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ABSTRACT

Large language models (LLMs) with Process Reward Models (PRMs) have shown
strong reasoning ability, yet their potential in Operations Research (OR) remains
unexplored. We present the first PRM tailored for OR, but find that directly train-
ing on mainstream datasets yields surprisingly weak performance. To understand
this gap, we conduct a systematic analysis and identify the primary bottleneck:
the datasets themselves, where over 30% of annotations are severely flawed. To
overcome these limitations, we first collect all existing synthetic datasets and ap-
ply a carefully designed filtering pipeline to construct a high-quality seed dataset.
Building upon this seed, we then build OR-ProcessQA, the first large-scale dataset
for OR with step-by-step supervision, where diverse solution pathways are gener-
ated via Monte Carlo Tree Search (MCTS) and each step is validated for logical
consistency by GPT-4o. Building on this foundation, we train OR-PRM, the first
Process Reward Model in the OR domain, designed to evaluate and guide rea-
soning at every step rather than only the final outcome. Together, these advances
enable OR-PRM to substantially improve LLMs’ reasoning capability, achieving
a maximum absolute improvement of 12.5% over the base model in Best-of-N
settings, and highlighting the power of process-oriented supervision for reliable
problem solving in operations research.

1 INTRODUCTION

Large Language Models (LLMs) DeepSeek-AI (2024); Yang et al. (2025a) have recently demon-
strated strong reasoning ability, largely attributed to post-training methods such as reinforcement
learning and Process Reward Models (PRMs). Their rapid progress is evident across challenging
domains—for instance, GPT-5 has already surpassed all human competitors in the 2025 ICPC World
Finals OpenAI (2025), a notoriously difficult zero-shot programming contest. These advances sug-
gest that LLMs are no longer merely fluent generators, but are evolving into powerful engines for
rigorous problem solving.

Operations Research (OR) provides an especially compelling testbed for such reasoning, as it in-
volves modeling and solving complex real-world decision-making problems using mathematical
optimization, simulation, and analytical methods to efficiently allocate scarce resources and maxi-
mize performance within constrained systems. Solving OR problems demands not only correctness
in the final answer, but also step-by-step logical consistency—a natural match for PRMs, which are
designed to explicitly evaluate the correctness of intermediate steps. At first glance, it seems natural
to expect PRMs to excel in OR just as they do in mathematics or programming.

Yet this expectation does not hold. When we developed the first PRM tailored for OR, its perfor-
mance was far weaker than anticipated, even with state-of-the-art LLM backbones. Our analysis
shows that the main obstacle is data quality, since existing OR datasets are alarmingly unreliable.
In the Industry OR dataset, even more than 30% of the samples contain serious errors in the final
answer, and as with other datasets, many include incomplete or noisy reasoning steps (Figure 1).In
one dataset, even, More than 30% of the samples contain serious errors in the final answer, and many
include incomplete or noisy reasoning steps (Figure 1). This noise makes it extremely difficult for
PRMs to learn faithful reasoning, leading to solutions that look plausible but often violate hidden
constraints or break logical consistency.
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[Parameter Definitions] The decision variable is correct. \n  

[Objectives & Constraints] The objective and budget constraints are 

correct, but exclusivity constraints are improperly formulated. \n 

[Generated Code] Function `Rule` expects two arguments (`prop3`, 

`prop4`) but only receives one (`prop3`) causing a `TypeError`. \n 

[Execution Output] Since the code fails, it is no valid output. The 

message indicates a failure in constructing the exclusivity constraint. 

[Correct step] Code Implementation: from pyomo.environ import....

Modeling：We can construct an integer 

linear programming model to maximize the 

number of copies distributed while 

minimizing the total cost. The model can be 

formulated as follows: 

### Decision  Variables: .....
eg.The implementation contains 

syntax errors, undefined variables, 

missing libraries, or logical bugs...

Question：A company needs to complete 

the printing  of three books: Book 1, Book 

2 ……

Code: import coptpy as cp \n from coptpy 

import COPT \n Create a COPT 

environment .....

1.Infeasible Problem
eg. The solver returns infeasible

because the demand exceeds 

capacity...

2.Modeling Error
eg. The model is incomplete or 

incorrectly specified. It is not 

implementable ...

3.Code Error

4.Different Solvers
eg. Using different solvers makes it 

difficult to merge the datasets...

Problems with existing datasets Seed Dataset

OR-ProcessQA

## Set: Routes: R = {A, B, C}，Resources: {Trucks, Drivers}....

## Variables: Number of trucks on routes A, B, C: xA, xB, xC ∈ Z+ .... 

## Objective:  Min CostTotal = 800xA+950xB+100xC   ....

## Constraints: xA ≥ 10, xB ≥ 15 , xA + xB + xC≤ 50  , xA + xB + xC ≤ 60 ....

## Code: from pyomo.environ import *\n\n ....

## Parameters: CostTruck = [500, 600, 700],  CostDriver = [300, 350, 400]....

Figure 1: Noisy Data (left) vs. Our Data (right). The left panel illustrates common issues in
existing datasets, such as infeasible problems, modeling errors, and coding defects. The right panel
showcases our well-structured seed data, which serves as the foundation for our OR-ProcessQA
dataset, characterized by step-by-step solutions with explicit correctness labels and ground-truth
corrections.

To overcome these challenges, we first curated a high-quality seed dataset through a rigorous
three-stage filtering pipeline. Building on this foundation, we combined MCTS for solution ex-
ploration with GPT-4o for fine-grained step-wise annotation, generating hundreds of thousands of
problem–solution trajectories. After strict consistency checks, this process yielded OR-ProcessQA,
the first large-scale OR dataset with reliable step-level supervision for training PRM.

Leveraging this resource, we developed OR-PRM, the first Process Reward Model tailored for Op-
erations Research. Unlike conventional PRMs that collapse reasoning quality into a single scalar
score, OR-PRM delivers structured feedback by categorizing errors and offering targeted correc-
tions. This design enables it to evaluate not only the correctness of final answers but also the validity
of every intermediate step. By distinguishing between correct code, incorrect yet runnable code, and
non-runnable code, OR-PRM provides actionable guidance for refinement. Our experiments demon-
strate that such feedback substantially improves the logical consistency and rule-following behavior
of LLMs, marking an important step toward trustworthy decision-making in OR applications.

Overall, our contributions are three-fold: ① We introduce OR-PRM, the first Process Reward Model
tailored for Operations Research, trained to evaluate and guide reasoning at every step rather than
relying solely on final answers. ② We curate a high-quality seed dataset by filtering existing syn-
thetic OR data, and further expand it with MCTS exploration and GPT-4o annotations into OR-
ProcessQA, the first OR dataset with reliable step-level correctness labels for training PRM. ③ We
empirically demonstrate that process-oriented supervision with OR-PRM substantially improves the
logical reliability and correctness of LLMs in OR tasks (e.g., achieving average 12.5% accuracy gain
on six benchmarks), paving the way toward trustworthy decision-making in real-world applications.

2 RELATED WORK

LLMs for Operations Research The remarkable capabilities of LLMs in natural language un-
derstanding and complex reasoning have propelled their application in operations research recently.
A core challenge lies in effectively translating these naturally described optimization problems into
precise mathematical models that solvers can process. Current academic exploration primarily fol-
lows two technical paths Xiao et al. (2025): One path involves reasoning-enhanced methods, which
guide general-purpose LLMs in modeling through carefully designed prompts. Examples include X-
of-Thought approaches (e.g., the tree-search reasoning employed by Autoformulation Astorga et al.
(2025)) and Multi-Expert system (e.g., Chain-of-Experts Xiao et al. (2024) and OptiMUS Ahma-
diTeshnizi et al. (2024)). The second path focuses on domain-specific fine-tuning, where models are
fine-tuned on specialized datasets to enhance their professional capabilities. Studies such as ORLM
Huang et al. (2025a) and LLaMoCo Ma et al. (2024) have demonstrated that fine-tuned models can
outperform general-purpose LLMs like GPT-4. Building on this, the LLMOPT Jiang et al. (2025)
further advances this direction by introducing the five-element formulation as a universal problem

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

definition paradigm and employing Kahneman-Tversky Optimization (KTO) for model alignment,
improving the model’s generalization ability.

