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Abstract

Single-call stochastic extragradient methods, like stochastic past extragradient
(SPEG) and stochastic optimistic gradient (SOG), have gained a lot of interest in
recent years and are one of the most efficient algorithms for solving large-scale min-
max optimization and variational inequalities problems (VIP) appearing in various
machine learning tasks. However, despite their undoubted popularity, current
convergence analyses of SPEG and SOG require strong assumptions like bounded
variance or growth conditions. In addition, several important questions regarding
the convergence properties of these methods are still open, including mini-batching,
efficient step-size selection, and convergence guarantees under different sampling
strategies. In this work, we address these questions and provide convergence
guarantees for two large classes of structured non-monotone VIPs: (i) quasi-
strongly monotone problems (a generalization of strongly monotone problems) and
(ii) weak Minty variational inequalities (a generalization of monotone and Minty
VIPs). We introduce the expected residual condition, explain its benefits, and show
how it allows us to obtain a strictly weaker bound than previously used growth
conditions, expected co-coercivity, or bounded variance assumptions. Finally, our
convergence analysis holds under the arbitrary sampling paradigm, which includes
importance sampling and various mini-batching strategies as special cases.

1 Introduction

Differentiable game formulations where several parameterized models/players compete to minimize
their respective objective functions have recently gained much attention from the machine learning
community. Some landmark advances in machine learning that are framed as games (or in their
simplified form as min-max optimization problems) are Generative Adversarial Networks (GANs) [19,
2], adversarial training of neural networks [46, 72], reinforcement learning [9, 64], and distributionally
robust learning [51, 73].

In this work, we consider a more abstract formulation of the problem and focus on solving the
following unconstrained stochastic variational inequality problem (VIP):

Find x∗ ∈ Rd : such that F (x∗) =
1

n

n∑
i=1

Fi(x
∗) = 0 (1)

where each Fi : Rd → Rd is a Lipschitz continuous operator. Problem (1) generalizes the solution of
several types of stochastic smooth games [16, 44, 20, 7]. The simplest example is the unconstrained
min-max optimization problem (also called a zero-sum game):

min
x1∈Rd1

max
x2∈Rd2

1

n

n∑
i=1

gi(x1, x2) , (2)
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where each component function gi : Rd1 × Rd2 → R is assumed to be smooth. In this scenario,
operator Fi of (1) represents the appropriate concatenation of the block-gradients of gi: Fi(x) :=
(∇x1gi(x1, x2);−∇x2gi(x1, x2)), where x := (x1;x2). Solving (1) then amounts to finding a
stationary point x∗ = (x∗

1;x
∗
2) for (2), which under a convex-concavity assumption for gi, implies

that it is a global solution for the min-max problem.

However, in modern machine learning applications, game-theoretical formulations that are special
cases of problem (1) are rarely monotone. That is, the min-max optimization problem (2) does not
satisfy the popular and well-studied convex-concave setting. For this reason, the ML community
started focusing on non-monotone problems with extra structural properties.1 In this work, we
focus on such settings (structured non-monotone operators) for which we are able to provide tight
convergence guarantees and avoid the standard issues (like cycling and divergence of the methods)
appearing in the more general non-monotone regime. In particular, we focus on understanding
and efficiently analyze the performance of single-call extragradient methods for solving (i) µ-quasi-
strongly monotone VIPs [44, 6] and (ii) weak Minty variational inequalities [14, 33].

Classes of structured non-monotone VIPs. Throughout this work we assume that operator F in
(1) is L- Lipschitz i.e. ∀x, y ∈ Rd operator F satisfy ∥F (x)− F (y)∥ ≤ L∥x− y∥.

As we have already mentioned, in this work, we deal with two classes of structured non-monotone
problems: the µ-quasi strongly monotone VIPs and the weak Minty variational inequalities.

Definition 1.1. F is said to be µ-quasi strongly monotone if there is µ > 0 such that:

∀x ∈ Rd ⟨F (x), x− x∗⟩ ≥ µ∥x− x∗∥2. (3)

Condition (3) is a relaxation of µ-strong monotonicity, and it includes several non-monotone games
as special cases [44]. Inequality (3) can be seen as an extension of the popular quasi-strong convexity
assumption from optimization literature [53, 25] to the VIPs [44]. In the literature of variational
inequality problems, quasi strongly monotone problems are also known as strong coherent VIPs [66]
or VIPs satisfying the strong stability condition [47], or strong Minty variational inequality [14].

One of the weakest possible assumptions on the structure of non-monotone VIPs is the weak Minty
variational inequality [14].

Definition 1.2. We say weak Minty Variational Inequality (MVI) holds for F if for some ρ > 0 :

∀x ∈ Rd ⟨F (x), x− x∗⟩ ≥ −ρ∥F (x)∥2. (4)

To the best of our knowledge, the weak Minty variational inequality (4) as an assumption was first
introduced in [14]. The more popular and extensively studied Minty variational inequality [12, 37,
38, 48] is a particular case of (4) with ρ = 0. In addition, the weak MVI condition is implied by the
negative comonotonicity [4] or, equivalently, the positive cohypomonotonicity [11]. Finally, when we
focus on min-max optimization problems (2), weak MVI condition (with ρ = 0) is satisfied for several
non-convex non-concave families of min-max objectives, including quasi-convex quasi-concave or
star convex- star concave [20]. Extragradient-type methods for solving VIPs satisfying the weak MVI
have been proposed in [14, 54] and [8].

1.1 Main Contributions
Our main contributions are summarized below.

• Expected Residual. We propose the expected residual (ER) condition for stochastic variational
inequality problems (1). We explain the benefits of ER and show how it can be used to derive an
upper bound on E∥g(x)∥2 (see Lemma 3.2) that it is strictly weaker than the bounded variance
assumption and “growth conditions” previously used for the analysis of stochastic algorithms for
solving (1). We prove that ER holds for a large class of operators, i.e., whenever Fi of (1) are
Lipschitz continuous.

• Novel Convergence Guarantees. We prove the first convergence guarantees for SPEG (7) in
the quasi-strongly monotone (3) and weak MVI (4) cases without using the bounded variance

1The computation of approximate first-order locally optimal solutions for general non-monotone problems
(without extra structure) is intractable. See [13] and [14] for more details.
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Table 1: Summary of known and new convergence results for versions of SEG and SPEG with constant step-sizes applied to solve
quasi-strongly monotone variational inequalities and variational inequalities with operators satisfying Weak Minty condition. Columns: “Setup”
= quasi-strongly monotone or Weak MVI; “No UBV?” = is the result derived without bounded variance assumption?; “Single-call” = does the
method require one oracle call per iteration?; “Convergence rate” = rate of convergence neglecting numerical factors. Notation: K = number
of iterations; Lmax = maxi∈[n] Li, where Li is a Lipschitz constant of Fi; µ = 1

n

∑n
i=1 µi, where µi is quasi-strong monotonicity

constant of Fi (see details in [20]); σ2
US∗ = 1

n

∑n
i=1 ∥Fi(x

∗)∥2; L = 1
n

∑n
i=1 Li; σ2

IS∗ = 1
n

∑n
i=1

L
Li

∥Fi(x
∗)∥2; L = Lipschitz

constant of F ; µ = quasi-strong monotonicity constant of F ; δ, σ2
∗ = parameters from (8); ρ = parameter from Weak Minty condition; τ =

batchsize.

