
Under review as a conference paper at ICLR 2022

DETECTING MODULARITY IN DEEP NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

A neural network is modular to the extent that parts of its computational graph (i.e.
structure) can be represented as performing some comprehensible subtask relevant
to the overall task (i.e. functionality). Are modern deep neural networks modular?
How can this be quantified? In this paper, we consider the problem of assessing
the modularity exhibited by a partitioning of a network’s neurons. We propose
two proxies for this: importance, which reflects how crucial sets of neurons are to
network performance; and coherence, which reflects how consistently their neurons
associate with features of the inputs. To measure these proxies, we develop a set of
statistical methods based on techniques conventionally used to interpret individual
neurons. We apply the proxies to partitionings generated by spectrally clustering
a graph representation of the network’s neurons with edges determined either by
network weights or correlations of activations. We show that these partitionings,
even ones based only on weights (i.e. strictly from non-runtime analysis), reveal
groups of neurons that are important and coherent. These results suggest that
graph-based partitioning can reveal modularity and help us understand how deep
neural networks function.

1 INTRODUCTION

Modularity is a common property of complex systems, both natural and artificial (Clune et al.,
2013; Baldwin & Clark, 2000; Booch et al., 2007). It carries advantages including intelligibility
and adaptivity. In particular, modularity implies that the structure of a system conveys information
about its functionality. This leads us to the following definition: a neural network is modular to
the extent that parts of its computational graph (structure) can be represented as performing some
comprehensible subtask relevant to the overall task (functionality). We call these parts modules.

There exists a body of research for developing more modular networks which either have distinct
architectural building blocks (Alet et al., 2018; Parascandolo et al., 2018; Goyal et al., 2019) or are
trained in a way that promotes modularity via regularization or parameter isolation (Kirsch et al.,
2018; De Lange et al., 2019; Filan et al., 2021). Yet in machine learning, it is more common to
encounter networks whose architecture and training are not guided by considerations of modularity.
For example, in computer vision, networks are generally trained end-to-end with all of the filters in
one layer connected to all filters in the next. Do such networks nonetheless develop modularity? There
is some evidence for this. For example, by methodical manual investigation, Cammarata et al. (2020)
discovered modular subnetworks which perform human-explainable subtasks such as car detection
via neurons which detect different car parts. More scalably detecting modularity in networks would
help us to extend our understanding of their learning dynamics and to expand our interpretability
toolbox by suggesting an additional level of abstraction beyond single-neuron methods.

In this paper we systematically analyze the extent to which networks which are not explicitly trained
to be modular exhibit it nonetheless. First, this requires a method for breaking down a network’s
computational graph into different proposals for modules. For this, we use spectral clustering on
a graph representation of the network, using an extension of the methods of (Filan et al., 2021).
Second, this requires a scalable method for approximating the degree to which a partitioning exhibits
modularity. We do this by applying interpretability tools to clusters of neurons as a way of quantifying
proxies for modularity.

1



Under review as a conference paper at ICLR 2022

Figure 1: An illustrative example of coherence. Randomly selected examples of class “3” from
our “halves-MNIST” dataset (top) and visualizations of neuron clusters in the first layer of networks
trained to output the modular sum of digits in the images (bottom). We trained multilayer perceptrons
on a version of the MNIST dataset (LeCun et al., 1998) in which the images were two half-width
digits side-by-side and the labels were their sum modulo 10. We clustered their first-layer neurons
using approaches presented in Section 3.1. We then used a correlation-based method from Watanabe
(2019) to create visualizations of the clusters. Almost all show selectivity to one half of the input. In
Appendix A.4, we detail our approach and compare to visualizations of random sets of units.

Operationalization of modularity: Following our notion of modularity, to say that a subset is a
module, one must show that it performs some human-comprehensible subtask relevant to the overall
task. Scaling this, however, would be difficult, as it would require a human in the loop. How could
measuring modularity be automated? Consider an idealized prototype of a highly modular network
that has subsets of neurons, each performing subtasks in which (1) each subtask is necessary for
high performance on the overall task, (2) each subtask is implemented by a single subset only, and
(3) each subset executes only a single subtask. The combination of (1) and (2) suggests that the
removal of one of the subsets from the network would harm performance because the network lacks
the implementation of a necessary subtask. We say that such a subset is important. Next, given that
neurons are frequently understood as feature detectors, (3) suggests that the neurons in a module
should tend to be strongly activated by inputs which contain features relevant to the module’s subtask.
We say that such a subset is coherent. Figure 1 provides an illustrative example of coherence in
networks that are trained on a task that lends itself to parallel processing via subtasks. Measuring
importance and coherence will give us a sense of the degree to which networks approximate these
prototypical conditions, despite not perfectly satisfying them.

Results and contributions: To measure these proxies, we utilize interpretability methods that have
been conventionally used for single-neuron analysis to study these partitions. We find that the
partitions have groups of neurons that are disproportionately likely to be important compared to
random groups of neurons. We also find that the groups of neurons in the partitionings are reliably
more coherent than random ones, though only with respect to features other than class label.

By showing that our partitioning methods are able to reveal modularity, these results suggest that
they can be used to understand deep networks. Our key contributions are threefold:

1. Introducing two proxies, importance and coherence, to assess whether a partitioning of a
network exhibits modularity and identify which subsets of neurons are the most responsible.

2. Quantifying these proxies by applying single-neuron interpretability methods on subsets of
neurons in an automated fashion

3. Applying our methods on the partitions produced by spectral clustering on a range of neural
networks and finding evidence of modularity captured by these partitions.

2



Under review as a conference paper at ICLR 2022

Figure 2: Our procedural pipeline. The first three steps generate a partitioning of the network into
“subclusters” which we analyze using (4a) lesion and (4b) feature visualization methods to measure
importance and coherence compared to random subclusters. Finally, (not shown in the pipeline), we
aggregate results to produce Fisher-Bates p values and effect measures. These final steps are shown
in Figure 4.

2 RELATED WORK

The work most closely related to ours is Filan et al. (2021) who also use spectral clustering to establish
that deep networks are often clusterable and investigates what factors influence clusterability. They
also introduce a method for regularization for modularity among clusters of neurons. We extend
their work by bridging graphical clusterability and functional modularity. This line of work inherits
insights from network science involving clustering in general (Girvan & Newman, 2002; Newman &
Girvan, 2004), and spectral clustering (Shi & Malik, 2000; von Luxburg, 2007) in particular.

In our experiments we combine clustering with interpretability tools to measure importance and
coherence. This highlights the usefulness of combining clustering with interpretability methods for
more rigorously understanding networks. We use feature visualization (Olah et al., 2017; Watanabe,
2019) and lesions (Zhou et al., 2018), but in a similar way, other interpretability techniques including
analysis of selectivity (Morcos et al., 2018; Madan et al., 2020), network “dissection” (Bau et al.,
2017; Mu & Andreas, 2020), earth-mover distance (Testolin et al., 2020), or intersection information
(Panzeri et al., 2017) could also be combined with clustering-based partitionings under a similar
framework. Relatedly, Cammarata et al. (2020) demonstrate that feature visualization and analysis of
weights can be used to identify groups of neurons whose functionality is human-interpretable.

