LLMs, fine-grained actions
regarding human instruction can be directly generated. Zhou et al. Zhou et al. (2023a) directly
prompted LLMs to perform zero-shot sequential action prediction by taking the textual descriptions
of historical visual observations as inputs. To facilitate efficient exploration, ESC Zhou et al. (2023b)
generated frontier candidates on the observed semantic map, and employed LLM to determine the
next frontier by considering hand-crafted soft constraints jointly. While direct generation of fine-
grained actions is challenging for LLMs due to the extremely large search space, other methods
decompose the overall solution into high-level plan generation and low-level action controlling Mu
et al. (2023); Yao et al. (2022); Wu et al. (2023); Ahn et al. (2022); Huang et al. (2022a;b). Wu
et al. Wu et al. (2023) crafted a large-scale embodied planning dataset and finetuned different
plan generators on the dataset for task plan grounding. Yao et al. Yao et al. (2022) generated
consecutive plans by prompting LLMs to synergize reasoning and acting, and achieved impressive
performance on text-based benchmarks Shridhar et al. (2021). However, despite the high reasoning
ability of LLMs, the spatial localization ability for interacted objects is weak in LLMs. We present
a multimodal transformer-based object localizer to provide spatial guidance and feedback for agents
in object interaction accurately.

3 APPROACH

In this section, we first briefly introduce the problem in EIF and our overall pipeline of the ThinkBot
agent (Section 3.1). Then we detail the instruction completer that recovers the missing actions
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with interacted objects for coherence mining (Section 3.2), and demonstrate the multimodal object
localizer which provides spatial guidance for agents in interaction (Section 3.3).

3.1 PROBLEM STATEMENT AND OVERALL PIPELINE

The embodied instruction following task requires an agent in the interactive environment to finish
the human goals physically by generating action sequences, where the human goals and the step-
by-step instruction are given to the agent for guidance. Following the modular methods, we first
generate high-level subgoal sequences and then execute them with a pre-defined controller guided
by online semantic maps. In the tth step, the agent needs to generate a high-level subgoal At

based on the current instruction It and the object state St−1 after implementing the last subgoal
by the controller. A high-level plan At is a tuple (at, ot, pt), where at is the primitive action and
ot means the interacted object with the position pt. In EIF tasks, human instruction is usually
sparse with significant incoherence between consecutive steps. Therefore, it is very challenging to
generate feasible action At based on the current step-wise instruction It and the object state St−1

after implementing the last action. For example, humans may provide the instruction ‘Prepare a
spoon, take a mug’ for coffee making. However, the mug may be stored in the fridge in realistic
scenes. Consequently, it is difficult for the agent to take the mug with spoon without other instruction
after preparing the bread. The coherent instruction should be ‘Prepare a spoon, go to the fridge, open
the fridge, take a mug’. Therefore, our goal is to recover the missing action descriptions in the sparse
human instruction.

Since the thought chain reveals a series of intermediate steps from the initial problem to the fi-
nal solution Wei et al. (2022), it can be leveraged to decompose the original complex problems
and enhance the feasibility of the solution. In EIF tasks, reasoning the thought chain can predict
the missing action descriptions in the sparse human instruction to successfully achieve the goal.
The overall pipeline of our ThinkBot agent is shown in Figure 2, which consists of an instruction
completer recovering the missing actions with interacted objects and an object localizer predicting
the object location for agent interaction. For the instruction completer, we design prompts for the
pre-trained large language model including the descriptions of scene information, task completion
process, and the executor feedback which is expected to reason the thought chain in sparse human
instruction to provide coherent instruction. For the object localizer, the generated missing actions
with interacted objects and the perceived semantic map of the scene are utilized to predict the object
location for the agent to interact with, where multimodal transformers are employed for the align-
ment between language instruction and visual clues in the environment. Finally, the agent can easily
complete the human goals to achieve significantly higher success rate with the coherent instruction
and the explicit interaction location.

3.2 INSTRUCTION COMPLETER

To recover the missing action descriptions in the sparse human instruction, we employ LLMs with
rich commonsense to reason the thought chain in the instruction. While LLMs have demonstrated
remarkable abilities in various tasks, unlocking their complete potential requires prompt engineer-
ing. To enable the pre-trained LLMs to predict the missing actions with interacted objects accurately,
we carefully design the prompt by organizing the system message and agent message that respec-
tively describe the innate world properties and the perceived information. The input and output of
the instruction completer are shown in Figure 3 with an example.

System Message: The system message describes the innate world properties in the simulator includ-
ing the role explanation, message definition, primitive actions and response format, which remains
unchanged during the whole EIF process for the given task and environment. The role explana-
tion specifies the simulation scenario of household AI assistant for LLM response, and the message
definition explains the meaning of each input message. Primitive actions constrain the available se-
lection for agent in manipulation and navigation, while response format limits the response structure
for LLMs to generate the missing actions with interacted objects.

Agent Message: The agent message demonstrates the perceived information including the human
instruction, task completion process, observed objects and the executor feedback, which is updated
along with the EIF process. The human instruction means the given sparse instruction sentences and
the final goal. The task completion depicts completed subgoals, the current subgoal and all subgoals,
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Format
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Thought Chain
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: The current instruction
is ‘take a mug’, but mug is
unobserved. The mug should
be chilled, so it may be in
the fridge. We need to first
check the fridge.