Setup Method No UBV? Single-call? Convergence rate

Quasi-strong mon.

S-SEG-US
[20] ✓(1) ✗ Lmax

µ exp
(
− µ

Lmax
K
)
+

σ2
US∗

µ2K

S-SEG-IS
[20] ✓(1) ✗ L

µ exp
(
− µ

L
K
)
+

σ2
IS∗

µ2K

SPEG
[28] ✗(2) ✓ L

µ exp
(
− µ

LK
)
+

σ2
∗

µ2K

(3)

SPEG
(This work) ✓ ✓ max

{
L
µ , δ

µ2

}
exp

(
−min

{
µ
L , µ2

δ

}
K
)
+

σ2
∗

µ2K

Weak MVI(4)

SEG+
[14] ✗(2) ✗

L2∥x0−x∗∥2

K(1−8
√

2Lρ)
+

σ2
∗

τ(1−8
√

2Lρ)

(5)

OGDA+
[8] ✗(2) ✓

∥x0−x∗∥2
Kac(a−ρ)

+
σ2
∗

τL2ac(a−ρ)

(6)

SPEG
(This work) ✓ ✓

(
1+

48ωγδ

τ(1−Lγ)2

)K
∥x0−x∗∥2

Kωγ(1−L(γ+4ω))
+

(
1+

1−Lγ
K

(
1+

48ωγδ

τ(1−Lγ)2

)K)
σ2
∗

τ(1−Lγ)(1−L(γ+4ω))
(7)

(1) Quasi-strong monotonicity of all Fi is assumed.
(2) It is assumed that (8) holds with δ = 0.
(3) [28] do not derive this result but it can be obtained from their proof using standard choice of step-sizes.
(4) All mentioned results in this case require large batchsizes τ = O(K) to get O(1/K) rate.
(5) The result is derived for ρ < 1/8

√
2L.

(6) The result is derived for ρ < 3/8L. Here a and c are assumed to satisfy aL ≤ 7−
√

1+48c2

8(1+c)
, c > 0 and a > ρ.

(7) The result is derived for ρ < 1/2L. Here we assume that max{2ρ, 1/(2L)} < γ < 1/L and 0 < ω < min{γ − 2ρ, (4−γL)/4L}.

assumption. We achieve that by using the proposed (ER) condition. In particular, for the class of
quasi-strongly monotone VIPs, we show a linear convergence rate to a neighborhood of x∗ when
constant step-sizes are used. We also provide theoretically motivated step-size switching rules that
guarantee exact convergence of SPEG to x∗. In the weak MVI case, we prove the convergence
of SPEG for ρ < 1/2L, improving the existing restrictions on ρ. We compare our results with the
existing literature in Table 1.

• Arbitrary Sampling. Via a stochastic reformulation of the variational inequality problem (1) we
explain how our convergence guarantees of SPEG hold under the arbitrary sampling paradigm.
This allows us to cover a wide range of samplings for SPEG that were never considered in the
literature before, including mini-batching, uniform sampling, and importance sampling as special
cases. In this sense, our analysis of SPEG is unified for different sampling strategies. Finally, to
highlight the tightness of our analysis, we show that the best-known convergence guarantees of
deterministic PEG for strongly monotone and weak MVI can be obtained as special cases of our
main theorems.

2 Stochastic Reformulation of VIPs & Single-Call Extragradient Methods

In this work, we provide a theoretical analysis of single-call stochastic extragradient methods that
allows us to obtain convergence guarantees of any minibatch and reasonable sampling selection. We
achieve that by using the recently proposed “stochastic reformulation” of the variational inequality
problem (1) from [44]. That is, to allow for any form of minibatching, we use the arbitrary sampling
notation

g(x) = Fv(x) :=
1

n

n∑
i=1

viFi(x), (5)

where v ∈ Rn
+ is a random sampling vector drawn from a user-defined distribution D such that

ED[vi] = 1, for i = 1, . . . , n. In this setting, the original problem (1) can be equivalently written as,

Find x∗ ∈ Rd : ED

[
Fv(x

∗) :=
1

n

n∑
i=1

viFi(x
∗)

]
= 0, (6)

where the equivalence trivially holds since ED[Fv(x)] =
1
n

∑n
i=1 ED[vi]Fi(x) = F (x).
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In this work, we consider Stochastic Past Extragradient Method (SPEG) applied to (6):

x̂k = xk − γkFvk−1
(x̂k−1)

xk+1 = xk − ωkFvk(x̂k)
(7)

where x̂−1 = x0 and vk ∼ D is sampled i.i.d at each iteration and γk > 0 and ωk > 0 are the
extrapolation step-size and update step-size respectively. We note that in our convergence analysis,
we allow selecting any distribution D that satisfies ED[vi] = 1 ∀i. This means that for a different
selection of D, (7) yields different interpretations of SPEG for solving the original problem (1).

One example of distribution D is τ–minibatch sampling, which is defined as follows.

Definition 2.1 (τ -Minibatch sampling). Let τ ∈ [n]. We say that v ∈ Rn is a τ–minibatch sampling
if for every subset S ∈ [n] with |S| = τ , we have that P

[
v = n

τ

∑
i∈S ei

]
:= 1

(nτ)
= τ !(n−τ)!

n! .

By using a double counting argument, one can show that if v is a τ–minibatch sampling, it is also
a valid sampling vector (ED[vi] = 1) [25]. We highlight that our analysis holds for every form of
minibatching and for several choices of sampling vectors v. Later in Section 5, we provide more
details related to non-uniform sampling. In addition, by Definition 2.1, it is clear that if τ = n, then
vi = 1 for all i ∈ [n]. Later in Section 4, we prove how our analysis captures the deterministic Past
Extragradient Method as a special case.

In [44], an analysis of stochastic gradient descent-ascent (xk+1 = xk − ωkFvk(xk)) under the
arbitrary sampling paradigm was proposed for solving star-co-coercive VIPs. Later [20], extended
this approach and provided general convergence guarantees for stochastic extragradient method
(SEG) (a stochastic variant of the popular extragradient method [32, 30]) for solving quasi-strongly
monotone and monotone VIPs. Despite its popularity, SEG requires two oracle calls per iteration
which makes it prohibitively expensive in many large-scale applications and not easily applicable to
the online learning problems [18]. This motivates us to explore in detail the convergence guarantees
of single-call variants of extragradient methods (extragradient methods that require only a single
oracle call per iteration).

