
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

OR-PRM: A PROCESS REWARD MODEL FOR ALGO-
RITHMIC PROBLEM IN OPERATIONS RESEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) with Process Reward Models (PRMs) have shown
strong reasoning ability, yet their potential in Operations Research (OR) remains
unexplored. We present the first PRM tailored for OR, but find that directly train-
ing on mainstream datasets yields surprisingly weak performance. To understand
this gap, we conduct a systematic analysis and identify the primary bottleneck:
the datasets themselves, where over 30% of annotations are severely flawed. To
overcome these limitations, we first collect all existing synthetic datasets and ap-
ply a carefully designed filtering pipeline to construct a high-quality seed dataset.
Building upon this seed, we then build OR-ProcessQA, the first large-scale dataset
for OR with step-by-step supervision, where diverse solution pathways are gener-
ated via Monte Carlo Tree Search (MCTS) and each step is validated for logical
consistency by GPT-4o. Building on this foundation, we train OR-PRM, the first
Process Reward Model in the OR domain, designed to evaluate and guide rea-
soning at every step rather than only the final outcome. Together, these advances
enable OR-PRM to substantially improve LLMs’ reasoning capability, achieving
a maximum absolute improvement of 12.5% over the base model in Best-of-N
settings, and highlighting the power of process-oriented supervision for reliable
problem solving in operations research.

1 INTRODUCTION

Large Language Models (LLMs) DeepSeek-AI (2024); Yang et al. (2025a) have recently demon-
strated strong reasoning ability, largely attributed to post-training methods such as reinforcement
learning and Process Reward Models (PRMs). Their rapid progress is evident across challenging
domains—for instance, GPT-5 has already surpassed all human competitors in the 2025 ICPC World
Finals OpenAI (2025), a notoriously difficult zero-shot programming contest. These advances sug-
gest that LLMs are no longer merely fluent generators, but are evolving into powerful engines for
rigorous problem solving.

Operations Research (OR) provides an especially compelling testbed for such reasoning. Solving
OR problems demands not only correctness in the final answer, but also step-by-step logical con-
sistency—a natural match for PRMs, which are designed to explicitly evaluate the correctness of
intermediate steps. At first glance, it seems natural to expect PRMs to excel in OR just as they do in
mathematics or programming.

Yet this expectation does not hold. When we developed the first PRM tailored for OR, its perfor-
mance was far weaker than anticipated, even with state-of-the-art LLM backbones. Our analysis
shows that the main obstacle is data quality, since existing OR datasets are alarmingly unreliable.
More than 30% of the samples contain serious errors in the final answer, and many include incom-
plete or noisy reasoning steps (Figure 1). This noise makes it extremely difficult for PRMs to learn
faithful reasoning, leading to solutions that look plausible but often violate hidden constraints or
break logical consistency.

To overcome these challenges, we first curated a high-quality seed dataset through a rigorous
three-stage filtering pipeline. Building on this foundation, we combined MCTS for solution ex-
ploration with GPT-4o for fine-grained step-wise annotation, generating hundreds of thousands of
problem–solution trajectories. After strict consistency checks, this process yielded OR-ProcessQA,
the first large-scale OR dataset with reliable step-level supervision for training PRM.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

[Parameter Definitions] The decision variable is correct. \n

[Objectives & Constraints] The objective and budget constraints are

correct, but exclusivity constraints are improperly formulated. \n

[Generated Code] Function `Rule` expects two arguments (`prop3`,

`prop4`) but only receives one (`prop3`) causing a `TypeError`. \n

[Execution Output] Since the code fails, it is no valid output. The

message indicates a failure in constructing the exclusivity constraint.

[Correct step] Code Implementation: from pyomo.environ import....

Modeling：We can construct an integer

linear programming model to maximize the

number of copies distributed while

minimizing the total cost. The model can be

formulated as follows:

Decision Variables:
eg.The implementation contains

syntax errors, undefined variables,

missing libraries, or logical bugs...

Question：A company needs to complete

the printing of three books: Book 1, Book

2 ……

Code: import coptpy as cp \n from coptpy

import COPT \n Create a COPT

environment

1.Infeasible Problem
eg. The solver returns infeasible

because the demand exceeds

capacity...

2.Modeling Error
eg. The model is incomplete or

incorrectly specified. It is not

implementable ...

3.Code Error

4.Different Solvers
eg. Using different solvers makes it

difficult to merge the datasets...

Problems with existing datasets Seed Dataset

OR-ProcessQA

Set: Routes: R = {A, B, C}，Resources: {Trucks, Drivers}....

Variables: Number of trucks on routes A, B, C: xA, xB, xC ∈ Z+

Objective: Min CostTotal = 800xA+950xB+100xC

Constraints: xA ≥ 10, xB ≥ 15 , xA + xB + xC≤ 50 , xA + xB + xC ≤ 60

Code: from pyomo.environ import *\n\n

Parameters: CostTruck = [500, 600, 700], CostDriver = [300, 350, 400]....

Figure 1: Noisy Data (left) vs. Our Data (right). The left panel illustrates common issues in
existing datasets, such as infeasible problems, modeling errors, and coding defects. The right panel
showcases our well-structured seed data, which serves as the foundation for our OR-ProcessQA
dataset, characterized by step-by-step solutions with explicit correctness labels and ground-truth
corrections.

Leveraging this resource, we developed OR-PRM, the first Process Reward Model tailored for Op-
erations Research. Unlike conventional PRMs that collapse reasoning quality into a single scalar
score, OR-PRM delivers structured feedback by categorizing errors and offering targeted correc-
tions. This design enables it to evaluate not only the correctness of final answers but also the validity
of every intermediate step. By distinguishing between correct code, incorrect yet runnable code, and
non-runnable code, OR-PRM provides actionable guidance for refinement. Our experiments demon-
strate that such feedback substantially improves the logical consistency and rule-following behavior
of LLMs, marking an important step toward trustworthy decision-making in OR applications.

Overall, our contributions are three-fold: ① We introduce OR-PRM, the first Process Reward Model
tailored for Operations Research, trained to evaluate and guide reasoning at every step rather than
relying solely on final answers. ② We curate a high-quality seed dataset by filtering existing syn-
thetic OR data, and further expand it with MCTS exploration and GPT-4o annotations into OR-
ProcessQA, the first OR dataset with reliable step-level correctness labels for training PRM. ③ We
empirically demonstrate that process-oriented supervision with OR-PRM substantially improves the
logical reliability and correctness of LLMs in OR tasks (e.g., achieving average 12.5% accuracy gain
on six benchmarks), paving the way toward trustworthy decision-making in real-world applications.

2 RELATED WORK

LLMs for Operations Research The remarkable capabilities of LLMs in natural language un-
derstanding and complex reasoning have propelled their application in operations research recently.
A core challenge lies in effectively translating these naturally described optimization problems into
precise mathematical models that solvers can process. Current academic exploration primarily fol-
lows two technical paths Xiao et al. (2025): One path involves reasoning-enhanced methods, which
guide general-purpose LLMs in modeling through carefully designed prompts. Examples include X-
of-Thought approaches (e.g., the tree-search reasoning employed by Autoformulation Astorga et al.
(2025)) and Multi-Expert system (e.g., Chain-of-Experts Xiao et al. (2024) and OptiMUS Ahma-
diTeshnizi et al. (2024)). The second path focuses on domain-specific fine-tuning, where models are
fine-tuned on specialized datasets to enhance their professional capabilities. Studies such as ORLM
Huang et al. (2025a) and LLaMoCo Ma et al. (2024) have demonstrated that fine-tuned models can
outperform general-purpose LLMs like GPT-4. Building on this, the LLMOPT Jiang et al. (2025)
further advances this direction by introducing the five-element formulation as a universal problem
definition paradigm and employing Kahneman-Tversky Optimization (KTO) for model alignment,
improving the model’s generalization ability.

Data Synthesis for Operations Research However, both technical paths above are highly depen-
dent on high-quality datasets. Consequently, researchers have begun exploring data synthesis tech-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Fine-tuning

Post-Training

Q-A: "process": ..,Step1,Step2....
"critic": Decision variable is ... The
constraint wrong (should be

x3+x4≤1, not x4≤x3.). … This corrected
version code properly reflects

Valid Modeling

Stage 3 Stage 1Stage 2

Parameters & Variables Solver CodeSeed Data

Monte Carlo

Tree Search

Correct

Step

Incorrect

Step

K-greedy

Raw Data Selected Data

Modeling

Process

Solver

Code
Policy Model

Data selection

and synthesis

OR-ProcessQA

Selection

Synthesis

(1) OR-ProcessQA Dataset Construction

a. Low-to-High Selectionb. Synthesis

Objective & Constraints

Satisfied Constraints Executable Code

...

