
Under review as a conference paper at ICLR 2021

GRAPH DEFORMER NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolution learning on graphs draws increasing attention recently due to its po-
tential applications to a large amount of irregular data. Most graph convolution
methods leverage the plain summation/average aggregation to avoid the discrep-
ancy of responses from isomorphic graphs. However, such an extreme collapsing
way would result in a structural loss and signal entanglement of nodes, which
further cause the degradation of the learning ability. In this paper, we propose
a simple yet effective graph deformer network (GDN) to fulfill anisotropic con-
volution filtering on graphs, analogous to the standard convolution operation on
images. Local neighborhood subgraphs (acting like receptive fields) with different
structures are deformed into a unified virtual space, coordinated by several anchor
nodes. In space deformation, we transfer components of nodes therein into affini-
tive anchors by learning their correlations, and build a pseudo multi-granularity
plane calibrated with anchors. Anisotropic convolutional kernels can be further
performed over the anchor-coordinated space to well encode local variations of
receptive fields. By parameterizing anchors and stacking coarsening layers, we
build a graph deformer network in an end-to-end fashion. Theoretical analysis
indicates its connection to previous work and shows the promising property of
isomorphism testing. Extensive experiments on widely-used datasets validate the
effectiveness of the proposed GDN in node and graph classifications.

1 INTRODUCTION

Graph is a flexible and universal data structure consisting of a set of nodes and edges, where node
can represent any kind of objects and edge indicates some relationship between a pair of nodes.
Research on graphs is not only important in theory, but also beneficial to in wide backgrounds of
applications. Recently, advanced by the powerful representation capability of convolutional neural
networks (CNNs) on grid-shaped data, the study of convolution on graphs is drawing increasing
attention in the fields of artificial intelligence and data mining. So far, Many graph convolution
methods (Wu et al., 2017; Atwood & Towsley, 2016; Hamilton et al., 2017; Velickovic et al., 2017)
have been proposed, and raise a promising direction.

The main challenge is the irregularity and complexity of graph topology, causing difficulty in con-
structing convolutional kernels. Most existing works take the plain summation or average aggrega-
tion scheme, and share a kernel for all nodes as shown in Fig. 1(a). However, there exist two non-
ignorable weaknesses for them: i) losing the structure information of nodes in the local neighbor-
hood, and ii) causing signal entanglements of nodes due to collapsing to one central node. Thereby,
an accompanying problem is that the discriminative ability of node representation would be im-
paired, and further non-isomorphic graphs/subgraphs may produce the same responses.

Contrastively, in the standard convolutional kernel used for images, it is important to encode the
variations of local receptive fields. For example, a 3 × 3 kernel on images can well encode local
variations of 3× 3 patches. An important reason is that the kernel is anisotropic to spacial positions,
where each pixel position is assigned to a different mapping. However, due to the irregularity of
graphs, defining and operating such an anisotropic kernel on graphs are intractable. To deal with
this problem, Niepert et al. (Niepert et al., 2016) attempted to sort and prune neighboring nodes, and
then run different kernels on the ranked size-fixed nodes. However, this deterministic method is sen-
sitive to node ranking and more prone to being affected by graph noises. Furthermore, some graph
convolution methods (Velickovic et al., 2017; Wang et al., 2019) introduce an attention mechanism
to learn the importances of nodes. Such methods emphasize on mining those significant struc-

1

Under review as a conference paper at ICLR 2021

(b) Graph deformer convolution

(a) Traditional aggregated-based convolution

Anchors Fine-grained features

Single grain feature
Node features

Kernel

Kernel

(a) Traditional aggregated-based convolution

(b) Graph deformer convolution

(a) Traditional aggregated-based convolution

Anchors Fine-grained features

Single grain feature
Node features

Kernel

Kernel

(b) Graph deformer convolution

Figure 1: An illustration of ours vs the previous convolution. The red node is a reference node.
(a) In traditional graph convolution, the convolution kernel is shared for all nodes due to the plain
aggregation over all nodes in the neighborhood. (b) In our method, the irregular neighborhood
is deformed into a unified anchor space, which is a pseudo-grid shape, and then the anisotropic
convolution kernel is used to encode the space variations of deformable features.

tures/features rather than designing anisotropic convolution kernels, so they cannot well represent
local variations of structures in essence.