On Single-Call Extragradient Methods. The seminal work of [56] is the first paper that proposes
the deterministic Past Extagradient method. In the stochastic setting, [28] provides an analysis of
several stochastic single-call extragradient methods for solving strongly monotone VIPs. In [28], it
was also shown that in the unconstrained setting, the update rules of Past Extragradient and Optimistic
Gradient are exactly equivalent (see also Proposition B.6 in appendix). Through this connection, and
via our stochastic reformulation (6) our theoretical results hold also for the Stochastic Optimistic
Gradient Method (SOG): xk+1 = xk − ωkFvk(xk) − γk(Fvk(xk) − Fvk−1

(xk−1)). [8] provides
the convergence guarantees of SOG for weak MVI. To the best of our knowledge, our work is the
first that provides convergence guarantees for SOG under the arbitrary sampling paradigm (captures
sampling beyond uniform sampling) and also without using the bounded variance assumption.

3 Expected Residual

In our theoretical results, we rely on Expected Residual (ER) condition. In this section, we define ER
and explain how it is connected with similar conditions used in optimization literature. We further
provide sufficient conditions for ER to hold and prove how it can be used to obtain a strictly weaker
upper bound of E∥g(x)∥2 than previously used growth conditions, expected co-coercivity, or bounded
variance assumptions.

Assumption 3.1. We say the Expected Residual (ER) condition holds if there is a parameter δ > 0
such that for an unbiased estimator g(x) of the operator F , we have

E
[
∥(g(x)− g(x∗))− (F (x)− F (x∗))∥2

]
≤ δ

2
∥x− x∗∥2. (ER)

The ER condition bounds how far the stochastic estimator g(x) = Fv(x) (5) used in SPEG is from
the true operator F (x). ER depends on both the properties of the operator F (x) and of the selection
of sampling (via g(x)). Conditions similar to ER appeared before in optimization literature but they
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have never been used in operator theory and the analysis of SPEG. In particular, [24] used a similar
condition for analyzing SGD in stochastic optimization problems but with the right-hand side of
ER to be the function suboptimality f(x)− f(x∗) (such concept is not available in VIPs). In [68]
and [22], similar conditions appear under the name “Hessian variance” assumption for distributed
minimization problems. In the context of distributed VIPs, a similar but stronger condition to ER is
used by [5].

Bound on Operator Noise. A common approach for proving the convergence of stochastic algo-
rithms for solving the VIPs is assuming uniform boundedness of the stochastic operator or uniform
boundedness of the variance. However, as we explain below, these assumptions either do not hold or
are true only for a restrictive set of problems. In our work, we do not assume such bounds. Instead,
we use the following direct consequence of ER.

Lemma 3.2. Let σ2
∗ := E∥g(x∗)∥2 < ∞ (operator noise at the optimum is finite). If ER holds,

then

E∥g(x)∥2 ≤ δ∥x− x∗∥2 + ∥F (x)∥2 + 2σ2
∗. (8)

Sufficient Conditions for ER. Let us now provide sufficient conditions which guarantee that the
ER condition holds and give a closed-form expression for the expected residual parameter δ and
σ2
∗ = E∥g(x∗)∥2 for the case of τ -minibatch sampling (Def. 2.1).

Proposition 3.3. Let Fi of problem (1) be Li-Lipschitz operators, then ER holds. If, in addition,
vector v ∈ Rn is a τ–minibatch sampling (Def. 2.1) then: δ = 2

nτ
n−τ
n−1

∑n
i=1 L

2
i , and σ2

∗ =
1
nτ

n−τ
n−1

∑n
i=1 ∥Fi(x

∗)∥2.

Similar results to Prop. 3.3 but under different sufficient conditions have been obtained for τ–
minibatch sampling under expected smoothness and a variant of expected residual for solving
minimization problems in [25] and [24] respectively. In [44], a similar proposition was derived but
for the much more restrictive class of co-coercive operators.

Connection to Other Assumptions. In the proofs of our convergence results, we use the bound (8),
which, as we explained above, is a direct consequence of ER. In this paragraph, we place this bound
in a hierarchy of common assumptions used for the analysis of stochastic algorithms for solving
VIPs. In the literature on stochastic algorithms for solving the VIPs and min-max optimization
problems, previous works assume either bounded operator (E∥g(x)∥2 ≤ c) [1, 52], bounded variance
(E∥g(x)− F (x)∥2 ≤ c) [35, 69, 30] (in Appendix C we provide a simple example where bounded
variance assumption does not hold) or growth condition (E∥g(x)∥2 ≤ c1∥F (x)∥2 + c2) [36]. In all
of these conditions, the parameters c, c1, and c2 are usually constants that do not have a closed-form
expression. The closer works to our results are [44, 6] which assumes existence of lF > 0 such
that the expected co-coercivity condition (E∥g(x) − g(x∗)∥2 ≤ lF ⟨F (x), x− x∗⟩) holds. Their
convergence guarantees provide an efficient analysis for several variants of SGDA for solving co-
coercive VIPs. In the proposition below, we prove how these conditions are related to the bound (8)
obtained using ER.

Proposition 3.4. Suppose F is a L-Lipschitz operator. Then we have the following hierarchy of
assumptions:

Bounded Operator Bounded Variance Growth Condition (8)

Fi are Li-Lipschitz (ER)

Expected Cocoercivity

Let us also mention that [29] provided convergence guarantee of double-oracle stochastic extragra-
dient (SEG) method under the variance control condition E∥g(x)− F (x)∥2 ≤ (a∥x− x∗∥+ b)2

where a, b ≥ 0. In their work, they focus on solving VIPs satisfying the error-bound condition, and
they did not provide closed-form expressions of parameters a and b. Although the analysis of [29]
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can be conducted with a > 0, the authors only provide rates for the case a = 0. The main difference
between their results (for SEG) and our results (for SPEG) is that our bound (8) is not really an
assumption, but it holds for free when Fi are Li-Lipschitz. In addition, the values of parameters δ
and σ2

∗ in (8) could have different values based on the sampling used in the update rule of SPEG.

4 Convergence Analysis

In this section, we present and discuss the main convergence results of this work. In the first part,
we focus on the ones derived for µ-quasi strongly monotone problems (3) (both for constant and
decreasing step-sizes), and in the second part on the Weak Minty VIP (4).

4.1 Quasi-Strongly Monotone Problems

Constant Step-size: We start with the case of µ-quasi strongly monotone problems and consider
the convergence of SPEG with constant step-size.

Theorem 4.1. Let F be L-Lipschitz, µ-quasi strongly monotone, and let ER hold. Choose step-
sizes γk = ωk = ω such that

0 < ω ≤ min

{
µ

18δ
,
1

4L

}
(9)

for all k. Then the iterates produced by SPEG, given by (7) satisfy

R2
k ≤

(
1− ωµ

2

)k
R2

0 +
24ωσ2

∗
µ

, (10)

where R2
k := E

[
∥xk − x∗∥2 + ∥xk − x̂k−1∥2

]
. Hence, given any ε > 0, and choos-

ing ω = min
{

µ
18δ ,

1
4L ,

εµ
48σ2

∗

}
, SPEG achieves E∥xK − x∗∥2 ≤ ε after K ≥

max

{
8L
µ , 36δ

µ2 ,
96σ2

∗
εµ2

}
log

(
2R2

0

ε

)
iterations.