Data Synthesis for Operations Research However, both technical paths above are highly depen-
dent on high-quality datasets. Consequently, researchers have begun exploring data synthesis tech-
niques, broadly categorized into problem-centric and model-centric approaches Xiao et al. (2025).
The former, exemplified by OR-Instruct Huang et al. (2025a), augments data by modifying exist-
ing problems. The latter prioritizes generating models first and then inversely constructing problem
descriptions, thereby offering better control over difficulty and correctness. For instance, the Re-
Socratic Yang et al. (2025b) method generates problems inversely from formalized proofs, while
OptiMath Lu et al. (2025) and MILP-Evolve Li et al. (2025) generate directly from model code or
types. Concurrently, the academic community has released several evaluation benchmarks, includ-
ing NL4Opt, MAMO, and IndustryOR. Yet, recent studies have uncovered a surprisingly high error
rate in these widely used benchmarks (with some datasets exhibiting error rates exceeding 50%)
Xiao et al. (2025), severely compromising the reliability of evaluations. Addressing this bottleneck
of data quality, this study innovatively clean and construct a batch of high-quality optimization mod-
eling data, laying a solid foundation for training and evaluating more reliable optimization models.

Process Reward Models Process Reward Models Cobbe et al. (2021); He et al. (2024); Zhang
et al. (2025b;a) provide process-level supervision by scoring intermediate reasoning steps, guiding
models to reason step-by-step with improved logical consistency and accuracy. Building on this
capability, PRMs have been successfully applied to Best-of-N sampling Wang et al. (2025) and
offline data selection Xie et al. (2023), significantly improving reasoning quality and model opti-
mization. Representative works such as Skywork-PRM He et al. (2024) and Qwen2.5-Math-PRM
Zhang et al. (2025b) combine human annotations with synthetic rewards to evaluate performance
across mathematics, science, and programming domains. They often fail on out-of-distribution rea-
soning. Zhu et al. (2025) address this with RetrievalPRM, a process reward model using question-
and step-level retrieval to improve generalization. Beyond general domains, PRMs are also being
extended to vertical domains; for instance, Fin-PRM Zhou et al. (2025) adapts PRMs to finance with
trajectory-aware, domain-specialized reward modeling. Applying PRM to vertical domains requires
domain-specific knowledge; therefore, we synthesized dataset and conducted training tailored to the
characteristics of the Operation Research.

3 METHODOLOGY

Our method tackles the core challenges of applying LLMs to Operations Research through a three-
stage pipeline, as shown in Figure 2. We begin by establishing a robust data foundation. Firstly,
we construct a high-quality seed dataset in Section 3.1.1 to mitigate data noise and inconsisten-
cies. Next, we build the OR-ProcessQA dataset in Section 3.1.2, which provides the first process-
supervised data in the OR domain with fine-grained, step-level annotations. Finally, we develop
the Process Reward Model for OR domain (OR-PRM) in Section 3.3. This specialized PRM offers
natural language critiques and corrections beyond scalar scores for OR reasoning steps. Our ap-
proach significantly enhances the reliability and performance of LLMs in OR by providing detailed,
interpretable feedback throughout the solution process.

3.1 DATASET CONSTRUCTION

A high-quality dataset is essential to ensure the effectiveness of PRM supervision. We propose a
stricter way to build the dataset. Specifically, we first create a cleaner seed dataset by careful filtering
and many rounds of checking in Section 3.1.1. Then, we utilize this curated seed dataset to generate
diverse and accurate process-annotated data in Section 3.1.2

3.1.1 SEED DATA CONSTRUCTION

In this section, we first standardize the problem representation for consistent generation. We then
employ an existing strong OR model, LLMOPT Jiang et al. (2025), for solver code generation.
Finally, we adopt a multi-stage procedure to filter out high-quality data.
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Fine-tuning

Post-Training

Q-A: "process": ..,Step1,Step2....
"critic": Decision variable is ... The 
constraint wrong ( should be 
x3+x4≤1, not x4≤x3. ). … This corrected 
version code properly reflects ....

Valid Modeling

Stage 3 Stage 1Stage 2

Parameters & Variables Solver CodeSeed Data

 Monte Carlo 
Tree Search

Correct 
Step

Incorrect 
Step

K-greedy

Raw Data Selected Data

Modeling
Process

Solver
Code

Policy Model

Data selection 
and synthesis

OR-ProcessQA

Selection

Synthesis

(1) OR-ProcessQA Dataset Construction

a. Low-to-High Selectionb. Synthesis

Objective & Constraints

Satisfied Constraints Executable Code

...

Step1,Step2,Step3,..Rollout 1 

Step1,Step2,Step3,..Rollout 2 

Step1,Step2,Step3,..Rollout k 

...

(2) OR-PRM Model Training

OR-ProcessQA

� Error Analysis
� Data Diversification

Data Processing

Figure 2: Overview of our automated framework. We first construct OR-ProcessQA through
a three-stage filtering pipeline and MCTS-based trajectory generation with step-level verification.
Built on this dataset, OR-PRM is trained to provide structured, stepwise feedback.

Problem representation. We adopt LLMOPT as a generative policy that first produces each prob-
lem in the canonical five-element tuple form (S,θ,x, f(x), g(x) ≤ c), ensuring compatibility with
downstream validation and modeling stages. This policy-based generation ensures a mathematically
well-formed and solver-agnostic structure from the start.

To enable consistent modeling and automated validation, we represent each problem p via a compact
five-element tuple:

p =
(
S, θ, x, f(x), g(x) ≤ c

)
,

where S (index sets), θ (parameters), x (variables), f(x) (objective), and g(x) ≤ c (constraints)
collectively define the optimization task in canonical form minx f(x) s.t. g(x) ≤ c. This schema
ensures solver-agnostic structure, enabling deterministic code-output validation against declared
constraints and objectives, which is critical for scalable, error-free seed dataset construction.

Solver Generation. We directly use LLMOPT to auto-generate solver code tailored for each prob-
lem tuple, linking the mathematical formulation directly to an executable implementation.

Multi-Stage Validation. Each generated sample is then subjected to a three-stage validation
pipeline to ensure high-quality reasoning. Samples were evaluated along three axes: code execution,
constraint satisfaction, and modeling accuracy, and were discarded if they failed any stage.

1. Code Execution: We execute the provided code and verify that it runs without error and
produces the expected output. This validates the code’s executability and establishes the
resulting numerical solution x̂ as the ground truth for subsequent constraint satisfaction
checks.

2. Constraint Satisfaction: We employ Qwen3-8B Yang et al. (2025a) as a reasoning verifier:
given the constraint expressions g(x) ≤ c from the five-element tuple and the numeri-
cal solution x̂ produced by the solver code, it performs symbolic or numeric substitution
to verify whether all constraints are satisfied. This enables automated, model-grounded
feasibility checking without requiring additional code generation.

3. Modeling Accuracy: Finally, we use GPT-4o to validate whether the mathematical formula-
tion accurately reflects the original problem statement. This ensures the five-element tuple
(S,θ,x, f, g) faithfully captures the problem semantics.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

A sample is retained if and only if it passes all three validation stages: successful code execution,
constraint satisfaction, and modeling accuracy. This integrated, generative process gave us a clean,
reliable seed dataset.

3.1.2 STEP-WISE ANNOTATION GENERATION

Seed data can only support SFT but not PRM training, so we further expand it into step-wise trajecto-
ries and annotate them, obtaining a high-quality dataset suitable for PRM supervision. Specifically,
this process consists of three parts: (1) automated step generation via MCTS based on the seed
problems; (2) structured evaluation of each step using GPT-4o to identify potential errors; and (3)
consistency filtering between MCTS and GPT-4o outputs to retain only logically sound trajectories.

