OR-PRM: A PROCESS REWARD MODEL FOR ALGORITHMIC PROBLEM IN OPERATIONS RESEARCH

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) with Process Reward Models (PRMs) have shown strong reasoning ability, yet their potential in Operations Research (OR) remains unexplored. We present the first PRM tailored for OR, but find that directly training on mainstream datasets yields surprisingly weak performance. To understand this gap, we conduct a systematic analysis and identify the primary bottleneck: the datasets themselves, where over 30% of annotations are severely flawed. To overcome these limitations, we first collect all existing synthetic datasets and apply a carefully designed filtering pipeline to construct a high-quality seed dataset. Building upon this seed, we then build OR-ProcessQA, the first large-scale dataset for OR with step-by-step supervision, where diverse solution pathways are generated via Monte Carlo Tree Search (MCTS) and each step is validated for logical consistency by GPT-4o. Building on this foundation, we train OR-PRM, the first Process Reward Model in the OR domain, designed to evaluate and guide reasoning at every step rather than only the final outcome. Together, these advances enable OR-PRM to substantially improve LLMs' reasoning capability, achieving a maximum absolute improvement of 12.5% over the base model in Best-of-N settings, and highlighting the power of process-oriented supervision for reliable problem solving in operations research.

1 Introduction

Large Language Models (LLMs) DeepSeek-AI (2024); Yang et al. (2025a) have recently demonstrated strong reasoning ability, largely attributed to post-training methods such as reinforcement learning and Process Reward Models (PRMs). Their rapid progress is evident across challenging domains—for instance, GPT-5 has already surpassed all human competitors in the 2025 ICPC World Finals OpenAI (2025), a notoriously difficult zero-shot programming contest. These advances suggest that LLMs are no longer merely fluent generators, but are evolving into powerful engines for rigorous problem solving.

Operations Research (OR) provides an especially compelling testbed for such reasoning. Solving OR problems demands not only correctness in the final answer, but also step-by-step logical consistency—a natural match for PRMs, which are designed to explicitly evaluate the correctness of intermediate steps. At first glance, it seems natural to expect PRMs to excel in OR just as they do in mathematics or programming.

Yet this expectation does not hold. When we developed the first PRM tailored for OR, its performance was far weaker than anticipated, even with state-of-the-art LLM backbones. Our analysis shows that the main obstacle is data quality, since existing OR datasets are alarmingly unreliable. More than 30% of the samples contain serious errors in the final answer, and many include incomplete or noisy reasoning steps (Figure 1). This noise makes it extremely difficult for PRMs to learn faithful reasoning, leading to solutions that look plausible but often violate hidden constraints or break logical consistency.

To overcome these challenges, we first curated a high-quality seed dataset through a rigorous three-stage filtering pipeline. Building on this foundation, we combined MCTS for solution exploration with GPT-40 for fine-grained step-wise annotation, generating hundreds of thousands of problem–solution trajectories. After strict consistency checks, this process yielded OR-ProcessQA, the first large-scale OR dataset with reliable step-level supervision for training PRM.

Figure 1: **Noisy Data (left) vs. Our Data (right)**. The left panel illustrates common issues in existing datasets, such as infeasible problems, modeling errors, and coding defects. The right panel showcases our well-structured seed data, which serves as the foundation for our OR-ProcessQA dataset, characterized by step-by-step solutions with explicit correctness labels and ground-truth corrections.

Leveraging this resource, we developed OR-PRM, the first Process Reward Model tailored for Operations Research. Unlike conventional PRMs that collapse reasoning quality into a single scalar score, OR-PRM delivers structured feedback by categorizing errors and offering targeted corrections. This design enables it to evaluate not only the correctness of final answers but also the validity of every intermediate step. By distinguishing between correct code, incorrect yet runnable code, and non-runnable code, OR-PRM provides actionable guidance for refinement. Our experiments demonstrate that such feedback substantially improves the logical consistency and rule-following behavior of LLMs, marking an important step toward trustworthy decision-making in OR applications.

Overall, our contributions are three-fold: ① We introduce **OR-PRM**, the *first Process Reward Model tailored for Operations Research*, trained to evaluate and guide reasoning at every step rather than relying solely on final answers. ② We curate a high-quality **seed dataset** by filtering existing synthetic OR data, and further expand it with MCTS exploration and GPT-40 annotations into **OR-ProcessQA**, *the first OR dataset with reliable step-level correctness labels for training PRM*. ③ We empirically demonstrate that process-oriented supervision with OR-PRM substantially improves the logical reliability and correctness of LLMs in OR tasks (e.g., achieving average 12.5% accuracy gain on six benchmarks), paving the way toward trustworthy decision-making in real-world applications.

2 RELATED WORK

LLMs for Operations Research The remarkable capabilities of LLMs in natural language understanding and complex reasoning have propelled their application in operations research recently. A core challenge lies in effectively translating these naturally described optimization problems into precise mathematical models that solvers can process. Current academic exploration primarily follows two technical paths Xiao et al. (2025): One path involves reasoning-enhanced methods, which guide general-purpose LLMs in modeling through carefully designed prompts. Examples include X-of-Thought approaches (e.g., the tree-search reasoning employed by Autoformulation Astorga et al. (2025)) and Multi-Expert system (e.g., Chain-of-Experts Xiao et al. (2024) and OptiMUS AhmadiTeshnizi et al. (2024)). The second path focuses on domain-specific fine-tuning, where models are fine-tuned on specialized datasets to enhance their professional capabilities. Studies such as ORLM Huang et al. (2025a) and LLaMoCo Ma et al. (2024) have demonstrated that fine-tuned models can outperform general-purpose LLMs like GPT-4. Building on this, the LLMOPT Jiang et al. (2025) further advances this direction by introducing the five-element formulation as a universal problem definition paradigm and employing Kahneman-Tversky Optimization (KTO) for model alignment, improving the model's generalization ability.

Data Synthesis for Operations Research However, both technical paths above are highly dependent on high-quality datasets. Consequently, researchers have begun exploring data synthesis technical

Figure 2: **Overview of our automated framework.** We first construct OR-ProcessQA through a three-stage filtering pipeline and MCTS-based trajectory generation with step-level verification. Built on this dataset, OR-PRM is trained to provide structured, stepwise feedback.

niques, broadly categorized into problem-centric and model-centric approaches Xiao et al. (2025). The former, exemplified by OR-Instruct Huang et al. (2025a), augments data by modifying existing problems. The latter prioritizes generating models first and then inversely constructing problem descriptions, thereby offering better control over difficulty and correctness. For instance, the Re-Socratic Yang et al. (2025b) method generates problems inversely from formalized proofs, while OptiMath Lu et al. (2025) and MILP-Evolve Li et al. (2025) generate directly from model code or types. Concurrently, the academic community has released several evaluation benchmarks, including NL4Opt, MAMO, and IndustryOR. Yet, recent studies have uncovered a surprisingly high error rate in these widely used benchmarks (with some datasets exhibiting error rates exceeding 50%) Xiao et al. (2025), severely compromising the reliability of evaluations. Addressing this bottleneck of data quality, this study innovatively clean and construct a batch of high-quality optimization modeling data, laying a solid foundation for training and evaluating more reliable optimization models.

Process Reward Models Process Reward Models Cobbe et al. (2021); He et al. (2024); Zhang et al. (2025b;a) provide process-level supervision by scoring intermediate reasoning steps, guiding models to reason step-by-step with improved logical consistency and accuracy. Building on this capability, PRMs have been successfully applied to Best-of-N sampling Wang et al. (2025) and of-fline data selection Xie et al. (2023), significantly improving reasoning quality and model optimization. Representative works such as Skywork-PRM He et al. (2024) and Qwen2.5-Math-PRM Zhang et al. (2025b) combine human annotations with synthetic rewards to evaluate performance across mathematics, science, and programming domains. Beyond general domains, PRMs are also being extended to vertical domains; for instance, Fin-PRM Zhou et al. (2025) adapts PRMs to finance with trajectory-aware, domain-specialized reward modeling. Applying PRM to vertical domains requires domain-specific knowledge; therefore, we synthesized dataset and conducted training tailored to the characteristics of the Operation Research.