To the best of our knowledge, the above theorem is the first result on the convergence of SPEG that
does not rely on the bounded variance assumption. Theorem 4.1 recovers the same rate of convergence
with the Independent-Samples SEG (I-SEG) under assumption (8) [20], although [20] simply assume
(8), while we show that it follows from Assumption 3.1 holding whenever all summands Fi are
Lipschitz. However, in the case when all Fi are µ-quasi strongly monotone and Li-Lipschitz (on
average), one can use Same-Sample SEG (S-SEG). The existing results for S-SEG have better
exponentially decaying term [49, 20] then Theorem 4.1, e.g., in the case when Li = L for all i ∈ [n],
we have δ = O(L2) meaning that the exponentially decaying term in (10) is O(R2

0 exp(−µ2k/L2))),
while S-SEG has much better exponentially decaying term O(R2

0 exp(−µk/L))).

Such a discrepancy can be partially explained by the following fact: S-SEG can be seen as one
step of deterministic Extragradient for stochastic operator Fvk allowing to use one-iteration analysis
of Extragradient without controlling the variance. In contrast, there is no version of SPEG that
uses the same sample for extrapolation and update steps. This forces to use different samples for
these steps and this is a key reason why SPEG cannot be seen as one iteration of deterministic
Past-Extragradient for some operator. Due to this, we need to rely on some bound on the variance to
handle the stochasticity in the updates; see also [20, Appendix F.1]. Therefore, in our analysis, we
use Assumption 3.1, implying (8). Nevertheless, it is still an open question whether it is possible to
improve the rate of SPEG in the case of µ-quasi strongly monotone and Lipschitz operators Fi.

To highlight the generality of Theorem 4.1, we note that for the deterministic PEG, δ = 0 and σ2
∗ = 0

(by selecting τ = n in the definition 2.1 of minibatch sampling). In this case, Theorem 4.1 recovers
the well-known result (up to 1/2 factor in the rate) for deterministic PEG proposed in [17] as shown
in the following corollary.

Corollary 4.2. Let the assumptions of Theorem 4.1 hold and a deterministic version of SPEG is
considered, i.e., δ = 0, σ2

∗ = 0. Then, Theorem 4.1 implies that for all k ≥ 0 the iterates produced

6



by SPEG with step-sizes γk = ωk = ω such that 0 < ω ≤ 1
4L satisfy R2

k ≤
(
1− ωµ

2

)k
R2

0, where
R2

k := ∥xk − x∗∥2 + ∥xk − x̂k−1∥2.

Decreasing Step-size: In this section, we consider two different decreasing step-sizes policies for
SPEG applied to solve quasi-strongly monotone problems.

Theorem 4.3. Let F be L-Lipschitz, µ-quasi strongly monotone, and Assumption 3.1 hold. Let

γk = ωk :=

{
ω̄, if k ≤ k∗,
2k+1
(k+1)2

2
µ , if k > k∗,

(11)

where ω̄ := min {1/(4L), µ/(18δ)} and k∗ = ⌈4/(µω̄)⌉. Then for all K ≥ k∗ the iterates produced by
SPEG with step-sizes (11) satisfy

R2
K ≤

(
k∗

K

)2
R2

0

exp(2)
+

192σ2
∗

µ2K
, (12)

where R2
K := E

[
∥xK − x∗∥2 + ∥xK − x̂K−1∥2

]
.

SPEG with step-size policy2 (11) has two stages of convergence: during first k∗ iterations it uses
constant step-size to reach some neighborhood of the solution and then the method switches to the
decreasing O(1/k) step-size allowing to reduce the size of the neighborhood.

For the case of strongly monotone problems (a special case of our quasi-strongly monotone setting)
[28] also analyze SPEG with decreasing O(1/k) step-size3 under bounded variance assumption, i.e.,
when (8) holds with δ = 0 and some σ2

∗ ≥ 0, which is equivalent to the uniformly bounded variance
assumption. In particular, Theorem 5 [28] states E

[
∥xK − x∗∥2

]
≤ Cσ2

∗
µ2K + o

(
1
K

)
where C is some

numerical constant. If the problem is strongly monotone, the result of [28] is closely related to what
is obtained in Theorem 4.3: the main difference in the upper-bound is that we provide an explicit
form of o (1/K) term. Moreover, in contrast to the result from [28], Theorem 4.3 holds even when
δ > 0 in (8), which covers a larger class of problems.

Following [67, 20, 6], we also consider another decreasing step-size policy.

Theorem 4.4. Let F be L-Lipschitz, µ-quasi strongly monotone, and Assumption 3.1 hold. Let
ω̄ := min {1/(4L), µ/(18δ)}. If for K ≥ 0 step-sizes {γk}k≥0, {ωk}k≥0 satisfy γk = ωk and

ωk :=


ω̄, if K ≤ 2

µω̄ ,

ω̄, if K > 2
µω̄ and k ≤ k0,

2
2
ω̄+µ

2 (k−k0)
, if K > 2

µω̄ and k > k0

(13)

where k0 = ⌈K/2⌉, then the iterates produced by SPEG with the step-sizes defined above satisfy

R2
K ≤ 64R2

0

ω̄µ
exp

{
−min

{
µ

16L
,
µ2

72δ

}
K

}
+

1728σ2
∗

µ2K
, (14)

where R2
K := E

[
∥xK − x∗∥2 + ∥xK − x̂K−1∥2

]
.

In contrast to (12), the rate from (14) has much better (exponentially decaying) o (1/K) term. When
σ2
∗ is large and one needs to achieve very good accuracy of the solution, this difference is negligible,

since the dominating O(1/K) term is the same for both bounds (up to numerical factors). However,
when σ2

∗ is small enough, e.g., the model is close to over-parameterized, or it is sufficient to achieve
low accuracy of the solution, the dominating term in (14) is typically much smaller than the one
from (12). Finally, it is worth mentioning, that the improvement of o (1/K) is not achieved for free:
unlike the policy from (11), step-size rule (13) relies on the knowledge of the total number of steps
K, which can be inconvenient for the practical use in some cases.

2Similar step-size policy is used for SGD [25] and SGDA [44].
3We point out the proof by [28] can be generalized to the case of constant step-size, though the authors do

not consider this step-size schedule explicitly.
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4.2 Weak Minty Variational Inequality Problems

In this subsection we will discuss convergence of Stochastic Past Extragradient method for Minty
Variational Inequality problem. To solve the Minty variational inequality problem we use different
step-sizes for SPEG iterates (7).