This work adds to a body of research focused on modularity and compositionality in neural systems
either at the neuron level (You et al., 2020; Mu & Andreas, 2020; Voss et al., 2021) or at the
subnetwork level (Lake et al., 2015; 2017; Csordás et al., 2021). There also exist techniques for
developing more modular networks which either have an explicitly modular architecture (Alet et al.,
2018; Parascandolo et al., 2018; Goyal et al., 2019) or are trained in a way that promotes modularity
via regularization or parameter isolation (Kirsch et al., 2018; De Lange et al., 2019).

3 METHODS

To evaluate modularity, our procedural pipeline is as follows. (1) We begin with a trained neural
network; (2) construct a graph from it, treating each neuron as a node; (3) perform spectral clustering
on the graph to obtain a partitioning or “clustering” of neurons which we then further divide by layer
to obtain a “subclustering”; (4) analyze the subclusters according to our modularity proxies opera-
tionalized by lesioning neurons or feature visualization and comparing them to random subclusters;

3



Under review as a conference paper at ICLR 2022

and (5) aggregate results across the network to obtain a final p value and effect measure. This pipeline
is outlined in Figure 2 and Figure 4, and each step is explained in detail below.

3.1 GENERATING PARTITIONS WITH SPECTRAL CLUSTERING

To partition a network into clusters, we use an approach based on Filan et al. (2021) which consisted
of two steps: “graphification” - transforming the network into an undirected, edge-weighted graph;
and clustering - obtaining a partitioning via spectral clustering.

Graphification: To perform spectral clustering, a network must be represented as an undirected
graph with non-negative edges. For MLPs (multilayer perceptrons), each graph node corresponds to a
neuron in the network including input and output neurons. For CNNs (convolutional neural networks),
a node corresponds to a single channel (which we also refer to as a “neuron”) in a convolutional
layer.1 For CNNs, we do not use input, output, or fully-connected layers for clustering.

For graphification, we test two ways of assigning adjacency edges between neurons: with weights
and with correlations. For weight-based clustering with dense layers, if two neurons have a weight
connecting them in the network, their corresponding vertices are connected by an edge with weight
equal to the absolute value of the network’s weight between the neurons. For convolutional channels,
we connect them by an edge with weight equal to the L1 norm for the corresponding 2D kernel
slice. If layers are connected but with a batch-normalization layer in between, we mimic the scaling
performed by the batch norm operation by multiplying weights by γ/(σ + ε) where γ is the scaling
factor, σ is the moving standard deviation, and ε is a small constant. Notably, this method of
constructing the graphs requires no dataset or runtime analysis of the network.

While graphification via weights only results in connections between neurons in adjacent layers,
doing so with correlations creates more dense graphs. With this method, we connect the nodes for two
neurons with their squared Spearman correlation across a validation set. Spearman correlation gives
the Pearson (linear) correlation between ranks and reflects how well two sets of data can be related
by a monotonically increasing function.2 Rather than using neurons’ post-ReLU outputs to calculate
these correlations, we use their pre-ReLU activations with the goal of extracting richer data from
neurons.3 Again, for convolutional channels, we take the L1 norm of activations before calculating
Spearman correlations. The fact that we take absolute valued weights or squared correlations to
construct edges between neurons in graphification means that our analysis does not discriminate
between positive and negative associations between neurons.

In addition to graphification via weights versus activations, we also test two scopes in which to
perform clustering: global and local. For global clustering, we cluster on one graph for the network
as a whole. For local clustering, we produce a partitioning for each layer l individually by clustering
on the graph of connections between l and the layers adjacent to l. Ultimately, we run 4 experiments
on each network by clustering {weights, activations} × {globally, locally}.
Spectral (sub)clustering: We perform normalized spectral clustering (Shi & Malik, 2000) on the
resulting graphs to obtain a partition of the neurons into clusters. For all experiments, we set
the number of clusters to k = 16. In Appendix A.6, we reproduce a subset of experiments with
k ∈ {8, 12}, showing that results are robust to alternate choices of k. Refer to appendix A.1 for a
complete description of the spectral clustering algorithm.

Layers at different depths of a network tend to develop different representations. To control for these
differences, we study the neurons in clusters separately per layer. Therefore, for global clustering in
which clusters of neurons span more than one layer, we analyze clusters one layer at a time. We call
these sets of neurons within the same cluster and layer subclusters. To ensure comparability between
these clusterings when performing local clustering, we set the number of clusters per layer to be the
same as the number produced in that layer with global clustering. In our experiments, we compare

1This is subtly different from treating each activational unit as a neuron in networks such as ResNets with
skip connections. If a unit is used as inputs to multiple layers, we consider these inputs to be separate neurons.

2We use Spearman rather than Pearson correlation because networks are nonlinear, and there is no particular
reason to expect associations between arbitrary neurons to be linear.

3Although all negative values are mapped to zero by a ReLU, we expect the degree of negativity to carry
information about the possible presence (or lack thereof) of features which the neuron was meant to detect,
especially for networks trained with dropout.

4



Under review as a conference paper at ICLR 2022

these subclusters to other sets of random units of the same size in the same layer. When discussing
these experiments, we refer to subclusters from the clustering algorithm as “true subclusters” and sets
of random neurons as “random subclusters.” Random subclusters form the natural control condition
to test whether the specific partitioning of neurons exhibits importance or coherence compared to
alternative partitions, while taking account of layer and size.

3.2 ANALYSIS PIPELINE

Summary: In our experiments, we measure the degree to which subclusters identified via spectral
clustering are more important and coherent than random sets of neurons of the same size and layer.
Operationalizations are given in subsections 4.1 and 4.2, but in brief, the measure for importance of a
subcluster quantifies the performance reduction from dropping out or “lesioning” the neurons in that
subcluster, and the measures for coherence quantify the degree to which the neurons in a subcluster
are mutually associated with some feature of an input. For each subcluster greater than 1 neuron in
size and which did not include every neuron in the layer, we calculate a measure of importance or
coherence and compare it to that of 19 random subclusters for non-ImageNet networks or 9 random
subclusters for ImageNet ones. These experiments and measures are discussed in detail in section 4.
We present two measures of how true and random subclusters compare under these proxies. First, we
test whether true subclusters are disproportionately often more important or coherent than random
subclusters, and report a p value for this test, which we call a Fisher-Bates p value. This value is our
primary focus. However, for additional resolution, we also calculate an effect measure used to assess
the importance and coherence of the ‘average’ subcluster. Importantly, the Fisher-Bates p value and
effect measure are based on different statistics and measure different things.

Fisher-Bates p values: We wish to test whether spectral clustering-based partitioning methods
find more modular subsets of neurons than simply choosing random subsets. To do this, for each
subcluster measurement we take the percentile of each true subcluster relative to the distribution of
measurements of random subclusters.4 Next, we use the Fisher method to test whether the subclusters
in a single network are disproportionately more modular than random neurons. To do so, we first
center the subcluster percentiles around 0.5, which under the null hypothesis would give a granular
approximation of the uniform distribution. We then combine the centered percentiles {p1, . . . , pn}
into the test statistic −2

∑n
i=1 log pi, which under the null hypothesis is drawn from a chi-squared

distribution with 2n degrees of freedom. We can then produce a p value for each network, testing
whether this statistic is higher than the null hypothesis would produce, which would mean that there
were more low percentiles than if they were distributed uniformly.5 This procedure is illustrated in
Figure 4.