3 METHODOLOGY

Our method tackles the core challenges of applying LLMs to Operations Research through a three-stage pipeline, as shown in Figure 2. We begin by establishing a robust data foundation. Firstly, we construct a high-quality seed dataset in Section 3.1.1 to mitigate data noise and inconsistencies. Next, we build the OR-ProcessQA dataset in Section 3.1.2, which provides the first process-supervised data in the OR domain with fine-grained, step-level annotations. Finally, we develop

the Process Reward Model for OR domain (OR-PRM) in Section 3.3. This specialized PRM offers natural language critiques and corrections beyond scalar scores for OR reasoning steps. Our approach significantly enhances the reliability and performance of LLMs in OR by providing detailed, interpretable feedback throughout the solution process.

3.1 Dataset construction

A high-quality dataset is essential to ensure the effectiveness of PRM supervision. We propose a stricter way to build the dataset. Specifically, we first create a cleaner seed dataset by careful filtering and many rounds of checking in Section 3.1.1. Then, we utilize this curated seed dataset to generate diverse and accurate process-annotated data in Section 3.1.2

3.1.1 SEED DATA CONSTRUCTION

In this section, we first standardize the problem representation for consistent generation. We then employ an existing strong OR model, **LLMOPT** Jiang et al. (2025), for solver code generation. Finally, we adopt a multi-stage procedure to filter out high-quality data.

Problem representation. We adopt LLMOPT as a generative policy that first produces each problem in the canonical five-element tuple form $(\mathcal{S}, \boldsymbol{\theta}, \boldsymbol{x}, f(\boldsymbol{x}), g(\boldsymbol{x}) \leq \boldsymbol{c})$, ensuring compatibility with downstream validation and modeling stages. This policy-based generation ensures a mathematically well-formed and solver-agnostic structure from the start.

To enable consistent modeling and automated validation, we represent each problem p via a compact five-element tuple:

$$p = (S, \boldsymbol{\theta}, \boldsymbol{x}, f(\boldsymbol{x}), g(\boldsymbol{x}) \leq \boldsymbol{c}),$$

where \mathcal{S} (index sets), $\boldsymbol{\theta}$ (parameters), \boldsymbol{x} (variables), $f(\boldsymbol{x})$ (objective), and $g(\boldsymbol{x}) \leq c$ (constraints) collectively define the optimization task in canonical form $\min_{\boldsymbol{x}} f(\boldsymbol{x})$ s.t. $g(\boldsymbol{x}) \leq c$. This schema ensures solver-agnostic structure, enabling deterministic code-output validation against declared constraints and objectives, which is critical for scalable, error-free seed dataset construction.

Solver Generation. We directly use LLMOPT to auto-generate solver code tailored for each problem tuple, linking the mathematical formulation directly to an executable implementation.

Multi-Stage Validation. Each generated sample is then subjected to a three-stage validation pipeline to ensure high-quality reasoning. Samples were evaluated along three axes: code execution, constraint satisfaction, and modeling accuracy, and were discarded if they failed any stage.

- 1. Code Execution: We execute the provided code and verify that it runs without error and produces the expected output. This validates executable correctness and establishes \hat{x} as ground truth for downstream checks.
- 2. Constraint Satisfaction: We employ Qwen3-8B Yang et al. (2025a) as a reasoning verifier: given the constraint expressions $g(x) \leq c$ from the five-element tuple and the numerical solution \hat{x} produced by the solver code, it performs symbolic or numeric substitution to verify whether all constraints are satisfied. This enables automated, model-grounded feasibility checking without requiring additional code generation.
- 3. *Modeling Accuracy:* Finally, we use GPT-40 to validate whether the mathematical formulation accurately reflects the original problem statement. This ensures the five-element tuple (S, θ, x, f, g) faithfully captures the problem semantics.

A sample is retained if and only if it passes all three validation stages: successful code execution, constraint satisfaction, and modeling accuracy. This integrated, generative process gave us a clean, reliable seed dataset.

3.1.2 Step-wise Annotation Generation

Seed data can only support SFT but not PRM training, so we further expand it into step-wise trajectories and annotate them, obtaining a high-quality dataset suitable for PRM supervision. Specifically, this process consists of three parts: (1) automated step generation via MCTS based on the seed

problems; (2) structured evaluation of each step using GPT-40 to identify potential errors; and (3) consistency filtering between MCTS and GPT-40 outputs to retain only logically sound trajectories.

Automated Annotation via MCTS. Following OmegaPRM Luo et al. (2024), we apply MCTS to problems from our seed dataset to sample solution trajectories. Correct steps are labeled 1.0, while the first error in any failed path is labeled 0.0. This process yields a raw dataset of over 550K annotated steps.

Structured Error Analysis with GPT-4o. To enhance reliability, we employ GPT-4o to systematically re-evaluate every candidate reasoning step. The model inspects each component in a predefined sequence: (1) parameter definitions, (2) objectives and constraints, (3) generated code, and (4) code execution output. Upon detecting the first error, it halts further analysis and outputs four structured fields:

- Issue: A natural language description of the error;
- Judgement: A binary label Correct or Incorrect;
- Corrected Version: The fixed content of the erroneous component;
- Corrected Step: The complete, revised reasoning step incorporating the fix.

This structured analysis ensures consistent, interpretable, and actionable feedback for training and refinement.

Consensus-based Filtering. We employ a dual-validation mechanism to curate the final training set. A sample is retained only if $\mathcal{L}_{MCTS}(s) = \mathcal{L}_{GPT-4o}(s)$, where s is the reasoning step.

Through this pipeline, we obtain high-confidence annotated samples, which constitute our final dataset: OR-Process-QA. This dataset strikes a balance between scale and precision, effectively supporting OR-PRM's fine-grained reward modeling and step-wise error correction capabilities.

3.2 GENERATIVE PRM FOR OR PROBLEM

Traditional PRMs often output a scalar score to represent the judgment. They employ a step-wise evaluation method. First, a scalar score is assigned to each reasoning step in a response. These scores are then aggregated, through methods like a weighted sum or by taking the minimum value, to calculate the final reward. However, traditional PRMs typically assign only a scalar value per step. This is not enough for complex tasks like operations research.

Such tasks require detailed analysis of variable relationships (e.g., x over \mathcal{S}), constraint satisfaction $(g(x) \leq c)$, and logical structure of the objective f(x). Furthermore, while finding problems like syntax errors in code generation depends on the generation abilities of large language models, a simple score is not enough to properly catch these potential issues — especially when the code must align with the canonical form $\min_x f(x)$ s.t. $g(x) \leq c$.

Generative PRM replaces binary labels such as correct or incorrect with natural language judgments. During inference, the model generates a textual critique and judgment for each reasoning step, enabling interpretable and step-by-step evaluation. Inspired by GM-PRM Zhang et al. (2025a), we adopt a generative process reward modeling approach tailored for operations research tasks. Instead of assigning scalar scores to reasoning steps, our model generates natural language critiques and judgments for each component of the solution. This enables fine-grained, interpretable evaluation grounded in domain-specific logic.

Concretely, given an optimization problem $p = (\mathcal{S}, \theta, x, f(x), g(x) \leq c)$ and its step-by-step solution, the model analyzes four key components in sequence: (1) variable definitions $(x \text{ over } \mathcal{S}, \text{ parameterized by } \theta)$, (2) objective f(x) and constraints $g(x) \leq c$, (3) code implementation (if present), and (4) final output. For each, it produces a brief intent statement, a focused analysis of critical issues, and a binary judgment — correct or incorrect. If any component is judged incorrect, the model outputs a corrected version of the first flawed section only.

3.3 Training Objective

Our training process is structured in two main stages, to leverage our OR-ProcessQA dataset effectively. We first use Supervised Finetuning (SFT) to teach the model the fundamental format of

generating critiques, followed by an Alignment phase with Direct Preference Optimization (DPO) to refine its logical judgment.

3.3.1 Supervised Finetuning

The first stage, SFT, adapts a base model to the generative PRM task. The primary goal of SFT is to teach the model the correct format, style, and step-by-step reasoning process required for OR problem-solving.