Step1,Step2,Step3,..Rollout 1

Step1,Step2,Step3,..Rollout 2

Step1,Step2,Step3,..Rollout k

...

(2) OR-PRM Model Training

OR-ProcessQA

 Error Analysis

 Data Diversification

Data Processing

Figure 2: Overview of our automated framework. We first construct OR-ProcessQA through
a three-stage filtering pipeline and MCTS-based trajectory generation with step-level verification.
Built on this dataset, OR-PRM is trained to provide structured, stepwise feedback.

niques, broadly categorized into problem-centric and model-centric approaches Xiao et al. (2025).
The former, exemplified by OR-Instruct Huang et al. (2025a), augments data by modifying exist-
ing problems. The latter prioritizes generating models first and then inversely constructing problem
descriptions, thereby offering better control over difficulty and correctness. For instance, the Re-
Socratic Yang et al. (2025b) method generates problems inversely from formalized proofs, while
OptiMath Lu et al. (2025) and MILP-Evolve Li et al. (2025) generate directly from model code or
types. Concurrently, the academic community has released several evaluation benchmarks, includ-
ing NL4Opt, MAMO, and IndustryOR. Yet, recent studies have uncovered a surprisingly high error
rate in these widely used benchmarks (with some datasets exhibiting error rates exceeding 50%)
Xiao et al. (2025), severely compromising the reliability of evaluations. Addressing this bottleneck
of data quality, this study innovatively clean and construct a batch of high-quality optimization mod-
eling data, laying a solid foundation for training and evaluating more reliable optimization models.

Process Reward Models Process Reward Models Cobbe et al. (2021); He et al. (2024); Zhang
et al. (2025b;a) provide process-level supervision by scoring intermediate reasoning steps, guiding
models to reason step-by-step with improved logical consistency and accuracy. Building on this
capability, PRMs have been successfully applied to Best-of-N sampling Wang et al. (2025) and of-
fline data selection Xie et al. (2023), significantly improving reasoning quality and model optimiza-
tion. Representative works such as Skywork-PRM He et al. (2024) and Qwen2.5-Math-PRM Zhang
et al. (2025b) combine human annotations with synthetic rewards to evaluate performance across
mathematics, science, and programming domains. Beyond general domains, PRMs are also being
extended to vertical domains; for instance, Fin-PRM Zhou et al. (2025) adapts PRMs to finance with
trajectory-aware, domain-specialized reward modeling. Applying PRM to vertical domains requires
domain-specific knowledge; therefore, we synthesized dataset and conducted training tailored to the
characteristics of the Operation Research.

3 METHODOLOGY

Our method tackles the core challenges of applying LLMs to Operations Research through a three-
stage pipeline, as shown in Figure 2. We begin by establishing a robust data foundation. Firstly,
we construct a high-quality seed dataset in Section 3.1.1 to mitigate data noise and inconsisten-
cies. Next, we build the OR-ProcessQA dataset in Section 3.1.2, which provides the first process-
supervised data in the OR domain with fine-grained, step-level annotations. Finally, we develop

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

the Process Reward Model for OR domain (OR-PRM) in Section 3.3. This specialized PRM offers
natural language critiques and corrections beyond scalar scores for OR reasoning steps. Our ap-
proach significantly enhances the reliability and performance of LLMs in OR by providing detailed,
interpretable feedback throughout the solution process.

3.1 DATASET CONSTRUCTION

A high-quality dataset is essential to ensure the effectiveness of PRM supervision. We propose a
stricter way to build the dataset. Specifically, we first create a cleaner seed dataset by careful filtering
and many rounds of checking in Section 3.1.1. Then, we utilize this curated seed dataset to generate
diverse and accurate process-annotated data in Section 3.1.2

3.1.1 SEED DATA CONSTRUCTION

In this section, we first standardize the problem representation for consistent generation. We then
employ an existing strong OR model, LLMOPT Jiang et al. (2025), for solver code generation.
Finally, we adopt a multi-stage procedure to filter out high-quality data.

Problem representation. We adopt LLMOPT as a generative policy that first produces each prob-
lem in the canonical five-element tuple form (S,θ,x, f(x), g(x) ≤ c), ensuring compatibility with
downstream validation and modeling stages. This policy-based generation ensures a mathematically
well-formed and solver-agnostic structure from the start.

To enable consistent modeling and automated validation, we represent each problem p via a compact
five-element tuple:

p =
(
S, θ, x, f(x), g(x) ≤ c

)
,

where S (index sets), θ (parameters), x (variables), f(x) (objective), and g(x) ≤ c (constraints)
collectively define the optimization task in canonical form minx f(x) s.t. g(x) ≤ c. This schema
ensures solver-agnostic structure, enabling deterministic code-output validation against declared
constraints and objectives, which is critical for scalable, error-free seed dataset construction.

Solver Generation. We directly use LLMOPT to auto-generate solver code tailored for each prob-
lem tuple, linking the mathematical formulation directly to an executable implementation.

Multi-Stage Validation. Each generated sample is then subjected to a three-stage validation
pipeline to ensure high-quality reasoning. Samples were evaluated along three axes: code execution,
constraint satisfaction, and modeling accuracy, and were discarded if they failed any stage.

1. Code Execution: We execute the provided code and verify that it runs without error and
produces the expected output. This validates executable correctness and establishes x̂ as
ground truth for downstream checks.

2. Constraint Satisfaction: We employ Qwen3-8B Yang et al. (2025a) as a reasoning verifier:
given the constraint expressions g(x) ≤ c from the five-element tuple and the numeri-
cal solution x̂ produced by the solver code, it performs symbolic or numeric substitution
to verify whether all constraints are satisfied. This enables automated, model-grounded
feasibility checking without requiring additional code generation.

3. Modeling Accuracy: Finally, we use GPT-4o to validate whether the mathematical formula-
tion accurately reflects the original problem statement. This ensures the five-element tuple
(S,θ,x, f, g) faithfully captures the problem semantics.

A sample is retained if and only if it passes all three validation stages: successful code execution,
constraint satisfaction, and modeling accuracy. This integrated, generative process gave us a clean,
reliable seed dataset.

3.1.2 STEP-WISE ANNOTATION GENERATION

Seed data can only support SFT but not PRM training, so we further expand it into step-wise trajecto-
ries and annotate them, obtaining a high-quality dataset suitable for PRM supervision. Specifically,
this process consists of three parts: (1) automated step generation via MCTS based on the seed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

problems; (2) structured evaluation of each step using GPT-4o to identify potential errors; and (3)
consistency filtering between MCTS and GPT-4o outputs to retain only logically sound trajectories.

Automated Annotation via MCTS. Following OmegaPRM Luo et al. (2024), we apply MCTS
to problems from our seed dataset to sample solution trajectories. Correct steps are labeled 1.0,
while the first error in any failed path is labeled 0.0. This process yields a raw dataset of over 550K
annotated steps.

Structured Error Analysis with GPT-4o. To enhance reliability, we employ GPT-4o to systemati-
cally re-evaluate every candidate reasoning step. The model inspects each component in a predefined
sequence: (1) parameter definitions, (2) objectives and constraints, (3) generated code, and (4) code
execution output. Upon detecting the first error, it halts further analysis and outputs four structured
fields:

• Issue: A natural language description of the error;
• Judgement: A binary label Correct or Incorrect;
• Corrected Version: The fixed content of the erroneous component;
• Corrected Step: The complete, revised reasoning step incorporating the fix.

This structured analysis ensures consistent, interpretable, and actionable feedback for training and
refinement.

Consensus-based Filtering. We employ a dual-validation mechanism to curate the final training
set. A sample is retained only if LMCTS(s) = LGPT-4o(s), where s is the reasoning step.

Through this pipeline, we obtain high-confidence annotated samples, which constitute our final
dataset: OR-Process-QA. This dataset strikes a balance between scale and precision, effectively
supporting OR-PRM’s fine-grained reward modeling and step-wise error correction capabilities.

3.2 GENERATIVE PRM FOR OR PROBLEM

Traditional PRMs often output a scalar score to represent the judgment. They employ a step-wise
evaluation method. First, a scalar score is assigned to each reasoning step in a response. These
scores are then aggregated, through methods like a weighted sum or by taking the minimum value,
to calculate the final reward. However, traditional PRMs typically assign only a scalar value per
step. This is not enough for complex tasks like operations research.