For all non-ImageNet networks, we train and analyze 5 different versions of each which requires
a second aggregation step. In each condition, we take the mean of the p values for each network
and correct it using the corresponding quantile of a Bates(n = 5) distribution6 which gives the
distribution of the mean of five independent uniformly-distributed random variables.7

This produces a p value for every network architecture, partitioning method, and modularity metric,
which we call Fisher-Bates p values.8 We next correct for multiple testing using the Benjamini
Hochberg method (Benjamini & Hochberg, 1995), controlling the false discovery rate at the α = 0.05
level. See Appendix A.7 for details. Figure 3 shows which values are significant after this correction.

In summary, (1) we first aggregate each network’s subcluster percentiles using the Fisher method,
(2) then we aggregate these new p values among identically-configured replicates of the same
experiment using the Bates method, and finally (3) we correct for multiple comparisons using the
Benjamini-Hochberg procedure.

4For metrics where high values indicate modularity, we take the percentile of the negative metric, so that low
percentiles consistently indicate modularity.

5The fact that we coarsely measure percentiles and then center them makes this test conservative, because
our statistic is more sensitive to low percentiles than high percentiles.

6The Bates(n) quantile function is Fn(x) =
1
n!

∑bnxc
k=0 (−1)k

(
n
k

)
(nx− k)n−1 (Marengo et al., 2017).

7We use the Bates method for aggregation here instead of using the Fisher method again because in this case,
all five p values are from identically configured experiments, and the Bates test is less sensitive to low outliers.

8For simplicity, we use this name even for ImageNet networks, where we do not have multiple networks to
apply Bates aggregation to.

5



Under review as a conference paper at ICLR 2022

Obtaining effect measures: In addition to p values, we also calculate effect measures which give a
sense of how different our results for true and random subclusters are on average. We calculate them
by taking the mean of 2x/(x+ µ) where x is a true subcluster measure of importance/coherence and
µ is the mean over that of random subclusters.9 We do this as opposed to simply taking x/µ in order
to avoid divisions by zero. This results in effect measures in the interval [0,2], and which side of 1
they are on indicates whether the true subclusters are more important/coherent than random ones.
For ease of interpretation, note that if 2x/(x + µ) = 1 + y, then x/µ ≈ 1 + 2y for y � 1, so an
effect measure of 1.05 would mean that the measure of a true subcluster was ≈ 10% higher than the
expected measure of a random subcluster. Together with these effect measures, we also report their
standard errors.

Differences between Fisher-Bates p value and effect measure results: In some of our experiments,
the Fisher-Bates p values and effect measures seem to “disagree” with one suggesting that modularity
was detected and the other suggesting it was not. This potential for disagreement is due to the fact
that the Fisher-Bates p values are based on the percentile of subcluster measurements relative to
the distribution of those of random subclusters, while the effect measures compare the value of
true subcluster measurements to the mean value of random subcluster measurements. When the
Fisher-Bates p value seems to indicate modularity but the effect measure does not, this means that
on the relevant metric, there are more subclusters than would be expected under the null hypothesis
whose metric value is higher than that of random subclusters, but the average subcluster has a metric
value similar to or less than an average random subcluster. In other words, the partitioning method has
detected some subclusters that are modular, but the average subcluster found was not modular. We
consider this a positive result, indicating that our partitioning method is detecting some modularity.

4 EXPERIMENTS

To show the applicability of our methods at different scales, we experiment with a range of networks.
For small-scale experiments, we train MLPs with 4 hidden layers of 256 neurons each and small
convolutional networks with 3 layers each of 64 neurons followed by a dense layer of 128 neurons
trained on the MNIST (LeCun et al., 1998) dataset. At a mid scale, we train VGG-style CNNs
containing 13 convolutional layers using the architectures of Simonyan & Zisserman (2014) trained
on CIFAR-10 (Krizhevsky & Hinton, 2009) using the procedure of Liu & Deng (2015), which includes
weight decay and dropout for regularization. Finally, for the ImageNet (Krizhevsky & Hinton, 2009)
scale, we analyze pretrained ResNet18 (He et al., 2016), VGG-16, and VGG-19 (Simonyan &
Zisserman, 2014) models. Further details including hyperparameters and test performances are in
Appendix A.2.

4.1 LESION EXPERIMENTS

One approach that has been used for understanding both biological (Gazzaniga & Ivry, 2013) and
artificial (Zhou et al., 2018; Casper et al., 2020) neural systems involves disrupting neurons during
inference. We experiment with “lesion” tests in which we analyze network performance on the test set
when a subcluster is dropped out. We then analyze the damage to the network’s performance. First,
we measure importance by taking the drop in accuracy. Specifically, let θ be the parameter vector of
the neural network, c be a set of neurons,M(θ, c) be a masked version of θ where weights into or
out of nodes in c have been set to 0, and Acc(ϑ,D) be the accuracy of the network parameterized by
ϑ on dataset D. Then, our measure for importance is Acc(θ,test)− Acc(M(θ, c),test), where
test is a test dataset that was not used to construct the activation-based partitionings.

Second, we measure the coherence in a subcluster with respect to class by taking the range of
class-specific accuracy drops. Specifically, let testi be the subset of the test set with label i, and let
∆(θ, c, i) := Acc(θ,testi)−Acc(M(θ, c),testi) be the drop in accuracy for examples with label
i from lesioning c. Then, this measure of coherence is the range (maxi ∆(θ, c, i))−(mini ∆(θ, c, i)),
of accuracy drops over classes. We use this to detect whether clusters are more crucial for some
classes over others, which would suggest that they coherently act to correctly label those classes.

We use the analysis pipeline from Section 3.2 to test for importance and coherence using these overall
accuracy differences and class-wise ranges. Low Fisher-Bates p values suggest the detection of

9If this value is ever less than 0 for a subcluster, we conservatively replace it with 0.

6



Under review as a conference paper at ICLR 2022

Figure 3: Fisher-Bates p values for (1) lesion-based experiments measuring importance via overall
accuracy drops (Acc. Drop) and coherence via the range of class-wise accuracy drops (Class Range);
and (2) feature visualization-based experiments measuring coherence via the optimization score of
feature visualizations (Vis Score) and the entropy of network outputs (Softmax H). Each subfigure
corresponds to a type of network, where each row represents a partitioning method and each column
a modularity proxy measurement. The Fisher-Bates p values are shown on a log scale rounded to
nearest integer. If a p value is significant at an α = 0.05 level after Benjamini Hochberg correction
(p ≤ pcrit = 0.025 ≈ 10−1.6), then its background is shaded. Otherwise, “n.s.” (not significant) is
reported. Results are calculated as described in Section 3.2.

an unexpectedly high number of important/coherent subclusters. Meanwhile, effect measures > 1
indicate more importance/coherence among true subclusters on average compared to random ones.
Figure 3 shows Fisher-Bates p values, and Table 1 shows effect measure data. Results are summarized
in section 4.3.

4.2 FEATURE VISUALIZATION EXPERIMENTS

To further analyze coherence, we leverage another set of interpretability techniques based on feature
visualization. We use gradient-based optimization to create an input image which maximizes the L1

norm of the pre-ReLU activations of the neurons in a subcluster. Letting the parameter vector be θ
and the subcluster be c, we write Act(x, θ, c) for the vector of pre-ReLU activations of neurons in
c in network θ on input x, and denote this optimized input image as x(θ, c), which approximately
maximizes ‖Act(x, θ, c)‖1. The key insight is that properties of these visualizations x(θ, c) can
suggest what roles the subclusters play in the network. Implementation details are in Appendix A.5,
and Figure 7 shows example visualizations.