Specifically, the model is trained on our high-quality annotated samples using a standard autoregressive next-token prediction objective. The input consists of a problem description and a candidate solution, while the target is the complete, structured critique generated during our data annotation pipeline (Section 3.3.2). The SFT loss function, \mathcal{L}_{SFT} , is defined as:

$$\mathcal{L}_{SFT}(\theta) = -\mathbb{E}_{(x,y) \sim \mathcal{D}_{SFT}} \left[\sum_{t=1}^{T} \log P_{\theta}(y_t | x, y_{< t}) \right]$$
 (1)

where y represents the target sequence containing the four structured fields: **Issue**, **Judgement**, **Corrected Version**, and **Corrected Step**. This process teaches the model to perform the fine-grained, step-wise error analysis and correction that defines our generative PRM.

3.3.2 ALIGNMENT

Supervised fine-tuning results in correctly formatted steps but lacks logical reliability. This is because the model simply imitates examples without deeper understanding. To address this, we use an alignment phase. This phase employs DPO to promote true logical reasoning.

Direct Preference Optimization We leverage our **OR-ProcessQA** dataset in conjunction with outputs from the SFT model: we re-run inference using the SFT model, identify failure cases (i.e., where the model produces incorrect or inferior reasoning), and construct preference pairs (x, y_w, y_l) accordingly. For each prompt x, y_w is the correct or superior reasoning step, while y_l is the flawed step generated by the SFT model.

DPO directly optimizes the language model policy, π_{θ} , to increase the likelihood of the preferred responses over the dispreferred ones, relative to a reference policy, π_{ref} . The DPO loss function is given by:

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_{\theta}(y_l | x)}{\pi_{\text{ref}}(y_l | x)} \right) \right]$$
(2)

where β is a temperature parameter controlling the strength of the preference, and $\sigma(\cdot)$ is the logistic function. This loss aligns the model with correct reasoning without requiring a separate reward model.

4 EXPERIMENTS AND ANALYSIS

In this section, we introduce our experimental setup for OR-PRM in Section 4.1. We then assess its performance in two distinct settings, discussed in Section 4.2. Finally, we present ablation studies in Section 4.3.

4.1 EXPERIMENTAL SETUP

Model. We evaluated the performance of OR-PRM when applied to several leading language models, including the Qwen2.5 series (7B, 14B, and 32B) and LLMOPT Jiang et al. (2025), a specialized model tailored for Operations Research. We chose Qwen2.5 because it offers a complete range of model sizes, enabling us to study scaling effects, and because it has demonstrated strong reasoning capabilities and wide adoption in recent LLM research.

Benchmark. We evaluated the model performance on a set of optimization benchmarks. However, even benchmarks in Operation Research contain serious errors Xiao et al. (2025); Jiang et al. (2025). To provide fair evaluation and preventing misleading answer, we utilized cleaned benchmarks from Xiao et al. (2025) to ensure the reliability of our results. Specifically, Industry OR Huang et al. (2025a), Easy-LP Huang et al. (2025b), Complex-LP Huang et al. (2025b), NL4LP AhmadiTeshnizi et al. (2024), NL4OPT Ramamonjison et al. (2022).

Training Details To train OR-PRM, We use Qwen2.5-7B-Coder as base model. The training process was conducted in two stages on eight Nvidia Tesla A100 GPUs using DeepSpeed ZeRO-2 and bfloat16 precision. First, we perform supervised finetuning with a learning rate of 2e-5. Following this, the model undergoes Direct Preference Optimization (DPO) with a learning rate of 4e-5 and a beta of 0.2. A per-device batch size of 2 is applied in both training stages.

Inference Details. We evaluate OR-PRM under two complementary inference settings. The first focuses on *selection*, where multiple candidate reasoning paths are generated and OR-PRM identifies the most reliable one (**Best-of-N sampling**). The second emphasizes *refinement*, where OR-PRM critiques intermediate steps and guides the model toward improved solutions (**Modeling–Critique–Generation pipeline**). For evaluation, correctness is verified numerically, and because many problems admit multiple solution paths, we compare only the final optimal value when reporting performance.

BEST-OF-N SAMPLING. By default, we set N=8. The model generates N distinct Chain-of-Thought (CoT) reasoning paths with temperature 1.0. OR-PRM evaluates each reasoning step in every path as correct or incorrect, and selects the path containing the highest number of correct steps, favoring the most coherent and accurate reasoning trajectory.

MODELING, CRITIQUE, AND CODE GENERATION PIPELINE. In this setting, the base language model follows a structured three-stage workflow, guided by OR-PRM. First, the model constructs a formal problem modeling with step-by-step reasoning. Next, OR-PRM critiques each reasoning step by identifying potential errors or inconsistencies. Finally, the original modeling and its critique are concatenated and fed back into the model to guide the generation of executable Python code that satisfies predefined input-output specifications. This process enforces a self-correcting, implementation-aware reasoning trajectory through iterative feedback.

To thoroughly assess the efficacy of our proposed pipeline, we employed two primary evaluation metrics: <code>pass@1</code>, which measures the first-attempt correctness and reflects the model's immediate problem-solving capability; and <code>pass@8</code>, which evaluates the upper-bound potential when the model is allowed up to eight attempts, thereby revealing its capacity for self-correction and iterative refinement within a given search space.

4.2 MAIN RESULTS

Best-of-N Sampling. As shown in Table 1, OR-PRM consistently and significantly enhances reasoning performance across different scales of the Qwen model family. It achieves uniform gains on the Qwen2.5 Yang et al. (2024) series (7B–32B) and the specialized model LLMOPT Jiang et al. (2025), **demonstrating its effectiveness and strong scalability with respect to model size**. Notably, on the 14B model, OR-PRM achieves the *highest average improvement of nearly 12.5%*.

Moreover, the performance gains introduced by OR-PRM are consistently evident across tasks of varying difficulty levels. On the most challenging Complex-LP benchmark, Qwen2.5-32B attains an impressive absolute improvement of 24.2%. For relatively easier benchmarks such as Easy-LP, the 14B model achieves substantial gains of 23.2%. Even for LLMOPT, a model already extensively optimized for reasoning and exhibiting strong performance on difficult tasks, OR-PRM contributes an additional 19.0% improvement on Complex-LP. These results further substantiate the effectiveness of OR-PRM in accurately identifying and prioritizing high-quality reasoning steps under demanding conditions.

Model	IndustryOl	R Easy-LP (Complex-Ll	P NL4LP	NL4OPT	ReSocratic	Overall
Proprietary Models							
GPT-40 Deepseek-v3	40.5 66.7	69.5 91.9	35.1 39.6	56.2 92.7	53.1 76.5	47.9 73.9	50.4 73.6
		Оре	en-source M	odels			
Qwen-2.5-7B +PRM	19.0 23.8 + 4.8	49.7 61.8 +12.1	12.6 16.2 + 3.6	50.0 56.7 +6.7	41.3 52.1 +10.8	36.7 46.7 +10.0	34.9 42.9 +8.0
Qwen-2.5-14B +PRM	35.7 45.2 +9.5	66.2 89.4 +23.2	3.6 12.6 +9.0	75.8 86.5 +10.7	61.0 67.6 +6.6	50.4 66.7 +16.3	48.8 61.3 +12.5
Qwen-2.5-32B +PRM	47.6 57.1 +9.5	80.0 96.0 +16.0	8.2 32.4 +24.2	87.1 89.3 +2.2	68.5 74.2 +5.7	66.3 72.7 + 6.4	59.6 70.3 +10.7
LLM-OPT +PRM	52.4 59.5 +7.1	96.0 97.8 + 1.8	48.6 67.6 +19.0	90.4 93.8 + 3.4	81.7 85.0 + 3.3	72.2 79.2 +7.0	73.6 80.5 + 6.9

Table 1: **Results on Six Reasoning Benchmarks.** Experimental results demonstrate that using OR-PRM as the critic model significantly enhances reasoning performance under the Best-of-8 evaluation strategy. The line in blue indicates performance improvement.

Results of Modeling-Critique-Code Pipeline. As shown in Figure 3, OR-PRM consistently demonstrates remarkable performance enhancements across both the prominent open-source model Owen-2.5-14B and the advanced closed-source model GPT-4o.