Recovered Subgoals
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Figure 3: Input and output of the instruction completer based on LLMs. The input contains system
message describing the world properties and agent message demonstrating perceived environment
information. The output includes the thought chain in sparse human instruction and missing sub-
goals with interacted objects.

which reflects the execution process of the final goal. The information on observed objects in the
scene is represented by the object category and the coordination of the instances that have been seen
by the agent, which demonstrates the affordable candidates for interaction during the EIF process.
The executor feedback contains the uncertainty obtained by the multi-modal object localizer and the
environmental feedback to enable close-loop planning. Finally, the system message and the agent
message are concatenated to form the prompt for recovering missing actions with interacted objects
in the sparse instruction.

Uncertainty-aware Thought Chain Reasoning: To accurately recover the missing actions in
sparse human instruction, we enforce LLMs to reason the thought chain in human instruction that
indicates the detailed process from the initial state to the final goal. However, the recovered actions
can only be executed if the agent knows the exact position of the interacted objects. Therefore, we
also require LLMs to generate the missing subgoals in a structured format for subsequent location
prediction. The recovered subgoals are leveraged in subsequent object localizer for position pre-
diction in the partially-observed map, where the uncertainty of the object location is also outputted.
Then, the LLMs leverage the predicted uncertainty provided in the executor feedback and the object
location to refine the subgoals, so that the agent can manipulate the object to successfully achieve
the subgoal for task completion.

3.3 MULTIMODAL OBJECT LOCALIZER

Although LLMs can accurately reason the thought chain in sparse human instruction to recover the
missing actions with interacted objects, the inferring of object position for agent interaction remains
challenging because of the weak spatial localization ability of the language description. To deal
with the challenge, we present an object localizer based on multimodal transformers to predict the
position of interacted objects based on the recovered instruction and the partially observed semantic
map. Figure 4 depicts the framework of the object localizer.

To obtain the semantic map, the egocentric image is used to estimate a depth map. At the same
time, an instance segmentation mask is created with a pretrained detector. These two results
are combined to create a semantic 3D point cloud, which is then changed into the partially ob-
served 2D semantic map. For the instruction encoder, we leverage a pre-trained BERT Ken-
ton & Toutanova (2019) to extract the instruction features Xs for the human instruction and the
goal object, which are acquired from the prediction results of instruction completer. For the
map encoder, we employ convolutional neural networks to extract the initial map features X′

t.

Partially-observed Map

Instruction: .. turn around and go to
the counter on the right of the stove.. Text Encoder

Subgoal: Open 
the fridge

M
ap

 En
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d
er

Position Heatmap
Uncertainty
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Figure 4: The architecture of the multimodal ob-
ject localizer, where the object correlation graph
is also learned to strengthen the map features.

Since semantic correlation among objects pro-
vides beneficial priors for accurate localization,
we mine the object correlation graph to embed
the priors into semantic map features for further
enhancement of object position prediction. The
graph is defined as G = (V,E), where V is the
set of nodes and E are the edges between differ-
ent nodes. Each node represents a possible ob-
ject category in the simulator, and the element
in the ith row and jth column of E indicates
the correlation of objects between the ith and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the jth classes. While conventional graph convolutional networks use external priors to handcraft a
predefined graph structure, we construct the object correlation graph by learning from the seman-
tic map features X′

t to adapt to different scenes. The object correlation graph is generated from
the semantic map features X′

t by Et = f(X′
tWe), where f(·) denotes the activation function and

We is a learnable matrix for graph generation. The process of learning the object correlation graph
can be regarded as encoding the object correlation priors among the categories. We then employ
graph convolutional layers to enhance the semantic map representation with the object correlation
encoding, and acquire the map features for multimodal alignment according to the following:

Xt = X′
t +EX′

tWa, (1)

where Wa is a learnable weight matrix for message passing to embed the object correlation priors
into the map features. After the representation extraction for the instruction and the semantic map,
we leverage a map-instruction aligner to align the instruction features and the map features for ob-
ject position prediction. Since the semantic map is updated in an online manner with high frequency
during agent navigation, we take the features of the semantic maps as the query. The instruction re-
mains unchanged in a subtask, which is utilized as the key and the value features. The representation
that aligns the visual information provided by semantic maps and the language information in the
instruction is acquired by cross-attention, which is then leveraged to decode the predicted location
of the interacted objects.

In addition to predicting the object location, we also allow the network to output an uncertainty
measured by the variance, which can serve as feedback for our instruction completer. However,
obtaining annotated uncertainty labels can be costly. To address this, we leverage the Bayesian
uncertainty estimation to learn the aleatoric uncertainty Kendall & Gal (2017); Ding et al. (2022)
to model the probabilistic nature of unseen object localization. Specifically, we assign a scalar
variance to each pixel that measures the prediction uncertainty of this pixel, which encourages the
instruction completer to refine the current plan from exploitation to exploration if the prediction has
low confidence.