We use two techniques to analyze coherence using these visualizations of subclusters. First, we
analyzed the value of the maximization objective for each image we produced, ‖Act(x(θ, c), θ, c)‖1,
which we call the “score” of the visualization. This gives one notion of how coherent a subcluster may

7



Under review as a conference paper at ICLR 2022

Table 1: Effect measures for (1) lesion-based experiments measuring importance via overall accuracy
drops (Acc. Drop) and coherence via the class-wise range of accuracy drops (Class Range); and (2)
Feature visualization-based experiments in networks measuring coherence via the optimization score
(Vis Score) and the entropy of network outputs (Softmax H). Each row corresponds to a network
paired with a partitioning method. Results are calculated as explained in Section 3.2. For accuracy
drop, class-wise range and visualization score experiments, an effect measure > 1 corresponds to
more importance/coherence among true subclusters than random ones, while one of < 1 does for
softmax entropy experiments. Entries where the effect measure is more than two standard errors
away from 1 in the direction of modularity are bolded.

Lesion Feature Visualization
Network Partitioning Acc. Drop Class Range Vis Score Softmax H

High→Imp. High→Coh. High→Coh. Low→Coh.

MLP, MNIST

Weight/Global 1.123± 0.058 0.701± 0.036 1.003± 0.004 1.105± 0.021
Weight/Local 1.061± 0.048 0.676± 0.029 1.024± 0.004 0.931± 0.016
Act./Global 0.883± 0.038 0.646± 0.024 1.02± 0.003 0.997± 0.013
Act./Local 0.929± 0.040 0.687± 0.025 1.026± 0.003 1.011± 0.012

CNN, MNIST

Weight/Global 0.837± 0.048 0.527± 0.031 0.998± 0.004 1.026± 0.008
Weight/Local 0.814± 0.046 0.635± 0.033 1.004± 0.003 1.007± 0.007
Act./Global 1.078± 0.061 0.543± 0.039 0.933± 0.006 1.025± 0.011
Act./Local 0.939± 0.060 0.625± 0.043 0.925± 0.005 0.970± 0.010

VGG, CIFAR-10

Weight/Global 0.682± 0.066 0.407± 0.042 0.871± 0.011 1.124± 0.012
Weight/Local 0.808± 0.041 0.692± 0.033 1.013± 0.006 0.992± 0.012
Act./Global 0.926± 0.032 0.679± 0.023 1.327± 0.005 0.950± 0.009
Act./Local 0.956± 0.030 0.695± 0.021 1.379± 0.004 0.930± 0.008

VGG-16, ImageNet

Weight/Global 1.245± 0.042 0.763± 0.040 1.043± 0.005 0.998± 0.001
Weight/Local 1.166± 0.019 0.823± 0.020 1.076± 0.003 0.991± 0.001
Act./Global 1.154± 0.026 0.838± 0.028 1.066± 0.003 1.000± 0.001
Act./Local 1.084± 0.020 0.879± 0.021 1.056± 0.003 1.001± 0.001

VGG-19, ImageNet

Weight/Global 1.061± 0.004 1.003± 0.001
Weight/Local 1.099± 0.003 1.001± 0.001
Act./Global 1.046± 0.003 0.996± 0.001
Act./Local 1.081± 0.002 1.004± 0.001

ResNet18, ImageNet

Weight/Global 0.915± 0.045 0.957± 0.047
Weight/Local 0.970± 0.015 0.970± 0.016
Act./Global 0.972± 0.016 0.970± 0.018
Act./Local 0.983± 0.014 0.967± 0.015

be with respect to input features, because if a single image can strongly excite an entire subcluster,
this suggests that the neurons comprising it are involved in detecting/processing similar features.
Second, we obtain a measure of coherence by analyzing the entropy H(label | x(θ, c); θ) of the
softmax outputs of the network when these images are passed through. If the entropy is low, this
suggests that a cluster is coherent with respect to output labels.

Just as with lesion experiments, we perform analysis using these two methods using the pipeline from
Section 3.2 to measure how coherent true subclusters are compared to random ones. Low Fisher-
Bates p values suggest the detection of an unexpectedly high number of coherent subclusters. For
visualization score experiments, effect measures> 1 indicate coherence while for the softmaxH ones,
effect measures < 1 indicate coherence. Figure 3 shows Fisher-Bates p values, and Table 1 shows
effect measure data. Figure 5 shows histograms of feature visualization percentiles for partitionings
of a VGG network trained on CIFAR-10, to illustrate the significance of the Fisher-Bates p values.

4.3 FINDINGS

Our partitionings identify important subclusters. Fisher-Bates p values for lesion accuracy drops
are low and significant, as shown in Figure 3, indicating that sub-clusters are more likely to be
highly important relative to random groups of neurons. However, as shown in Table 1, not all of
the corresponding effect measures are below one, even when the Fisher-Bates p value is significant.
This indicates that when we detect that an unusual number of subclusters are important, this does not
necessarily correspond to importance on average.

8



Under review as a conference paper at ICLR 2022

Our partitionings identify subclusters that are coherent w.r.t. input features but not class label.
Class-specific measures of coherence, class-wise lesion accuracy drop range and output entropy,
showed significant coherence in almost no conditions. The class-wise range measure even tended
to show that subclusters were less coherent w.r.t. class than random groups of neurons. However,
the visualization score measure of coherence was reliably significant as shown in Figure 3, and the
effect measures were reliably above 1. Together, these results offer evidence that subclusters tended
to perform coherent sub-tasks, but not in a class-specific way.

All partitioning methods give similar results. In Figure 3, we find that activation-based clusterings
have a weak tendency to produce lower Fisher-Bates p values in our analysis compared to weight-
based ones. Meanwhile, between local and global clustering methods, local methods seem to have a
weak tendency to produce lower Fisher-Bates p values. However, neither tendency was consistent,
and all clustering methods performed similarly overall. This is somewhat unexpected: one might
have predicted that weight-based methods’ lack of runtime information or local methods’ lack of
global information would lead to lower quality clusterings, but this was not the case.

5 DISCUSSION

Contributions: In this work, we introduce several methods for partitioning networks into clusters
of neurons and analyze the resulting partitions for modularity. Key to this is analyzing proxies:
importance as a means of understanding what parts of a network are crucial for performance, and
coherence as a measure for how specialized these parts are. We rigorously evaluate these proxies
using statistical methods, finding that even the weights-only clustering methods are able to reveal
clusters with a significant degree of importance and coherence compared to random ones. In each
network, we found evidence that our partitioning methods were able to identify modular subsets of
neurons via measuring accuracy drops under lesions (importance) and feature visualization scores
(coherence). To the best of our knowledge, ours is the first method which is able to quantitatively
assess modularity exhibited by neural networks in a way that does not require a human in the loop.