Theorem 4.5. Let F be L-Lipschitz and satisfy Weak Minty condition with parameter ρ < 1/(2L).
Let Assumption 3.1 hold. Assume that γk = γ, ωk = ω such that max

{
2ρ, 1

2L

}
< γ < 1

L and
0 < ω < min

{
γ − 2ρ, 1

4L − γ
4

}
. Then, for all K ≥ 2 the iterates produced by mini-batched

SPEG with batch-size

τ ≥ max

{
1,

32δ

(1− Lγ)L3ω
,
48ωγδ(K − 1)

(1− Lγ)2
,

2ωγσ2
∗(K − 1)

(1− Lγ)∥x0 − x∗∥2

}
(15)

satisfy min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ C∥x0−x∗∥2

K−1 , where C = 48
ωγ(1−L(γ+4ω)) .

The above result establishes O(1/K) convergence with O(K) batchsizes for SPEG applied to
problems satisfying Weak Minty condition.4 The closest result is obtained by [8], for the same
method under bounded variance assumption, i.e., when δ = 0. In particular, the result of [8] also
gives O(1/K) rate and requires O(K) batchsizes at each step. We extend this result to the case of
non-zeroth δ and we also improve the assumption on ρ: [8] assumes that ρ < 3/8L, while Theorem 4.5
holds for ρ < 1/2L. The bound on ρ cannot be improved even in the deterministic case [23]. Moreover,
it is worth mentioning that the proof of Theorem 4.5 noticeably differs from the one obtained by [8].

In the case of a deterministic oracle, we recover the best-known result for Optimistic Gradient in the
Weak Minty setup [8, 23].

Corollary 4.6. Let the assumptions of Theorem 4.5 hold and deterministic version of SPEG is
considered, i.e., δ = 0, σ2

∗ = 0. Then, Theorem 4.5 implies that for all k ≥ 0 the iterates produced
by SPEG with step-sizes max

{
2ρ, 1

2L

}
< γ < 1

L and 0 < ω < min
{
γ − 2ρ, 1

4L − γ
4

}
satisfy

min
0≤k≤K−1

∥F (x̂k)∥2 ≤ C∥x0−x∗∥2

K−1 , where C = 48
ωγ(1−L(γ+4ω)) .

5 Beyond Uniform Sampling

In this section, we illustrate the generality of our analysis by focusing on the non-uniform sam-
pling. In particular, we focus on single-element sampling in which only the singleton sets {i} for
i = {1, . . . , n} have a non-zero probability of being sampled; that is, P [|S| = 1] = 1. We have
P [v = ei/pi] = pi. [25] proved that if v is a single-element sampling, it is also a valid sampling
vector (ED[vi] = 1). With the following proposition, we provide closed-form expressions for the ER
parameter δ and σ2

∗ = E∥g(x∗)∥2 for the case of (non-uniform) single-element sampling.

Proposition 5.1. Let Fi of problem (1) be Li-Lipschitz operators. If, vector v ∈ Rn is a single
element sampling then δ = 2

n2

∑n
i=1

L2
i

pi
and σ2

∗ = 1
n2

∑n
i=1

1
pi
∥Fi(x

∗)∥2.

Importance Sampling. In importance sampling we aim to choose the probabilities pi that optimize
the iteration complexity. [25] and [20] analyze importance sampling for SGD and SEG respectively.
In this work, we provide the first convergence guarantees of SPEG with importance sampling. In
particular, we optimize the expected residual parameter δ with respect to pi, which in turn affects
the iteration complexity. Note that, by using Cauchy-Schwarz inequality (20), we have

∑n
i=1

L2
i

pi
≥

(
∑n

i=1 Li)
2, and this lower bound can be achieved for pδi = Li/

∑n
j=1 Lj . In case of importance

sampling, we will use these probabilities pδi which optimizes δ and define the corresponding δ

as δIS := 2
n2 (
∑n

i=1 Li)
2. For uniform sampling

(
i.e. pi = 1

n

)
, the value of the parameter is

δUS = 2
n

∑n
i=1 L

2
i . Note that, δIS equals δUS when all Li are equal, however δIS can be much smaller

than δUS when Li are very different from each other, e.g., when all Li are relatively small (close to

4See also Appendix E.5 for a discussion related to the oracle complexity of Theorem 4.5.
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zero) and one Li is large, δIS is almost n times smaller than δUS. In this latter scenario (when δIS
is much smaller than δUS), importance sampling could be useful and can significantly improve the
performance of SPEG. For example, note that the exponentially decaying term in (14) decreases
with δ. Hence, this term will decrease much faster with importance sampling than with uniform
sampling.

6 Numerical Experiments

To verify our theoretical results, we run several experiments on two classes of problems, i.e., strongly
monotone problems (a special case of the quasi-strongly monotone VIPs) and weak MVI problems.
The code to reproduce our results can be found at https://github.com/isayantan/Single-Call-Stochastic-
Extragradient-Methods.

6.1 Strongly Monotone Problems

Our experiments consider the quadratic strongly-convex strongly-concave min-max prob-
lem from [20]. That is, we implement SPEG on quadratic games of the form
minx∈Rd maxy∈Rd

1
n

∑n
i=1 fi(x, y) where

fi(x, y) :=
1

2
x⊺Aix+ x⊺Biy −

1

2
y⊺Ciy + a⊺i x− c⊺i y. (16)

Here Ai, Bi, Ci are generated such that the quadratic game is strongly monotone and smooth. In
all our experiments, we take n = 100 and d = 30. We generate positive semi-definite matrices
Ai, Bi, Ci such that their eigenvalues lie in the interval [µA, LA], [µB , LB ] and [µC , LC ] respectively.
In all our experiments, we consider LA = LB = LC = 1 and µA = µC = 0.1, µB = 0 unless
otherwise mentioned. The vectors ai and ci are generated from Nd(0, Id). Here, the ith operator is
given by

Fi

(
x
y

)
=

(
∇xfi(x, y)
−∇yfi(x, y)

)
=

(
Aix+Biy + ai
Ciy −B⊺

i x+ ci

)
In Figures 1, 2, and 3, we plot the relative error on the y-axis i.e. ∥xk−x∗∥2

∥x0−x∗∥2 .
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Figure 1: Constant vs Switching

Constant vs Switching Step-size Rule. In Fig. 1, we illus-
trate the step-size switching rule of Theorem 4.3. We place the
dotted line to mark when we switch from constant step-size to
decreasing step-size. In Fig. 1, the trajectory of switching step-
size rule (11) matches that of constant step-size (9) in the first
phase

(
where SPEG runs with constant step-size following

(11)
)
. However, it becomes stagnant when the constant step-

size SPEG reaches a neighbourhood of optimality. In contrast,
the step-size of Theorem 4.3 helps the method to converge to
better accuracy.

Comparison to Hsieh et al. [28]. In this experiment, we
compare SPEG step-sizes proposed in Theorems 4.1 and 4.3
with step-sizes from [28]. To implement SPEG with the step-sizes from [28], we choose γ and b
such that 1

µ < γ ≤ b
4L and set ωk = γk = γ

k+b . For Fig. 2a, we generate Ai, Bi, Ci as before. First,
we sample optimal points x∗, y∗ from Nd(0, Id) and then generate ai, ci such that F (x∗, y∗) = 0.(

ai
ci

)
=

(
Ai Bi

−B⊺
i Ci

)−1(
x∗

y∗

)
.