Such tasks require detailed analysis of variable relationships (e.g., x over S), constraint satisfaction
(g(x) ≤ c), and logical structure of the objective f(x). Furthermore, while finding problems like
syntax errors in code generation depends on the generation abilities of large language models, a
simple score is not enough to properly catch these potential issues — especially when the code must
align with the canonical form minx f(x) s.t. g(x) ≤ c.

Generative PRM replaces binary labels such as correct or incorrect with natural language judg-
ments. During inference, the model generates a textual critique and judgment for each reasoning
step, enabling interpretable and step-by-step evaluation. Inspired by GM-PRM Zhang et al. (2025a),
we adopt a generative process reward modeling approach tailored for operations research tasks. In-
stead of assigning scalar scores to reasoning steps, our model generates natural language critiques
and judgments for each component of the solution. This enables fine-grained, interpretable evalua-
tion grounded in domain-specific logic.

Concretely, given an optimization problem p = (S,θ,x, f(x), g(x) ≤ c) and its step-by-step
solution, the model analyzes four key components in sequence: (1) variable definitions (x over S,
parameterized by θ), (2) objective f(x) and constraints g(x) ≤ c, (3) code implementation (if
present), and (4) final output. For each, it produces a brief intent statement, a focused analysis of
critical issues, and a binary judgment — correct or incorrect. If any component is judged incorrect,
the model outputs a corrected version of the first flawed section only.

3.3 TRAINING OBJECTIVE

Our training process is structured in two main stages, to leverage our OR-ProcessQA dataset ef-
fectively. We first use Supervised Finetuning (SFT) to teach the model the fundamental format of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

generating critiques, followed by an Alignment phase with Direct Preference Optimization (DPO)
to refine its logical judgment.

3.3.1 SUPERVISED FINETUNING

The first stage, SFT, adapts a base model to the generative PRM task. The primary goal of SFT
is to teach the model the correct format, style, and step-by-step reasoning process required for OR
problem-solving.

Specifically, the model is trained on our high-quality annotated samples using a standard auto-
regressive next-token prediction objective. The input consists of a problem description and a candi-
date solution, while the target is the complete, structured critique generated during our data annota-
tion pipeline (Section 3.3.2). The SFT loss function, LSFT, is defined as:

LSFT(θ) = −E(x,y)∼DSFT

[
T∑

t=1

logPθ(yt|x, y<t)

]
(1)

where y represents the target sequence containing the four structured fields: Issue, Judgement,
Corrected Version, and Corrected Step. This process teaches the model to perform the fine-
grained, step-wise error analysis and correction that defines our generative PRM.

3.3.2 ALIGNMENT

Supervised fine-tuning results in correctly formatted steps but lacks logical reliability. This is be-
cause the model simply imitates examples without deeper understanding. To address this, we use an
alignment phase. This phase employs DPO to promote true logical reasoning.

Direct Preference Optimization We leverage our OR-ProcessQA dataset in conjunction with
outputs from the SFT model: we re-run inference using the SFT model, identify failure cases (i.e.,
where the model produces incorrect or inferior reasoning), and construct preference pairs (x, yw, yl)
accordingly. For each prompt x, yw is the correct or superior reasoning step, while yl is the flawed
step generated by the SFT model.

DPO directly optimizes the language model policy, πθ, to increase the likelihood of the preferred
responses over the dispreferred ones, relative to a reference policy, πref. The DPO loss function is
given by:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(2)

where β is a temperature parameter controlling the strength of the preference, and σ(·) is the logistic
function. This loss aligns the model with correct reasoning without requiring a separate reward
model.

4 EXPERIMENTS AND ANALYSIS

In this section, we introduce our experimental setup for OR-PRM in Section 4.1. We then assess its
performance in two distinct settings, discussed in Section 4.2. Finally, we present ablation studies
in Section 4.3.

4.1 EXPERIMENTAL SETUP

Model. We evaluated the performance of OR-PRM when applied to several leading language mod-
els, including the Qwen2.5 series (7B, 14B, and 32B) and LLMOPT Jiang et al. (2025), a specialized
model tailored for Operations Research. We chose Qwen2.5 because it offers a complete range of
model sizes, enabling us to study scaling effects, and because it has demonstrated strong reasoning
capabilities and wide adoption in recent LLM research.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Benchmark. We evaluated the model performance on a set of optimization benchmarks. However,
even benchmarks in Operation Research contain serious errors Xiao et al. (2025); Jiang et al. (2025).
To provide fair evaluation and preventing misleading answer, we utilized cleaned benchmarks from
Xiao et al. (2025) to ensure the reliability of our results. Specifically, Industry OR Huang et al.
(2025a), Easy-LP Huang et al. (2025b), Complex-LP Huang et al. (2025b), NL4LP AhmadiTeshnizi
et al. (2024), NL4OPT Ramamonjison et al. (2022).

Training Details To train OR-PRM, We use Qwen2.5-7B-Coder as base model. The training
process was conducted in two stages on eight Nvidia Tesla A100 GPUs using DeepSpeed ZeRO-
2 and bfloat16 precision. First, we perform supervised finetuning with a learning rate of 2e-5.
Following this, the model undergoes Direct Preference Optimization (DPO) with a learning rate of
4e-5 and a beta of 0.2. A per-device batch size of 2 is applied in both training stages.

Inference Details. We evaluate OR-PRM under two complementary inference settings. The
first focuses on selection, where multiple candidate reasoning paths are generated and OR-
PRM identifies the most reliable one (Best-of-N sampling). The second emphasizes refinement,
where OR-PRM critiques intermediate steps and guides the model toward improved solutions
(Modeling–Critique–Generation pipeline). For evaluation, correctness is verified numerically,
and because many problems admit multiple solution paths, we compare only the final optimal value
when reporting performance.

BEST-OF-N SAMPLING. By default, we set N=8. The model generates N distinct Chain-of-
Thought (CoT) reasoning paths with temperature 1.0. OR-PRM evaluates each reasoning step in
every path as correct or incorrect, and selects the path containing the highest number of correct
steps, favoring the most coherent and accurate reasoning trajectory.

MODELING, CRITIQUE, AND CODE GENERATION PIPELINE. In this setting, the base language
model follows a structured three-stage workflow, guided by OR-PRM. First, the model constructs
a formal problem modeling with step-by-step reasoning. Next, OR-PRM critiques each reasoning
step by identifying potential errors or inconsistencies. Finally, the original modeling and its cri-
tique are concatenated and fed back into the model to guide the generation of executable Python
code that satisfies predefined input-output specifications. This process enforces a self-correcting,
implementation-aware reasoning trajectory through iterative feedback.

To thoroughly assess the efficacy of our proposed pipeline, we employed two primary evaluation
metrics: pass@1, which measures the first-attempt correctness and reflects the model’s immedi-
ate problem-solving capability; and pass@8, which evaluates the upper-bound potential when the
model is allowed up to eight attempts, thereby revealing its capacity for self-correction and iterative
refinement within a given search space.

4.2 MAIN RESULTS

Best-of-N Sampling. As shown in Table 1, OR-PRM consistently and significantly enhances rea-
soning performance across different scales of the Qwen model family. It achieves uniform gains on
the Qwen2.5 Yang et al. (2024) series (7B–32B) and the specialized model LLMOPT Jiang et al.
(2025), demonstrating its effectiveness and strong scalability with respect to model size. No-
tably, on the 14B model, OR-PRM achieves the highest average improvement of nearly 12.5%.