Automated Annotation via MCTS. Following OmegaPRM Luo et al. (2024), we apply MCTS
to problems from our seed dataset to sample solution trajectories. Correct steps are labeled 1.0,
while the first error in any failed path is labeled 0.0. This process yields a raw dataset of over 550K
annotated steps.

Structured Error Analysis with GPT-4o. To enhance reliability, we employ GPT-4o to systemati-
cally re-evaluate every candidate reasoning step. The model inspects each component in a predefined
sequence: (1) parameter definitions, (2) objectives and constraints, (3) generated code, and (4) code
execution output. Upon detecting the first error, it halts further analysis and outputs four structured
fields:

• Issue: A natural language description of the error;
• Judgement: A binary label Correct or Incorrect;
• Corrected Version: The fixed content of the erroneous component;
• Corrected Step: The complete, revised reasoning step incorporating the fix.

This structured analysis ensures consistent, interpretable, and actionable feedback for training and
refinement.

Consensus-based Filtering. We employ a dual-validation mechanism to curate the final training
set. A sample is retained only if LabelMCTS(s) = LabelGPT-4o(s), where Label denotes the binary
validity label (correct or incorrect) and s is the reasoning step.

Through this pipeline, we obtain high-confidence annotated samples, which constitute our final
dataset: OR-Process-QA. This dataset strikes a balance between scale and precision, effectively
supporting OR-PRM’s fine-grained reward modeling and step-wise error correction capabilities.

3.2 GENERATIVE PRM FOR OR PROBLEM

Traditional PRMs often output a scalar score to represent the judgment. They employ a step-wise
evaluation method. First, a scalar score is assigned to each reasoning step in a response. These
scores are then aggregated, through methods like a weighted sum or by taking the minimum value,
to calculate the final reward. However, traditional PRMs typically assign only a scalar value per
step. This is not enough for complex tasks like operations research.

Such tasks require detailed analysis of variable relationships (e.g., x over S), constraint satisfaction
(g(x) ≤ c), and logical structure of the objective f(x). Furthermore, while finding problems like
syntax errors in code generation depends on the generation abilities of large language models, a
simple score is not enough to properly catch these potential issues — especially when the code must
align with the canonical form minx f(x) s.t. g(x) ≤ c.

Generative PRM replaces binary labels such as correct or incorrect with natural language judg-
ments. During inference, the model generates a textual critique and judgment for each reasoning
step, enabling interpretable and step-by-step evaluation. Inspired by GM-PRM Zhang et al. (2025a),
we adopt a generative process reward modeling approach tailored for operations research tasks. In-
stead of assigning scalar scores to reasoning steps, our model generates natural language critiques
and judgments for each component of the solution. This enables fine-grained, interpretable evalua-
tion grounded in domain-specific logic.

Concretely, given an optimization problem p = (S,θ,x, f(x), g(x) ≤ c) and its step-by-step
solution, the model analyzes four key components in sequence: (1) variable definitions (x over S,
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parameterized by θ), (2) objective f(x) and constraints g(x) ≤ c, (3) code implementation (if
present), and (4) final output. For each, it produces a brief intent statement, a focused analysis of
critical issues, and a binary judgment — correct or incorrect. If any component is judged incorrect,
the model outputs a corrected version of the first flawed section only.

3.3 TRAINING OBJECTIVE

Our training process is structured in two main stages, to leverage our OR-ProcessQA dataset ef-
fectively. We first use Supervised Finetuning (SFT) to teach the model the fundamental format of
generating critiques, followed by an Alignment phase with Direct Preference Optimization (DPO)
to refine its logical judgment.

3.3.1 SUPERVISED FINETUNING

The first stage, SFT, adapts a base model to the generative PRM task. The primary goal of SFT
is to teach the model the correct format, style, and step-by-step reasoning process required for OR
problem-solving.

Specifically, the model is trained on our high-quality annotated samples using a standard auto-
regressive next-token prediction objective. The input consists of a problem description and a candi-
date solution, while the target is the complete, structured critique generated during our data annota-
tion pipeline (Section 3.3.2). The SFT loss function, LSFT, is defined as:

LSFT(θ) = −E(x,y)∼DSFT

[
T∑

t=1

logPθ(yt|x, y<t)

]
(1)

where y represents the target sequence containing the four structured fields: Issue, Judgement,
Corrected Version, and Corrected Step. This process teaches the model to perform the fine-
grained, step-wise error analysis and correction that defines our generative PRM.

3.3.2 ALIGNMENT

Supervised fine-tuning results in correctly formatted steps but lacks logical reliability. This is be-
cause the model simply imitates examples without deeper understanding. To address this, we use an
alignment phase. This phase employs DPO to promote true logical reasoning.

Direct Preference Optimization We leverage our OR-ProcessQA dataset in conjunction with
outputs from the SFT model: we re-run inference using the SFT model, identify failure cases (i.e.,
where the model produces incorrect or inferior reasoning), and construct preference pairs (x, yw, yl)
accordingly. For each prompt x, yw is the correct or superior reasoning step, while yl is the flawed
step generated by the SFT model.

DPO directly optimizes the language model policy, πθ, to increase the likelihood of the preferred
responses over the dispreferred ones, relative to a reference policy, πref. The DPO loss function is
given by:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(2)

where β is a temperature parameter controlling the strength of the preference, and σ(·) is the logistic
function. This loss aligns the model with correct reasoning without requiring a separate reward
model.

4 EXPERIMENTS AND ANALYSIS

In this section, we introduce our experimental setup for OR-PRM in Section 4.1. We then assess its
performance in two distinct settings, discussed in Section 4.2. Finally, we present ablation studies
in Section 4.3.
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4.1 EXPERIMENTAL SETUP

Model. We evaluated the performance of OR-PRM when applied to several leading language mod-
els, including the Qwen2.5 series (7B, 14B, and 32B) and LLMOPT Jiang et al. (2025), a specialized
model tailored for Operations Research. We chose Qwen2.5 because it offers a complete range of
model sizes, enabling us to study scaling effects, and because it has demonstrated strong reasoning
capabilities and wide adoption in recent LLM research.

Benchmark. We evaluated the model performance on a set of optimization benchmarks. However,
even benchmarks in Operation Research contain serious errors Xiao et al. (2025); Jiang et al. (2025).
To provide fair evaluation and preventing misleading answer, we utilized cleaned benchmarks from
Xiao et al. (2025) to ensure the reliability of our results including Industry OR Huang et al. (2025a),
Easy-LP Huang et al. (2025b), Complex-LP Huang et al. (2025b), NL4LP AhmadiTeshnizi et al.
(2024), NL4OPT Ramamonjison et al. (2022).

Training Details To train OR-PRM, we use Qwen2.5-7B-Coder as base model. The training
process was conducted in two stages on eight Nvidia A100 GPUs using DeepSpeed ZeRO-2 and
bfloat16 precision. First, we perform supervised finetuning with a learning rate of 2e-5. Following
this, the model undergoes Direct Preference Optimization (DPO) with a learning rate of 4e-5 and a
beta of 0.2. A per-device batch size of 2 is applied in both training stages.

Inference Details. We evaluate OR-PRM under two complementary inference settings. The
first focuses on selection, where multiple candidate reasoning paths are generated and OR-
PRM identifies the most reliable one (Best-of-N sampling). The second emphasizes refinement,
where OR-PRM critiques intermediate steps and guides the model toward improved solutions
(Modeling–Critique–Generation pipeline). For evaluation, correctness is verified numerically,
and because many problems admit multiple solution paths, we compare only the final optimal value
when reporting performance.