In Fig. 2a, we run the algorithms on interpolated model
(
Fi(x

∗) = 0 for all i ∈ [n]
)
. Since

the model is interpolated, we have σ2
∗ = 0 in Theorem 4.1 and linear convergence to the exact

optimum asymptotically. In this setting, as shown in Fig. 2a, our proposed step-size results in major
improvement compared to the decreasing step-size selection analyzed in [28]. In Fig. 2b, we compare
the switching step-size rule with step-size from [28]. In Fig. 2b, we generate ai, ci from the normal
distribution. In this plot, we manually switch the step-size from constant to decreasing after 305 steps.
We observe that such a semi-empirical rule has comparable performance to the step-size selection of
Hsieh et al. [28].
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Figure 2: Comparison of our SPEG using our step-size against decreasing step-size of Hsieh et al. [28]. In plot
(a), for constant step-size of SPEG we use the upper bound of (9). In plot (b), we run our switching step-size
SPEG (11).
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Figure 3: Comparison of SPEG with Uniform and Importance Sampling for different Λ ∈ {2, 5, 10, 20}, where
the eigenvalues of matrices A1, C1 are uniformly generated from the interval [0.1,Λ].

Uniform vs. Importance Sampling. In this experiment, we highlight the advantage of using
importance sampling over uniform sampling. The eigenvalues of A1, C1 are uniformly generated
from the interval [0.1,Λ] while the rest of the matrices are generated as mentioned before. We vary
the value of Λ ∈ {2, 5, 10, 20} and run and compare SPEG with both uniform and importance
sampling (see Fig. 3). For importance sampling, we use the probabilities pi = Li/

∑n
j=1 Lj . In Fig. 3,

it is clear that as the value of Λ increases, the trajectories under uniform sampling get worse, while
the trajectory under importance sampling remains almost identical. This behavior aligns well with
our discussion in Section 5.

6.2 Weak Minty Variational Inequality Problems
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Figure 4: Trajectory of SPEG for
solving weak MVI. "Squared Operator
Norm Error” in vertical axis denotes
the min

0≤k≤K−1
E
[
∥F (x̂k)∥2

]
of Theo-

rem 4.5.

This experiment verifies the convergence guarantees of SPEG
in Theorem 4.5. Following the min-max problem mentioned
in [8], we consider the objective function

min
x∈R

max
y∈R

1

n

n∑
i=1

ξixy +
ζi
2
(x2 − y2). (17)

In this experiment, we generate ξi, ζi such that L = 8 and
ρ = 1/32 for the above min-max problem [8]. We implement
SPEG with extrapolation step γk = 0.08 and update step ωk =
0.01 which satisfies the conditions on step-size in Theorem 4.5.
In Fig. 4, we use a batchsize of 6. This plot illustrates that
for some weak MVI problems the requirement on the step-
size from Theorem 4.5 can be too pessimistic and SPEG with
relatively small batchsize achieves reasonable accuracy of the
solution. The choice of batchsize ensures that bound (15) holds
and δ is small enough to guarantee convergence of SPEG. We
also tried to compare SPEG with SEG+ from [54], however, the authors do not mention their choice
of update step-size. We examined several decreasing update step-size for which SEG+ failed to
converge. Further details on experiments can be found in Appendix G.1.
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Supplementary Material
We organize the Supplementary Material as follows: Section A discusses the existing literature related
to our work. In Section B, we present some technical lemmas required for our analysis, while in
Section C, we provide a simple problem where the bounded variance assumption does not hold. Then,
in Section D, we provide the proofs of propositions related to Expected Residual. Next, Section E
presents the proofs of the main theorems, while a proposition related to arbitrary sampling is proved
in Section F. Finally, additional numerical experiments are presented in Section G.
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A Further Related Work

The references necessary to motivate our work and connect it to the most relevant literature are
included in the appropriate sections of the main body of the paper. In this section, we present a
broader view of the literature, including more details on closely related work and more references to
papers that are not directly related to our main results.

• Classes of Structured Non-monotone Operators. With an increasing interest in improved
computational speed, first-order methods are the primary choice for solving VIPs. However,
computation of an approximate first-order locally optimal solution of a general non-monotone
VIP is intractable [13, 33]. It motivates us to exploit the additional structures prevalent in large
classes of non-monotone VIPs. Recently [20, 28] provide convergence guarantees of stochastic
methods for solving quasi-strongly monotone VIPs, while [29] for problems satisfying error-bound
conditions. [14] defined the notion of a weak MVI (4) covering classes of non-monotone VIPs.

• Assumptions on Operator Noise. The standard analysis of stochastic methods for solving VIPs
relies on bounded variance assumption. [8, 14, 28, 17] use bounded variance assumption (i.e.
E∥Fi(x) − F (x)∥2 ≤ σ2 for all x) while [52, 1] assume bounded operators for their analysis.
However, there are examples of simple quadratic games that do not satisfy these conditions. It has
motivated researchers to look for alternative/relaxed assumptions on distributions. [44] provides
convergence of Stochastic Gradient Descent Ascent Method under Expected Cocoercivity. [29, 49]
considered alternative assumptions for analyzing Stochastic Extragradient Methods that do not
imply boundedness of the variance. However, there is no analysis of single-call extragradient
methods without bounded variance assumption.

• Weak Minty Variational Inequalities. Numerous contemporary studies look to identify first-order
methods for efficiently solving min-max optimization problems. It varies from simple convex-
concave to nontrivial nonconvex nonconcave objectives. Though there has been a significant
development in the convex-concave setting, [13] demonstrates that even finding local solutions are
intractable for general nonconvex nonconcave objectives. Therefore, researchers seek to identify
the structure of objective functions for which it is possible to resolve the intractability issues. [14]
proposes the notion of non-monotonicity, which generalizes the existence of a Minty solution
(i.e., ρ = 0 in (4)). This problem is known as weak Minty variational inequality in the literature.
[14, 54] provides convergence guarantees of the Extragradient Method for weak Minty variational
inequality. They establish a convergence rate of O(1/k) for the squared operator norm. [33]
shows that it is possible to have an accelerated extragradient method even for non-monotone
problems. Furthermore, [8] provides a convergence guarantee for the SOG with a complexity
bound of O(ε−2). However, all papers exploring stochastic extragradient methods for solving
weak Minty variational inequality consider bounded variance assumption [8, 14]. Moreover, all
algorithms solving Weak Minty variational inequality require increasing batchsize. Recently,
[55] introduced BCSEG+ which can solve weak minty variational inequality without increasing
batchsize. BCSEG+ involves three oracle calls per iteration and addition of a bias-corrected term
in the extrapolation step.