In this work, we propose a novel yet effective graph deformer network (GDN) to implement
anisotropic convolutional filtering on graphs as shown in Fig. 1(b), exactly behaving like the stan-
dard convolution on images. Inspired by image-based convolution, we deform local neighborhoods
of different sizes into a virtual coordinate space, implicitly spanned by several anchor nodes, where
each space granularity corresponds to one anchor node. In order to perform space transformation,
we define the correlations between neighbors and anchor nodes, and project neighboring nodes
into the regular anchor space. Thereby, irregular neighborhoods are deformed into the anchor-
coordinated space. Then, the image-like anisotropic convolution kernels can be imposed on the
anchor-coordinated plane, and local variations of neighborhoods can be perceived effectively. Due
to the importance of anchors, we also deform anchor nodes with adaptive parameters to match the
feature space of nodes. As anisotropic convolution kernels are endowed with the fine-grained en-
coding ability, our method can better perceive subtle variations of local neighborhood regions as
well as reduce signal confusion. We also show its connection to previous work, and theoretically
analyze the stronger expressive power and the satisfactory property of the isomorphism test. Exten-
sive experiments on graph/node classification further demonstrate the effectiveness of the proposed
GDN.

2 OUR APPROACH

In this section, we elaborate on the proposed graph deformer method. Below we first give an abstract
formulation for our method and then elaborate on the details.

Denote G = (V, E) as an undirected graph , where V represents a set of nodes with |V| = n and
E is a set of edges with |E| = e. According to the link relations in E , the corresponding adjacency
matrix can be defined as A ∈ Rn×n. And X ∈ Rn×d is the feature matrix. To state conveniently,
we use Xi· or xi to denote the feature of the i-th node. Besides, for a node vi, the first-order
neighborhood consists of nodes directly connected to vi, which is denoted as N 1

vi = {vj |(vj , vi) ∈
E}. Accordingly, we can define s-order neighborhood N s

vi as the set of s-hop reachable nodes.

2.1 A BASIC FORMULATION

Given a reference node vr in graph G, we need to learn its representation based on the node itself
as well as its contextual neighborhood Nvr . However, the irregularity causes difficulty in designing
anisotropic spatial convolution. To address this problem, we introduce anchor nodes to deform the
neighborhood. All neighboring nodes are calibrated into a pseudo space spanned by anchors. We

2

Under review as a conference paper at ICLR 2021

denote the set of anchor nodes by V = {v0, v1, ..., vm−1}. The convolution onNvr is formulated as:

x̃r = (G ∗ f)(vr) = C(F(r),K), (1)

F
(r)
i =

∑
vt∈Nvr

Dvt→vi(xi,xt,Θ), (2)

where

• v·,x·: an anchor node and a pseudo coordinate vector (a.k.a. feature vector). Please see
Section 2.2 for anchor generation.

• D: the deformer function. It transforms node vt into a virtual coordinate space spanned by
anchors. Θ is the deformer parameter to be learned. Please see Section 2.3.1 for details.

• F(r) ∈ Rm×d: the deformed multi-granularity feature from the neighborhood of node vr.
Each granularities F(r)

i corresponds to an anchor node vi.
• C,K: the anisotropic convolution operation on anchor space and convolution kernel. G ∗ f

represents filter f acting on graph G. The relationship between anchor nodes can be built
by some metrics such as Cosine distance, and anchor nodes may be format as a pseudo 2-D
grid just like the patch in images. Please see the details in Section 2.3.2.

2.2 ANCHOR GENERATION

Anchor nodes are crucial to the graph convolution process, because neighborhood regions are unit-
edly calibrated with them. Rigid anchors will not adapt to the variations of the feature space during
convolution learning. Thus we choose to optimize anchor nodes as one part of the entire network
learning. In the beginning, we cluster some nodes randomly sampled from the graph as initial an-
chors. When enough anchors cover the space of neighborhood nodes, the anchors can be endowed
with a strong expressive ability to encode neighborhoods like a code dictionary. Formally, we use
the K-means clustering to generate initial anchors,

V ← Clustering {(vi,xi)|vi ∈ Vsampling}, (3)

where Vsampling are the sampled node set, in which each node is randomly sampled from the graph,
V = {(vk,xk)}|m−1k=0 is the initial anchor set generated by clustering, in which vk represents k-
th anchor node and xk represents its feature vector, m is the number of anchor nodes. Note that
when given anchor nodes, the response of our method will be invariant however to permute nodes
of one graph during the training stage as well as testing stage. The clustering algorithm might
affect the final anchors due to random sampling for initialization, but it cannot affect the property of
permutation invariance, which just like random initialization on the network parameters.

A larger m could increase the expression capacity of anchors, but causes more redundancy and a
larger computational cost. Due to the sparsity of graphs, in practice, several anchors are sufficient to
encode each neighborhood region. To better collaborate with node/feature variations during graph
convolution learning, we transform the initial anchors into a proper space by parameterizing them:

ak = ReLU (WAxk + bA), k = 0, 1, · · · ,m− 1, (4)

where WA,bA are the learnable parameters, and ReLU is the classic activation function. Besides,
other flexible multi-layer networks may be selected to learn deformable anchors.