Relation to other research: Having effective tools for interpreting networks has been a key goal,
especially when this aids in the diagnosis of failure modes (e.g., Carter et al. (2019); Mu & Andreas
(2020)). Our work relates to this goal, though indirectly. The tests we perform are based on data
from lesions and feature visualizations, both of which are interpretability tools. But rather than
directly using these data to interpret subclusters, our focus is one step higher: on automatedly testing
whether these subclusters are worth analyzing at all, and finding ways to screen for ones that should
be the subject of deeper investigation. By showing that the partitioning methods we use identify
subclusters that exhibit modularity, these results suggest that clustering neurons offers a useful level
of abstraction through which to study networks.

Limitations: One limitation of our work is a lack of assurance that importance and coherence are
reliably strong proxies for human-comprehensible forms of modularity. While they are sufficient
to imply some degree of abstractability with respect to the task at hand, they may not always be
particularly useful for a prosaic understanding. Relatedly, our approach is also not designed to identify
the subtask performed by a set of units which exhibit modularity, nor does it identify relationships
between modules. Given these limitations, the tools we introduce should be seen as methods for
screening a network in search for evidence of modularity overall and for particular sets of units
which seem to exhibit it and merit additional investigation. A final notable limitation is that these
methods do not offer tools for building more modular networks beyond techniques for measuring it.
Future work toward this may benefit from our techniques but should also hinge on architectural or
regularization-based methods for promoting modularity in networks.

Conclusion: While we make progress here toward better understanding how networks can be
understood, neural systems are still complex, and more insights are needed to develop prosaic
understandings of them. The ultimate goal would be to develop reliable methods for building models
which are both dynamic and lend themselves to faithful semantic interpretation. We believe that using
modularity as an organizing principle and expanding our interpretability toolbox with more modular
models and better-tuned partitioning methods will lead to a richer understanding of networks and
better tools for building them to be reliable and verifiable.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kaelbling. Modular meta-learning. arXiv preprint
arXiv:1806.10166, 2018.

Carliss Young Baldwin and Kim B Clark. Design rules: The power of modularity, volume 1. MIT press, 2000.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection: Quantifying
interpretability of deep visual representations. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 6541–6549, 2017.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1):289–300, 1995.

Grady Booch, Robert A Maksimchuk, Michael W Engle, Bobbi Young, Jim Conallen, and Kelli A Houston.
Object-Oriented Analysis and Design with Applications. Addison-Wesley Professional, third edition, 2007.

Alfio Borzı̀ and Giuseppe Borzı̀. Algebraic multigrid methods for solving generalized eigenvalue problems.
International journal for numerical methods in engineering, 65(8):1186–1196, 2006.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, and Ludwig Schubert. Thread: Circuits.
Distill, 2020. doi: 10.23915/distill.00024. https://distill.pub/2020/circuits.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. Activation atlas. Distill, 4(3):e15,
2019.

Stephen Casper, Xavier Boix, Vanessa D’Amario, Ling Guo, Kasper Vinken, and Gabriel Kreiman. Frivolous
units: Wider networks are not really that wide. arXiv preprint arXiv:1912.04783, 2020.

François Chollet et al. Keras. https://keras.io, 2015.

Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson. The evolutionary origins of modularity. Proceedings of the
Royal Society B: Biological sciences, 280(1755), 2013.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural nets modular? inspecting their
functionality through differentiable weight masks. In International Conference on Learning Representations,
2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. arXiv preprint
arXiv:1909.08383, 2019.

Daniel Filan, Stephen Casper, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart Russell. Clusterability in
neural networks. arXiv preprint arXiv:2103.03386, 2021.

Michael Gazzaniga and Richard B Ivry. Cognitive Neuroscience: The Biology of the Mind: Fourth International
Student Edition. WW Norton, 2013.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks. Proceedings of
the national academy of sciences, 99(12):7821–7826, 2002.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and Bernhard
Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

10

https://www.tensorflow.org/
https://www.tensorflow.org/
https://distill.pub/2020/circuits
https://keras.io


Under review as a conference paper at ICLR 2022

Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to decompose neural computation.
In Advances in Neural Information Processing Systems, pp. 2408–2418, 2018.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building machines that
learn and think like people. Behavioral and brain sciences, 40, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Shuying Liu and Weihong Deng. Very deep convolutional neural network based image classification using
small training sample size. In 3rd IAPR Asian Conference on Pattern Recognition, ACPR 2015, Kuala
Lumpur, Malaysia, November 3-6, 2015, pp. 730–734. IEEE, 2015. doi: 10.1109/ACPR.2015.7486599. URL
https://doi.org/10.1109/ACPR.2015.7486599.

Spandan Madan, Timothy Henry, Jamell Dozier, Helen Ho, Nishchal Bhandari, Tomotake Sasaki, Frédo Durand,
Hanspeter Pfister, and Xavier Boix. On the capability of neural networks to generalize to unseen category-pose
combinations. arXiv preprint arXiv:2007.08032, 2020.

James E Marengo, David L Farnsworth, and Lucas Stefanic. A geometric derivation of the irwin-hall distribution.
International Journal of Mathematics and Mathematical Sciences, 2017, 2017.

Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the importance of single
directions for generalization. arXiv preprint arXiv:1803.06959, 2018.

Jesse Mu and Jacob Andreas. Compositional explanations of neurons. arXiv preprint arXiv:2006.14032, 2020.

Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks. Physical
review E, 69(2):026113, 2004.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2(11):e7, 2017.

Stefano Panzeri, Christopher D Harvey, Eugenio Piasini, Peter E Latham, and Tommaso Fellin. Cracking
the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron, 93(3):
491–507, 2017.

Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bernhard Schölkopf. Learning independent
causal mechanisms. In International Conference on Machine Learning, pp. 4036–4044. PMLR, 2018.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in
python. the Journal of machine Learning research, 12:2825–2830, 2011.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis
and machine intelligence, 22(8):888–905, 2000.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Alberto Testolin, Michele Piccolini, and Samir Suweis. Deep learning systems as complex networks. Journal of
Complex Networks, 8(1):cnz018, 2020.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

Chelsea Voss, Gabriel Goh, Nick Cammarata, Michael Petrov, Ludwig Schubert, and Chris Olah. Branch
specialization. Distill, 6(4):e00024–008, 2021.

Chihiro Watanabe. Interpreting layered neural networks via hierarchical modular representation. In International
Conference on Neural Information Processing, pp. 376–388. Springer, 2019.

Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of neural networks. arXiv preprint
arXiv:2007.06559, 2020.

Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Revisiting the importance of individual units in
CNNs via ablation. arXiv preprint arXiv:1806.02891, 2018.

11

https://doi.org/10.1109/ACPR.2015.7486599


Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 SPECTRAL CLUSTERING ALGORITHM

The spectral clustering algorithm on the graph G = (V,E) produces a partition of its vertices in
which there are stronger connections within sets of vertices than between them (Shi & Malik, 2000).
It does so by solving a relaxation of the NP-Hard problem of minimizing the n-cut (normalized cut)
for a partition. For disjoint, non-empty sets X1, ...Xk where ∪ki=1Xi = V , this is defined by von
Luxburg (2007) as:

n-cut(X1, ..., Xk) :=
1

2

k∑
i=1

W (Xi, Xi)

vol(Xi)

for two sets of vertices X,Y ⊆ V , we define W (X,Y ) :=
∑
vi∈X,vj∈Y wij ; the degree of a vertex

vi ∈ V is di =
∑n
j=1 wij ; and the volume of a subset X ⊆ V is vol(X) :=

∑
i∈X di.