In order to train the object localizer, we need to acquire the groundtruth instance position y for the
interacted objects that are predicted by the instruction completer. We replay expert demonstrations
in the training data, and record the masks of interacted objects when a subtask is successfully com-
pleted. With the projection from the egocentric mask to the top-down view by depth estimation, the
groundtruth positions are used to supervise the object localizer to predict the position of interacted
objects ŷ. The labels of pixels covered by the interacted objects are set to one and otherwise to zero.
The model is trained with a combination of pixel-wise binary cross-entropy loss and the uncertainty
regularization term:

L =
1

T

∑
y log(ŷt) + (1− y) log(1− ŷt), (2)

where the output with uncertainty estimation is given by ŷt = ŷ+ ϵt at sample t, and ϵt ∼ N(0, σ2)
is a sampled Gaussian noise based on the estimated variance. T denotes the total sampling time. By
optimizing this objective, the training sample that hard to locate is adaptively assigned with a high
variance, thus realize the uncertainty estimation that can be provided to the instruction completer as
feedback signal, which shows effectiveness in both quantitative and qualitative analysis.

4 EXPERIMENTS

In this section, we first introduce the experiment setup including datasets, baseline methods, eval-
uation metrics and implementation details. Then we compare our method with the state-of-the-art
EIF approaches to show the superiority in success rate and efficiency, and conduct an ablation study
to verify the effectiveness of the instruction completer and the object localizer. Finally, we also
demonstrate the visualization results of our method to depict our intuition. Additional results and
case studies are provided in the appendix.

4.1 EXPERIMENTAL SETUP

Dataset: For the simulation of EIF tasks, we utilize the well-recognized ALFRED benchmark Shrid-
har et al. (2020) within the AI2-THOR Kolve et al. (2017) virtual environment. The ALFRED
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Table 1: Comparison with the state-of-the-art methods in SR, GC, PLWSR, PLWGC on the test
seen and test unseen splits.

Method Test Seen Test Unseen

PLWGC GC PLWSR SR PLWGC GC PLWSR SR

Seq2seq 6.27 9.42 2.02 3.98 4.26 7.03 0.08 3.9
MOCA 22.05 28.29 15.10 22.05 9.99 14.28 2.72 5.30
E.T. 34.93 45.44 27.78 38.42 11.46 18.56 4.10 8.57
LWIT 23.10 40.53 43.10 30.92 16.34 20.91 5.60 9.42
HITUT 17.41 29.97 11.10 21.27 11.51 20.31 5.86 13.87
ABP 4.92 51.13 3.88 44.55 2.22 24.76 1.08 15.43

LLM-Planner - 26.77 - 18.20 - 23.37 - 16.42
FILM 15.59 39.55 11.27 28.83 15.13 38.52 11.32 27.80
LGS-RPA 28.97 48.66 21.28 40.05 22.76 45.24 22.76 35.41
Prompter 30.72 63.43 25.81 53.23 26.22 58.76 20.76 45.72
CPEM 27.49 59.40 22.61 50.62 27.00 61.10 22.61 49.84
Prompter+ 36.35 70.20 31.12 60.86 30.09 65.71 26.22 55.46

ThinkBot (Ours) 37.01 71.64 32.02 62.69 30.73 67.75 26.93 57.82

Table 2: Comparison of methods combining different proposed techniques, where valid unseen and
the selected hard valid unseen splits are used for evaluation.

Method Valid Unseen Hard Valid Unseen

PLWGC GC PLWSR SR PLWGC GC PLWSR SR

Random 26.18 67.64 23.80 59.68 0.32 5.41 0 0
FILM 28.74 72.46 26.58 64.31 0.29 4.76 0 0
Prompter+ 29.36 72.00 26.82 64.43 0.48 5.41 0 0
Groundtruth Location 39.71 72.75 37.01 67.97 0.79 5.41 0 0

w/o Instruction Completer 29.09 72.38 26.43 64.92 0.48 5.41 0 0
w/o Object Localizer 30.24 74.37 27.87 66.99 9.29 22.41 8.11 16.22
w/o Object Correlation Graph 30.41 73.89 28.14 67.36 11.31 29.46 9.74 21.62
ThinkBot 31.11 75.30 28.73 67.72 11.95 30.86 10.26 22.97

benchmark includes 25,743 trajectory-instruction pairs, covering 7 different task types with vary-
ing levels of complexity. The benchmark is divided into five splits including train, test seen, test
unseen, valid seen and valid unseen. The ALFRED benchmark poses significant challenges for
EIF agents, as it requires them to ground incoherent natural instruction of different granularity into
various household tasks that involve long-horizon reasoning plans. To further evaluate the general-
izability and the planning accuracy of ThinkBot, we also evaluate it on ActioNet Duan et al. (2020),
which contains a variety of challenging high-level planning tasks that differs from ALFRED.

Baselines: We compare our agent, ThinkBot, with previously published state-of-the-art EIF models.
The counterparts include end-to-end methods Seq2seq Shridhar et al. (2020), MOCA Singh et al.
(2021), E.T. Pashevich et al. (2021), LWIT Nguyen et al. (2021), HITUT Zhang & Chai (2021),
ABP Kim et al. (2021), and modular methods LLM-Planner Song et al. (2023), FILM Min et al.
(2022), LGS-RPA Murray & Cakmak (2022), Prompter Inoue & Ohashi (2022), CPEM Kim et al.
(2023). We also construct a strong baseline denoted as Prompter+ in our experiments, which is a
modified version of Prompter Inoue & Ohashi (2022) that combines environment-aware memory
Kim et al. (2023) and a re-trained object detector Wang et al. (2023a).