2.3 DEFORMER CONVOLUTION

2.3.1 SPACE TRANSFORMATION

Now we define the deformer function D in Eqn. (2), which transforms neighborhood nodes to the
anchor space. For each node vj ∈ Nvr , we derive the anchor-related feature (also query feature) and
value feature vectors as

qj = ReLU (WQxj + bQ), j = 0, 1, · · · , nr − 1, (5)
uj = ReLU (WUxj + bU), j = 0, 1, · · · , nr − 1, (6)

3

Under review as a conference paper at ICLR 2021

where WQ,WU are the learnable weight matrices, and bQ,bU are the biases. The query feature qj

indicates how to transform vj to the anchor space by interacting with anchors, and the value vector
uj is the transformable component to the anchor space.

For the neighborhood Nvr , the correlation to anchors defines a set of weights α =
{α1,1, · · · , α1,m, · · · , αnr,1, · · · , αnr,m}, which measures the scores of all nodes within the neigh-
borhood projected onto the directions of anchor nodes. Formally,

αj,k =
exp(〈qj ,ak〉)∑
k′ exp(〈qj ,ak′〉)

, k′ = 0, 1, · · · ,m− 1, (7)

where 〈·, ·〉 denotes the inner production, then normalization is done by softmax function. αj,k may
be viewed as the attention score of the node vj w.r.t. the anchor vk. After obtaining the attention
score, the irregular neighborhood can be transformed into the anchor-coordinated space,

ũk =
∑
j

αj,kuj , j = 0, 1, · · · , nr − 1. (8)

The deformed components are accumulated on each anchor, and form the final deformed features.
Thus, any neighborhood with different sizes can be deformed into the virtual normalized space
coordinated by anchors. In experiment, for simplicity, the query feature and value feature are shared
with the same parameters in Eqns. (5) and (6).

2.3.2 ANISOTROPIC CONVOLUTION IN THE ANCHOR SPACE

Afterward, s-hop neighborhood of node vr is deformed into the size-fixed anchor space, i.e.,N s
vr →

{ũ0, ũ1, · · · , ũm−1}. The anisotropic graph convolution can be implemented by imposing different
mapping on each anchor as

x̃(s)
r = ReLU (

∑
i

Kᵀ
i ũi + b), i = 0, 1, · · · ,m− 1, (9)

where x̃
(s)
r ∈ Rd′

, the matrix Ki is a d × d′ weight parameter imposed on the features w.r.t. an
anchor, and b is the bias vector.

In the convolution process, different filter weights are imposed on different features of anchor nodes,
which is an anisotropic filtering operation. For an intuitive description, we assume the simplest case
of 2-D space, which of course can be extended higher dimension. Assuming in 2-D, we project all
neighborhood nodes onto anchor nodes, then employ different filters on different anchor nodes in
2-D plane, which likes the standard convolution, so called anisotropic convolution. In contrast to
the traditional aggregation method, the deformer convolution has two aspects of advantages: i) well
preserving structure information and reducing signal entanglement; ii) transforming different-sized
neighborhoods into the size-fixed anchor space to well advocate anisotropic convolution like the
standard convolution on images.

2.3.3 MULTI-SCALE EXTENSION

Intuitively, the first-order neighborhood is necessary to be used for node aggregation, because it in-
dicates that two nodes linked by an edge are always similar. However, real-world graphs are often
so sparse, and there exist many nodes that are similar to each other but not linked by direct edges.
The first-order neighborhood alone is not sufficient for extracting useful features and preserving the
structural information. It is natural to incorporate higher-order proximity to capture more informa-
tion. Generally, second-order information is sufficient as most works (Tang et al., 2015; Wang et al.,
2016). Higher-order information can also be considered, but the computational complexity will in-
crease. It can be understood as a trade-off of expression ability and computational complexity. In
this paper, we consider both first-order and second-order neighborhoods. Specifically, we deform
both first-order and second-order neighborhoods into feature space represented by anchor nodes,
and convolve over them respectively. Then the learned different neighborhood representations and
the original node feature are concatenated as the final filtering response,

x̃r ← [xr; x̃(1)
r ; x̃(2)

r], (10)

where x̃r denotes the convolution response on the s-order neighborhood N s
vr of node vr. Further,

we can stack multiply layers to extract more robust features on larger receptive fields.