Moreover, the performance gains introduced by OR-PRM are consistently evident across tasks of
varying difficulty levels. On the most challenging Complex-LP benchmark, Qwen2.5-32B attains an
impressive absolute improvement of 24.2%. For relatively easier benchmarks such as Easy-LP, the
14B model achieves substantial gains of 23.2%. Even for LLMOPT, a model already extensively op-
timized for reasoning and exhibiting strong performance on difficult tasks, OR-PRM contributes an
additional 19.0% improvement on Complex-LP. These results further substantiate the effectiveness
of OR-PRM in accurately identifying and prioritizing high-quality reasoning steps under demanding
conditions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Model IndustryOR Easy-LP Complex-LP NL4LP NL4OPT ReSocratic Overall
Proprietary Models

GPT-4o 40.5 69.5 35.1 56.2 53.1 47.9 50.4
Deepseek-v3 66.7 91.9 39.6 92.7 76.5 73.9 73.6

Open-source Models

Qwen-2.5-7B 19.0 49.7 12.6 50.0 41.3 36.7 34.9
+PRM 23.8 61.8 16.2 56.7 52.1 46.7 42.9

+4.8 +12.1 +3.6 +6.7 +10.8 +10.0 +8.0
Qwen-2.5-14B 35.7 66.2 3.6 75.8 61.0 50.4 48.8
+PRM 45.2 89.4 12.6 86.5 67.6 66.7 61.3

+9.5 +23.2 +9.0 +10.7 +6.6 +16.3 +12.5
Qwen-2.5-32B 47.6 80.0 8.2 87.1 68.5 66.3 59.6
+PRM 57.1 96.0 32.4 89.3 74.2 72.7 70.3

+9.5 +16.0 +24.2 +2.2 +5.7 +6.4 +10.7
LLM-OPT 52.4 96.0 48.6 90.4 81.7 72.2 73.6
+PRM 59.5 97.8 67.6 93.8 85.0 79.2 80.5

+7.1 +1.8 +19.0 +3.4 +3.3 +7.0 +6.9

Table 1: Results on Six Reasoning Benchmarks. Experimental results demonstrate that using OR-
PRM as the critic model significantly enhances reasoning performance under the Best-of-8 evalua-
tion strategy. The line in blue indicates performance improvement.

Results of Modeling-Critique-Code Pipeline. As shown in Figure 3, OR-PRM consistently
demonstrates remarkable performance enhancements across both the prominent open-source model
Qwen-2.5-14B and the advanced closed-source model GPT-4o.

The most substantial improvements are particularly evident on the challenging Complex-LP bench-
mark, underscoring potent ability of OR-PRM to tackle intricate problems. The pass@1 accuracy
for Qwen2.5-14B surged by an impressive 23.4%, while even the state-of-the-art GPT-4o achieved
a notable increase of 8.1%. The gains in pass@8 are also notable: Qwen2.5-14B witnessed a signif-
icant rise of 36.1%, and GPT-4o improved by 6.3%.

These gains underscore ability of OR-PRM to raise the reasoning ceiling by effectively recovering
correct solutions from initial failures. Even when the first attempt falters, OR-PRM enables iterative
correction, enhancing robustness under uncertainty and complexity. On the simpler Easy-LP bench-
mark, it still yields consistent 2–4% improvements, demonstrating reliability across task difficulty.

At the heart of OR-PRM is its critic component—an intelligent feedback loop that evaluates each
reasoning step. It reinforces correct steps and precisely diagnoses errors, offering targeted guid-
ance rather than binary judgments. This fine-grained feedback helps the model iteratively refine
its reasoning, much like a human learner, leading to notable accuracy gains. Such interactive error
correction is key to broad effectiveness of OR-PRM across models and tasks.

4.3 ABLATION STUDIES

In this section, we analyze the effectiveness of model alignment via DPO and examine performance
trends across task difficulty levels. The results are presented in Table 2.

Method Easy-LP Complex-LP Average

Pass@8 94.7% 23.4% 59.1%

Major Voting 50.8% 3.6% 27.2%
OR-PRM (Ours) 89.4% 12.6% 51.0%
OR-PRM (SFT) 79.6% 6.3% 43.0%
Qwen2.5 (Zero shot) 72.1% 9.9% 41.0%
Major Voting (filtered null) 88.3% 9.9% 49.6%

Table 2: Ablation results. Results on Qwen2.5-14B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Easy-LP Complex-LP
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 S
co

re
 (

%
) 66.2%

3.6%

70.6%

27.0%

70.0%

35.1%

72.0%

43.2%

Qwen2.5-14B (w/o critic)
Qwen2.5-14B (w/ critic)
GPT-4o (w/o critic)
GPT-4o (w/ critic)

(a) pass@1: Accuracy across models.

Easy-LP Complex-LP
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 S
co

re
 (

%
)

94.7%

23.4%

97.6%

59.5%

95.0%

60.4%

97.0%

66.7%

Qwen2.5-14B (w/o critic)
Qwen2.5-14B (w/ critic)
GPT-4o (w/o critic)
GPT-4o (w/ critic)

(b) pass@8: Accuracy across models.

Figure 3: OR-PRM enhances optimization ability across models. It consistently improves per-
formance on both open-source (Qwen2.5-14B) and closed-source (GPT-4o) models, and enables
solving problems that remain unsolved even with 8 samples.

Effectiveness of Model Alignment Our ablation study confirms the effectiveness of Direct Pref-
erence Optimization (DPO) within the OR-PRM model training. As shown in Table 2, the full
model incorporating DPO on top of SFT achieves an average accuracy of 51.0%. This represents an
8.0% absolute improvement over the SFT-only baseline (43.0%), demonstrating DPO’s crucial role
in improving model.

Performance Across Task Difficulty Levels As shown in Table 2, OR-PRM consistently outper-
forms the Major Voting baseline across both easy and challenging benchmarks. This performance
demonstrates that OR-PRM has the ability to detect a significant majority of errors within reasoning
paths across both easy and challenging benchmarks.

4.4 DISCUSSION

We further discuss the limitations in current training data and fine-grained discrimination capability,
with future directions outlined below.

Our OR-PRM performs well on the new OR-ProcessQA dataset. However, it is hard to provide
a comparison, as existing datasets cannot be used for PRM training. Furthermore, our Best-of-N
performance is strong, but it still falls short of the theoretical upper bound. This performance gap is
mainly attributed to the current size of our dataset and model. Therefore, we will expand the training
data in the future, to make the model better at detecting subtle reasoning errors.

5 CONCLUSION AND LIMITATION

In this work, we introduce OR-PRM, the first Process Reward Model (PRM) tailored for Operations
Research (OR), designed to address the core challenge of reliable LLM reasoning in this domain.
Our investigation revealed that the primary obstacle to developing such a model was the pervasive
unreliability of existing OR datasets, which prevents PRMs from learning to accurately distinguish
between valid and invalid reasoning steps. To overcome this fundamental data bottleneck, we first
curated a high-quality seed dataset and expanded it into OR-ProcessQA, the first OR dataset with
reliable, step-level correctness annotations. This provided the essential foundation for our model.
Building on this unique resource, OR-PRM delivers structured, step-level feedback rather than a
single scalar score. Experiments demonstrate that our approach is highly effective. OR-PRM sub-
stantially improves LLM performance, yielding an average 12.5% gain in the Best-of-N setting and
notable robustness when serving as a critic during inference. These results underscore the value of
process-oriented supervision for LLM reasoning in OR, suggesting a promising direction for de-
veloping more trustworthy AI in other domains that require verifiable, step-by-step logic. Indeed,
these successful results affirm the foundational value of our dataset. However, we also acknowledge
a current limitation: the lack of datasets to compare. Therefore, to enhance the credibility of our
research findings and support broader applications, we plan to further expand and refine our dataset.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

This work focuses on improving the reliability of large language models (LLMs) in Operations Re-
search (OR) through process-oriented supervision. No human subjects were directly involved in data
collection. Our dataset, OR-ProcessQA, is derived entirely from synthetic sources and existing pub-
lic benchmarks, followed by automated filtering and GPT-4o verification. All data are anonymized,
contain no personal or sensitive information, and comply with open licensing terms of the source
datasets.

Potential risks include the possibility of misuse of OR-capable LLMs in high-stakes decision making
(e.g., logistics, finance, or defense). To mitigate such risks, our method emphasizes correctness,
transparency, and logical consistency, making model outputs more interpretable and auditable. We
also release detailed dataset construction protocols to encourage responsible use.

We declare that there are no conflicts of interest or external sponsorship that might unduly influence
the presented results. This research adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility.

• Dataset: The construction pipeline for the high-quality seed dataset and OR-ProcessQA is
fully described in Section 3.2, with additional filtering rules and statistics detailed in the
Appendix.

• Models: The architecture and training procedure of OR-PRM are explained in Section 3.3,
with hyperparameters, optimization details, and ablation results provided in the supplemen-
tary materials.

• Code & Resources: We will release anonymized source code, dataset filtering scripts, and
training configurations as supplementary material.

• Evaluation: All metrics, baselines, and Best-of-N setups are documented in Section 4 and
Appendix.

These resources, combined with detailed documentation, ensure that independent researchers can
reproduce the reported results.