We use the scikit-learn implementation (Pedregosa et al., 2011) with the ARPACK eigenvalue solver
(Borzı̀ & Borzı̀, 2006).

Algorithm 1: Normalized spectral clustering according to Shi & Malik (2000), implemented
in scikit-learn (Pedregosa et al., 2011), description taken from von Luxburg (2007).
Input :Weighted adjacency matrix W ∈ Rn×n, number k of clusters to construct

1 Compute the unnormalized Laplacian L.
2 Compute the first k generalized eigenvectors u1, ..., uk of the generalized eigenproblem
Lu = λDu.

3 Let U ∈ Rn×k be the matrix containing the vectors u1, ..., uk as columns.
4 For i = 1, .., n, let yi ∈ Rk be the vector corresponding to the ith row of U .
5 Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into clusters C1, ..., Ck,

Output :Clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}.

A.2 NETWORK TRAINING DETAILS

We use Tensorflow’s implementation of the Keras API (Abadi et al., 2015; Chollet et al., 2015).
When training all networks, we use the Adam algorithm (Kingma & Ba, 2014) with the standard
Keras hyperparameters: learning rate 0.001, β1 = 0.9, β2 = 0.999, no amsgrad. The loss function
was categorical cross-entropy. For all non-ImageNet networks, we train 5 identically-configured
replicates.

Small MLPs (MNIST): We train MLPs with 4 hidden layers, each of width 256, for 20 epochs
with batch size 128. All MLPs achieved a test accuracy on MNIST between 97.6% and 98.2%. On
Fashion-MNIST, they achieved test accuracies between 88.4% and 89.4%.

Small CNNs (MNIST): These networks had 3 convolutional layers with 64 3 × 3 channels each
with the second and third hidden layers being followed by max pooling with a 2 by 2 window. There
was a final fully-connected hidden layer with 128 neurons. We train them with a batch size of 64
for 10 epochs. All small CNNs achieved a testing accuracy MNIST between 99.1% and 99.4%. On
Fashion-MNIST, they achieved test accuracies between 91.8% and 92.4%.

Mid-sized VGG CNNs (CIFAR-10): We implement a version of VGG-16 described by Simonyan
& Zisserman (2014); Liu & Deng (2015). We train these with Adam, for 200 epochs with a batch
size of 128. These are trained using L2 regularization with a coefficient of 5 × 10−4 and dropout
with a rate tuned per-layer as done in Simonyan & Zisserman (2014); Liu & Deng (2015). Training
was done with data augmentation which consisted of random rotations between 0 and 15 degrees,
random shifts both vertically and horizontally of up to 10% of the side length, and random horizontal
flipping. The unregularized networks achieved testing accuracies between 90.3% and 90.9% while
the regularized ones did between 82.8% and 86.6%.

Large CNNs (ImageNet): We experimented with VGG-16 and 19 (Simonyan & Zisserman, 2014)
and ResNet-18, and 50 (He et al., 2016) networks. Weights were obtained from the Python
image-classifiers package, version 1.0.0.

12



Under review as a conference paper at ICLR 2022

A.3 PIPELINE - SECOND PART

Figure 4: Our extended procedural pipeline. This figure expands Figure 2 and shows the successive
steps after generating a partitioning of subclusters (step 3 in Figure 2). After performing either lesion
or feature visualization analysis, the results from each true cluster and its random clusters are
aggregated to produce p values and effect measures. For simplicity, only the analysis for the lesion
experiment is presented, but the same pipeline is used for the feature vis experiments.

For each true subcluster i from the generated partitioning:

3’. Random Subcluster

4a’. Analysis: Lesion

3. True Subcluster

4a. Analysis: Lesion

Compute the drop in accuracy
δtrue

Compute the drop in accuracy
δrand

Generate m random subclusters 
within the same layer and having 

the same number of neurons as the 
true subcluster:

Drop in accuracy value

Combine m samples of δrand
to form the random 

subcluster distribution

5b. Compute the percentile 
of subcluster i: pi

5a. Compute the effect 
measure of subcluster i:
di = 2 δtrue / (δtrue + μrand)

Mean: μrand

6b. Combine the subclusters’ 
percentiles {pi} using the Fisher 
method to produce a p value

6a. Combine the subclusters’ effect 
measures {di} by taking their mean 
and computing the average effect 
measure

13



Under review as a conference paper at ICLR 2022

Figure 5: Histograms of feature visualization percentiles for four partitionings of VGG CIFAR-
10 network. A VGG CIFAR-10 network is partitioned using four methods ({weights, activations}
× {global, local}) and analyzed with the feature visualization experiment to produce the collection
of percentiles for each subcluster. This figure shows the percentile distribution for each clustering
as a histogram with a single percentile value per bin. Recall that a lower percentile means that a
true subcluster is disproportionately often more coherent than random subclusters while controlling
for layer and size. Under the null hypothesis, percentiles distribute uniformly. Visual inspection
demonstrates that, for example, Weights / Global, Act / Global, and Act / Local deviate from the
uniform distribution. In this paper, we use the Fisher-Bates procedure to conduct this hypothesis
testing rigorously. Indeed, Figure 3 shows that these clustering of the VGG CIFAR-10 network are
significant when aggregated over five models.

A.4 CORRELATION-BASED VISUALIZATION

Halves-MNIST Dataset: Figure 6 shows examples from our halves-MNIST dataset. To create
each example, two images were randomly selected, resized to have half their original width, and
concatenated together. Each image was labeled with the sum of the two digits modulo 10. Examples
are shown in Figure 1.

Visualization: To create the images from Figure 1 which show clusters of neurons in the first layer of
an MLP trained on halves-MNIST, we use a correlation-based visualization algorithm from Watanabe
(2019). We construct visualizations of neurons using their correlations with the input pixels’ pre
ReLU activities across the test dataset. Instead of Pearson (linear) correlation, we use the Spearman
correlation (which is the Pearson correlation of ranks) because it is able to capture relationships
which tend to monotonically increase even if they are nonlinear.

After obtaining visualizations for each neuron in a subcluster, we do not directly take their average
to visualize the entire subcluster. To see why, consider two neurons which are highly anticorrelated
across the testing set. These neurons are highly coherent, but averaging together their visualizations
would obscure this by cancellation. To fix this problem, we align the signs of the visualizations for
individual neurons using a variant of a stoahcstic alignment algorithm from Watanabe (2019). To
visualize a subcluster, for a number of iterations (we use 20), we iterate over its neurons and calculate

14



Under review as a conference paper at ICLR 2022

for each the sum of cosines between its visualization and each of the other neurons’ visualizations
in vector form. If this sum is negative, we flip the sign of this neuron’s visualization. After this
procedure, we take the mean of the visualizations within a subcluster. This process is detailed in
Algorithm 2.

Algorithm 2: Sign Alignment Algorithm (Similar to Watanabe (2019))
Result: Set of sign-aligned neuron visualizations.
Input Neuron visualizations V1:n for iter in num iters do

for vi in V do
Calculate sum of cosines, c =

∑
j 6=i

vi·vj√
vi·vi

√
vj ·vj

if c < 0 then
vi ← −vi

end
end

end

Comparison to Random Subclusters: To confirm that the visualization in Figure 1 show that our
clustering algorithms are capturing modularity in the first layer of the MLPs, we compare them to
the same visualizations but for random subclusters in Figure 6. The visualizations that were used
to produce Figure 1 are each at the top of a column of one of the panels in Figure 6 and are above
visualizations for random subclusters of the same size and layer. Each column in each panel was
independently scaled to have values in the interval [0,1]. In each of the four panels, visualizations in
the first row reflect the most selectivity to one side or the other meaning that compared to random
subclusters, the ones found via these clustering methods tend to be significantly more coherent.