4

Under review as a conference paper at ICLR 2021

2.4 COARSENING

Graph coarsening can not only reduce the computational cost but also enlarge the receptive field to
learn abstract features like image pooling. Below we simply introduce this operation used here.

Node Classification. We do not need to remove nodes, and thus name it as pooling. The pooling
is node-wise diffusion on a local region, and be performed over multi-scale neighborhoods. The
pooling over S scale neighborhoods w.r.t. the reference node vr is

P(G(vr)) = P({xj |vj ∈ N s
vr , s = 1, · · · , S}), (11)

where the pooling P is usually defined as ”max” or ”mean”. In practice, their performance has little
difference in graph convolution, so we choose the mean operation in our experiments.

Graph Classification. We employ the graph cut method used in (Jiang et al., 2019) to partition an
entire graph into several subgraphs. During graph coarsening, a binary cluster matrix Z ∈ Rn×c is
obtained, where only one element in each row is non-zero, i.e., Zic = 1 when the vertex vi falls into
the cluster c. Then the adjacent matrix and feature matrix of the input graph are transformed into

A′ ← ZᵀAZ, X′ ← Zᵀ ⊗ X̃, (12)

where ⊗ represents a max operation. The output can be used as the input of the next convolutional
layer. Then the graph convolution and coarsening can be alternatingly stacked into a deep network.

2.5 LOSS FUNCTION

For node and graph classifications, the final convolution output is denoted as Ŷ after feeding several
network layers forward. Then we use the cross-entropy loss on the training set Dtr,

L =
1

|Dtr|
∑

vi∈Dtr

(Yij == 1) ln Ŷij . (13)

However, in the scenario of semi-supervised node classification, a main limit is that a small portion
of nodes is annotated as the training set. Our aim is to use labeled nodes as well as graph structure
to train a model with a good generalization ability. A straightforward way is to add a regularization
term to avoid overfitting. To this end, we employ a global consistency constraint through positive
pointwise mutual information as used in (Zhuang & Ma, 2018) to regularize the loss function.

2.6 COMPUTATIONAL COMPLEXITY

For the computational complexity, we analyze the main module of graph convolution. In one-layer
convolution, GCN (Kipf & Welling, 2016) is aboutO(edS+ndd′S), where n, e are the numbers of
nodes and edges, S is the scale of the neighborhood, and d, d′ are the dimensions of the input/hidden
layers. For our GDN model, the computational complexity is mainly from two parts, i.e., ”Space
Transformation” and ”Convolution in Anchor Space”, which are aboutO(emd2S) andO(nmdd′S),
respectively, where m is the number of anchor nodes. Thus, the total computational complexity is
O(emd2S+nmdd′S), which is linearly proportional to GCN with the factor m when d and d′ have
the same order number.

3 CONNECTION TO RELATED WORK

In contrast to previous methods (Kipf & Welling, 2016; Xu et al., 2019; Zhuang & Ma, 2018), etc.,
the way of aggregation is obviously different. GCNs usually bypass the irregularity of graphs by
utilizing a weighted-sum aggregation over the neighborhoods, which is an isotropic filter. Our GDN
instead firstly transforms the local neighborhoods into a regular anchor space and then performs
anisotropic filters on the regular anchor space.

In contrast to Transformer (multi-head attention mechanism) (Vaswani et al., 2017) and its a gener-
alization, graph attention network (Velickovic et al., 2017), we give the following differences. In the
Transformer, all center nodes are anchor nodes, and the attention coefficient is computed between
each central node and its neighbor nodes. In our GDN, several anchor nodes are initially generated

5

Under review as a conference paper at ICLR 2021

by K-means Cluster from global nodes which implicitly represents several different directions like
a k × k patch (upper left, upper right, etc.) in images, and the attention coefficient is computed
between local neighbors and anchor nodes. Because the anchor nodes are generated from the global
graph, all local neighborhoods are projected into a common anchor space, some common property
for all local neighborhood can be captured by imposing an anisotropic filter on anchors. In contrast,
though multi-head mechanism is used, the Transformer is still locally aggregated. Another weakness
of the Transformer is computationally intensive, especially for large graphs.