BEST-OF-N SAMPLING. By default, we set N=8. The model generates N distinct Chain-of-
Thought (CoT) Wei et al. (2022) reasoning paths with temperature 1.0. OR-PRM evaluates each
reasoning step in every path as correct or incorrect, and selects the path containing the highest
number of correct steps, favoring the most coherent and accurate reasoning trajectory.

MODELING, CRITIQUE, AND CODE GENERATION PIPELINE. In this setting, the base language
model follows a structured three-stage workflow, guided by OR-PRM. First, the model constructs
a formal problem modeling with step-by-step reasoning. Next, OR-PRM critiques each reasoning
step by identifying potential errors or inconsistencies. Finally, the original modeling and its cri-
tique are concatenated and fed back into the model to guide the generation of executable Python
code that satisfies predefined input-output specifications. This process enforces a self-correcting,
implementation-aware reasoning trajectory through iterative feedback.

To thoroughly assess the efficacy of our proposed pipeline, we employed two primary evaluation
metrics: pass@1, which measures the first-attempt correctness and reflects the model’s immedi-
ate problem-solving capability; and pass@8, which evaluates the upper-bound potential when the
model is allowed up to eight attempts, thereby revealing its capacity for self-correction and iterative
refinement within a given search space.

4.2 MAIN RESULTS

Best-of-N Sampling. As shown in Table 1, OR-PRM consistently and significantly enhances rea-
soning performance across different scales of the Qwen model family. It achieves uniform gains on
the Qwen2.5 Yang et al. (2024) series (7B–32B) and the specialized model LLMOPT Jiang et al.
(2025), demonstrating its effectiveness and strong scalability with respect to model size. No-
tably, on the 14B model, OR-PRM achieves the highest average improvement of nearly 12.5%.

Moreover, the performance gains introduced by OR-PRM are consistently evident across tasks of
varying difficulty levels. On the most challenging Complex-LP benchmark, Qwen2.5-32B attains an
impressive absolute improvement of 24.2%. For relatively easier benchmarks such as Easy-LP, the
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Model IndustryOR Easy-LP Complex-LP NL4LP NL4OPT ReSocratic Overall
Proprietary Models

GPT-4o 40.5 69.5 35.1 56.2 53.1 47.9 50.4
Deepseek-v3 66.7 91.9 39.6 92.7 76.5 73.9 73.6

Open-source Models

Qwen-2.5-7B 19.0 49.7 12.6 50.0 41.3 36.7 34.9
+PRM 23.8 61.8 16.2 56.7 52.1 46.7 42.9

+4.8 +12.1 +3.6 +6.7 +10.8 +10.0 +8.0
Qwen-2.5-14B 35.7 66.2 3.6 75.8 61.0 50.4 48.8
+PRM 45.2 89.4 12.6 86.5 67.6 66.7 61.3

+9.5 +23.2 +9.0 +10.7 +6.6 +16.3 +12.5
Qwen-2.5-32B 47.6 80.0 8.2 87.1 68.5 66.3 59.6
+PRM 57.1 96.0 32.4 89.3 74.2 72.7 70.3

+9.5 +16.0 +24.2 +2.2 +5.7 +6.4 +10.7
LLM-OPT 52.4 96.0 48.6 90.4 81.7 72.2 73.6
+PRM 59.5 97.8 67.6 93.8 85.0 79.2 80.5

+7.1 +1.8 +19.0 +3.4 +3.3 +7.0 +6.9

Table 1: Results on Six Reasoning Benchmarks. Experimental results demonstrate that using OR-
PRM as the critic model significantly enhances reasoning performance under the Best-of-8 evalua-
tion strategy. The line in blue indicates performance improvement.

14B model achieves substantial gains of 23.2%. Even for LLMOPT, a model already extensively op-
timized for reasoning and exhibiting strong performance on difficult tasks, OR-PRM contributes an
additional 19.0% improvement on Complex-LP. These results further substantiate the effectiveness
of OR-PRM in accurately identifying and prioritizing high-quality reasoning steps under demanding
conditions.

Results of Modeling-Critique-Code Pipeline. As shown in Figure 3, OR-PRM consistently
demonstrates remarkable performance enhancements across both the prominent open-source model
Qwen-2.5-14B and the advanced closed-source model GPT-4o.

The most substantial improvements are particularly evident on the challenging Complex-LP bench-
mark, underscoring potent ability of OR-PRM to tackle intricate problems. The pass@1 accuracy
for Qwen2.5-14B surged by an impressive 23.4%, while even the state-of-the-art GPT-4o achieved
a notable increase of 8.1%. The gains in pass@8 are also notable: Qwen2.5-14B witnessed a signif-
icant rise of 36.1%, and GPT-4o improved by 6.3%.

These gains underscore ability of OR-PRM to raise the reasoning ceiling by effectively recovering
correct solutions from initial failures. Even when the first attempt falters, OR-PRM enables iterative
correction, enhancing robustness under uncertainty and complexity. On the simpler Easy-LP bench-
mark, it still yields consistent 2–4% improvements, demonstrating reliability across task difficulty.

At the heart of OR-PRM is its critic component—an intelligent feedback loop that evaluates each
reasoning step. It reinforces correct steps and precisely diagnoses errors, offering targeted guid-
ance rather than binary judgments. This fine-grained feedback helps the model iteratively refine
its reasoning, much like a human learner, leading to notable accuracy gains. Such interactive error
correction is key to broad effectiveness of OR-PRM across models and tasks.

4.3 ABLATION STUDIES

In this section, we analyze the effectiveness of model alignment via DPO and examine performance
trends across task difficulty levels. The results are presented in Table 2.
Effectiveness of Model Alignment Our ablation study confirms the effectiveness of Direct Pref-
erence Optimization (DPO) within the OR-PRM model training. As shown in Table 2, the full model
incorporating DPO on top of SFT achieves an average accuracy of 51.0%. This represents an 8.0%
absolute improvement over the SFT-only baseline (43.0%), demonstrating DPO’s crucial role in im-
proving model. Other baselines include the Qwen2.5 (Zero shot) model, which represents the raw
base model performance without any SFT or DPO training, and the self-consistency (filtered null)
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Figure 3: OR-PRM enhances optimization ability across models. It consistently improves per-
formance on both open-source (Qwen2.5-14B) and closed-source (GPT-4o) models, and enables
solving problems that remain unsolved even with 8 samples.

Method Easy-LP Complex-LP Average

Pass@8 94.7% 23.4% 59.1%

self-consistency 50.8% 3.6% 27.2%
OR-PRM (Ours) 89.4% 12.6% 51.0%
OR-PRM (SFT) 79.6% 6.3% 43.0%
Qwen2.5 (Zero shot) 72.1% 9.9% 41.0%
self-consistency (filtered null) 88.3% 9.9% 49.6%

Table 2: Ablation results. Results on Qwen2.5-14B.

approach, which performs majority voting on the N = 8 paths after filtering out those that fail to
produce a valid numerical objective value.

Performance Across Task Difficulty Levels As shown in Table 2, OR-PRM consistently outper-
forms the Major Voting baseline across both easy and challenging benchmarks. This performance
demonstrates that OR-PRM has the ability to detect a significant majority of errors within reasoning
paths across both easy and challenging benchmarks.

4.4 DISCUSSION

We further discuss the limitations in current training data and fine-grained discrimination capability,
with future directions outlined below.

Our OR-PRM performs well on the new OR-ProcessQA dataset. However, it is hard to provide
a comparison, as existing datasets cannot be used for PRM training. Furthermore, our Best-of-N
performance is strong, but it still falls short of the theoretical upper bound. This performance gap is
mainly attributed to the current size of our dataset and model. Therefore, we will expand the training
data in the future, to make the model better at detecting subtle reasoning errors.