REFERENCES

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Scalable optimization model-
ing with (MI)LP solvers and large language models. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=YT1dtdLvSN.

Nicolás Astorga, Tennison Liu, Yuanzhang Xiao, and Mihaela van der Schaar. Autoformulation
of mathematical optimization models using LLMs. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=33YrT1j0O0.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412
.19437.

Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao
Liu, Liang Zeng, Xiaokun Wang, Boyang Wang, Yongcong Li, Fuxiang Zhang, Jiacheng Xu,
Bo An, Yang Liu, and Yahui Zhou. Skywork-o1 open series, November 2024. URL https:
//doi.org/10.5281/zenodo.16998085.

10

https://openreview.net/forum?id=YT1dtdLvSN
https://openreview.net/forum?id=33YrT1j0O0
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.5281/zenodo.16998085
https://doi.org/10.5281/zenodo.16998085

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou
Wang, and Zizhuo Wang. Orlm: A customizable framework in training large models for au-
tomated optimization modeling. Operations Research, May 2025a. ISSN 1526-5463. doi:
10.1287/opre.2024.1233. URL http://dx.doi.org/10.1287/opre.2024.1233.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Llms for mathematical
modeling: Towards bridging the gap between natural and mathematical languages, 2025b. URL
https://arxiv.org/abs/2405.13144.

Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, JUN ZHOU, Aimin Zhou, and Yang Yu. LL-
MOPT: Learning to define and solve general optimization problems from scratch. In The Thir-
teenth International Conference on Learning Representations, 2025. URL https://openre
view.net/forum?id=9OMvtboTJg.

Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models
for mixed integer linear programming. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=6yENDA7J4G.

Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, and Zaiwen Wen. OptMATH:
A scalable bidirectional data synthesis framework for optimization modeling. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/f
orum?id=9P5e6iE4WK.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning
in language models by automated process supervision, 2024. URL https://arxiv.org/ab
s/2406.06592.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue-Jiao
Gong. Llamoco: Instruction tuning of large language models for optimization code generation,
2024. URL https://arxiv.org/abs/2403.01131.

OpenAI. Openai outperforms humans and google at the world’s top collegiate programming contest,
2025. URL https://the-decoder.com/openai-outperforms-humans-and-g
oogle-at-the-worlds-top-collegiate-programming-contest/. Accessed:
2025-09-17.

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang.
Nl4opt competition: Formulating optimization problems based on their natural language descrip-
tions. In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht (eds.), Proceedings of the
NeurIPS 2022 Competitions Track, volume 220 of Proceedings of Machine Learning Research,
pp. 189–203. PMLR, 28 Nov–09 Dec 2022. URL https://proceedings.mlr.press/
v220/ramamonjison23a.html.

Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu,
Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for
multimodal reasoning. arXiv preprint arXiv:2503.10291, 2025.

Yang Wu, Yifan Zhang, Yurong Wu, Yuran Wang, Junkai Zhang, and Jian Cheng. Evo-step:
Evolutionary generation and stepwise validation for optimizing LLMs in OR, 2025. URL
https://openreview.net/forum?id=aapUBU9U0D.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-experts: When LLMs meet
complex operations research problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=HobyL1B9CZ.

Ziyang Xiao, Jingrong Xie, Lilin Xu, Shisi Guan, Jingyan Zhu, Xiongwei Han, Xiaojin Fu, Wing-
Yin Yu, Han Wu, Wei Shi, Qingcan Kang, Jiahui Duan, Tao Zhong, Mingxuan Yuan, Jiahang
Zeng, Yuan Wang, Gang Chen, and Dongxiang Zhang. A survey of optimization modeling meets
llms: Progress and future directions. 2025. URL https://api.semanticscholar.or
g/CorpusID:280649838.

11

http://dx.doi.org/10.1287/opre.2024.1233
https://arxiv.org/abs/2405.13144
https://openreview.net/forum?id=9OMvtboTJg
https://openreview.net/forum?id=9OMvtboTJg
https://openreview.net/forum?id=6yENDA7J4G
https://openreview.net/forum?id=9P5e6iE4WK
https://openreview.net/forum?id=9P5e6iE4WK
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2403.01131
https://the-decoder.com/openai-outperforms-humans-and-google-at-the-worlds-top-collegiate-programming-contest/
https://the-decoder.com/openai-outperforms-humans-and-google-at-the-worlds-top-collegiate-programming-contest/
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://openreview.net/forum?id=aapUBU9U0D
https://openreview.net/forum?id=HobyL1B9CZ
https://api.semanticscholar.org/CorpusID:280649838
https://api.semanticscholar.org/CorpusID:280649838

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36:69798–
69818, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang Feng,
Linqi Song, Xiaodan Liang, and Jing Tang. Optibench meets resocratic: Measure and improve
LLMs for optimization modeling. In The Thirteenth International Conference on Learning Rep-
resentations, 2025b. URL https://openreview.net/forum?id=fsDZwS49uY.

Jianghangfan Zhang, Yibo Yan, Kening Zheng, Xin Zou, Song Dai, and Xuming Hu. Gm-prm:
A generative multimodal process reward model for multimodal mathematical reasoning, 2025a.
URL https://arxiv.org/abs/2508.04088.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025b.

Yuanchen Zhou, Shuo Jiang, Jie Zhu, Junhui Li, Lifan Guo, Feng Chen, and Chi Zhang. Fin-prm: A
domain-specialized process reward model for financial reasoning in large language models. arXiv
preprint arXiv:2508.15202, 2025.

12

https://openreview.net/forum?id=fsDZwS49uY
https://arxiv.org/abs/2508.04088

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were employed as general-purpose assistive tools throughout the research
process. Specifically, LLMs were used to aid and polish the writing of this manuscript, including
refining grammar, improving clarity, and restructuring sentences for better readability.

In this work, LLMs were utilized for data processing. Specifically, GPT-4o was used to assess the
modeling accuracy of the initial data and to perform step-by-step error analysis and annotation of the
process. Meanwhile, Qwen3-8B served as a reasoning verifier, automatically checking constraint
satisfaction via numeric substitution for feasibility validation. All LLM-generated content under-
went cross-validation or manual spot-checking to ensure the models functioned strictly as assistive
tools.

All outputs generated by LLMs were critically evaluated and edited by the authors, and no content
was used without verification. The use of LLMs did not replace human intellectual contributions but
served to accelerate and enhance various stages of the research workflow.

B BENCHMARKS AND EVALUATION

We conduct experiments on the following real-world optimization task datasets.

Dataset Maintain Size Original Size Error Rate
NL4Opt 213 289 ≥ 26.4%
IndustryOR 42 100 ≥ 54.0%
EasyLP 545 652 ≥ 8.13%
ComplexLP 111 211 ≥ 23.7%
ReSocratic 178 605 ≥ 16.0%
NLP4LP 178 269 ≥ 21.7%

Table 3: Quality statistics of optimization modeling benchmarks.

• IndustryOR Huang et al. (2025a) is the first industrial-grade dataset specifically designed
for optimization modeling. It integrates real-world operations research (OR) problems from
eight different industries, covering five types of optimization problems—linear program-
ming, integer programming, mixed-integer programming, nonlinear programming, and
other special problem types—across three difficulty levels. The training set contains 3,000
instances without optimal solutions, while the test set includes 100 instances with opti-
mal solutions, aiming to comprehensively evaluate a model’s ability to solve optimization
problems in real-world industrial scenarios.

• MAMO Li et al. (2025) offers a novel optimization dataset for evaluating the mathe-
matical modeling capabilities of large language models. The dataset is divided into two
parts: Easy LP, which contains 652 high school-level Mixed-Integer Linear Program-
ming (MILP) problems for foundational learning, and Complex LP, which provides 211
undergraduate-level challenges that blend complex applications of linear and mixed-integer
linear programming. Notably, this dataset does not include any Nonlinear Programming
(NLP) problems.

• NLP4LP AhmadiTeshnizi et al. (2024) dataset features 65 curated cases from optimization
textbooks and lecture notes. These cases cover various application areas, including facility
location, network flow, scheduling, and portfolio management. Each instance includes a
detailed problem description, a parameter data file, and the optimal value derived from
textbook solutions or manual solving, offering a range of complex optimization challenges
of varying difficulty.