Our proposed GDN is different form other peer works. P-GNN (You et al., 2019) selects several an-
chor nodes as position characterization, and concatenates the feature of node with features of anchor
nodes, then mean aggregation is employed on different anchor sets followed by a fully-connected
transform, which is an isotropic filter. LGCN (Gao et al., 2018) performs feature selection by sorting
the top k-largest values on each feature dimension, and produces k new nodes (fixed size) for the
next filtering process. CapsGNN (Xinyi & Chen, 2018) presents a capsule graph network to learn
graph capsules of different aspects from node capsules by utilizing an attention module and routing
mechanism. In contrast, our proposed method transforms local neighborhood into an anchor space
spanned by several anchor nodes, the filtering is operated in the anchor space. Transforming irregular
structures into a regular space also be studied in 3D domain. PointCNN (Li et al., 2018b) learns an
X-transformation from the input points and then applies convolution operator on the X-transformed
features. KPConv (Thomas et al., 2019) takes radius neighborhoods as input and processes them
with weights spatially located by a small set of kernel points. In essence, PointCNN (Li et al.,
2018b) leverages the self-attention mechanism to produce fixed-size output for different-size local
neighbor regions. KPConv (Thomas et al., 2019) projects neighbor 3D points into 3D kernel points,
and this projection is only operated in 3D point space. In contrast, our proposed method focus on
the more general graph domain. More related work can be found in Appendix.

4 THEORETICAL ANALYSIS

Here, we present a theoretical analysis about the expressive power of several aggregation methods
including the mean, sum, and proposed graph deformer operation. Inspired by (Xu et al., 2019), we
evaluate them by verifying whether graphs are isomorphic. Then, we give the following proposi-
tions.

Proposition 1. There exists a set of network parameters able to graph deformer process can distin-
guish two non-isomorphic graphs G1 and G2, which cannot be distinguished by mean/sum aggrega-
tion.

Proposition 2. The proposed anisotropic graph deformer convolution can be as powerful as the
Weisfeiler-Lehman (WL) graph isomorphism test.

The Proofs of the above two propositions can be found in the Appendix. We can draw the conclu-
sion that the expressive power of the proposed graph deformer network is provably stronger than
mean/sum aggregation, which can accomplish an injective as powerful as the Weisfeiler-Lehman
(WL) graph isomorphism test.

Table 1: Comparison with state-of-the-art methods on node classification. The number in parenthe-
ses (∗) denotes the number of convolutional layers in a certain network.

Method Cora Citeseer Pubmed

SVM Planetoid (Yang et al., 2016) 75.7 64.7 77.2

Spectral
ChebyNet (Defferrard et al., 2016) 81.2 69.8 74.4
GCN (Kipf & Welling, 2016) 81.5 70.3 79.0
DGCN (Zhuang & Ma, 2018) 83.5 72.6 80.0

Spacial

MoNet (Monti et al., 2017) 81.7 - 78.8
GAT (Velickovic et al., 2017) 83.0 72.5 79.0
JK-Net (Xu et al., 2018) 79.71± 0.62 69.03± 0.55 78.17± 0.27
GIN (Xu et al., 2019) 79.49± 0.65 67.78± 0.89 78.37± 0.29
GDN(1L) 85.16± 0.47 73.13± 0.826 79.8± 0.297
GDN(2L) 84.76± 0.587 73.77± 0.447 80.77± 0.24

6

Under review as a conference paper at ICLR 2021

Table 2: Comparison with state-of-the-art methods on graph classification.
Method MUTAG PTC NCI1 ENZYMES PROTEINS IMDB-BINARY IMDB-MULTI

Kernel
WL 80.72± 3.00 56.97± 2.01 80.13± 0.50 53.15± 1.14 72.92± 0.56 72.86± 0.76 50.55± 0.55
GK 81.66± 2.11 57.26± 1.41 62.28± 0.29 26.61± 0.99 71.67± 0.55 65.87± 0.98 43.89± 0.38
DGK 82.66± 1.45 57.32± 1.13 62.48± 0.25 27.08± 0.79 71.68± 0.50 66.96± 0.56 44.55± 0.52

Feature
FB 84.66± 2.01 55.58± 2.30 62.90± 0.96 29.00± 1.16 69.97± 1.34 72.02± 4.71 47.34± 3.56
DyF 88.00± 2.37 57.15± 1.47 68.27± 0.34 33.21± 1.20 75.04± 0.65 72.87± 4.05 48.12± 3.56