Evaluation Metrics: We follow the evaluation protocol outlined in the ALFRED benchmark. The
primary metric is the success rate (SR) that measures the percentage of tasks completed, and we
also report the goal-condition success rate (GC), which evaluates the percentage of satisfied goal
conditions for all subgoals in step-by-step instruction. To account for efficiency in task completion,
both SR and GC are penalized by the length of the execution sequence to compute a path-length-
weighted (PLW) score for each metric, which are termed PLWSR and PLWGC respectively. To
evaluate the planning outputs of our ThinkBot, We report the high-level planning (HLP) accuracy
from Song et al. (2023) compared with atomic actions for ALFRED, and report BERT similarity
compared with dense instructions for ActioNet.

Implementation Details: The instruction completer adopts the publicly released GPT-3.5 API
GPT-3.5-turbo as the base model, where we set the generation temperature to 0 for stabil-
ity enhancement. For prompt design, we leverage emotion prompt Li et al. (2023a) and prompt
optimization Yang et al. (2023) in the system message template to further boost the performance
of LLMs. For the multimodal object localizer, we employ a truncated ResNet18 Georgakis et al.
(2022) for the map encoder. AdamW optimizer Loshchilov & Hutter (2017) with the initial learning
rate 5× 10−4 and step decay is employed for parameter update.
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4.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

Comparison on Task Completion: We compare the proposed ThinkBot with the state-of-
the-art methods on the ALFRED benchmark1. Table 1 illustrates the comparison of SR,
GC, PLWGC, and PLWSR on the test splits for both seen and unseen scenarios. Our
ThinkBot achieves the best performance on all four metrics in both test seen and test un-
seen split, outperforming the previous arts including both end-to-end and modular meth-
ods by a sizable margin. Compared with CPEM Kim et al. (2023), ThinkBot sur-
passes by 7.98% and 12.07% SR on the test unseen and test seen split, respectively.

Table 3: Comparison with the
state-of-the-art method in HLP ac-
curacy and BERT similarity.

Method/Dataset ALFRED ActioNet

LLM-Planner 43.2 68.4
Thinkbot 69.9 73.3

Besides, Prompter leverages the large language models to infer
object co-occurrence probability for semantic search in EIF,
and is further enhanced with better visual perception modules
to acquire our Prompter+. However, they still suffer from the
sparse human instruction with incoherence that usually causes
execution failure. On the contrary, our ThinkBot reasons the
thought chain in the sparse human instruction to recover the
missing action descriptions, which can provide coherent instruction for the agent to successfully
complete the human goal with high efficiency. As a result, our method outperforms the second-
best Prompter+ method by 1.83% (62.69% vs. 60.86%) and 1.44% (71.64% vs. 70.20%) in SR
and GC respectively in the test seen split. Moreover, the advantages of our method are more obvi-
ous in the test unseen split, which are 2.36% (57.82% vs. 55.46%) in SR and 2.04% (67.75% vs.
65.71%) in GC. The results indicate the high generalization ability of our ThinkBot even in novel
scenarios that are never seen in training data. In terms of the efficiency in task completion, our
method achieves 32.02% PLWSR and 37.01% PLWGC in the test seen split, and 26.93% PLWSR
and 30.73% PLWGC in the test unseen split, which demonstrates the efficiency of our method.
In conclusion, our ThinkBot agent is more practical than stat-of-the-art methods for EIF tasks in
scenarios with complex environments and long sequences.

Comparison on High-level Planning Accuracy: To assess the generalizability of Thinkbot, we
evaluate the outputs of the instruction completer in both ALFRED and ActioNet in Table 3. The
results show that our method outperforms Song et al. (2023) significantly in both ALFRED and Ac-
tioNet datasets, which indicates the generalizabilty of our ThinkBot provided by the visual ground-
ing and feedback mechanism.

4.3 ABLATION STUDY

Our instruction completer recovers the missing actions with interacted objects by reasoning thought
chain in sparse human instruction, and the object localizer predicts the position of the interacted
objects. In Table 2, we conduct an ablation study to verify the effectiveness of each presented
technique. Since recovering the incoherent instruction is especially beneficial in the hard cases
where target objects are located inside closed containers (e.g. The task ‘to get a chilled mug for
coffee’ where the mug is in a closed fridge), we also evaluate different methods in the hard cases
extracted from valid unseen split, referred to as hard valid unseen. In this subset, the agent must open
the receptacles to locate the target objects by recovering the missing interaction with the receptacles
from sparse instruction, and then the challenging tasks in the hard cases can be completed.

Instruction Completer: We first implement our ThinkBot without the instruction completer, where
we directly predict the location of the target in the original sparse human instruction with the ob-
ject localizer for interaction. The results in success rate drops 2.80% compared with our vanilla
ThinkBot in the valid unseen split. Directly predicting the location of interacted objects in inco-
herent instruction usually causes large deviation, because the semantic correlation is weak between
the target object and the observed semantic map. In hard cases, the agent is more likely to fail to
complete the task due to the missing interaction with the containers, and the invisible target object
is hard to discover by the agent. As a result, the performance in SR without instruction completer
drops to zero in hard unseen split. On the contrary, our instruction completer can reason intermedi-
ate action descriptions to mine the semantic correlation, which provides fine-grained instruction for
the agent to achieve human goals.

1The results have been publicly released in https://leaderboard.allenai.org/alfred/
submissions/public
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Slice LettuceOpen FridgePickup Knife

Task: Place sliced lettuce into a bin.