5 CONCLUSION AND LIMITATION

In this work, we introduce OR-PRM, the first Process Reward Model (PRM) tailored for Operations
Research (OR), designed to address the core challenge of reliable LLM reasoning in this domain.
Our investigation revealed that the primary obstacle to developing such a model was the pervasive
unreliability of existing OR datasets, which prevents PRMs from learning to accurately distinguish
between valid and invalid reasoning steps. To overcome this fundamental data bottleneck, we first
curated a high-quality seed dataset and expanded it into OR-ProcessQA, the first OR dataset with
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reliable, step-level correctness annotations. This provided the essential foundation for our model.
Building on this unique resource, OR-PRM delivers structured, step-level feedback rather than a
single scalar score. Experiments demonstrate that our approach is highly effective. OR-PRM sub-
stantially improves LLM performance, yielding an average 12.5% gain in the Best-of-N setting and
notable robustness when serving as a critic during inference. These results underscore the value of
process-oriented supervision for LLM reasoning in OR, suggesting a promising direction for de-
veloping more trustworthy AI in other domains that require verifiable, step-by-step logic. Indeed,
these successful results affirm the foundational value of our dataset. However, we also acknowledge
a current limitation: the lack of datasets to compare. Therefore, to enhance the credibility of our
research findings and support broader applications, we plan to further expand and refine our dataset,
including by increasing the diversity of problem types and solver environments.
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This work focuses on improving the reliability of large language models (LLMs) in Operations Re-
search (OR) through process-oriented supervision. No human subjects were directly involved in data
collection. Our dataset, OR-ProcessQA, is derived entirely from synthetic sources and existing pub-
lic benchmarks, followed by automated filtering and GPT-4o verification. All data are anonymized,
contain no personal or sensitive information, and comply with open licensing terms of the source
datasets.

Potential risks include the possibility of misuse of OR-capable LLMs in high-stakes decision making
(e.g., logistics, finance, or defense). To mitigate such risks, our method emphasizes correctness,
transparency, and logical consistency, making model outputs more interpretable and auditable. We
also release detailed dataset construction protocols to encourage responsible use.

We declare that there are no conflicts of interest or external sponsorship that might unduly influence
the presented results. This research adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility.

• Dataset: The construction pipeline for the high-quality seed dataset and OR-ProcessQA is
fully described in Section 3.2, with additional filtering rules and statistics detailed in the
Appendix.

• Models: The architecture and training procedure of OR-PRM are explained in Section 3.3,
with hyperparameters, optimization details, and ablation results provided in the supplemen-
tary materials.

• Code & Resources: We will release anonymized source code, dataset filtering scripts, and
training configurations as supplementary material.

• Evaluation: All metrics, baselines, and Best-of-N setups are documented in Section 4 and
Appendix.

These resources, combined with detailed documentation, ensure that independent researchers can
reproduce the reported results.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were employed as general-purpose assistive tools throughout the research
process. Specifically, LLMs were used to aid and polish the writing of this manuscript, including
refining grammar, improving clarity, and restructuring sentences for better readability.

In this work, LLMs were utilized for data processing. Specifically, GPT-4o was used to assess the
modeling accuracy of the initial data and to perform step-by-step error analysis and annotation of the
process. Meanwhile, Qwen3-8B served as a reasoning verifier, automatically checking constraint
satisfaction via numeric substitution for feasibility validation. All LLM-generated content under-
went cross-validation or manual spot-checking to ensure the models functioned strictly as assistive
tools.

All outputs generated by LLMs were critically evaluated and edited by the authors, and no content
was used without verification. The use of LLMs did not replace human intellectual contributions but
served to accelerate and enhance various stages of the research workflow.

B BENCHMARKS AND EVALUATION

We conduct experiments on the following real-world optimization task datasets.

Dataset Maintain Size Original Size Error Rate
NL4Opt 213 289 ≥ 26.4%
IndustryOR 42 100 ≥ 54.0%
EasyLP 545 652 ≥ 8.13%
ComplexLP 111 211 ≥ 23.7%
ReSocratic 178 605 ≥ 16.0%
NLP4LP 178 269 ≥ 21.7%

Table 3: Quality statistics of optimization modeling benchmarks.

• IndustryOR Huang et al. (2025a) is the first industrial-grade dataset specifically designed
for optimization modeling. It integrates real-world operations research (OR) problems from
eight different industries, covering five types of optimization problems—linear program-
ming, integer programming, mixed-integer programming, nonlinear programming, and
other special problem types—across three difficulty levels. The training set contains 3,000
instances without optimal solutions, while the test set includes 100 instances with opti-
mal solutions, aiming to comprehensively evaluate a model’s ability to solve optimization
problems in real-world industrial scenarios.

• MAMO Li et al. (2025) offers a novel optimization dataset for evaluating the mathe-
matical modeling capabilities of large language models. The dataset is divided into two
parts: Easy LP, which contains 652 high school-level Mixed-Integer Linear Program-
ming (MILP) problems for foundational learning, and Complex LP, which provides 211
undergraduate-level challenges that blend complex applications of linear and mixed-integer
linear programming. Notably, this dataset does not include any Nonlinear Programming
(NLP) problems.

• NLP4LP AhmadiTeshnizi et al. (2024) dataset features 65 curated cases from optimization
textbooks and lecture notes. These cases cover various application areas, including facility
location, network flow, scheduling, and portfolio management. Each instance includes a
detailed problem description, a parameter data file, and the optimal value derived from
textbook solutions or manual solving, offering a range of complex optimization challenges
of varying difficulty.

• NL4OPT Ramamonjison et al. (2022) is a curated dataset developed from the compe-
tition of the same name, which focuses on converting natural language descriptions of
optimization problems into solver-ready code. The dataset primarily addresses Linear Pro-
gramming (LP) problems across different scenarios but lacks more complex Mixed-Integer
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Programming and Scheduling (MIPS) problems. In experiments, a filtered test set of 213
high-quality instances was used.

• ReSocratic Yang et al. (2025b) is an innovative reverse data synthesis method that gen-
erates high-quality operations research optimization problems by following a unique from
answer to question path. Starting with 27 well-designed seed demonstrations, this method
uses the DeepSeek-V2 model to progressively generate new structured cases, ensuring
quality through a dual-filter mechanism. Finally, it reverse-translates these formatted cases
into natural language problems and corresponding executable code, ultimately creating the
RESOCRATIC-29K dataset.

As shown in Table 3, we use the clean version from Xiao et al. (2025), an accurate subset of the
benchmark. Specifically, we employ Qwen2.5-14B-Instruct to extract the corresponding optimal
values and then compare them with the ground truth.

C SEED DATASET

C.1 SAMPLING STATISTICS OF THE EXISTING DATASET

Dataset Sampling Size Error Rate
Opt-Math-train 500 ≥ 16%
IndustryOR-train 500 ≥ 31%
Resocratic-train 500 ≥ 30%
Evo-step 500 ≥ 25%

Table 4: Sample data from different synthetic datasets.

Table 4 shows the error rates across several datasets. We also performed an error attribution analysis
on Industry-OR and found that approximately 84% of errors were modeling errors (e.g., missing
constraints, incorrect objective functions, or unit mismatches), 11% were code implementation er-
rors (e.g., variable definition or logic mistakes), and only about 4% were result inconsistencies (i.e.,
output solutions violating constraints or not matching computed values).

C.2 DETAILS OF BUILD SEED DATASET

Code Execution We perform a straightforward execution of the generated code and then evaluate
two criteria: (1) whether the execution completes successfully without errors, and (2) whether the
output matches the ground truth.

Constraint Satisfaction In this stage, we use an Qwen3-8B verifier to confirm the feasibility of
the solver’s numerical solution. The verifier is given the mathematical constraints and the solution,
and it performs symbolic or numeric substitution to automatically check if all conditions are met, as
demonstrated in the manufacturing example (Figure 4).