GNN

PSCN 92.63± 4.21 60.00± 4.82 78.59± 1.89 - 75.89± 2.76 71.00± 2.29 45.23± 2.84
NgramCNN 94.99± 5.63 68.57± 1.72 - - 75.96± 2.98 71.66± 2.71 50.66± 4.10
SAEN 84.99± 1.82 57.04± 1.30 77.80± 0.42 - 75.31± 0.70 71.26± 0.74 49.11± 0.64
IGN 83.89± 12.95 58.53± 6.86 74.33± 2.71 - 76.58± 5.49 72.0± 5.54 48.73± 3.41
PPGN 90.55± 8.7 66.17± 6.54 83.19± 1.11 - 77.2± 4.73 72.6± 4.9 50± 3.15
GNTK 90.0± 8.5 67.9± 6.9 84.2± 1.5 - 75.6± 4.2 76.9± 3.6 52.8± 4.6
CapsGNN 86.67± 6.88 - 78.35± 1.55 54.67± 5.67 76.28± 3.36 73.10± 4.83 50.27± 2.65
GIC 94.44± 4.43 77.64± 6.98 84.08± 1.77 62.50± 5.12 77.65± 3.21 76.70± 3.25 51.66± 3.40
GIN 89.4± 5.6 64.6± 7.0 82.7± 1.7 - 76.2± 2.8 75.1± 5.1 52.3± 2.8
GDN (3L) 97.39± 2.65 75.57± 7.56 86.03± 1.23 67.5± 6.96 81.32± 3.09 79.3± 3.26 55.2± 4.34

5 EXPERIMENTS

In the section, we carry out extensive experiments to assess the proposed GDN model on both
node and graph classification tasks. For node classification, three citation graphs are used: Cora,
Citeseer, and Pubmed. For graph classification, we adopt seven datasets to assess our GDN method:
MUTAG, PTC, NCI1, PROTEINS, ENZYMES, IMDB-BINARY, and IMDB-MULTI. The details
of these datasets and experimental setups can be found in the Appendix.

5.1 COMPARISON WITH STATE-OF-THE-ARTS

Node classification. We compare the performance of GDN against several baseline works:
ChebyNet (Defferrard et al., 2016), GCN (Kipf & Welling, 2016), MoNet (Monti et al., 2017),
GAT (Velickovic et al., 2017), DGCN (Zhuang & Ma, 2018), JK-Net (Xu et al., 2018) and GIN (Xu
et al., 2019). The accuracies are reported in Table 1, which clearly indicates that our GDN obtains
a remarkable improvement. DeepWalk and Planetoid aim to generate effective node embeddings,
and our proposed GDN significantly outperforms these two methods. GCN is a first-order approx-
imation of ChebyNet and has realized relatively higher results. Simultaneously, it can be regarded
as a special case of Monet, and their classification accuracies are similar. Compared to GCN, our
GDN achieves a relatively large gain. We attribute this improvement to the graph deformer con-
volution. We further compare GDN to GAT, still achieving superior performance on these three
datasets. Though GDN utilizes global consistency constraint, there is still a marked improvement
compared to DGCN. Compared to recent methods JK-Net and GIN, GDN also obtains a large mar-
gin over them. These demonstrate that the proposed GDN method performs well on various graph
datasets by building the graph deformer process, where structure variations can be well captured and
fine-grained node features can be extracted to enhance the discriminability between nodes.

Graph classification. Table 2 shows the results on graph classification. Overall, except for PTC,
our GDN approach achieves state-of-the-art performance on all datasets and obtains remarkable
improvement. For graph kernel-based methods (WL (Shervashidze et al., 2011), GK (Shervashidze
et al., 2009) and DGK (Yanardag & Vishwanathan, 2015)), we can observe the WL kernel can obtain
better results on most datasets than GK and DGK. In contrast to WL, the proposed GDN is able to
improve by a large margin of 5.9% on NCI1, 14.35% on ENZYMES, 6.44% on IMDB-BINARY,
etc. For the feature-based methods (FB (Barnett et al., 2016), DyF (Gomez et al., 2017)), GDN
obviously outperforms them. Also, GDN is better than SAEN (Orsini et al., 2017). Recently the
GNN-based work (PSCN (Niepert et al., 2016), NgramCNN (Luo et al., 2017), IGN (Maron et al.,
2018), PPGN (Maron et al., 2019), GNTK (Du et al., 2019), CapsGNN (Xinyi & Chen, 2018),
GIC (Jiang et al., 2019), GIN (Xu et al., 2019)) is superior to traditional machine learning methods.
Compared to GIC, the GDN model still achieves superior performances, about 3 percentages on
average, although a relatively lower result is gotten on the PTC dataset. This may be attributed
to differences in the dataset or less appropriate model parameter settings. Compared with these
baseline methods, our GDN can render impressive performance. In summary, the remarkable gains
indicate that the proposed GDN is effective to deal with graph classification.