The most substantial improvements are particularly evident on the challenging Complex-LP benchmark, underscoring potent ability of OR-PRM to tackle intricate problems. The pass@1 accuracy for Qwen2.5-14B surged by an impressive 23.4%, while even the state-of-the-art GPT-40 achieved a notable increase of 8.1%. The gains in pass@8 are also notable: Qwen2.5-14B witnessed a significant rise of 36.1%, and GPT-40 improved by 6.3%.

These gains underscore ability of OR-PRM to raise the reasoning ceiling by effectively recovering correct solutions from initial failures. Even when the first attempt falters, OR-PRM enables iterative correction, enhancing robustness under uncertainty and complexity. On the simpler Easy-LP benchmark, it still yields consistent 2–4% improvements, demonstrating reliability across task difficulty.

At the heart of OR-PRM is its critic component—an intelligent feedback loop that evaluates each reasoning step. It reinforces correct steps and precisely diagnoses errors, offering targeted guidance rather than binary judgments. This fine-grained feedback helps the model iteratively refine its reasoning, much like a human learner, leading to notable accuracy gains. Such interactive error correction is key to broad effectiveness of OR-PRM across models and tasks.

4.3 ABLATION STUDIES

 In this section, we analyze the effectiveness of model alignment via DPO and examine performance trends across task difficulty levels. The results are presented in Table 2.

Method	Easy-LP	Complex-LP	Average
Pass@8	94.7%	23.4%	59.1%
Major Voting	50.8%	3.6%	27.2%
OR-PRM (Ours)	89.4%	12.6%	51.0%
OR-PRM (SFT)	79.6%	6.3%	43.0%
Qwen2.5 (Zero shot)	72.1%	9.9%	41.0%
Major Voting (filtered null)	88.3%	9.9%	49.6%

Table 2: **Ablation results.** Results on Qwen2.5-14B.

Figure 3: **OR-PRM enhances optimization ability across models.** It consistently improves performance on both open-source (Qwen2.5-14B) and closed-source (GPT-4o) models, and enables solving problems that remain unsolved even with 8 samples.

Effectiveness of Model Alignment Our ablation study confirms the effectiveness of Direct Preference Optimization (DPO) within the OR-PRM model training. As shown in Table 2, the full model incorporating DPO on top of SFT achieves an average accuracy of 51.0%. This represents an 8.0% absolute improvement over the SFT-only baseline (43.0%), demonstrating DPO's crucial role in improving model.

Performance Across Task Difficulty Levels As shown in Table 2, OR-PRM consistently outperforms the Major Voting baseline across both easy and challenging benchmarks. This performance demonstrates that OR-PRM has the ability to detect a significant majority of errors within reasoning paths across both easy and challenging benchmarks.

4.4 DISCUSSION

We further discuss the limitations in current training data and fine-grained discrimination capability, with future directions outlined below.

Our OR-PRM performs well on the new OR-ProcessQA dataset. However, it is hard to provide a comparison, as existing datasets cannot be used for PRM training. Furthermore, our Best-of-N performance is strong, but it still falls short of the theoretical upper bound. This performance gap is mainly attributed to the current size of our dataset and model. Therefore, we will expand the training data in the future, to make the model better at detecting subtle reasoning errors.

5 CONCLUSION AND LIMITATION

In this work, we introduce OR-PRM, the first Process Reward Model (PRM) tailored for Operations Research (OR), designed to address the core challenge of reliable LLM reasoning in this domain. Our investigation revealed that the primary obstacle to developing such a model was the pervasive unreliability of existing OR datasets, which prevents PRMs from learning to accurately distinguish between valid and invalid reasoning steps. To overcome this fundamental data bottleneck, we first curated a high-quality seed dataset and expanded it into OR-ProcessQA, the first OR dataset with reliable, step-level correctness annotations. This provided the essential foundation for our model. Building on this unique resource, OR-PRM delivers structured, step-level feedback rather than a single scalar score. Experiments demonstrate that our approach is highly effective. OR-PRM substantially improves LLM performance, yielding an average 12.5% gain in the Best-of-N setting and notable robustness when serving as a critic during inference. These results underscore the value of process-oriented supervision for LLM reasoning in OR, suggesting a promising direction for developing more trustworthy AI in other domains that require verifiable, step-by-step logic. Indeed, these successful results affirm the foundational value of our dataset. However, we also acknowledge a current limitation: the lack of datasets to compare. Therefore, to enhance the credibility of our research findings and support broader applications, we plan to further expand and refine our dataset.

ETHICS STATEMENT

datasets.

This work focuses on improving the reliability of large language models (LLMs) in Operations Research (OR) through process-oriented supervision. No human subjects were directly involved in data collection. Our dataset, OR-ProcessQA, is derived entirely from synthetic sources and existing public benchmarks, followed by automated filtering and GPT-40 verification. All data are anonymized, contain no personal or sensitive information, and comply with open licensing terms of the source

Potential risks include the possibility of misuse of OR-capable LLMs in high-stakes decision making (e.g., logistics, finance, or defense). To mitigate such risks, our method emphasizes correctness, transparency, and logical consistency, making model outputs more interpretable and auditable. We also release detailed dataset construction protocols to encourage responsible use.

We declare that there are no conflicts of interest or external sponsorship that might unduly influence the presented results. This research adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility.

- **Dataset:** The construction pipeline for the high-quality seed dataset and OR-ProcessQA is fully described in Section 3.2, with additional filtering rules and statistics detailed in the Appendix.
- Models: The architecture and training procedure of OR-PRM are explained in Section 3.3, with hyperparameters, optimization details, and ablation results provided in the supplementary materials.
- Code & Resources: We will release anonymized source code, dataset filtering scripts, and training configurations as supplementary material.
- **Evaluation:** All metrics, baselines, and Best-of-N setups are documented in Section 4 and Appendix.

These resources, combined with detailed documentation, ensure that independent researchers can reproduce the reported results.

REFERENCES

- Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Scalable optimization modeling with (MI)LP solvers and large language models. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=YTldtdLvSN.
- Nicolás Astorga, Tennison Liu, Yuanzhang Xiao, and Mihaela van der Schaar. Autoformulation of mathematical optimization models using LLMs. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=33YrT1j000.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.19437.
- Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao Liu, Liang Zeng, Xiaokun Wang, Boyang Wang, Yongcong Li, Fuxiang Zhang, Jiacheng Xu, Bo An, Yang Liu, and Yahui Zhou. Skywork-ol open series, November 2024. URL https://doi.org/10.5281/zenodo.16998085.

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou Wang, and Zizhuo Wang. Orlm: A customizable framework in training large models for automated optimization modeling. *Operations Research*, May 2025a. ISSN 1526-5463. doi: 10.1287/opre.2024.1233. URL http://dx.doi.org/10.1287/opre.2024.1233.

- Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Llms for mathematical modeling: Towards bridging the gap between natural and mathematical languages, 2025b. URL https://arxiv.org/abs/2405.13144.
- Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, JUN ZHOU, Aimin Zhou, and Yang Yu. LL-MOPT: Learning to define and solve general optimization problems from scratch. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=90MvtboTJq.
- Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models for mixed integer linear programming. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=6yENDA7J4G.
- Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, and Zaiwen Wen. OptMATH: A scalable bidirectional data synthesis framework for optimization modeling. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=9P5e6iE4WK.
- Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language models by automated process supervision, 2024. URL https://arxiv.org/abs/2406.06592.
- Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue-Jiao Gong. Llamoco: Instruction tuning of large language models for optimization code generation, 2024. URL https://arxiv.org/abs/2403.01131.
- OpenAI. Openai outperforms humans and google at the world's top collegiate programming contest, 2025. URL https://the-decoder.com/openai-outperforms-humans-and-google-at-the-worlds-top-collegiate-programming-contest/. Accessed: 2025-09-17.
- Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang. Nl4opt competition: Formulating optimization problems based on their natural language descriptions. In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht (eds.), *Proceedings of the NeurIPS 2022 Competitions Track*, volume 220 of *Proceedings of Machine Learning Research*, pp. 189–203. PMLR, 28 Nov-09 Dec 2022. URL https://proceedings.mlr.press/v220/ramamonjison23a.html.
- Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu, Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for multimodal reasoning. *arXiv preprint arXiv:2503.10291*, 2025.
- Yang Wu, Yifan Zhang, Yurong Wu, Yuran Wang, Junkai Zhang, and Jian Cheng. Evo-step: Evolutionary generation and stepwise validation for optimizing LLMs in OR, 2025. URL https://openreview.net/forum?id=aapUBU9U0D.
- Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-experts: When LLMs meet complex operations research problems. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=HobyL1B9CZ.
- Ziyang Xiao, Jingrong Xie, Lilin Xu, Shisi Guan, Jingyan Zhu, Xiongwei Han, Xiaojin Fu, Wing-Yin Yu, Han Wu, Wei Shi, Qingcan Kang, Jiahui Duan, Tao Zhong, Mingxuan Yuan, Jiahang Zeng, Yuan Wang, Gang Chen, and Dongxiang Zhang. A survey of optimization modeling meets llms: Progress and future directions. 2025. URL https://api.semanticscholar.org/CorpusID:280649838.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model pretraining. *Advances in Neural Information Processing Systems*, 36:69798–69818, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang Feng, Linqi Song, Xiaodan Liang, and Jing Tang. Optibench meets resocratic: Measure and improve LLMs for optimization modeling. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL https://openreview.net/forum?id=fsDZwS49uY.