• NL4OPT Ramamonjison et al. (2022) is a curated dataset developed from the compe-
tition of the same name, which focuses on converting natural language descriptions of
optimization problems into solver-ready code. The dataset primarily addresses Linear Pro-
gramming (LP) problems across different scenarios but lacks more complex Mixed-Integer

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Programming and Scheduling (MIPS) problems. In experiments, a filtered test set of 245
high-quality instances was used.

• ReSocratic Yang et al. (2025b) is an innovative reverse data synthesis method that gen-
erates high-quality operations research optimization problems by following a unique from
answer to question path. Starting with 27 well-designed seed demonstrations, this method
uses the DeepSeek-V2 model to progressively generate new structured cases, ensuring
quality through a dual-filter mechanism. Finally, it reverse-translates these formatted cases
into natural language problems and corresponding executable code, ultimately creating the
RESOCRATIC-29K dataset.

As shown in Table 4, we use the clean version from Xiao et al. (2025), an accurate subset of the
benchmark. Specifically, we employ Qwen2.5-14B-Instruct to extract the corresponding optimal
values and then compare them with the ground truth.

C SEED DATASET

C.1 DETAILS OF BUILD SEED DATASET

Code Execution We perform a straightforward execution of the generated code and then evaluate
two criteria: (1) whether the execution completes successfully without errors, and (2) whether the
output matches the ground truth.

Constraint Satisfaction In this stage, we use an Qwen3-8B verifier to confirm the feasibility of
the solver’s numerical solution. The verifier is given the mathematical constraints and the solution,
and it performs symbolic or numeric substitution to automatically check if all conditions are met, as
demonstrated in the manufacturing example (Figure 4).

Example: Verifying Constraint Satisfaction

Question: A manufacturing company produces five electronic devices: Smartphones,
Tablets, Laptops, Smartwatches, and Cameras. The profit per unit and labor hours required
are given in the table below:

Device Profit ($) Labor Hours
Smartphones 100 5
Tablets 150 8
Laptops 200 10
Smartwatches 50 3
Cameras 300 12

The objective is to maximize total profit.
Solution The optimization solver returns the candidate solution:

x̂ = (x1, x2, x3, x4, x5) = (0, 500, 200, 133, 300),

Feasibility Verification by Qwen3-8B
corresponding to (Smartphones, Tablets, Laptops, Smartwatches, Cameras).
Qwen3-8B substitutes x̂ into each constraint expression to verify feasibility:

• Labor hours: 5(0) + 8(500) + 10(200) + 3(133) + 12(300) = 9999 ≤ 10000 ✓

• Smartphones + Tablets: 0 + 500 = 500 ≤ 500 ✓

• Laptops: 200 ≤ 200 ✓

• Smartwatches: 133 ≥ 100 ✓

• Cameras: 300 ≤ 300 ✓

All constraints are satisfied, confirming that x̂ is a feasible solution.

Figure 4: Constraint Satisfaction Example

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Modeling Accuracy This final and most critical stage employs a powerful LLM to evaluate if the
mathematical formulation faithfully captures the intent of the original problem statement. It iden-
tifies crucial semantic flaws, such as a misaligned objective function (e.g., maximizing total parts
instead of complete sets). This check ensures the model is not just feasible but also semantically
correct, as illustrated in the factory production example (Figure 5).

Problem: A company has three factories (X, Y, Z) that produce three different components (1, 2, 3)
required for a product. Each factory has a limited number of production hours, and their productivity
(units/hour) for each component varies. The objective is to allocate production hours across the factories
to maximize the number of complete sets of components that can be assembled.

Factory Hours Product. 1 Product. 2 Product. 3

X 120 14 1 1 9

Y 140 16 10 7

Z 100 12 15 8

##Sets:
 Factories F = {X, Y, Z}
 Components C = {1, 2, 3}
##Parameters:
 Productivity: p_X1=14, p_X2=11, ...
 Max hours: H_X=120, H_Y=140, H_Z=100
##Variables:
 x_X1, x_X2, x_X3: Hours allocated in Factory X f
 or components 1, 2, 3....
##Objective Function:
 Maximize (14*x_X1 + 11*x_X2 + 9*x_X3 + 16*x_Y1 + ...)
 (Maximizing the total quantity of all individual components)
##Constraints:
 x_X1 + x_X2 + x_X3 ≤ 120 (Production hour limit for Factory X),
 ,All x variables ≥ 0 (Non-negativity)

Check
modeling

Verdict: Incorrect

Analysis:The formulation maximizes the total number of units
produced, but the problem description requires maximizing the
number of completed sets of components. This implies a need
for balance among the components produced, which is not
addressed in the current objective function. The formulation
lacks constraints or an objective that ensures the production
of complete sets, such as a additional constraints to balance
production of different components.

Modeling
Process

Figure 5: Modeling Accuracy Example:LLM checks whether the modeling aligns with the intended
meaning of the question.

C.2 FINAL SEED DATASET

Dataset Size Full Size
Opt-Math-train 3282 210000
IndustryOR-train 1375 3000
Resocratic-train 4036 29000
Evo-step 3351 4464

Table 4: Sample data from different Synthetic.

We sampled data from four sources: Opt-Math Lu et al. (2025), IndustryOR Huang et al. (2025a),
Resocratic Yang et al. (2025b), and Evo-step Wu et al. (2025). For the Opt-Math and Resocratic
datasets, we first applied k-greedy filtering to the initial data. Following a three-stage filtering pro-
cess and deduplication, we obtained a final dataset of 8,656 instances.

D OR-PROCESSQA CONSTRUCTION

D.1 DETAILS OF MONTE CARLO TREE SEARCH

Monte Carlo Tree Search is a heuristic search algorithm for sequential decision-making in large state
spaces. In our OR-PRM, we employ it as the first stage of our automated data synthesis pipeline
to efficiently generate a large volume of candidate reasoning steps along with their preliminary
correctness labels. MCTS iteratively constructs a search tree T = (V,E), where each node v ∈
V represents a partial solution (i.e., a reasoning prefix), and each edge (v, a) ∈ E represents a
reasoning step a generated by the policy model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Selection Starting from the root node (i.e., the original problem), the algorithm recursively selects
child nodes to balance exploitation and exploration. It adopt the following Upper Confidence Bound
applied to Trees formula.

a∗ = argmax
a∈A(v)

[
Q(v, a) + c ·

√
lnN(v)

N(v, a)

]
(3)

Here, Q(v, a) is the average probability of reaching the correct final answer after taking action a
from node v; N(v) and N(v, a) are the visit counts for node v and edge (v, a), respectively; c is a
constant controlling the strength of exploration.

Expansion When the search reaches a leaf node vl that still has unexplored actions, the algorithm
invokes the policy model to generate a new reasoning step a based on the current state vl, thereby
creating a new node vnew and adding it to the tree.

Simulation From the newly expanded node vnew, the algorithm performs one or more rollout
simulations by prompting the policy model to autoregressively generate a complete reasoning path
to a final answer. The simulation outcome z is a binary reward: z = 1 if the final answer is correct,
otherwise z = 0.

Backpropagation The simulation result z is propagated back up the search path, updating the
statistics for all traversed nodes:

N(v)← N(v) + 1 (4)

Q(v, a)← Q(v, a) +
z −Q(v, a)

N(v, a)
(5)

In the OR-PRM data synthesis pipeline, the core value of MCTS lies in its automation. We config-
ured key hyperparameters to balance exploration diversity and efficiency: sampling temperature T =
1.0 , Top-k sampling k = 50 , nucleus sampling (Top-p) p = 0.9 , and exploration coefficient c = 1.0.
Through this structured search, the algorithm efficiently generates over 550,000 candidate reasoning
steps with preliminary labels from our carefully curated set of 8,000 seed problems. This provides
ample raw material for the subsequent stages: structured error analysis and consensus-based filter-
ing performed by GPT-4o. The preliminary hard labels (0 or 1) generated by MCTS, combined
with the detailed natural language critiques from GPT-4o, ultimately produce the high-quality, high-
reliability OR-ProcessQA dataset, forming a solid foundation for training the powerful generative
process reward model, OR-PRM.

D.2 STRUCTURED ERROR ANALYSIS WITH GPT-4O

To generate the rich, step-level supervision required for our generative PRM, we employ GPT-4o as
an expert annotator.

This final consensus-based filtering step proved to be highly selective, discarding approximately
50% of the candidate annotations and resulting in a high-fidelity dataset of roughly 20,000 samples.