7

Under review as a conference paper at ICLR 2021

Table 3: Comparison on the scales of neighborhood regions.
Method Cora Citeseer Pubmed
GDN-N (0) 54.95± 2.004 55.7± 1.259 72.94± 1.582
GDN-N (0,1) 82.62± 0.668 72.56± 0.945 80.24± 0.224
GDN-N (0,1,2) 84.76± 0.587 73.77± 0.447 80.77± 0.241

1 2 4 6 8 10 12 14 16 18 20 22 24
The number of anchor nodes

82.5

83.0

83.5

84.0

84.5

85.0

85.5

Ac
cu

ra
cy

(a) Cora

1 2 4 6 8 10 12 14 16 18 20 22 24
The number of anchor nodes

71.0

71.5

72.0

72.5

73.0

73.5

74.0

Ac
cu

ra
cy

(b) Citeseer

Figure 2: Comparison on the number m of anchor nodes.

Table 4: The verification of convolutional layer C and pooling layer P in our GDN method.
Method Cora Citeseer Pubmed

GDN w/o P 83.97± 0.393 72.53± 0.593 78.86± 0.902
GDN w/o C 82.82± 0.724 71.57± 0.831 78.75± 0.626

GDN 84.76± 0.587 73.77± 0.447 80.77± 0.241

5.2 ABLATION STUDY

The scale s of neighborhood region. The influences of neighborhood scales are reported in Table 3.
GDN-N (0) denotes that only the feature of the node itself is used, GDN-N (0,1) includes the features
of the node itself and first-order neighborhood, and so on. Due to the lack of structural information,
we find that the performance of GDN-N (0) is obviously lower. As more information is considered,
the accuracy of GDN-N (0,1,2) is generally superior to GDN-N (0,1). This validates the importance
of local neighborhood information, which is also a crucial property of traditional CNNs.

The number m of anchor nodes. We select the value m in the range [1, 25] to observe the changes
of performance. As shown in Fig. 2, when m = 1, the accuracies are significantly lower, because
only one anchor node is used, which is similar to sum aggregation. When m = 2, the performance
is also relatively lower, which means 2 anchor nodes are insufficient to capture more variations.
Then, the performance is relatively stable with m increasing. The reason should be that, as real-
world graph data is rather sparse, e.g., on average about 2 edges for each node in Cora and Citeseer
datasets, so a few anchors matching the neighborhood size should be saturated to represent the
variations without the information loss.

Graph convolution and graph coarsening. We further explore the effectiveness of graph convo-
lution by removing the pooling layer from the GDN model, named as ”GDN w/o P”. Similarly,
”GDN w/o C” means that graph convolution is removed. Table 4 shows the performance on citation
datasets. Compared to GDN, both ”GDN w/o P” and ”GDN w/o C” obtain lower performances.
But ”GDN w/o P” is better than ”GDN w/o C”, while they are comparable on the Pubmed dataset.
It indicates that the deformer convolution indeed improves the discriminability of nodes. Note that
”GDN w/o C” is actually similar to the plain aggregation with the average operation.

Attention scores α. We visualize correlation scores α between neighborhood nodes and anchors.
We respectively select some nodes from Cora and Citeseer datasets as center nodes and compute
the scores of their first-order neighbors to anchor nodes. As shown in Fig. 3, for node V20 in Cora
dataset, the attention score of the neighbor ”A” on anchor node a4 is largest while the other four
neighbors is close to anchor node a1. For node v153 in Citeseer, the neighbors ”A” and ”C” are more
inclined to anchor node a6, while neighbor ”D” prefers a12, and neighbor ”B” is similar in most
directions. These neighbors place different emphases on anchor nodes, then different proportions
of features are assigned to the directions of these anchors, and an anisotropic convolution is used to
extract more fined-grained representation, which is superior to the sum/mean aggregation.

8

Under review as a conference paper at ICLR 2021

A B C D E
a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15 0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

(a) node v20

A B C D E F
a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15

0.05

0.10

0.15

0.20

0.25

0.30

(b) node v30

A B C
a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15 0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(c) node v54

A B C D
a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15 0.00

0.02

0.04

0.06

0.08

0.10

0.12

(d) node v153

Figure 3: Visualization of attention scores in the first-order neighborhood of nodes v20 and v30 in
the Cora dataset, and v54 and v153 in the Citeseer dataset. (a) Node v20 has 5 neighbors while (b)
node v30 has 6 neighbors. (c) Node v54 has 3 neighbors while (d) node v153 has 4 neighbors.

6 CONCLUSION

In this work, analogous to the standard convolution on images, we proposed a novel yet effective
graph deformer network (GDN) to fulfill anisotropic convolution filtering on graphs. We trans-
formed local neighborhoods with different structures into a unified virtual space, coordinated by
several anchor nodes. Anisotropic convolution kernels can thus be performed over the anchor-
coordinated space to well encode subtle variations of local neighborhoods. Further, we built a graph
deformer network in an end-to-end learning fashion by stacking the deformable convolutional layers
as well as the coarsening layers. Our proposed GDN accomplishes significantly better performances
on both node and graph classifications. In the future, we will extend the graph deformer method to
allow more applications in the real world, such as link prediction, heterogeneous graph analysis, etc.