Modeling Accuracy This final and most critical stage employs a powerful LLM to evaluate if the
mathematical formulation faithfully captures the intent of the original problem statement. It iden-
tifies crucial semantic flaws, such as a misaligned objective function (e.g., maximizing total parts
instead of complete sets). This check ensures the model is not just feasible but also semantically
correct, as illustrated in the factory production example (Figure 5).

C.3 FINAL SEED DATASET

We sampled data from four sources: Opt-Math Lu et al. (2025), IndustryOR Huang et al. (2025a),
Resocratic Yang et al. (2025b), and Evo-step Wu et al. (2025). For the Opt-Math and Resocratic
datasets, we first applied k-greedy filtering to the initial data. Following a three-stage filtering pro-
cess and deduplication, we obtained a final dataset of 8,656 instances. We manually checked 100
samples from the final data, and the accuracy is approximately 96%.
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Example: Verifying Constraint Satisfaction

Question: A manufacturing company produces five electronic devices: Smartphones,
Tablets, Laptops, Smartwatches, and Cameras. The profit per unit and labor hours required
are given in the table below:

Device Profit ($) Labor Hours
Smartphones 100 5
Tablets 150 8
Laptops 200 10
Smartwatches 50 3
Cameras 300 12

The objective is to maximize total profit.
Solution The optimization solver returns the candidate solution:

x̂ = (x1, x2, x3, x4, x5) = (0, 500, 200, 133, 300),

Feasibility Verification by Qwen3-8B
corresponding to (Smartphones, Tablets, Laptops, Smartwatches, Cameras).
Qwen3-8B substitutes x̂ into each constraint expression to verify feasibility:

• Labor hours: 5(0) + 8(500) + 10(200) + 3(133) + 12(300) = 9999 ≤ 10000 ✓

• Smartphones + Tablets: 0 + 500 = 500 ≤ 500 ✓

• Laptops: 200 ≤ 200 ✓

• Smartwatches: 133 ≥ 100 ✓

• Cameras: 300 ≤ 300 ✓

All constraints are satisfied, confirming that x̂ is a feasible solution.

Figure 4: Constraint Satisfaction Example

Problem: A company has three factories (X, Y, Z) that produce three different components (1, 2, 3) 
required for a product. Each factory has a limited number of production hours, and their productivity 
(units/hour) for each component varies. The objective is to allocate production hours across the factories 
to maximize the number of complete sets of components that can be assembled.

Factory Hours Product. 1 Product. 2 Product. 3

X 120 14 1 1 9

Y 140 16 10 7

Z 100 12 15 8

##Sets:
   Factories F = {X, Y, Z}
   Components C = {1, 2, 3}
##Parameters:
   Productivity: p_X1=14, p_X2=11, ...
   Max hours: H_X=120, H_Y=140, H_Z=100
##Variables:
   x_X1, x_X2, x_X3: Hours allocated in Factory X f
   or components 1, 2, 3....
##Objective Function:
   Maximize (14*x_X1 + 11*x_X2 + 9*x_X3 + 16*x_Y1 + ...)
   (Maximizing the total quantity of all individual components)
##Constraints:
   x_X1 + x_X2 + x_X3 ≤ 120 (Production hour limit for Factory X),
   ......,All x variables ≥ 0 (Non-negativity)

Check 
modeling

Verdict: Incorrect

Analysis:The formulation maximizes the total number of units 
produced, but the problem description requires maximizing the 
number of completed sets of components. This implies a need 
for balance among the components produced, which is not 
addressed in the current objective function. The formulation 
lacks constraints or an objective that ensures the production 
of complete sets, such as a additional constraints to balance  
production of different components.

Modeling
Process

Figure 5: Modeling Accuracy Example: LLM checks whether the modeling aligns with the intended
meaning of the question.
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Dataset Size Full Size
Opt-Math-train 3282 210000
IndustryOR-train 1375 3000
Resocratic-train 4036 29000
Evo-step 3351 4464

Table 5: Sample data from different Synthetic.

D OR-PROCESSQA CONSTRUCTION

D.1 DETAILS OF MONTE CARLO TREE SEARCH

Monte Carlo Tree Search is a heuristic search algorithm for sequential decision-making in large state
spaces. In our OR-PRM, we employ it as the first stage of our automated data synthesis pipeline
to efficiently generate a large volume of candidate reasoning steps along with their preliminary
correctness labels. MCTS iteratively constructs a search tree T = (V,E), where each node v ∈
V represents a partial solution (i.e., a reasoning prefix), and each edge (v, a) ∈ E represents a
reasoning step a generated by the policy model.

Selection Starting from the root node (i.e., the original problem), the algorithm recursively selects
child nodes to balance exploitation and exploration. It adopt the following Upper Confidence Bound
applied to Trees formula.

a∗ = argmax
a∈A(v)

[
Q(v, a) + c ·

√
lnN(v)

N(v, a)

]
(3)

Here, Q(v, a) is the average probability of reaching the correct final answer after taking action a
from node v; N(v) and N(v, a) are the visit counts for node v and edge (v, a), respectively; c is a
constant controlling the strength of exploration.

Expansion When the search reaches a leaf node vl that still has unexplored actions, the algorithm
invokes the policy model to generate a new reasoning step a based on the current state vl, thereby
creating a new node vnew and adding it to the tree.

Simulation From the newly expanded node vnew, the algorithm performs one or more rollout
simulations by prompting the policy model to autoregressively generate a complete reasoning path
to a final answer. The simulation outcome z is a binary reward: z = 1 if the final answer is correct,
otherwise z = 0.

Backpropagation The simulation result z is propagated back up the search path, updating the
statistics for all traversed nodes:

N(v)← N(v) + 1 (4)

Q(v, a)← Q(v, a) +
z −Q(v, a)

N(v, a)
(5)

In the OR-PRM data synthesis pipeline, the core value of MCTS lies in its automation. We config-
ured key hyperparameters to balance exploration diversity and efficiency: sampling temperature T =
1.0 , Top-k sampling k = 50 , nucleus sampling (Top-p) p = 0.9 , and exploration coefficient c = 1.0.
Through this structured search, the algorithm efficiently generates over 550,000 candidate reasoning
steps with preliminary labels from our carefully curated set of 8,000 seed problems. This provides
ample raw material for the subsequent stages: structured error analysis and consensus-based filter-
ing performed by GPT-4o. The preliminary hard labels (0 or 1) generated by MCTS, combined
with the detailed natural language critiques from GPT-4o, ultimately produce the high-quality, high-
reliability OR-ProcessQA dataset, forming a solid foundation for training the powerful generative
process reward model, OR-PRM.
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D.2 STRUCTURED ERROR ANALYSIS WITH GPT-4O

To generate the rich, step-level supervision required for our generative PRM, we employ GPT-4o as
an expert annotator.

We initially sampled approximately 40,000 data points to form the starting dataset. This final
consensus-based filtering step proved to be highly selective, discarding approximately 50% of the
candidate annotations and resulting in a high-fidelity dataset of roughly 20,000 samples.

We inspected a sample of 100 data points and found that the critic’s judgments were correct in 95%
of the cases.

E INFERENCE WITH OR-PRM

OR-PRM can identify different scenarios, such as correct cases, modeling errors, code errors, etc.
Three examples as follow:
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MODELING

Problem Statement:
The Li family plans to invest their retirement fund in commercial real estate. Property 1
has an annual income of $12,500, Property 2 has an annual income of $35,000, Property 3
has an annual income of $23,000, and Property 4 has an annual income of $100,000. The
decision to be made is whether to buy or not buy each property, not the quantity, as there is
only one property per property. Help them decide which properties to purchase to maximize
their annual income. Property 1 costs $1.5 million, Property 2 costs $2.1 million, Property 3
costs $2.3 million, and Property 4 costs $4.2 million. The Li family’s budget is $7 million.
If they purchase Property 4, then they cannot purchase Property 3.