Slice LettuceSlice LettucePickup Knife



  

Instruction: Take a knife. Cut the lettuce in the fridge.

Pickup TissueOpen CabinetGo to Cabinet

Pickup TissuePickup TissueGo to Cabinet

Task:            Examine a box of tissues using the light. 
Instruction: Walk to the cabinet. Grab tissues from the bottom right cabinet.

Task:             Place sliced lettuce into a bin.
Instruction: Take a knife. Cut the lettuce in the fridge.



  

Figure 5: Visualization of the agent action sequence acquired by Prompter+ (top) and our ThinkBot
(bottom), where our method can recover the missing actions with interacted instances ‘Open Fridge’
and ‘Open Cabinet’ to successfully achieve the human goal.

Open Cabinet

  

Task: Examine a box of tissues using a floor lamp. Instruction: walk to the cabinet. Grab tissues from the bottom right cabinet. Turn on the lamp.

ToggleOn LampPickup Tissue

  

Close Cabinet Go to Cabinet Open Cabinet Pickup Tissue ToggleOn Lamp

Figure 6: Additional visualization of the complete agent action sequence acquired by our ThinkBot,
where our method can not only recover the missing actions with interacted instances but also revise
the recovered actions when opening the wrong cabinet.

Object Localizer: We also evaluate the performance of our ThinkBot without the object local-
izer, and observe notable performance drops in SR and PLWSR. In the valid unseen split, the
performance drops 0.73% in SR and 0.86% in PLWSR compared with our vanilla ThinkBot.

Table 4: Comparisons of error modes.
Following Min et al. (2022); Inoue &
Ohashi (2022), we categorize the failure
reasons into 3 main classes to provide
further explanation.

Method Goal object
not found

Interaction
failures

Navigation
failures

FILM 53.01 6.78 19.60
Prompter 34.39 7.72 4.62
Prompter+ 21.10 7.56 6.95
ThinkBot 18.08 7.32 6.83

Meanwhile, we implement the object localizer without
the object correlation graph, the performance is also de-
graded in both valid unseen and hard valid unseen split.
This indicates the correlation mining between target ob-
jects and the containers can significantly enhance lo-
calization accuracy. Besides, we present the results of
Prompter+ with random and Prompter’s search policy,
which drop significantly in SR and PLWSR. We also pro-
vide the results for the settings where the groundtruth lo-
cation of the interacted objects is given. Our ThinkBot
achieves a similar success rate, which indicates the pre-
cise prediction of the object location. The results verify
the necessity of the object localizer for agent interaction to achieve human goals.

Error Mode: Table 4 presents the absolute ratio of failure cases caused by different factors in
FILM, Prompter, and the proposed ThinkBot. The counterparts’ results are taken from their papers
Min et al. (2022); Inoue & Ohashi (2022). We categorize failure cases into three types: ‘Goal object
not found’, ‘Interaction failures’, and ‘Navigation failures’. As depicted in Table 4, the occurrence
of the ‘goal object not found’ error substantially decreases (18.08% vs. 21.10%) in our ThinkBot
by incorporating the recovered coherent human instruction. Our method does not noticeably impact
error modes like ‘Interaction failures’ and ‘Navigation failures’, since these are unrelated to the
instruction-following strategy that this paper focuses on. The results verify the effectiveness of our
method in recovering the missing actions to prevent the agent from failure, while maintaining a
comparable performance in interaction and navigation to the state-of-the-art methods.
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Semantic Map Prediction Ground-truth Semantic Map Prediction Ground-truth

Instruction: Walk forward and left to face the desk. 
Recovered Object: Pencil

Instruction: Pick up tomato from the back of the counter. 
Recovered Object: Tomato

Semantic Map Prediction Groundtruth

Instruction: Pick up the dirty green washcloth that’s in 
front of you between the sinks.
Recovered Object: Cloth

Semantic Map Prediction Groundtruth

Instruction: Turn to the left then to the right then to the 
sink on the right. Pick up the apple to the left of the egg.
Recovered Object: Apple

Figure 7: The visualization of the predicted and groundtruth positions of interacted objects, where
the partially observed semantic maps are also depicted.

4.4 QUALITATIVE ANALYSIS

Action Sequence Visualization: We present two qualitative examples of the generated action se-
quence in Figure 5 from Prompter+ and our ThinkBot. In the left case, the agent is instructed to
‘Take a knife. Cut the lettuce in the fridge’. The results show that the previous agent struggles to
complete the task due to the missing ‘open’ action and interacted object ‘fridge’. In contrast, our
ThinkBot first reasons the thought chain of human instruction, and then recovers the missing ‘open’
action and interacted object ‘fridge’ from the instruction, thus successfully completes the task. In the
right case, ThinkBot not only recovers the missing ‘open’ action and interacted object ‘cabinet’, but
also interacts with the right cabinet that contains the tissue box. The case study demonstrates the ef-
fectiveness of ThinkBot in recovering the missing actions and interacted objects from sparse human
instruction. In Figure 6, we also showcase an additional complete action sequence of our ThinkBot
on the ALFRED valid unseen split. Our ThinkBot can not only recover the missing ‘Open’ actions
but also refine the recovered actions. For instance, our instruction completer outputs ‘Close cabinet,
go to another cabinet, and open cabinet’ when the agent mistakenly opens the wrong cabinet.