REFERENCES

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems, pp. 1993–2001, 2016.

Ian Barnett, Nishant Malik, Marieke Lydia Kuijjer, Peter J. Mucha, and Jukka-Pekka Onnela.
Feature-based classification of networks. ArXiv, abs/1610.05868, 2016.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. International Conference on Learning Representations, 2014.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional networks
via importance sampling. In International Conference on Learning Representations, 2018.

Fan RK Chung. Spectral graph theory. Number 92. American Mathematical society, 1997.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786–797, 1991.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In H. Wallach,

9

Under review as a conference paper at ICLR 2021

H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32, pp. 5723–5733. Curran Associates, Inc., 2019.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1416–1424. ACM, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272. JMLR. org, 2017.

Leonardo Gutierrez Gomez, Benjamin Chiem, and Jean-Charles Delvenne. Dynamics based features
for graph classification. arXiv preprint arXiv:1705.10817, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in Neural Information Processing Systems, pp. 4558–4567,
2018.

Jiatao Jiang, Zhen Cui, Chunyan Xu, and Jian Yang. Gaussian-induced convolution for graphs. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. International Conference on Learning Representations, 2016.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph con-
volutional neural networks with complex rational spectral filters. IEEE Transactions on Signal
Processing, 67(1):97–109, 2018.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018a.

Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. Label efficient semi-
supervised learning via graph filtering. In Conference on Computer Vision and Pattern Recogni-
tion, 2019.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolu-
tion on x-transformed points. In Advances in neural information processing systems, pp. 820–830,
2018b.

Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 4424–4431, 2019.

Z. Luo, L. Liu, J. Yin, Y. Li, and Z. Wu. Deep learning of graphs with ngram convolutional neural
networks. IEEE Transactions on Knowledge and Data Engineering, 29(10):2125–2139, 2017.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pp. 2156–2167, 2019.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Conference on Computer Vision and Pattern Recognition, pp. 5115–5124, 2017.

10

Under review as a conference paper at ICLR 2021

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014–2023, 2016.

Francesco Orsini, Daniele Baracchi, and Paolo Frasconi. Shift aggregate extract networks. arXiv
preprint arXiv:1703.05537, 2017.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics, pp.
488–495, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(23):2539–
2561, 2011.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neu-
ral networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3693–3702, 2017.

Felipe Petroski Such, Shagan Sah, Miguel Alexander Dominguez, Suhas Pillai, Chao Zhang, An-
drew Michael, Nathan D Cahill, and Raymond Ptucha. Robust spatial filtering with graph convo-
lutional neural networks. IEEE Journal of Selected Topics in Signal Processing, 11(6):884–896,
2017.

Ana Susnjara, Nathanael Perraudin, Daniel Kressner, and Pierre Vandergheynst. Accelerated filter-
ing on graphs using lanczos method. arXiv preprint arXiv:1509.04537, 2015.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077. International World Wide Web Conferences Steering Committee, 2015.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Francois Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 6411–6420, 2019.

Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma. Statistical
evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):1183–1193,
2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical com-
pound retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234, 2016.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The World Wide Web Conference, pp. 2022–2032, 2019.

Bo Wu, Yang Liu, Bo Lang, and Lei Huang. DGCNN: disordered graph convolutional neural net-
work based on the gaussian mixture model. arXiv preprint arXiv:1712.03563, 2017.

Zhang Xinyi and Lihui Chen. Capsule graph neural network. In International conference on learning
representations, 2018.

11

Under review as a conference paper at ICLR 2021

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? International Conference on Learning Representations, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning, volume 48, pp. 40–48, 2016.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. arXiv preprint
arXiv:1906.04817, 2019.

Chenyi Zhuang and Qiang Ma. Dual graph convolutional networks for graph-based semi-supervised
classification. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp.
499–508. WWW, 2018.

12

	Introduction
	Our Approach
	A Basic Formulation
	Anchor Generation
	Deformer Convolution
	Space Transformation
	Anisotropic Convolution in the Anchor Space
	Multi-Scale Extension

	Coarsening
	Loss Function
	Computational Complexity

	Connection to Related Work
	Theoretical Analysis
	Experiments
	Comparison with State-of-the-arts
	Ablation Study

	Conclusion
	Appendix
	Related Work
	The Notations
	Proof of Proposition 1
	Proof of Proposition 2
	Datasets
	Experimental Setups
	Discussion
	GDN Algorithm