• Arbitrary Sampling Paradigm. As we mentioned in the main paper, the stochastic reformulation
(6) of the original problem (1) allows us to analyze single-call extragradient methods under the
arbitrary sampling paradigm. That is, provide a unified analysis for SPEG that captures multiple
sampling strategies, including τ -minibatch and importance samplings. An arbitrary sampling
analysis of a stochastic optinmization method was first proposed in the context of the randomized
coordinate descent method for solving strongly convex functions in [59]. Since then, several
other stochastic methods were studied in this regime, including accelerated coordinate descent
algorithms [58, 26], randomized iterative methods for solving consistent linear systems [60, 41, 40],
randomized gossip algorithms [39, 42], stochastic gradient descent (SGD) [25, 24], and variance
reduced methods [57, 27, 31]. The first analysis of stochastic algorithms under the arbitrary
sampling paradigm for solving variational inequality problems was proposed in [43, 44]. In
[43, 44], the authors focus on algorithms like the stochastic Hamiltonian method, the stochastic
gradient descent ascent, and the stochastic consensus optimization. These ideas were later extended
to the case of Stochastic Extragradient by [20]. To the best of our knowledge, our work is the
first that provides an analysis of single-call extragradient methods under the arbitrary sampling
paradigm.
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• Overparameterized Models and Interpolation. For a function f(x) := 1
n

∑n
i=1 fi(x) we say

that interpolation condition holds if there exists x∗ such that minx fi(x) = fi(x
∗) for all i ∈ [n]

(or equivalently ∇fi(x
∗) = 0 for smooth convex functions) [24]. The interpolation condition

is satisfied when the underlying models are sufficiently overparameterized [70]. Some known
examples include deep matrix factorization and classification using neural networks [3, 61, 70].
The interpolated model structure enables SGD and other optimization algorithms to have faster
convergence [24, 45, 15]. Inspired by this, one can extend the notion of the interpolation condition
to operators. In this scenario, we say that the VIP (1) is interpolated if there exists solution x∗ of (1)
such that Fi(x

∗) = 0 for all i ∈ [n]. This concept has been explored for analyzing the stochastic
extragradient method in [71, 34]. We highlight that our proposed theorems show fast convergence
of SPEG in this interpolated regime (when σ2

∗ = 0). To the best of our knowledge, our work is
the first that proves such convergence for SPEG. In Fig. 2a, we experimentally verify the fast
convergence for solving a strongly monotone interpolated problem.

• Deterministic Extragradient Methods. The Extragradient method (EG) [32] and its single-call
variant, Optimistic Gradient (OG) [56], were proposed to overcome the convergence issues of
gradient descent-ascent method for solving monotone problems. Since their introduction, these
methods have been revisited and explored in various ways. [50] analyzed EG and OG as an
approximation of the Proximal Point method to solve bilinear and strongly convex-strongly concave
min-max problems. [65] and [62] provide the best-iterate convergence guarantees of EG and
OG with a rate of O(1/K) for solving monotone problems. However, providing a last-iterate
convergence rate of EG and OG for monotone VIPs has been a long-lasting open problem that
was only recently resolved. The works of [18, 21, 10] prove a last-iterate O(1/K) convergence rate
for these methods. Finally, in the deterministic setting, some recent works provide convergence
analysis of EG and OG for solving weak MVI (4) [14, 54, 8, 23].
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B Technical Preliminaries

Throughout our work, we assume

Assumption B.1. Operator F in (1) is L Lipschitz, i.e., ∀x, y ∈ Rd operator F satisfies

∥F (x)− F (y)∥ ≤ L∥x− y∥. (18)

Operators Fi : Rd → Rd of problem (1) are Li- Lipschitz, i.e., ∀x, y ∈ Rd operator Fi satisfies

∥Fi(x)− Fi(y)∥ ≤ Li∥x− y∥. (19)

In our proofs, we often use the following simple inequalities.

Lemma B.2. For all a, b, a1, a2, · · · an ∈ Rd, n ≥ 1, α > 0, we have the following inequalities:

⟨a, b⟩ ≤ ∥a∥∥b∥, (20)

⟨a, b⟩ ≤ 1

2α
∥a∥2 + α

2
∥b∥2, (21)

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, (22)

∥a∥2 ≥ 1

2
∥a+ b∥2 − ∥b∥2, (23)∥∥∥∥ n∑

i=1

ai

∥∥∥∥2 ≤ n

n∑
i=1

∥ai∥2. (24)

Inequality (22) is well known as Young’s Inequality. Now, we present a simple property of unbiased
estimators.

Lemma B.3. For an unbiased estimator g of operator F i.e. E[g(x)] = F (x) we have

E∥g(x)− F (x)∥2 = E∥g(x)∥2 − ∥F (x)∥2. (25)

Next, we present the following lemma from [67], which plays a vital role in proving the convergence
guarantee of Theorem 4.4.

Lemma B.4. (Simplified Verison of Lemma 3 from [67]) Let the non-negative sequence {rk}k≥0

satisfy the relation rk+1 ≤ (1 − aγk)rk + cγ2
k for all k ≥ 0, parameters a, c ≥ 0 and any non-

negative sequence {γk}k≥0 such that γk ≤ 1
h for some h ≥ a, h > 0. Then for any K ≥ 0 one

can choose {γk}k≥0 as follows:

if K ≤ h

a
, γk =

1

h
,

if K >
h

a
and k < k0, γk =

1

h
,

if K >
h

a
and k ≥ k0, γk =

2

a(κ+ k − k0)
,

where κ = 2h
a and k0 =

⌈
K
2

⌉
. For this choice of γk the following inequality holds:

rK ≤ 32hr0
a

exp

(
− aK

2h

)
+

36c

a2K
.

We use the next lemma to bound the trace of matrix products.
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Lemma B.5. For positive semidefinite matrices A,B ∈ Rd×d we have

tr(AB) ≤ λmax(B)tr(A), (26)

where λmax(B) denotes the maximum eigenvalue of B.

Next lemma proves equivalence of SPEG and SOG:

Proposition B.6 (Equivalence of SPEG and SOG). Consider the iterates of SPEG {xk, x̂k}∞k=1
with constant step-sizes ωk = ω, γk = γ in (7). Then x̂k follows the iteration rule of SOG i.e.

x̂k+1 = x̂k − ωkFvk(x̂k)− γk[Fvk(x̂k)− Fvk−1
(xk−1)] (27)

Proof. From the update rule of SPEG (7) we get

x̂k+1 = xk+1 − γFvk(x̂k)

= xk − ωFvk(x̂k)− γFvk(x̂k)

= xk − (ω + γ)Fvk(x̂k)

= x̂k + γFvk−1
(x̂k−1)− (ω + γ)Fvk(x̂k)

= x̂k − ωFvk
(x̂k)− γ

(
Fvk(x̂k)− Fvk−1

(x̂k−1)
)
.

This shows that SPEG iterations are equivalent to SOG, with x̂k being the k-th iterate of SOG.