Visualization of the Object Localizer: Figure 7 shows the groundtruth and the predicted location
of the interacted objects from the object localizer, where the object category is generated from the
upstream instruction completer. For example in the top case, the interacted object ‘pencil’ is located
on the table, and the object localizer predicts the position of the interacted object with negligible
deviation. In cases where multiple instances exist for the recovered object, the object localizer is
able to locate all objects in the same category. Meanwhile, our ThinkBot can correctly assign the
largest probability to the instance that is described by the instruction, and the human goals can be
successfully achieved following the step-by-step human instruction.

5 CONCLUSION

In this paper, we have presented a ThinkBot agent that reasons the thought chain for missing instruc-
tion recovery in EIF tasks. We design an instruction completer to predict the intermediate actions
with interacted objects between incoherent human instruction, and then leverage a multimodal trans-
former to infer the interaction location for the agent. Extensive experiments in a wide variety of EIF
tasks demonstrate the superiority of our method regarding the success rate and execution efficiency.
The major limitations include reliance on the inherent reasoning capabilities of the LLMs and the
requirement for human instructions rather than active questioning, which necessitates further align-
ment to be deployed in realistic household scenarios.
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A DETAILS OF THE ALFRED BENCHMARK

In this section, we first provide a concise overview of the input and output space within the ALFRED
benchmark, and then analyze the hard valid unseen split we extracted from the valid unseen split.

Input and Ouput Space. In a typical ALFRED task, the agent is spawned into a 3D indoor floor
plan with a first-person view. To specify a task, the agent receives a high-level goal statement
that describes the task’s objective and step-by-step instruction that provides detailed explanations.
Accompanying these, the agent receives a 300 × 300 egocentric RGB frame and outputs actions
for each time step. Note that during the test phase, other information such as groundtruth depth
images and instance segmentation images is not provided to the agent. The action space of the agent
consists of 5 navigation actions, 7 interaction actions, and a STOP action. The navigation actions
are MOVEAHEAD, ROTATELEFT, ROTATERIGHT, LOOKUP, and LOOKDOWN. The interaction
actions are PICKUPOBJECT, PUTOBJECT, OPENOBJECT, CLOSEOBJECT, TOGGLEOBJECTON,
TOGGLEOBJECTOFF, and SLICEOBJECT. If an interaction action is outputted, the agent is required
to predict an additional binary object mask for the current RGB frame, so that the agent can interact
with the object of the highest IoU score. When the agent takes the STOP action, the simulator will
check whether all objects are correctly positioned based on a predefined PDDL domain. The trial
will fail if the agent exceeds the 1000-step limit or makes more than 10 errors while attempting to
achieve the goal.

Hard Valid Unseen Split. As outlined in the main paper, we have created a specific subset named
hard valid unseen split from the valid unseen split in ALFRED. The hard valid unseen split only
includes cases where all target objects are confined within closed containers, to assess the agent’s
capability to recover missing interactions. These types of cases make up 8.6% in the valid unseen
split, 4.8% in the valid seen split, and 5.52% in the train split, indicating the importance for the agent
to handle such situations. Consequently, the hard valid unseen split contains 74 trials extracted from
the valid unseen split, involving five task types of ‘Examine’, ‘Pick & Place’, ‘Stack & Place’,
‘Clean & Place’ and ‘Heat & Place’. The hard valid unseen split is capable of evaluating the agent’s
ability to recover missing interactions comprehensively.

B DETAILS OF THE PROMPTER+ BASELINE

In the main paper, we have constructed a strong baseline termed Prompter+, and we provide addi-
tional implementation details of Prompter+ in this section. Prompter+ is built upon the Prompter
codebase, which combines environment-aware memory Kim et al. (2023) and a re-trained object
detector Wang et al. (2023a) with the vanilla Prompter. We utilize the InternImage-XL backbone
pretrained on the COCO dataset Lin et al. (2014) with Cascade Mask R-CNN head implemented
Wang et al. (2023a) on MMDetection Chen et al. (2019). To collect the dataset for finetuning, we
replay the expert trajectories in the ALFRED train split, and record the egocentric image and the
groundtruth instance mask at each step. Following Shridhar et al. (2021), we also balance the train-
ing samples from each room type in the ALFRED benchmark. For finetuning, we use AdamW
optimizer Loshchilov & Hutter (2017) with an initial learning rate of 1 × 10−4 and weight decay
of 5 × 10−2. Please refer to Wang et al. (2023a) for more training details. The whole finetuning
process takes one day on 4 NVIDIA 3090 GPUs, where the batch size on each GPU is set to 4.
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C FULL PROMPT OF THE INSTRUCTION COMPLETER

In this section, we present the full system prompt for the instruction completer in our ThinkBot for
reproducibility.

C.1 COMPONENTS IN THE PROMPT

The system prompt template for our instruction completer consists of the following components:

(1) The role explanation with the emotion prompt Li et al. (2023a);
(2) Definition of the task description:

• High-level goal statement: A string describes the goal of this task;
• Low-level step-by-step instruction: A list contains the whole incoherent human in-

struction;
• Possible landmarks in this room type: A list contains all possible landmarks in the

current room to avoid object hallucination;
• Task Completion: The current task completion progress we provide for the agent to

locate the corresponding instruction sentences.
(3) Definition of the agent’s current state:

• Global observed landmarks: A dictionary of observed landmarks and their positions,
where the uncertainty of estimated object is also given for re-planning;

• Last message: A string contains the failure feedback from the last run, which enables
close-loop planning.