Jianghangfan Zhang, Yibo Yan, Kening Zheng, Xin Zou, Song Dai, and Xuming Hu. Gm-prm: A generative multimodal process reward model for multimodal mathematical reasoning, 2025a. URL https://arxiv.org/abs/2508.04088.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. *arXiv preprint arXiv:2501.07301*, 2025b.

Yuanchen Zhou, Shuo Jiang, Jie Zhu, Junhui Li, Lifan Guo, Feng Chen, and Chi Zhang. Fin-prm: A domain-specialized process reward model for financial reasoning in large language models. arXiv preprint arXiv:2508.15202, 2025.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were employed as general-purpose assistive tools throughout the research process. Specifically, LLMs were used to aid and polish the writing of this manuscript, including refining grammar, improving clarity, and restructuring sentences for better readability.

In this work, LLMs were utilized for data processing. Specifically, GPT-40 was used to assess the modeling accuracy of the initial data and to perform step-by-step error analysis and annotation of the process. Meanwhile, Qwen3-8B served as a reasoning verifier, automatically checking constraint satisfaction via numeric substitution for feasibility validation. All LLM-generated content underwent cross-validation or manual spot-checking to ensure the models functioned strictly as assistive tools.

All outputs generated by LLMs were critically evaluated and edited by the authors, and no content was used without verification. The use of LLMs did not replace human intellectual contributions but served to accelerate and enhance various stages of the research workflow.

B BENCHMARKS AND EVALUATION

We conduct experiments on the following real-world optimization task datasets.

Dataset	Maintain Size	Original Size	Error Rate
NL4Opt	213	289	$\geq 26.4\%$
IndustryOR	42	100	$\stackrel{-}{\geq} 54.0\%$
EasyLP	545	652	$\geq 8.13\%$
ComplexLP	111	211	$\geq 23.7\%$
ReSocratic	178	605	$\geq 16.0\%$
NLP4LP	178	269	$\geq 21.7\%$

Table 3: Quality statistics of optimization modeling benchmarks.

- IndustryOR Huang et al. (2025a) is the first industrial-grade dataset specifically designed for optimization modeling. It integrates real-world operations research (OR) problems from eight different industries, covering five types of optimization problems—linear programming, integer programming, mixed-integer programming, nonlinear programming, and other special problem types—across three difficulty levels. The training set contains 3,000 instances without optimal solutions, while the test set includes 100 instances with optimal solutions, aiming to comprehensively evaluate a model's ability to solve optimization problems in real-world industrial scenarios.
- MAMO Li et al. (2025) offers a novel optimization dataset for evaluating the mathematical modeling capabilities of large language models. The dataset is divided into two parts: Easy LP, which contains 652 high school-level Mixed-Integer Linear Programming (MILP) problems for foundational learning, and Complex LP, which provides 211 undergraduate-level challenges that blend complex applications of linear and mixed-integer linear programming. Notably, this dataset does not include any Nonlinear Programming (NLP) problems.
- NLP4LP AhmadiTeshnizi et al. (2024) dataset features 65 curated cases from optimization textbooks and lecture notes. These cases cover various application areas, including facility location, network flow, scheduling, and portfolio management. Each instance includes a detailed problem description, a parameter data file, and the optimal value derived from textbook solutions or manual solving, offering a range of complex optimization challenges of varying difficulty.
- NL4OPT Ramamonjison et al. (2022) is a curated dataset developed from the competition of the same name, which focuses on converting natural language descriptions of optimization problems into solver-ready code. The dataset primarily addresses Linear Programming (LP) problems across different scenarios but lacks more complex Mixed-Integer

Programming and Scheduling (MIPS) problems. In experiments, a filtered test set of 245 high-quality instances was used.

• **ReSocratic** Yang et al. (2025b) is an innovative reverse data synthesis method that generates high-quality operations research optimization problems by following a unique from answer to question path. Starting with 27 well-designed seed demonstrations, this method uses the DeepSeek-V2 model to progressively generate new structured cases, ensuring quality through a dual-filter mechanism. Finally, it reverse-translates these formatted cases into natural language problems and corresponding executable code, ultimately creating the RESOCRATIC-29K dataset.

As shown in Table 4, we use the clean version from Xiao et al. (2025), an accurate subset of the benchmark. Specifically, we employ Qwen2.5-14B-Instruct to extract the corresponding optimal values and then compare them with the ground truth.

C SEED DATASET

C.1 DETAILS OF BUILD SEED DATASET

Code Execution We perform a straightforward execution of the generated code and then evaluate two criteria: (1) whether the execution completes successfully without errors, and (2) whether the output matches the ground truth.

Constraint Satisfaction In this stage, we use an Qwen3-8B verifier to confirm the feasibility of the solver's numerical solution. The verifier is given the mathematical constraints and the solution, and it performs symbolic or numeric substitution to automatically check if all conditions are met, as demonstrated in the manufacturing example (Figure 4).

Example: Verifying Constraint Satisfaction

Question: A manufacturing company produces five electronic devices: Smartphones, Tablets, Laptops, Smartwatches, and Cameras. The profit per unit and labor hours required are given in the table below:

Device	Profit (\$)	Labor Hours
Smartphones	100	5
Tablets	150	8
Laptops	200	10
Smartwatches	50	3
Cameras	300	12

The objective is to maximize total profit.

Solution The optimization solver returns the candidate solution:

$$\hat{x} = (x_1, x_2, x_3, x_4, x_5) = (0, 500, 200, 133, 300),$$

Feasibility Verification by Owen3-8B

corresponding to (Smartphones, Tablets, Laptops, Smartwatches, Cameras). Qwen3-8B substitutes \hat{x} into each constraint expression to verify feasibility:

• Labor hours: $5(0) + 8(500) + 10(200) + 3(133) + 12(300) = 9999 \le 10000 \checkmark$

• Smartphones + Tablets: $0 + 500 = 500 \le 500$

• Laptops: 200 ≤ 200

• Smartwatches: $133 \ge 100$

• Cameras: 300 ≤ 300

All constraints are satisfied, confirming that \hat{x} is a feasible solution.

Figure 4: Constraint Satisfaction Example

Modeling Accuracy This final and most critical stage employs a powerful LLM to evaluate if the mathematical formulation faithfully captures the intent of the original problem statement. It identifies crucial semantic flaws, such as a misaligned objective function (e.g., maximizing total parts instead of complete sets). This check ensures the model is not just feasible but also semantically correct, as illustrated in the factory production example (Figure 5).

Problem: A company has three factories (X, Y, Z) that produce three different components (1, 2, 3) required for a product. Each factory has a limited number of production hours, and their productivity (units/hour) for each component varies. The objective is to allocate production hours across the factories to maximize the number of complete sets of components that can be assembled.