MODELING
SETS

P = {1, 2, 3, 4}

PARAMETERS

ci : P → R, ci =


12500 if i = 1

35000 if i = 2

23000 if i = 3

100000 if i = 4

pi : P → R, pi =


150000 if i = 1

210000 if i = 2

230000 if i = 3

420000 if i = 4

B ∈ R, B = 7000000

VARIABLES
xi ∈ {0, 1}, i ∈ P

OBJECTIVE

max
x∈X

4∑
i=1

cixi

CONSTRAINTS
4∑

i=1

pixi ≤ B

x3 + x4 ≤ 1

x = (x1, x2, x3, x4)
⊤

PYOMO IMPLEMENTATION
from pyomo.environ import *
# --- Model Initialization ---
model = ConcreteModel()
# ... Sets (P) and Parameters (c, p, B) are defined here based on the model.
# --- Key Modeling Logic ---
# 1. Define Variables
# x_i is a binary variable, 1 if property i is purchased, 0 otherwise.
model.x = Var(model.P, domain=Binary)
# 2. Define Objective Function
# Maximize the total annual income from purchased properties.
model.income = Objective(

expr=sum(model.c[i] * model.x[i] for i in model.P),
sense=maximize

)
# 3. Define Constraints
# The total cost of purchased properties cannot exceed the budget B.
model.budget_constraint = Constraint(

expr=sum(model.p[i] * model.x[i] for i in model.P) <= model.B
)
# If property 4 is purchased, property 3 cannot be.
model.exclusion_constraint = Constraint(

expr=model.x[3] + model.x[4] <= 1
)
# ... Solver is called and solution is processed here.

ANSWER
Objective value: 135000.0
Optimal Solution: x1 = 0.0, x2 = 1.0, x3 = 0.0, x4 = 1.0

Figure 6: Correct Case: Modeling Process.
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STRUCTURED ERROR ANALYSIS

1. Variable Definition Analysis
Intent: Define decision variables.
Analysis: The decision variable xi is defined correctly as binary, indicating whether to
purchase each property.
Judgement: Correct

2. Objective & Constraint Analysis
Intent: Formulate model.
Objective: Correct. The objective maximizes total annual income from selected properties.
Constraints: - Budget constraint (

∑4
i=1 pixi ≤ B) is correct. - Constraint on purchasing

properties 3 and 4 (x3 + x4 ≤ 1) is correct.
Judgement: Correct

3. Code Analysis
Intent: Implement model in Pyomo/Python.
Analysis: - Sets, parameters, and variables are defined correctly in the code. - The objec-
tive function and constraints match those specified in the problem statement. - The output
matches the expected result based on the problem description.
Judgement: Correct

4. Final Answer Analysis
Intent: Report solution or error.
Analysis: The reported solution shows that properties 2 and 4 should be purchased, yielding
an optimal annual income of $135,000. This aligns with the problem requirements and
constraints.
Judgement: Correct

No corrections needed; all parts of the solution are accurate.

Figure 7: Correct Case: Structured Error Analysis.
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MODELING

SOLUTION
SETS
P represents the set of properties, with P = {1,
2, 3, 4}

PARAMETERS
pi is the annual income of property i, i ∈ P , p1
= 12500, p2 = 35000, p3 = 23000, p4 = 100000
ci is the cost of property i, i ∈ P , c1 = 1500000,
c2 = 2100000, c3 = 2300000, c4 = 4200000
b is the budget, b = 7000000

VARIABLES
xi ∈ {0, 1}, i ∈ P , where xi = 1 if property i
is purchased, xi = 0 otherwise.

OBJECTIVE
max

x∈{0,1}4

∑
i∈P

pixi

CONSTRAINTS∑
i∈P cixi ≤ b, x ∈ {0, 1}4

PYOMO IMPLEMENTATION
from pyomo.environ import *

# --- Model Initialization ---
model = ConcreteModel()

# ... Sets (P) and Parameters (p, c, budget) are defined here based on the model.

# --- Key Modeling Logic ---

# 1. Define Variables
# x_i is a binary variable, 1 if property i is purchased, 0 otherwise.
model.x = Var(model.P, domain=Binary)

# 2. Define Objective Function
# Maximize the total annual income from purchased properties.
model.objective = Objective(

expr=sum(model.p[i] * model.x[i] for i in model.P),
sense=maximize

)

# 3. Define Constraints
# The total cost of purchased properties cannot exceed the budget.
model.budget_constraint = Constraint(

expr=sum(model.c[i] * self.model.x[i] for i in self.model.P) <= self.model.budget
)

# <<<< INCORRECT CONSTRAINT >>>>
# The problem states: "If property 4 is purchased, then property 3 cannot be."
# The correct logic is x4 + x3 <= 1.
# The code below incorrectly implements this as x4 <= x3.
model.order_constraint = Constraint(

expr=model.x[4] <= model.x[3]
)

# ... Solver is called and solution is processed here.

ANSWER
Objective value: 123000.0
Optimal Solution: x1 = 0.0, x2 = 0.0, x3 = 1.0, x4 = 1.0

Figure 8: Incorrect Answer Case: Modeling Process.
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STRUCTURED ERROR ANALYSIS

1. Variable Definition Analysis
Intent: Define decision variables.
Analysis: The decision variable xi is defined correctly as binary, indicating whether each
property should be purchased.
Judgement: Correct

2. Objective & Constraint Analysis
Intent: Formulate model.
Objective: Correct. The objective maximizes the total annual income from selected proper-
ties.
Constraints: - Budget constraint is correct; it ensures that the sum of costs does not exceed
the budget. - Order constraint is incorrect. It states x4 ≤ x3, meaning if property 4 is
purchased, then property 3 must also be purchased. However, the original problem specifies
that if property 4 is purchased, property 3 cannot be purchased.
Judgement: Incorrect due to the constraint error.

3. Code Analysis
Intent: Implement model in Pyomo/Python.
Analysis: - Binary decision variables xi are correctly implemented. - The budget constraint
is implemented correctly. - There is an implementation error in the order constraint. Instead
of x4 ≤ x3, it should be x4 + x3 ≤ 1.
Judgement: Incorrect

4. Final Answer Analysis
Intent: Report solution or error.
Analysis: The reported solution suggests purchasing properties 3 and 4, yielding a total
annual income of 123,000 dollars. This contradicts the problem statement since it implies
purchasing both properties 3 and 4 simultaneously, violating the logical condition specified.
Judgement: Incorrect

5. Corrected Step: Code Implementation
# ... (imports and model setup are identical to the incorrect version)

def define_constraints(self):
# The budget constraint remains the same.
self.model.budget_constraint = Constraint(

expr=sum(self.model.c[i] * self.model.x[i] for i in self.model.P)
<= self.model.budget

)

# CORRECTED LOGIC for the exclusion constraint:
# This now correctly implements the rule "If property 4 is purchased,
# property 3 cannot be" as x4 + x3 <= 1.
self.model.order_constraint = Constraint(

expr=self.model.x[4] + self.model.x[3] <= 1
)

# ... (objective definition and solver calls remain the same)

This corrected version properly reflects the logical constraint that if property 4 is purchased,
property 3 cannot be purchased.

Figure 9: Incorrect Answer Case: Structured Error Analysis.
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MODELING

SOLUTION
SETS

Properties = {1, 2, 3, 4}

PARAMETERS

Income(Properties) = (12500, 35000, 23000,
100000),
Cost(Properties) = (1500000, 2100000,
2300000, 4200000)

VARIABLES

Purchase(Properties) =

{
1 if Property i is purchased,
0 otherwise

OBJECTIVE

max
Purchase

∑
i∈Properties

Income(i) · Purchase(i)

CONSTRAINTS∑
i∈Properties

Cost(i) · Purchase(i) ≤ 7000000

Purchase(3) ≤ 1− Purchase(4)

PYOMO IMPLEMENTATION
from pyomo.environ import *

# --- Model Initialization ---
model = ConcreteModel()
# ... Sets, Parameters, and Variables are defined here.
# ... Objective function is also defined.