(4) Primitive actions: All interaction actions and the related arguments we introduce in Ap-
pendix A along with a ‘GotoLocation’ subgoal for navigation.

(5) Requirements on the response format, where we impose chain-of-thought prompting Wei
et al. (2022): We request the large language model to first reason on the current subtask
then give a detailed action list. The last predicted subgoal should always be the same as the
current subgoal for coherent instruction recovery.

C.2 FULL PROMPT

The complete system prompt template is shown in ?? 1, and the response format is shown in ?? 2.

Listing 1: Full system prompt for the instruction completer in our ThinkBot. The response format
is shown in another listing.
You are a helpful household assistant in a game called ALFRED with high

intelligence. Given human instructions, total subgoals, current
subgoals, etc., you need to accomplish the current subgoal by giving
a detailed action list. This is very important to my career.

At each run, you need:
step1. First recognize which target object you need, and determine the

target location by following the corresponding step-by-step
instruction sentence or by common sense.

step2. Give a detailed action list to accomplish the current subgoal, the
last action should always be the same as the current subgoal.

1. The input contains:
Task description:
- high-level goal statement: describe the goal of this household task.
- low-level step-by-step instructions: describe the step-by-step

instructions of this household task. The current subgoal is only
corresponding to one or two sentences in this list, so you do not
need to use all instructions, just focus on completing the current
subgoal.

- possible landmarks in this room type: you should only use landmarks in
this list.
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- total subgoals: a list of <subgoal name, arguments>, memorizing all
subgoals you need to complete.

- completed subgoals: a list of <subgoal name, arguments>, memorizing
subgoals you have completed.

- current subgoal: <subgoal name, arguments>, the subgoal you are
currently working on.

My current state:
- observed landmarks: a dict of key <object name> and value (<location>,

<uncertainty>).
- last message: a string, the message from the last run, success message

is an empty string.

2. You can ONLY use the following functions. Don’t make plans purely
based on your experience, think about how to use these actions.

GotoLocation(object)
Go to a landmark object.
Augment:
- object: a string, the landmark to go to.

OpenObject(object)
Open an openable object.
Augment:
- object: a string, the receptacle to open. please note that only [’

Fridge’, ’Cabinet’, ’Microwave’, ’Drawer’, ’Safe’, ’Box’] are
openable.

CloseObject(object)
Close an openable object
Augment:
- object: a string, the receptacle to close.

PickupObject(object)
Pick up an object. If the object is inside a closed receptacle, please

open the receptacle first.
Augment:
- object: a string, the object to pick.

PutObject(object, receptacle)
Put down the holding object to a receptacle.
Augments:
- object: a string, the object to put.
- receptacle: a string, the receptacle to place the object.

SliceObject(object)
Slice a sliceable object with the held knife.
Augments:
- object: a string, the object to slice.

3. Your response should follow the format:
{response_format}
Ensure that your response can be parsed by Python json.loads

Examples:
...

Listing 2: The response format of the instruction completer.

{
"thought": "Your thoughts in natural language",
"action_list": [
{"name": "action name", "args": "action arg(s)", "expectation": "describe

the expected results of this action shortly"},
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{"name": "action name", "args": "action arg(s)", "expectation": "describe
the expected results of this action shortly"}

]
}

Table 5: Comparisons with the state-of-the-art methods in success rate on the valid unseen split
break down by task type.

Method Examine Pick & Place Stack & Place Clean & Place

Seq2seq 0 0 0 0
MOCA 4.6 6.0 6.4 10.6

HLSM 36.6 34.8 4.4 11.3
FILM 29.7 16.0 2.0 33.6
Prompter+ 80.9 46.0 32.1 71.7
ThinkBot (Ours) 79.2 50.0 40.4 77.9

Cool & Place Heat & Place Pick 2 & Place Average

Seq2seq 0 0 0 0.00
MOCA 2.8 5.1 1.2 3.78

HLSM 14.8 0.0 18.0 18.3
FILM 14.0 23.0 11.8 20.10
Prompter+ 82.6 78.7 37.0 64.43
ThinkBot (Ours) 88.1 86.0 33.3 67.72

D ADDITIONAL QUANTITATIVE ANALYSIS

D.1 PERFORMANCE BY TASK TYPE

We compare the proposed ThinkBot with the state-of-the-art methods on the ALFRED benchmark
by task types. The counterparts include end-to-end method Seq2seq Shridhar et al. (2020), MOCA
Singh et al. (2021) and modular methods (HLSM Blukis et al. (2022b), FILM Min et al. (2022),
Prompter+). The compared results are taken from their original papers Shridhar et al. (2020); Singh
et al. (2021); Blukis et al. (2022b); Min et al. (2022). From Table 5, we can observe that our
ThinkBot outperforms on almost all task types. For instance, ThinkBot surpasses the state-of-the-
art method Prompter+ on five out of seven task types by sizable margins. Especially, ThinkBot
succeeds in 40.4% of ‘Stack & Place’ tasks, which is an absolute improvement of 8.3% compared to
the state-of-the-art method Prompter+. While Prompter+ suffers from the sparse human instruction
that usually causes execution failure, our ThinkBot reasons the thought chain in the sparse human
instruction to recover the missing action descriptions, and successfully complete different tasks. In
‘Examine’ tasks, the agent is instructed to pick up the target object and toggle on a lamp that is
initially off. Since our main focus is not on detecting the status of floor lamps, we adopt a trial-
and-error approach by toggling all lamps in the current room following Min et al. (2022); Inoue &
Ohashi (2022). This random selection approach introduces variability in the success rate of these
tasks. In ‘Pick 2 & Place’ tasks, the agent is directed to take two instances within the same category
and relocate them to a specified location. During the repeated subgoal completion, our language
model-based instruction completer may be prone to the hallucination issue, which remains a focus
for future improvements.