E INFERENCE WITH OR-PRM

OR-PRM can identify different scenarios, such as correct cases, modeling errors, code errors,
etc.Three examples as follow:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

MODELING

Problem Statement:
The Li family plans to invest their retirement fund in commercial real estate. Property 1
has an annual income of $12,500, Property 2 has an annual income of $35,000, Property 3
has an annual income of $23,000, and Property 4 has an annual income of $100,000. The
decision to be made is whether to buy or not buy each property, not the quantity, as there is
only one property per property. Help them decide which properties to purchase to maximize
their annual income. Property 1 costs $1.5 million, Property 2 costs $2.1 million, Property 3
costs $2.3 million, and Property 4 costs $4.2 million. The Li family’s budget is $7 million.
If they purchase Property 4, then they cannot purchase Property 3.

MODELING
SETS

P = {1, 2, 3, 4}

PARAMETERS

ci : P → R, ci =


12500 if i = 1

35000 if i = 2

23000 if i = 3

100000 if i = 4

pi : P → R, pi =


150000 if i = 1

210000 if i = 2

230000 if i = 3

420000 if i = 4

B ∈ R, B = 7000000

VARIABLES
xi ∈ {0, 1}, i ∈ P

OBJECTIVE

max
x∈X

4∑
i=1

cixi

CONSTRAINTS
4∑

i=1

pixi ≤ B

x3 + x4 ≤ 1

x = (x1, x2, x3, x4)
⊤

PYOMO IMPLEMENTATION
from pyomo.environ import *
--- Model Initialization ---
model = ConcreteModel()
... Sets (P) and Parameters (c, p, B) are defined here based on the model.
--- Key Modeling Logic ---
1. Define Variables
x_i is a binary variable, 1 if property i is purchased, 0 otherwise.
model.x = Var(model.P, domain=Binary)
2. Define Objective Function
Maximize the total annual income from purchased properties.
model.income = Objective(

expr=sum(model.c[i] * model.x[i] for i in model.P),
sense=maximize

)
3. Define Constraints
The total cost of purchased properties cannot exceed the budget B.
model.budget_constraint = Constraint(

expr=sum(model.p[i] * model.x[i] for i in model.P) <= model.B
)
If property 4 is purchased, property 3 cannot be.
model.exclusion_constraint = Constraint(

expr=model.x[3] + model.x[4] <= 1
)
... Solver is called and solution is processed here.

ANSWER
Objective value: 135000.0
Optimal Solution: x1 = 0.0, x2 = 1.0, x3 = 0.0, x4 = 1.0

Figure 6: Correct Case: Modeling Process.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

STRUCTURED ERROR ANALYSIS

1. Variable Definition Analysis
Intent: Define decision variables.
Analysis: The decision variable xi is defined correctly as binary, indicating whether to
purchase each property.
Judgement: Correct

2. Objective & Constraint Analysis
Intent: Formulate model.
Objective: Correct. The objective maximizes total annual income from selected properties.
Constraints: - Budget constraint (

∑4
i=1 pixi ≤ B) is correct. - Constraint on purchasing

properties 3 and 4 (x3 + x4 ≤ 1) is correct.
Judgement: Correct

3. Code Analysis
Intent: Implement model in Pyomo/Python.
Analysis: - Sets, parameters, and variables are defined correctly in the code. - The objec-
tive function and constraints match those specified in the problem statement. - The output
matches the expected result based on the problem description.
Judgement: Correct

4. Final Answer Analysis
Intent: Report solution or error.
Analysis: The reported solution shows that properties 2 and 4 should be purchased, yielding
an optimal annual income of $135,000. This aligns with the problem requirements and
constraints.
Judgement: Correct

No corrections needed; all parts of the solution are accurate.

Figure 7: Correct Case: Structured Error Analysis.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

MODELING

SOLUTION
SETS
P represents the set of properties, with P = {1,
2, 3, 4}

PARAMETERS
pi is the annual income of property i, i ∈ P , p1
= 12500, p2 = 35000, p3 = 23000, p4 = 100000
ci is the cost of property i, i ∈ P , c1 = 1500000,
c2 = 2100000, c3 = 2300000, c4 = 4200000
b is the budget, b = 7000000

VARIABLES
xi ∈ {0, 1}, i ∈ P , where xi = 1 if property i
is purchased, xi = 0 otherwise.

OBJECTIVE
max

x∈{0,1}4

∑
i∈P

pixi

CONSTRAINTS∑
i∈P cixi ≤ b, x ∈ {0, 1}4

PYOMO IMPLEMENTATION
from pyomo.environ import *

--- Model Initialization ---
model = ConcreteModel()

... Sets (P) and Parameters (p, c, budget) are defined here based on the model.

--- Key Modeling Logic ---

1. Define Variables
x_i is a binary variable, 1 if property i is purchased, 0 otherwise.
model.x = Var(model.P, domain=Binary)

2. Define Objective Function
Maximize the total annual income from purchased properties.
model.objective = Objective(

expr=sum(model.p[i] * model.x[i] for i in model.P),
sense=maximize

)

3. Define Constraints
The total cost of purchased properties cannot exceed the budget.
model.budget_constraint = Constraint(

expr=sum(model.c[i] * self.model.x[i] for i in self.model.P) <= self.model.budget
)

<<<< INCORRECT CONSTRAINT >>>>
The problem states: "If property 4 is purchased, then property 3 cannot be."
The correct logic is x4 + x3 <= 1.
The code below incorrectly implements this as x4 <= x3.
model.order_constraint = Constraint(

expr=model.x[4] <= model.x[3]
)

... Solver is called and solution is processed here.

ANSWER
Objective value: 123000.0
Optimal Solution: x1 = 0.0, x2 = 0.0, x3 = 1.0, x4 = 1.0

Figure 8: Incorrect Answer Case: Modeling Process.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

STRUCTURED ERROR ANALYSIS

1. Variable Definition Analysis
Intent: Define decision variables.
Analysis: The decision variable xi is defined correctly as binary, indicating whether each
property should be purchased.
Judgement: Correct

2. Objective & Constraint Analysis
Intent: Formulate model.
Objective: Correct. The objective maximizes the total annual income from selected proper-
ties.
Constraints: - Budget constraint is correct; it ensures that the sum of costs does not exceed
the budget. - Order constraint is incorrect. It states x4 ≤ x3, meaning if property 4 is
purchased, then property 3 must also be purchased. However, the original problem specifies
that if property 4 is purchased, property 3 cannot be purchased.
Judgement: Incorrect due to the constraint error.

3. Code Analysis
Intent: Implement model in Pyomo/Python.
Analysis: - Binary decision variables xi are correctly implemented. - The budget constraint
is implemented correctly. - There is an implementation error in the order constraint. Instead
of x4 ≤ x3, it should be x4 + x3 ≤ 1.
Judgement: Incorrect

4. Final Answer Analysis
Intent: Report solution or error.
Analysis: The reported solution suggests purchasing properties 3 and 4, yielding a total
annual income of 123,000 dollars. This contradicts the problem statement since it implies
purchasing both properties 3 and 4 simultaneously, violating the logical condition specified.
Judgement: Incorrect

5. Corrected Step: Code Implementation
... (imports and model setup are identical to the incorrect version)

def define_constraints(self):
The budget constraint remains the same.
self.model.budget_constraint = Constraint(

expr=sum(self.model.c[i] * self.model.x[i] for i in self.model.P)
<= self.model.budget

)

CORRECTED LOGIC for the exclusion constraint:
This now correctly implements the rule "If property 4 is purchased,
property 3 cannot be" as x4 + x3 <= 1.
self.model.order_constraint = Constraint(

expr=self.model.x[4] + self.model.x[3] <= 1
)

... (objective definition and solver calls remain the same)

This corrected version properly reflects the logical constraint that if property 4 is purchased,
property 3 cannot be purchased.

Figure 9: Incorrect Answer Case: Structured Error Analysis.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

MODELING

SOLUTION
SETS

Properties = {1, 2, 3, 4}

PARAMETERS

Income(Properties) = (12500, 35000, 23000,
100000),
Cost(Properties) = (1500000, 2100000,
2300000, 4200000)

VARIABLES

Purchase(Properties) =

{
1 if Property i is purchased,
0 otherwise

OBJECTIVE

max
Purchase

∑
i∈Properties

Income(i) · Purchase(i)

CONSTRAINTS∑
i∈Properties

Cost(i) · Purchase(i) ≤ 7000000

Purchase(3) ≤ 1− Purchase(4)

PYOMO IMPLEMENTATION
from pyomo.environ import *

--- Model Initialization ---
model = ConcreteModel()
... Sets, Parameters, and Variables are defined here.
... Objective function is also defined.