Factory	Hours	Product. 1	Product. 2	Product. 3	Check
X	120	14	11	9	modeling
Υ	140	16	10	7	
Z	100	12	15	8	7 (12)
##Sets: Factories F = {X, Y, Z} Components C = {1, 2, 3} ##Parameters: Productivity: p_X1=14, p_X2=11, May house: H_X=120, H_X=140, H_Z=100			Р	0	Verdict: Incorrect
Max hours: H_X=120, H_Y=140, H_Z=100 ##Variables: x_X1, x_X2, x_X3: Hours allocated in Factory X f or components 1, 2, 3 ##Objective Function: Maximize (14*x_X1+11*x_X2+9*x_X3+16*x_Y1+) (Maximizing the total quantity of all individual components)			Factory X f		Analysis: The formulation maximizes the total number of unit produced, but the problem description requires maximizing th number of completed sets of components. This implies a need for balance among the components produced, which is not addressed in the current objective function. The formulation lacks constraints or an objective that ensures the production

Figure 5: Modeling Accuracy Example:LLM checks whether the modeling aligns with the intended meaning of the question.

of complete sets, such as a additional constraints to balance

production of different components.

C.2 FINAL SEED DATASET

...,All x variables ≥ 0 (Non-negativity)

 $x_X1 + x_X2 + x_X3 \le 120$ (Production hour limit for Factory X),

##Constraints:

Dataset	Size	Full Size
Opt-Math-train	3282	210000
IndustryOR-train	1375	3000
Resocratic-train	4036	29000
Evo-step	3351	4464

Table 4: Sample data from different Synthetic.

We sampled data from four sources: Opt-Math Lu et al. (2025), IndustryOR Huang et al. (2025a), Resocratic Yang et al. (2025b), and Evo-step Wu et al. (2025). For the Opt-Math and Resocratic datasets, we first applied k-greedy filtering to the initial data. Following a three-stage filtering process and deduplication, we obtained a final dataset of 8,656 instances.

D OR-PROCESSQA CONSTRUCTION

D.1 DETAILS OF MONTE CARLO TREE SEARCH

Monte Carlo Tree Search is a heuristic search algorithm for sequential decision-making in large state spaces. In our OR-PRM, we employ it as the first stage of our automated data synthesis pipeline to efficiently generate a large volume of candidate reasoning steps along with their preliminary correctness labels. MCTS iteratively constructs a search tree T=(V,E), where each node $v\in V$ represents a partial solution (i.e., a reasoning prefix), and each edge $(v,a)\in E$ represents a reasoning step a generated by the policy model.

Selection Starting from the root node (i.e., the original problem), the algorithm recursively selects child nodes to balance exploitation and exploration. It adopt the following Upper Confidence Bound applied to Trees formula.

$$a^* = \underset{a \in A(v)}{\operatorname{arg\,max}} \left[Q(v, a) + c \cdot \sqrt{\frac{\ln N(v)}{N(v, a)}} \right]$$
 (3)

Here, Q(v,a) is the average probability of reaching the correct final answer after taking action a from node v; N(v) and N(v,a) are the visit counts for node v and edge (v,a), respectively; c is a constant controlling the strength of exploration.

Expansion When the search reaches a leaf node v_l that still has unexplored actions, the algorithm invokes the policy model to generate a new reasoning step a based on the current state v_l , thereby creating a new node v_{new} and adding it to the tree.

Simulation From the newly expanded node v_{new} , the algorithm performs one or more rollout simulations by prompting the policy model to autoregressively generate a complete reasoning path to a final answer. The simulation outcome z is a binary reward: z=1 if the final answer is correct, otherwise z=0.

Backpropagation The simulation result z is propagated back up the search path, updating the statistics for all traversed nodes:

$$N(v) \leftarrow N(v) + 1 \tag{4}$$

$$Q(v,a) \leftarrow Q(v,a) + \frac{z - Q(v,a)}{N(v,a)} \tag{5}$$

In the OR-PRM data synthesis pipeline, the core value of MCTS lies in its automation. We configured key hyperparameters to balance exploration diversity and efficiency: sampling temperature T=1.0, Top-k sampling k=50, nucleus sampling (Top-p) p=0.9, and exploration coefficient c=1.0. Through this structured search, the algorithm efficiently generates over 550,000 candidate reasoning steps with preliminary labels from our carefully curated set of 8,000 seed problems. This provides ample raw material for the subsequent stages: structured error analysis and consensus-based filtering performed by GPT-40. The preliminary hard labels (0 or 1) generated by MCTS, combined with the detailed natural language critiques from GPT-40, ultimately produce the high-quality, high-reliability OR-ProcessQA dataset, forming a solid foundation for training the powerful generative process reward model, OR-PRM.

D.2 STRUCTURED ERROR ANALYSIS WITH GPT-40

To generate the rich, step-level supervision required for our generative PRM, we employ GPT-40 as an expert annotator.

This final consensus-based filtering step proved to be highly selective, discarding approximately 50% of the candidate annotations and resulting in a high-fidelity dataset of roughly 20,000 samples.

E INFERENCE WITH OR-PRM

 OR-PRM can identify different scenarios, such as correct cases, modeling errors, code errors, etc.Three examples as follow:

MODELING

Problem Statement:

The Li family plans to invest their retirement fund in commercial real estate. Property 1 has an annual income of \$12,500, Property 2 has an annual income of \$35,000, Property 3 has an annual income of \$23,000, and Property 4 has an annual income of \$100,000. The decision to be made is whether to buy or not buy each property, not the quantity, as there is only one property per property. Help them decide which properties to purchase to maximize their annual income. Property 1 costs \$1.5 million, Property 2 costs \$2.1 million, Property 3 costs \$2.3 million, and Property 4 costs \$4.2 million. The Li family's budget is \$7 million. If they purchase Property 4, then they cannot purchase Property 3.

MODELING

SETS

$$\mathcal{P} = \{1, 2, 3, 4\}$$

$$x_i \in \{0, 1\}, \quad i \in \mathcal{P}$$

PARAMETERS

$$c_i: \mathcal{P} \to \mathbb{R}, \quad c_i = \begin{cases} 12500 & \text{if } i = 1\\ 35000 & \text{if } i = 2\\ 23000 & \text{if } i = 3\\ 100000 & \text{if } i = 4 \end{cases}$$

$$p_i: \mathcal{P} \to \mathbb{R}, \quad p_i = \begin{cases} 150000 & \text{if } i = 1\\ 210000 & \text{if } i = 2\\ 230000 & \text{if } i = 3\\ 420000 & \text{if } i = 4 \end{cases}$$

$\mathbf{m}_{oldsymbol{x}}$

VARIABLES

OBJECTIVE

CONSTRAINTS
$$\sum_{i=1}^{4} p_i x_i \leq B$$

$$x_3 + x_4 \leq 1$$

$$\boldsymbol{x} = (x_1, x_2, x_3, x_4)^{\top}$$

 $B \in \mathbb{R}, \quad B = 7000000$

PYOMO IMPLEMENTATION

```
from pyomo.environ import *
       Model Initialization -
model = ConcreteModel()
# ... Sets (P) and Parameters (c, p, B) are defined here based on the model.
       Key Modeling Logic -
# 1. Define Variables
# x_i is a binary variable, 1 if property i is purchased, 0 otherwise. model.x = Var(model.P, domain=Binary)
# 2. Define Objective Function
# Maximize the total annual income from purchased properties.
model.income = Objective(
    \texttt{expr=sum}\,(\texttt{model.c[i]} \;\; \star \;\; \texttt{model.x[i]} \;\; \texttt{for i in model.P)}\,,
    sense=maximize
# 3. Define Constraints
# The total cost of purchased properties cannot exceed the budget B.
model.budget_constraint = Constraint(
    expr=sum(model.p[i] * model.x[i] for i in model.P) <= model.B</pre>
# If property 4 is purchased, property 3 cannot be.
model.exclusion constraint = Constraint (
    expr=model.x[3] + model.x[4] <= 1
# ... Solver is called and solution is processed here.
```

ANSWER

Objective value: 135000.0

Optimal Solution: $x_1 = 0.0$, $x_2 = 1.0$, $x_3 = 0.0$, $x_4 = 1.0$

Figure 6: Correct Case: Modeling Process.