# --- Key Modeling Logic (Constraints) ---

# Correctly implemented budget constraint
def budget_constraint_rule(model):

return sum(model.Cost[i] * model.Purchase[i] for i in model.Properties) <= 7000000
model.BudgetConstraint = Constraint(rule=budget_constraint_rule)

# <<<< INCORRECT CONSTRAINT IMPLEMENTATION >>>>
# The constraint Purchase(3) <= 1 - Purchase(4) is a single, scalar constraint.
# It should not be indexed over the set of all properties. The code below
# incorrectly defines it as an indexed constraint, leading to a parameter error.
def exclusivity_constraint_rule(model, prop3, prop4): #<-- Incorrect function signature

# This rule expects two indices (prop3, prop4) but Pyomo only provides one.
if prop3 == 3 and prop4 == 4:

return model.Purchase[3] <= 1 - model.Purchase[4]
else:

return Constraint.Skip

# This line causes the error because the rule’s signature does not match
# how Pyomo calls it for an indexed constraint.
model.ExclusivityConstraint = Constraint(model.Properties, rule=exclusivity_constraint_rule)

# ... Solver call leads to a TypeError.

ANSWER
ERROR: Rule failed when generating expression for Constraint Exclusivity Constraint with index 1: TypeError: OptimizationProblem.solve lo-
cals .exclusivity constraint rule() missing 1 required positional argument: ṕrop4.́ ERROR: Constructing component ÉxclusivityConstraintf́rom data
= None failed: TypeError: OptimizationProblem.solve.locals .exclusivity constraint rule() missing 1 required positional argument: ṕrop4.́

Figure 10: Code Execution Error Case: Modeling Process.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

STRUCTURED ERROR ANALYSIS

1. Variable Definition Analysis
Intent: Define decision variables.
Analysis: The variable ‘Purchase‘ is defined correctly as binary, indicating whether each
property should be purchased or not.
Judgement: Correct

2. Objective & Constraint Analysis
Intent: Formulate model.
Objective: Correct. The objective maximizes total income based on selected properties.
Constraints: - Budget constraint is correct; it ensures that the total cost does not exceed $7
million. - Exclusivity constraint is intended to prevent purchasing both properties 3 and 4
simultaneously. However, the implementation has an issue due to the way constraints are
indexed and formulated.
Judgement: Incorrect (due to implementation issue in exclusivity constraint)

3. Code Analysis
Intent: Implement model in Pyomo/Python.
Analysis: There is a critical error in defining the exclusivity constraint. The function exclu-
sivity constraint rule expects two arguments (prop3, prop4) but only receives one (prop3).
This mismatch causes a TypeError. Additionally, the constraint logic needs adjustment to
properly enforce mutual exclusion between properties 3 and 4.
Judgement: Incorrect

4. Final Answer Analysis
Intent: Report solution or error.
Analysis: Since the code fails at the implementation level, there is no valid output or solution
reported. The error message indicates a failure in constructing the exclusivity constraint.
Judgement: Incorrect

5. Corrected Step: Code Implementation
# ... (imports and model setup are identical to the previous version)

def define_constraints(self):
# The budget constraint is a scalar constraint and remains the same.
self.model.budget_constraint = Constraint(

expr=sum(self.model.c[i] * self.model.x[i] for i in self.model.P)
<= self.model.budget

)

# CORRECTED IMPLEMENTATION for the exclusion constraint:
# The previous version incorrectly tried to define this as an indexed
# constraint over a set. The correct approach is to define it as a
# single, scalar constraint, as it does not depend on any index.
self.model.order_constraint = Constraint(

expr=self.model.x[4] + self.model.x[3] <= 1
)

# ... (objective definition and solver calls remain the same)

This corrected version defines the exclusivity constraint more clearly and appropriately,
ensuring that properties 3 and 4 cannot both be purchased.

Figure 11: Code Execution Error Case: Structured Error Analysis.
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F PROMPTS USED IN EXPERIMENTS

CRITIC PROMPT

\label{critic}
You are an expert in Operations Research (OR).

You will be given an optimization problem and (optionally) a step-
by-step solution, which may or may not include code.

Task: Review the solution. Analyze each applicable part in order.
Be concise only highlight critical errors or omissions. Skip
any section if the input doesn’t contain it (e.g., no code skip
Code Analysis).

Evaluate in this order:

1. Variable Definitions
2. Objective Function and Constraints
3. Code Implementation (if provided)
4. Final Answer / Output

Question:
{Question}

Solution Steps:
{Solution}

Output Format (be brief and precise):

1. Variable Definition Analysis
- Intent: [e.g., Define decision variables]
- Analysis: [Only note missing, redundant, or misdefined variables]
- Judgement: [Correct/Incorrect]

2. Objective and Constraint Analysis
- Intent: [e.g., Formulate model]
- Objective: [Correct? Brief reason if wrong]
- Constraints: [Missing/incorrect? List only key issues]
- Judgement: [Correct/Incorrect]

3. Code Analysis (Skip if no code)
- Intent: Implement model in Pyomo/Python
- Analysis: [Only flag mismatches: missing vars/constraints, wrong

indexing, type errors]
- Judgement: [Correct/Incorrect or Skipped]

4. Final Answer Analysis
- Intent: [e.g., Report solution or error]
- Analysis: [Must show valid optimal solution AND objective value.

If output contains ANY error/traceback (e.g., SyntaxError,
AttributeError) Incorrect. [Plausible? Error meaningful? Root
cause if wrong]]

- Judgement: [Correct/Incorrect]

Corrected Step (Only if any part above is Incorrect)
- [Rewrite only the first incorrect section e.g., fix constraints

or variables in full, clearly labeled.]
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QUESTION TO MODELING PROMPT

You are an expert in Operations Research (OR).
The following is an optimization problem. You need to write the

corresponding Pyomo code based on the problem description and
information provided.

The problem description is as follows:
‘‘‘
{ques}
‘‘‘

The following is the five-element model of an optimization problem:
‘‘‘
{five}
‘‘‘

Please write the corresponding Pyomo code. Please add ‘from pyomo.
environ import *‘ at the beginning of your code (You can add
other ‘import‘ as well). Please print the optimal solution and
the value of the objective function. Please do not output the
running log. You need to write it in the form of a class and
add a main function:

‘‘‘python
[write your code here]
‘‘‘

MODELING TO CODE PROMPT

You are an expert in Operations Research (OR).
The five-element model is the abstraction of an optimization

problem, which transforms specific problem scenarios into
formal mathematical problems. You need to write the
corresponding Pyomo code based on the five-element model
provided.

The following is the five-element model of an optimization problem:
‘‘‘
{five}
‘‘‘

Please write the corresponding Pyomo code. Please add ‘from pyomo.
environ import *‘ at the beginning of your code (You can add
other ‘import‘ as well). Please print the optimal solution and
the value of the objective function. Please do not output the
running log. You need to write it in the form of a class and
add a main function:

‘‘‘python
[write your code here]
‘‘‘
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1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
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1442
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1452
1453
1454
1455
1456
1457

EXTRACT ANSWER PROMPT

You are an expert in Operations Research (OR).
Your task is to precisely extract and return exactly one line from

the multi-line text provided below. This line must state the
final optimization value (e.g., maximum profit, minimum cost,
or total objective value).

## Core Instructions

- **Exact Extraction**: The returned content must be a complete
, unmodified line as it appears in the original text.
- **Single Output**: Your response must contain only the
extracted line. Do not add any prefixes, suffixes, explanations
, introductory phrases, or extra formatting.
- **Keyword Recognition**: Prioritize identifying and
extracting the line that contains common optimization keywords
such as:
- ‘cost‘
- ‘profit‘
- ‘objective‘
- ‘value‘
- ‘revenue‘
- ‘optimal value‘
- ’Total’

Text to analyze:
---
{text}
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