--- Key Modeling Logic (Constraints) ---

Correctly implemented budget constraint
def budget_constraint_rule(model):

return sum(model.Cost[i] * model.Purchase[i] for i in model.Properties) <= 7000000
model.BudgetConstraint = Constraint(rule=budget_constraint_rule)

<<<< INCORRECT CONSTRAINT IMPLEMENTATION >>>>
The constraint Purchase(3) <= 1 - Purchase(4) is a single, scalar constraint.
It should not be indexed over the set of all properties. The code below
incorrectly defines it as an indexed constraint, leading to a parameter error.
def exclusivity_constraint_rule(model, prop3, prop4): #<-- Incorrect function signature

This rule expects two indices (prop3, prop4) but Pyomo only provides one.
if prop3 == 3 and prop4 == 4:

return model.Purchase[3] <= 1 - model.Purchase[4]
else:

return Constraint.Skip

This line causes the error because the rule’s signature does not match
how Pyomo calls it for an indexed constraint.
model.ExclusivityConstraint = Constraint(model.Properties, rule=exclusivity_constraint_rule)

... Solver call leads to a TypeError.

ANSWER
ERROR: Rule failed when generating expression for Constraint Exclusivity Constraint with index 1: TypeError: OptimizationProblem.solve lo-
cals .exclusivity constraint rule() missing 1 required positional argument: ṕrop4.́ ERROR: Constructing component ÉxclusivityConstraintf́rom data
= None failed: TypeError: OptimizationProblem.solve.locals .exclusivity constraint rule() missing 1 required positional argument: ṕrop4.́

Figure 10: Code Execution Error Case: Modeling Process.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

STRUCTURED ERROR ANALYSIS

1. Variable Definition Analysis
Intent: Define decision variables.
Analysis: The variable ‘Purchase‘ is defined correctly as binary, indicating whether each
property should be purchased or not.
Judgement: Correct

2. Objective & Constraint Analysis
Intent: Formulate model.
Objective: Correct. The objective maximizes total income based on selected properties.
Constraints: - Budget constraint is correct; it ensures that the total cost does not exceed $7
million. - Exclusivity constraint is intended to prevent purchasing both properties 3 and 4
simultaneously. However, the implementation has an issue due to the way constraints are
indexed and formulated.
Judgement: Incorrect (due to implementation issue in exclusivity constraint)

3. Code Analysis
Intent: Implement model in Pyomo/Python.
Analysis: There is a critical error in defining the exclusivity constraint. The function exclu-
sivity constraint rule expects two arguments (prop3, prop4) but only receives one (prop3).
This mismatch causes a TypeError. Additionally, the constraint logic needs adjustment to
properly enforce mutual exclusion between properties 3 and 4.
Judgement: Incorrect

4. Final Answer Analysis
Intent: Report solution or error.
Analysis: Since the code fails at the implementation level, there is no valid output or solution
reported. The error message indicates a failure in constructing the exclusivity constraint.
Judgement: Incorrect

5. Corrected Step: Code Implementation
... (imports and model setup are identical to the previous version)

def define_constraints(self):
The budget constraint is a scalar constraint and remains the same.
self.model.budget_constraint = Constraint(

expr=sum(self.model.c[i] * self.model.x[i] for i in self.model.P)
<= self.model.budget

)

CORRECTED IMPLEMENTATION for the exclusion constraint:
The previous version incorrectly tried to define this as an indexed
constraint over a set. The correct approach is to define it as a
single, scalar constraint, as it does not depend on any index.
self.model.order_constraint = Constraint(

expr=self.model.x[4] + self.model.x[3] <= 1
)

... (objective definition and solver calls remain the same)

This corrected version defines the exclusivity constraint more clearly and appropriately,
ensuring that properties 3 and 4 cannot both be purchased.

Figure 11: Code Execution Error Case: Structured Error Analysis.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

F ALL PROMPT

CRITIC PROMPT

\label{critic}
You are an expert in Operations Research (OR).

You will be given an optimization problem and (optionally) a step-
by-step solution, which may or may not include code.

Task: Review the solution. Analyze each applicable part in order.
Be concise only highlight critical errors or omissions. Skip
any section if the input doesn’t contain it (e.g., no code skip
Code Analysis).

Evaluate in this order:

1. Variable Definitions
2. Objective Function and Constraints
3. Code Implementation (if provided)
4. Final Answer / Output

Question:
{Question}

Solution Steps:
{Solution}

Output Format (be brief and precise):

1. Variable Definition Analysis
- Intent: [e.g., Define decision variables]
- Analysis: [Only note missing, redundant, or misdefined variables]
- Judgement: [Correct/Incorrect]

2. Objective and Constraint Analysis
- Intent: [e.g., Formulate model]
- Objective: [Correct? Brief reason if wrong]
- Constraints: [Missing/incorrect? List only key issues]
- Judgement: [Correct/Incorrect]

3. Code Analysis (Skip if no code)
- Intent: Implement model in Pyomo/Python
- Analysis: [Only flag mismatches: missing vars/constraints, wrong

indexing, type errors]
- Judgement: [Correct/Incorrect or Skipped]

4. Final Answer Analysis
- Intent: [e.g., Report solution or error]
- Analysis: [Must show valid optimal solution AND objective value.

If output contains ANY error/traceback (e.g., SyntaxError,
AttributeError) Incorrect. [Plausible? Error meaningful? Root
cause if wrong]]

- Judgement: [Correct/Incorrect]

Corrected Step (Only if any part above is Incorrect)
- [Rewrite only the first incorrect section e.g., fix constraints

or variables in full, clearly labeled.]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

QUESTION TO MODELING PROMPT

You are an expert in Operations Research (OR).
The following is an optimization problem. You need to write the

corresponding Pyomo code based on the problem description and
information provided.

The problem description is as follows:
‘‘‘
{ques}
‘‘‘

The following is the five-element model of an optimization problem:
‘‘‘
{five}
‘‘‘

Please write the corresponding Pyomo code. Please add ‘from pyomo.
environ import *‘ at the beginning of your code (You can add
other ‘import‘ as well). Please print the optimal solution and
the value of the objective function. Please do not output the
running log. You need to write it in the form of a class and
add a main function:

‘‘‘python
[write your code here]
‘‘‘

MODELING TO CODE PROMPT

You are an expert in Operations Research (OR).
The five-element model is the abstraction of an optimization

problem, which transforms specific problem scenarios into
formal mathematical problems. You need to write the
corresponding Pyomo code based on the five-element model
provided.

The following is the five-element model of an optimization problem:
‘‘‘
{five}
‘‘‘

Please write the corresponding Pyomo code. Please add ‘from pyomo.
environ import *‘ at the beginning of your code (You can add
other ‘import‘ as well). Please print the optimal solution and
the value of the objective function. Please do not output the
running log. You need to write it in the form of a class and
add a main function:

‘‘‘python
[write your code here]
‘‘‘

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

EXTRACT ANSWER PROMPT

You are an expert in Operations Research (OR).
Your task is to precisely extract and return exactly one line from

the multi-line text provided below. This line must state the
final optimization value (e.g., maximum profit, minimum cost,
or total objective value).

Core Instructions

- **Exact Extraction**: The returned content must be a complete
, unmodified line as it appears in the original text.
- **Single Output**: Your response must contain only the
extracted line. Do not add any prefixes, suffixes, explanations
, introductory phrases, or extra formatting.
- **Keyword Recognition**: Prioritize identifying and
extracting the line that contains common optimization keywords
such as:
- ‘cost‘
- ‘profit‘
- ‘objective‘
- ‘value‘
- ‘revenue‘
- ‘optimal value‘
- ’Total’

Text to analyze:

{text}

25

	Introduction
	Related work
	METHODOLOGY
	Dataset construction
	Seed data construction
	Step-wise Annotation Generation

	Generative PRM for OR Problem
	Training Objective
	Supervised Finetuning
	Alignment

	EXPERIMENTS AND ANALYSIS
	Experimental Setup
	Main Results
	Ablation Studies
	Discussion

	Conclusion and Limitation
	The Use of Large Language Models (LLMs)
	Benchmarks and Evaluation
	seed Dataset
	details of build seed dataset
	Final seed Dataset

	OR-ProcessQA Construction
	Details of Monte Carlo Tree Search
	Structured Error Analysis with GPT-4o

	Inference with OR-PRM
	All Prompt