922	
923	
924	
925	
926	
927	
928	
929	Construction of Francisco Assessment
930	STRUCTURED ERROR ANALYSIS
931	1. Variable Definition Analysis
932	Intent: Define decision variables.
933	Analysis: The decision variable x_i is defined correctly as binary, indicating whether to
934	purchase each property.
935	Judgement: Correct
936	
937	2. Objective & Constraint Analysis
938	Intent: Formulate model.
939	Objective: Correct. The objective maximizes total annual income from selected properties.
940	Constraints: - Budget constraint $(\sum_{i=1}^4 p_i x_i \leq B)$ is correct Constraint on purchasing
941	properties 3 and 4 $(x_3 + x_4 \le 1)$ is correct.
942	Judgement: Correct
943	
944	3. Code Analysis
945	Intent: Implement model in Pyomo/Python.
946	Analysis: - Sets, parameters, and variables are defined correctly in the code The objec-
947	tive function and constraints match those specified in the problem statement The output
948	matches the expected result based on the problem description. Judgement: Correct
949	Judgement. Correct
950	4 Final Anguan Anglysis
951	4. Final Answer Analysis Intent: Report solution or error.
952	Analysis: The reported solution shows that properties 2 and 4 should be purchased, yielding
953	an optimal annual income of \$135,000. This aligns with the problem requirements and
954	constraints.
955	Judgement: Correct
956	
957	No corrections needed; all parts of the solution are accurate.
958	*

Figure 7: Correct Case: Structured Error Analysis.

```
976
977
978
                MODELING
979
980
                SOLUTION
981
                SETS
                                                                           VARIABLES
982
                \mathcal{P} represents the set of properties, with \mathcal{P} = \{1, \dots, \infty\}
                                                                           x_i \in \{0,1\}, i \in \mathcal{P}, where x_i = 1 if property i
983
                                                                           is purchased, x_i = 0 otherwise.
984
                PARAMETERS
                                                                           OBJECTIVE
985
                                                                                            \max_{\boldsymbol{x} \in \{0,1\}^4} \sum_{i \in \mathcal{D}} p_i x_i
986
                p_i is the annual income of property i, i \in \mathcal{P}, p_1
                = 12500, p_2 = 35000, p_3 = 23000, p_4 = 100000
987
                c_i is the cost of property i, i \in \mathcal{P}, c_1 = 1500000,
988
                                                                           CONSTRAINTS
                c_2 = 2100000, c_3 = 2300000, c_4 = 4200000
989
                                                                           \sum_{i\in\mathcal{P}} c_i x_i \le b, \boldsymbol{x} \in \{0,1\}^4
                b is the budget, b = 7000000
990
991
992
                PYOMO IMPLEMENTATION
993
                from pyomo.environ import *
994
                # --- Model Initialization ---
995
                model = ConcreteModel()
996
                # ... Sets (P) and Parameters (p, c, budget) are defined here based on the model.
997
                # --- Key Modeling Logic ---
998
                # 1. Define Variables
999
                # x_i is a binary variable, 1 if property i is purchased, 0 otherwise.
                model.x = Var(model.P, domain=Binary)
1000
                # 2. Define Objective Function
1001
                # Maximize the total annual income from purchased properties.
model.objective = Objective(
1002
                    expr=sum(model.p[i] * model.x[i] for i in model.P),
1003
                    sense=maximize
1004
1005
                # 3. Define Constraints
                # The total cost of purchased properties cannot exceed the budget.
1006
                model.budget_constraint = Constraint(
    expr=sum(model.c[i] * self.model.x[i] for i in self.model.P) <= self.model.budget</pre>
1007
1008
                # <<<< INCORRECT CONSTRAINT >>>>
1009
                # The problem states: "If property 4 is purchased, then property 3 cannot be."
                # The correct logic is x4 + x3 <= 1.
# The code below incorrectly implements this as x4 <= x3.
1010
                model.order_constraint = Constraint(
1011
                    expr=model.x[4] <= model.x[3]
1012
1013
                # ... Solver is called and solution is processed here.
1014
1015
                ANSWER
1016
                Objective value: 123000.0
1017
                Optimal Solution: x_1 = 0.0, x_2 = 0.0, x_3 = 1.0, x_4 = 1.0
1018
```

972973974975

1019

1020

Figure 8: **Incorrect Answer Case:** Modeling Process.

STRUCTURED ERROR ANALYSIS

1. Variable Definition Analysis

Intent: Define decision variables.

Analysis: The decision variable x_i is defined correctly as binary, indicating whether each property should be purchased.

Judgement: Correct

2. Objective & Constraint Analysis

Intent: Formulate model.

Objective: Correct. The objective maximizes the total annual income from selected properties.

Constraints: - Budget constraint is correct; it ensures that the sum of costs does not exceed the budget. - Order constraint is incorrect. It states $x_4 \le x_3$, meaning if property 4 is purchased, then property 3 must also be purchased. However, the original problem specifies that if property 4 is purchased, property 3 cannot be purchased.

Judgement: Incorrect due to the constraint error.

3. Code Analysis

Intent: Implement model in Pyomo/Python.

Analysis: - Binary decision variables x_i are correctly implemented. - The budget constraint is implemented correctly. - There is an implementation error in the order constraint. Instead of $x_4 \le x_3$, it should be $x_4 + x_3 \le 1$.

Judgement: Incorrect

4. Final Answer Analysis

Intent: Report solution or error.

Analysis: The reported solution suggests purchasing properties 3 and 4, yielding a total annual income of 123,000 dollars. This contradicts the problem statement since it implies purchasing both properties 3 and 4 simultaneously, violating the logical condition specified. Judgement: Incorrect

5. Corrected Step: Code Implementation

```
# ... (imports and model setup are identical to the incorrect version)

def define_constraints(self):
    # The budget constraint remains the same.
    self.model.budget_constraint = Constraint(
        expr=sum(self.model.c[i] * self.model.x[i] for i in self.model.P)
        <= self.model.budget
    )

# CORRECTED LOGIC for the exclusion constraint:
    # This now correctly implements the rule "If property 4 is purchased,
    # property 3 cannot be" as x4 + x3 <= 1.
    self.model.order_constraint = Constraint(
        expr=self.model.x[4] + self.model.x[3] <= 1
    )

# ... (objective definition and solver calls remain the same)</pre>
```

This corrected version properly reflects the logical constraint that if property 4 is purchased, property 3 cannot be purchased.

Figure 9: Incorrect Answer Case: Structured Error Analysis.

```
1083
1084
1085
                  MODELING
1086
1087
                  SOLUTION
1088
1089
                  SETS
                                                                                      OBJECTIVE
1090
                                                                                         \max_{\mathbf{Purchase}} \sum_{i \in \mathsf{Properties}} \mathsf{Income}(i) \cdot \mathsf{Purchase}(i)
                                  Properties = \{1, 2, 3, 4\}
1091
                  PARAMETERS
1092
                                                                                      CONSTRAINTS
                  Income(Properties) = (12500, 35000, 23000,
1093
                                                                                             \sum \quad \text{Cost}(i) \cdot \text{Purchase}(i) \le 7000000
                  100000),
1094
                                                                     2100000,
                  Cost(Properties) =
                                                  (1500000,
1095
                  2300000, 4200000)
                                                                                                Purchase(3) \le 1 - Purchase(4)
1096
1097
                  VARIABLES
                   \text{Purchase}(\text{Properties}) = \begin{cases} 1 & \text{if Property } i \text{ is purchased,} \\ 0 & \text{otherwise} \end{cases} 
1098
1099
1100
1101
1102
                  PYOMO IMPLEMENTATION
1103
                  from pyomo.environ import *
1104
                  # --- Model Initialization ---
1105
                  model = ConcreteModel()
                    ... Sets, Parameters, and Variables are defined here.
1106
                  # ... Objective function is also defined.
1107
                  # --- Key Modeling Logic (Constraints) ---
1108
                    Correctly implemented budget constraint
1109
                  def budget_constraint_rule(model):
    return sum(model.Cost[i] * model.Purchase[i] for i in model.Properties) <= 7000000</pre>
1110
                  model.BudgetConstraint = Constraint(rule=budget_constraint_rule)
1111
                  # <<<< INCORRECT CONSTRAINT IMPLEMENTATION >>>>
1112
                  \# The constraint Purchase(3) <= 1 - Purchase(4) is a single, scalar constraint. \# It should not be indexed over the set of all properties. The code below
1113
                  # incorrectly defines it as an indexed constraint, leading to a parameter error.
def exclusivity_constraint_rule(model, prop3, prop4): #<-- Incorrect function signature</pre>
1114
                        # This rule expects two indices (prop3, prop4) but Pyomo only provides one.
1115
                       if prop3 == 3 and prop4 == 4:
return model.Purchase[3] <= 1 - model.Purchase[4]
1116
1117
                            return Constraint.Skip
1118
                    This line causes the error because the rule's signature does not match
                  # how Pyomo calls it for an indexed constraint.
model.ExclusivityConstraint = Constraint(model.Properties, rule=exclusivity_constraint_rule)
1119
1120
                  # ... Solver call leads to a TypeError.
1121
1122
1123
                  ANSWER
1124
                  ERROR: Rule failed when generating expression for Constraint Exclusivity Constraint with index 1: TypeError: OptimizationProblem.solve lo-
                  cals .exclusivity.constraint.rule() missing 1 required positional argument: prop4. ERROR: Constructing component ExclusivityConstraintfrom data = None failed: TypeError: OptimizationProblem.solve.locals .exclusivity.constraint.rule() missing 1 required positional argument: prop4.
1125
1126
```