D.2 INFERENCE TIME ANALYSIS

In Table 6, we analyze the time consumption of each component in the whole system. We benchmark

Table 6: Inference time of different components.
Module Segmentation Depth Mapping Path Planning Object Localizer Instruction Completer
Avg. Time per Step 0.20 0.0076 0.021 0.18 0.013 0.31

the time consumption in a single NVIDIA RTX 4090 GPU. In line with Min et al. (2022), we query
the LLM after every 25 steps or subgoal completion to ensure consistency. Hence, the delay of LLM
reasoning only affects steps that require important subgoal decisions (slow thinking), while most
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Pickup KeyOpen SafeGo to Safe

Pickup KeyPickup KeyPickup Key

  

Task:             Put a box with a key chain in it on an armchair.
Instruction: Walk to the safe. Take out the key chain from the safe.

Pickup ClothOpen CabinetGo to Cabinet

Pickup ClothPickup ClothPickup Cloth

  

Task:             Wash the cloth from the cabinet, put it back.
Instruction: Walk to the vanity. Open the right cabinet, take the green cloth.

Figure 8: Visualization of the agent action sequences acquired by Prompter+ (top) and our ThinkBot
(bottom), where our method can recover the missing actions with interacted instances ‘Open Safe’
and ‘Open Cabinet’ to successfully achieve the goal.

steps just involve path planning to achieve the subgoal (fast thinking), resulting in an acceptable
average time per step. In summary, the whole system executes at 1.37Hz on average.

D.3 REAL-WORLD APPLICATIONS

Thinkbot is a general reasoning framework that can be easily extended to real-world tasks with
atomic skills. To verify its practicality, we test it in a constrained yet realistic language-
conditioned robotic manipulation task, where the agent is instructed to ‘pick up the blue cube’.

Table 7: Real-world results.
Method Success Rate

Progprompt Singh et al. (2023) 43.2
Progprompt w/ ThinkBot 69.9

The atomic skills used are move(position) and grip-
per(openness). For simplicity, the object localizer is imple-
mented using a pretrained Grounded-SAM Ren et al. (2024),
with its confidence score serving as the uncertainty measure.
In each test episode, the object locations are randomized, and
distractors (e.g., blocks of other colors) are added to evaluate the generalizability of the compared
methods. As depicted in Table 7, ThinkBot enhances programmatic generation by recovering dense
and actionable instructions like slightly adjusting the gripper pose for better grasping based on the
visual feedback, leading to a sizable improvement.

D.4 IMPACT OF DIFFERENT LLMS

The proposed method is complementary to the internal reasoning abilities of LLMs,
which unlocks their spatial reasoning ability by incorporating the uncertainty pre-
dicted by the Bayesian object localizer as a feedback signal for closed-loop planning.

Table 8: Impact of base LLMs.
Base LLM Success Rate

Llama 3.2 3B 66.87
GPT-3.5-Turbo 67.72

To mitigate the dependence on the high-capacity base LLM,
we implement the instruction completer with a relatively
small-size and open-sourced LLM Llama 3.2 3B in valid un-
seen. The results on ALFERD’s valid unseen split are shown
in Table 8, where the consistent improvements across different
LLMs verify the robustness of ThinkBot.

E ADDITIONAL QUALITATIVE ANALYSIS

E.1 ACTION SEQUENCE VISUALIZATION

We present two more qualitative examples of the generated action sequences from Prompter+ and
our ThinkBot in Figure 8. In the left case, the agent is instructed to ‘Walk to the safe. Take out the
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key chain from the safe’. The results show that the previous agent struggles to complete the task
due to the missing ‘Open’ action and interacted object ‘Safe’. On the contrary, our ThinkBot first
reasons the thought chain of human instruction, and then recovers the missing ‘Open’ action and
interacted object ‘Safe’ from the instruction, thus successfully completing the task. In the right case,
our ThinkBot not only recovers the missing ‘Open’ action and interacted object ‘Cabinet’, but also
interacts with the right cabinet instance that contains the green cloth. The case studies demonstrate
the effectiveness of ThinkBot in recovering the missing actions and interacted objects from sparse
human instruction.

E.2 A VIDEO FOR COMPLETE TRIAL VISUALIZATION

We provide an additional comprehensive trial visualization in the attached video file (demo.avi)
selected from the valid unseen split. In the video, the agent is instructed to ‘Put a mug with a spoon
inside of it on the counter.’ However, the mug is stored in the fridge. Our ThinkBot can recover the
missing ‘Go to Fridge’ and ‘Open Fridge’ subgoal and locate the interacted objects precisely, thus
completing the task effectively and efficiently.
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