MLPs can Compute Modular Sums: A network an do this for M values by using an intermediate
layer of M2 neurons, each of which serve as a detector of one of the possible combinations of inputs.
Consider a ReLU MLP with 2M inputs, a single hidden layer with M2 neurons, and then M outputs.
Suppose that it is given the task of mapping datapoints in which the input nodes numbered i and
M + j are activated with value 1 to an output in which the mod (i+ j,M)th node is active with
value 1. It could do so if each hidden neuron with a ReLU activation detected one of the M2 possible
input combinations via a bias of -1 and two weights of 1 connecting it to each of the input nodes in
the combination is detects. A single weight from each hidden neuron to its corresponding output
point would allow the network to compute the modular sum. In our MLPs, we have M = 10 classes,
and the MLPs have a dense layer with > 102 neurons preceding the output layer. Thus, they are
capable of computing a modular sum in the halves and stack-diff tasks we give to them.

A.5 FEATURE VISUALIZATION

All visualizations were created using the Lucid10 package. The optimization objective for visualizing
sub-clusters was the L1 norm of the pre-ReLU inputs for all neurons inside the subcluster (it was an
L1 norm of L1 norms for convolutional feature maps). For small MLPs, small CNNs, and mid-sized
CNNs, we generated images using random jittering and scaling, and for ImageNet models, we used
Lucid’s default transformations which consist of padding, jittering, rotation, and scaling with default
hyperparameters. For all networks, we used the standard pixel-based parameterization of the image
and no regularization on the Adam optimizer for 100 steps. For visualizations in small MLPs and
CNNs, we used versions of these networks trained on 3-channel versions of their datasets in which the
same inputs were stacked thrice because Lucid requires networks to have 3-channel inputs. However,
we show grayscaled versions of these in figure 7. Refer to Section 4 of the main paper for quantitative
analysis of the optimization objective values.

A.6 ROBUSTNESS TO THE CHOICE OF CLUSTER NUMBER

In the main paper, we only present results form experiments in which the number of clusters, k, was
set to 16. The fact that we find evidence of modularity in networks from the MNIST to ImageNet
scale using k = 16 suggests that detecting it is robust to k. However, here we also present a direct

10https://github.com/tensorflow/lucid

15

https://github.com/tensorflow/lucid


Under review as a conference paper at ICLR 2022

(a)

(b)

(c)

(d)

Figure 6: Comparison of true and random subcluster visualizations for the first layer of MLPs trained
on the halves-MNIST dataset. The first rows show visualizations for true subclusters, and the bottom
four show visualizations for random ones of the same size. Each panel gives results for a different
approach to clustering: (a) weights/global, (b) weights/local, (c) activity/global, and (d) activity/local.

comparison between results for CIFAR CNN-VGGs for k ∈ {8, 12, 16}. Tables 2 and 3 show these
results for lesion and feature-visualization experiments respectively. In general, whether or not an
experiment resulted in a significant Fisher-Bates p value or an effect measure suggesting modularity
is consistent across these values of k.

A.7 MULTIPLE TESTING CORRECTIONS

In the main paper in Tables 4 and 5, we report various Fisher-Bates p values that summarize the
degree to which statistics of sub-clusters vary from those of random groups of neurons within a
network. For each network, the Fisher-Bates p values one-sidedly test whether the true sub-cluster
measures reflect more importance/coherence than those of random subclusters. However, when
testing multiple networks, one may want to reduce the chance of false positives due to the sheer
number of tests performed. To incorporate this analysis into our results, we perform a multiple testing
correction within Tables 4 and 5 (separately) using the Benjamini-Hochberg procedure (Benjamini &
Hochberg, 1995). This procedure controls the false discovery rate: that is, the expected proportion
of rejections of the null hypothesis that are false positives, where the expectation is taken under the
data-generating distribution. It relies on all experiments being independent. For a false discovery
rate α and m ordered p values {p1...pm}, this procedure chooses a critical p value as pk where
k = arg maxj∈1:m I(pj ≤ jα

m ) where I is an indicator. All p values greater than pk are deemed not
significant at this level. In Figure 3 we demarcate p values significant at the α = 0.05 level under this
correction. In our case, the critical value was pk = 0.025.

16



Under review as a conference paper at ICLR 2022

(a)

(b)

(c)

(d)

(e)

Figure 7: Example feature visualizations for true and random sub-clusters: In the left column
are shown true sub-cluster visualizations, and in the right column are visualizations of sub-clusters
of random neurons of the same size in the same layer. (a) MLP, MNIST; (b) CNN, MNIST; (c)
CNN-VGG, CIFAR-10; (d) VGG-16, ImageNet; (e) VGG-19, ImageNet.

Table 2: Comparison for different cluster number values in CNN-VGG networks for lesion-based
experiments. Results are shown for k ∈ {8, 12, 16}. Each Fisher-Bates p value which is significant
under the Benjamini Hochberg multiple correction at α = 0.05 is bold. An effect measure > 1
corresponds to more importance/coherence among true subclusters than random ones. All above 1
are bold.

Importance: Acc. Drop Coherence: Class Range
Network Partitioning p Value Effect Meas. p Value Effect Meas.
k High→Imp. High→Coh.

Weight/Global 2.33× 10−12 0.912 4.25× 10−14 0.430
VGG, CIFAR-10 Weight/Local 0.266 0.851 0.021 0.869
k = 8 Act./Global 2.55× 10−10 0.969 0.578 0.764

Act./Local 1.06× 10−21 1.055 0.866 0.772
Weight/Global 4.06× 10−8 0.739 1.64× 10−15 0.632

VGG, CIFAR-10 Weight/Local 0.204 0.873 0.101 0.795
k = 12 Act./Global 2.70× 10−13 0.903 0.134 0.741

Act./Local 6.30× 10−17 0.994 0.759 0.720
Weight/Global 4.40× 10−8 0.682 2.44× 10−29 0.407

VGG, CIFAR-10 Weight/Local 0.021 0.808 2.24× 10−4 0.692
k = 16 Act./Global 1.62× 10−11 0.926 0.845 0.679

Act./Local 2.26× 10−23 0.956 0.266 0.695

A.8 FULL TABULAR DATA

Tables 4 (lesion experiments data) and 5 (feature visualization experiment data) show the p value
results from Figure 3 and effect measure results from Table 1 but do so in a form that places the
Fisher-Bates p value and effect measure data from each network in the same row. All Fisher-
Bates p values significant according to the Benjamini Hochberg method are in bold, and all effect
measures indicating greater average importance/coherence among true subclusters compared to
random subclusters are in bold.