1080 1081 1082

1127

1128

Figure 10: Code Execution Error Case: Modeling Process.

```
1134
             STRUCTURED ERROR ANALYSIS
1135
1136
             1. Variable Definition Analysis
1137
             Intent: Define decision variables.
1138
             Analysis: The variable 'Purchase' is defined correctly as binary, indicating whether each
             property should be purchased or not.
1139
             Judgement: Correct
1140
1141
1142
             2. Objective & Constraint Analysis
1143
             Intent: Formulate model.
             Objective: Correct. The objective maximizes total income based on selected properties.
1144
             Constraints: - Budget constraint is correct; it ensures that the total cost does not exceed $7
1145
             million. - Exclusivity constraint is intended to prevent purchasing both properties 3 and 4
1146
             simultaneously. However, the implementation has an issue due to the way constraints are
1147
             indexed and formulated.
1148
             Judgement: Incorrect (due to implementation issue in exclusivity constraint)
1149
1150
             3. Code Analysis
1151
             Intent: Implement model in Pyomo/Python.
1152
             Analysis: There is a critical error in defining the exclusivity constraint. The function exclu-
1153
             sivity constraint rule expects two arguments (prop3, prop4) but only receives one (prop3).
1154
             This mismatch causes a TypeError. Additionally, the constraint logic needs adjustment to
1155
             properly enforce mutual exclusion between properties 3 and 4.
1156
             Judgement: Incorrect
1157
1158
             4. Final Answer Analysis
1159
             Intent: Report solution or error.
1160
             Analysis: Since the code fails at the implementation level, there is no valid output or solution
1161
             reported. The error message indicates a failure in constructing the exclusivity constraint.
1162
             Judgement: Incorrect
1163
1164
             5. Corrected Step: Code Implementation
               ... (imports and model setup are identical to the previous version)
1165
1166
             def define_constraints(self):
                   The budget constraint is a scalar constraint and remains the same.
1167
                 self.model.budget constraint = Constraint(
                     expr=sum(self.model.c[i] * self.model.x[i] for i in self.model.P)
1168
                     <= self.model.budget
1169
1170
                 # CORRECTED IMPLEMENTATION for the exclusion constraint:
                 # The previous version incorrectly tried to define this as an indexed # constraint over a set. The correct approach is to define it as a
1171
                 # single, scalar constraint, as it does not depend on any index.
self.model.order_constraint = Constraint(
1172
1173
                     expr=self.model.x[4] + self.model.x[3] <= 1
1174
             # ... (objective definition and solver calls remain the same)
1175
1176
             This corrected version defines the exclusivity constraint more clearly and appropriately,
1177
             ensuring that properties 3 and 4 cannot both be purchased.
1178
```

Figure 11: Code Execution Error Case: Structured Error Analysis.

1179 1180

F ALL PROMPT

1188

1189 1190

```
1191
          CRITIC PROMPT
1192
1193
          \label{critic}
1194
          You are an expert in Operations Research (OR).
1195
1196
          You will be given an optimization problem and (optionally) a step-
1197
             by-step solution, which may or may not include code.
1198
          Task: Review the solution. Analyze each applicable part in order.
1199
             Be concise only highlight critical errors or omissions. Skip
1200
             any section if the input doesn't contain it (e.g., no code skip
1201
              Code Analysis).
1202
1203
         Evaluate in this order:
1204
          1. Variable Definitions
1205
          2. Objective Function and Constraints
1206
          3. Code Implementation (if provided)
1207
          4. Final Answer / Output
1208
         Question:
1209
          {Question}
1210
1211
          Solution Steps:
1212
          {Solution}
1213
         Output Format (be brief and precise):
1214
1215
         1. Variable Definition Analysis
1216
          - Intent: [e.g., Define decision variables]
1217
          - Analysis: [Only note missing, redundant, or misdefined variables]
1218
          - Judgement: [Correct/Incorrect]
1219
          2. Objective and Constraint Analysis
1220
          - Intent: [e.g., Formulate model]
1221
          - Objective: [Correct? Brief reason if wrong]
1222
          - Constraints: [Missing/incorrect? List only key issues]
1223
          - Judgement: [Correct/Incorrect]
1224
         3. Code Analysis (Skip if no code)
1225
         - Intent: Implement model in Pyomo/Python
1226
          - Analysis: [Only flag mismatches: missing vars/constraints, wrong
1227
              indexing, type errors]
1228
          - Judgement: [Correct/Incorrect or Skipped]
1229
         4. Final Answer Analysis
1230
          - Intent: [e.g., Report solution or error]
1231
          - Analysis: [Must show valid optimal solution AND objective value.
1232
             If output contains ANY error/traceback (e.g., SyntaxError,
1233
             AttributeError) Incorrect. [Plausible? Error meaningful? Root
             cause if wrong]]
1234
          - Judgement: [Correct/Incorrect]
1235
1236
         Corrected Step (Only if any part above is Incorrect)
1237
          - [Rewrite only the first incorrect section e.g., fix constraints
1238
             or variables in full, clearly labeled.]
1239
```

QUESTION TO MODELING PROMPT 1243 1244 You are an expert in Operations Research (OR). 1245 The following is an optimization problem. You need to write the 1246 corresponding Pyomo code based on the problem description and 1247 information provided. 1248 1249 The problem description is as follows: 1250 {ques} 1251 1252 1253 The following is the five-element model of an optimization problem: 1254 1255 {five} 1256 1257 Please write the corresponding Pyomo code. Please add 'from pyomo. 1258 environ import *' at the beginning of your code (You can add other 'import' as well). Please print the optimal solution and 1259 the value of the objective function. Please do not output the 1260 running log. You need to write it in the form of a class and 1261 add a main function: 1262 1263 '''python 1264 [write your code here] 1265 1266

MODELING TO CODE PROMPT

1267

126812691270

1271

1272

1273

1274

12751276

1277

1278 1279 1280

1281

1282

1283

1284

12851286

1287

You are an expert in Operations Research (OR). The five-element model is the abstraction of an optimization problem, which transforms specific problem scenarios into formal mathematical problems. You need to write the corresponding Pyomo code based on the five-element model provided. The following is the five-element model of an optimization problem: . . . {five} Please write the corresponding Pyomo code. Please add 'from pyomo. environ import *' at the beginning of your code (You can add other 'import' as well). Please print the optimal solution and the value of the objective function. Please do not output the running log. You need to write it in the form of a class and add a main function: '''python [write your code here]

EXTRACT ANSWER PROMPT You are an expert in Operations Research (OR). Your task is to precisely extract and return exactly one line from the multi-line text provided below. This line must state the final optimization value (e.g., maximum profit, minimum cost, or total objective value). ## Core Instructions - **Exact Extraction**: The returned content must be a complete , unmodified line as it appears in the original text. - **Single Output**: Your response must contain only the extracted line. Do not add any prefixes, suffixes, explanations , introductory phrases, or extra formatting. - **Keyword Recognition**: Prioritize identifying and extracting the line that contains common optimization keywords such as: - 'cost' - 'profit' - 'objective' - 'value' - 'revenue' - 'optimal value' - 'Total' Text to analyze: {text}