17



Under review as a conference paper at ICLR 2022

Table 3: Comparison for different cluster values in CNN-VGG networks for feature visualization-
based experiments. Tesults are shown for k ∈ 8, 12, 16. Each Fisher-Bates p value which is significant
at α = 0.05 level under the Benjamini Hochberg multiple correction is bold. For vis score tests, an
effect measure > 1 corresponds to more coherence, and for softmax H tests, one of < 1 corresponds
to more coherence. All effect measures on the size of 1 indicating more coherence are bold

Coherence: Vis Score Coherence: Softmax H
Network Partitioning p Value Effect Meas. p Value Effect Meas.
k High→Coh. Low→Coh.

Weight/Global 5.85× 10−12 1.011 0.032 1.028
VGG, CIFAR-10 Weight/Local 0.939 0.974 0.784 1.059
k = 8 Act./Global 1.58× 10−57 1.345 0.368 0.940

Act./Local 8.11× 10−70 1.358 0.179 0.946
Weight/Global 3.71× 10−9 0.959 0.917 1.106

VGG, CIFAR-10 Weight/Local 0.732 0.993 0.089 0.945
k = 12 Act./Global 2.96× 10−78 1.363 0.065 0.917

Act./Local 1.57× 10−102 1.364 0.041 0.928
Weight/Global 6.98× 10−8 0.871 0.613 1.124

VGG, CIFAR-10 Weight/Local 0.442 1.013 0.616 0.992
k = 16 Act./Global 5.59× 10−64 1.327 0.045 0.950

Act./Local 7.79× 10−121 1.379 0.013 0.930

Table 4: Results for lesion-based experiments in networks involving importance as measured through
overall accuracy drops and coherence as measured by the class-wise range of accuracy drops. Each
row corresponds to a network paired with a partitioning method. Results are calculated as explained
in Section 3.2. Each Fisher-Bates p value which is significant at an α = 0.05 level under the
Benjamini Hochberg multiple correction is in bold. In this case, significance means p ≤ 0.025. For
both accuracy drop and classwise range experiments, an effect measure > 1 corresponds to more
importance/coherence among true subclusters than random ones. All such effect measures which are
further than two standard errors above 1 are in bold.

Importance: Acc. Drop Coherence: Class Range
Network Partitioning p Value Effect Meas. p Value Effect Meas.

High→Imp. High→Coh.

MLP, MNIST

Weight/Global 1.19× 10−17 1.123± 0.058 0.817 0.701± 0.036
Weight/Local 5.18× 10−27 1.061± 0.048 0.914 0.676± 0.029
Act./Global 2.36× 10−11 0.883± 0.038 0.556 0.646± 0.024
Act./Local 5.80× 10−22 0.929± 0.040 0.315 0.687± 0.025

CNN, MNIST

Weight/Global 1.64× 10−5 0.837± 0.048 0.984 0.527± 0.031
Weight/Local 0.063 0.814± 0.046 0.821 0.635± 0.033
Act./Global 3.52× 10−10 1.078± 0.061 1.000 0.543± 0.039
Act./Local 1.56× 10−7 0.939± 0.060 0.841 0.625± 0.043

VGG, CIFAR-10

Weight/Global 4.40× 10−8 0.682± 0.066 2.44× 10−29 0.407± 0.042
Weight/Local 0.021 0.808± 0.041 2.24× 10−4 0.692± 0.033
Act./Global 1.62× 10−11 0.926± 0.032 0.845 0.679± 0.023
Act./Local 2.26× 10−23 0.956± 0.030 0.266 0.695± 0.021

VGG16, ImageNet

Weight/Global 9.44× 10−26 1.245± 0.042 1.000 0.763± 0.040
Weight/Local 2.35× 10−52 1.166± 0.019 1.000 0.823± 0.020
Act./Global 1.84× 10−25 1.154± 0.026 1.000 0.838± 0.028
Act./Local 1.55× 10−27 1.084± 0.020 1.000 0.879± 0.021

ResNet18, ImageNet

Weight/Global 0.002 0.915± 0.045 0.061 0.957± 0.047
Weight/Local 3.57× 10−6 0.970± 0.015 0.743 0.970± 0.016
Act./Global 5.94× 10−6 0.972± 0.016 0.956 0.970± 0.018
Act./Local 1.18× 10−10 0.983± 0.014 0.958 0.967± 0.015

18



Under review as a conference paper at ICLR 2022

Table 5: Results for feature visualization-based experiments in networks involving coherence as
measured by the optimization score of feature visualizations and the entropy of network outputs.
Each row corresponds to a network paired with a partitioning method. Results are calculated as
explained in Section 3.2. Each Fisher-Bates p value which is significant at an α = 0.05 level under
the Benjamini Hochberg multiple correction is in bold. In this case, significance means p ≤ 0.025.
For visualization score experiments, an effect measure > 1 corresponds to more coherence among
true subclusters than random ones, while one of < 1 does for softmax entropy experiments. All
effect measures which are more than two standard errors away from 1 on the size reflecting greater
coherence among true subclusters are in bold

Coherence: Vis Score Coherence: Softmax H
Network Partitioning p Value Effect Meas. p Value Effect Meas.

High→Coh. Low→Coh.

MLP, MNIST

Weight/Global 0.001 1.003± 0.004 0.707 1.105± 0.021
Weight/Local 0.002 1.024± 0.004 0.023 0.931± 0.016
Act./Global 4.45× 10−5 1.020± 0.003 0.025 0.997± 0.013
Act./Local 8.94× 10−7 1.026± 0.003 0.013 1.011± 0.012

CNN, MNIST

Weight/Global 0.082 0.998± 0.004 0.863 1.026± 0.008
Weight/Local 0.344 1.004± 0.003 0.519 1.007± 0.007
Act./Global 0.266 0.933± 0.006 0.831 1.025± 0.011
Act./Local 0.219 0.925± 0.005 0.668 0.970± 0.010

VGG, CIFAR-10

Weight/Global 6.98× 10−8 0.871± 0.011 0.613 1.124± 0.012
Weight/Local 0.442 1.013± 0.006 0.616 0.992± 0.012
Act./Global 5.59× 10−64 1.327± 0.005 0.045 0.950± 0.009
Act./Local 7.79× 10−121 1.379± 0.004 0.013 0.930± 0.008

VGG-16, ImageNet

Weight/Global 5.50× 10−8 1.043± 0.005 0.052 0.998± 0.001
Weight/Local 2.52× 10−39 1.076± 0.003 0.155 0.991± 0.001
Act./Global 2.65× 10−15 1.066± 0.003 0.208 1.000± 0.001
Act./Local 1.36× 10−34 1.056± 0.003 0.633 1.001± 0.001

VGG-19, ImageNet

Weight/Global 1.87× 10−10 1.061± 0.004 0.398 1.003± 0.001
Weight/Local 3.69× 10−81 1.099± 0.003 0.458 1.001± 0.001
Act./Global 6.01× 10−22 1.046± 0.003 0.089 0.996± 0.001
Act./Local 2.63× 10−27 1.081± 0.002 0.645 1.004± 0.001

19


	Introduction
	Related Work
	Methods
	Generating Partitions with Spectral Clustering
	Analysis Pipeline

	Experiments
	Lesion Experiments
	Feature Visualization Experiments
	Findings

	Discussion
	Appendix
	Spectral Clustering Algorithm
	Network Training Details
	Pipeline - Second Part
	Correlation-Based Visualization
	Feature Visualization
	Robustness to the Choice of Cluster Number
	Multiple Testing Corrections
	Full Tabular Data