C Example: A Problem where the Bounded Variance Condition not Hold

Here, we provide a simple problem that does not satisfy the bounded variance assumption. Consider
the linear regression problem

min
x∈R

f(x) :=
1

2
(a1x− b1)

2 +
1

2
(a2x− b2)

2

where x ∈ R. Here f1(x) = (a1x− b1)
2 and f2(x) = (a2x− b2)

2. Now consider the estimator g(x)
of ∇f(x) under uniform sampling i.e. g(x) takes the value ∇f1(x) with probability 1

2 and ∇f2(x)

with probability 1
2 . Then we have

E∥g(x)−∇f(x)∥2 =
1

2
∥∇f1(x)−∇f(x)∥2 + 1

2
∥∇f2(x)−∇f(x)∥2

=
1

2
· 1
4
∥∇f1(x)−∇f2(x)∥2 +

1

2
· 1
4
∥∇f2(x)−∇f1(x)∥2

=
1

4
∥∇f1(x)−∇f2(x)∥2

=
1

4
(2(a1x− b1)a1 − 2(a2x− b2)a2)

2

=
(
(a21 − a22)x− (a1b1 − a2b2)

)2
Therefore, E∥g(x)−∇f(x)∥2 is a quadratic function of x with the coefficient of x being positive.
Hence, as x → ∞, we have E∥g(x)−∇f(x)∥2 → ∞, which means that a constant can not bound
the variance.
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D Proofs of Results on Expected Residual

D.1 Proof of Lemma 3.2

Proof. Using Young’s Inequality (22), we get

E∥g(x)− F (x)∥2
(22)
≤ 2E∥g(x)− F (x)− g(x∗)∥2 + 2E∥g(x∗)∥2

(ER)
≤ δ∥x− x∗∥2 + 2E∥g(x∗)∥2.

Then breaking down the RHS, we obtain

E∥g(x)∥2 − ∥F (x)∥2
(25)
≤ δ∥x− x∗∥2 + 2E∥g(x∗)∥2.

Now we rearrange the terms and set σ2
∗ = E∥g(x∗)∥2 to complete the proof of this Lemma.

Proposition D.1. If Fi are Li-lipschitz then Expected Residual condition (ER) holds. In that case

δ =
2

n

n∑
i=1

L2
iE(v2i ).

In addition, if F is µ-quasi strongly monotone (3) then we have

δ =
2

n

n∑
i=1

L2
iE(v2i )− 2µ2.

Proof. Note that

E∥(Fv(x)− Fv(x
∗))− (F (x)− F (x∗))∥2 = E∥Fv(x)− Fv(x

∗)∥2 + ∥F (x)− F (x∗)∥2

−2E ⟨Fv(x)− Fv(x
∗), F (x)− F (x∗)⟩

= E∥Fv(x)− Fv(x
∗)∥2 − ∥F (x)− F (x∗)∥2

= E∥Fv(x)− Fv(x
∗)∥2 − ∥F (x)∥2

= E
∥∥∥∥ 1n

n∑
i=1

vi(Fi(x)− Fi(x
∗))

∥∥∥∥2 − ∥F (x)∥2

=
1

n2
E
∥∥∥∥ n∑

i=1

vi(Fi(x)− Fi(x
∗))

∥∥∥∥2 − ∥F (x)∥2

(24)
≤ 1

n

n∑
i=1

E(v2i )∥Fi(x)− Fi(x
∗)∥2 − ∥F (x)∥2

(19)
≤ ∥x− x∗∥2

n

n∑
i=1

E(v2i )L2
i − ∥F (x)∥2. (28)

The first part of the lemma follows by ignoring the positive term ∥F (x)∥2. For the second part we
assume F is µ-quasi strongly monotone. Then we have

µ∥x− x∗∥2
(3)
≤ ⟨F (x), x− x∗⟩

(20)
≤ ∥F (x)∥∥x− x∗∥.

Cancelling ∥x− x∗∥ from both sides we get

µ∥x− x∗∥ ≤ ∥F (x)∥. (29)

Therefore we have the following bound for µ-quasi strongly monotone operator F :

E∥(Fv(x)− Fv(x
∗))− (F (x)− F (x∗))∥2

(28),(29)
≤

(
1

n

n∑
i=1

E(v2i )L2
i − µ2

)
∥x− x∗∥2.

This proves the second part of the lemma. This lemma ensures that the Lipschitz property is sufficient
to guarantee Expected Residual (ER) condition.
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D.2 Proof of Proposition 3.3

Proof. Proposition D.1 implies that Lipschitzness of all operators Fi is enough to ensure that ER holds.
For τ - minibatch sampling, denote the matrix R =

(
F1(x)−F1(x

∗), · · · , Fn(x)−Fn(x
∗)
)
∈ Rd×n.

Then we obtain the following bound:

E∥Fv(x)− Fv(x
∗)− (F (x)− F (x∗))∥2 = E

∥∥∥∥∥ 1n
n∑

i=1

vi(Fi(x)− Fi(x
∗))− (Fi(x)− Fi(x

∗))

∥∥∥∥∥
2

=
1

n2
E
∥∥∥∥ n∑

i=1

(vi − 1)(Fi(x)− Fi(x
∗))

∥∥∥∥2
=

1

n2
E
∥∥R(v − 1)

∥∥2
=

1

n2
E(v − 1)⊺R⊺R(v − 1)

=
1

n2
E
(

tr
(

R⊺R(v − 1)(v − 1)⊺
))

=
1

n2
tr
(

R⊺RE
(
(v − 1)(v − 1)⊺

))
=

1

n2
tr
(

R⊺RVar[v]
))

(26)
≤

λmax

(
Var[v]

)
n2

tr(R⊺R)

=
λmax

(
Var[v]

)
n2

n∑
i=1

∥Fi(x)− Fi(x
∗)∥2

(19)
≤ λmax(Var[v])∥x− x∗∥2

n2

n∑
i=1

L2
i .

From the proof details of Lemma F.3 in [63] we have λmax(Var[v]) = n(n−τ)
τ(n−1) for τ -minibatch

sampling. Thus we obtain

E
∥∥Fv(x)− Fv(x

∗)− (F (x)− F (x∗))
∥∥2 ≤ 2(n− τ)

nτ(n− 1)

n∑
i=1

L2
i ∥x− x∗∥2.

Now we focus on the derivation of σ2
∗ = E∥Fv(x

∗)∥2 for τ -minibatch sampling. We expand
E∥Fv(x

∗)∥2 as follows:

E∥Fv(x
∗)∥2 =

1

n2
E
∥∥∥∥ n∑

i=1

viFi(x
∗)

∥∥∥∥2
=

1

n2
E
∥∥∥∥∑

i∈S

1

pi
Fi(x

∗)

∥∥∥∥2
=

1

n2
E
∥∥∥∥ n∑

i=1

1i∈S
1

pi
Fi(x

∗)

∥∥∥∥2
=

1

n2
E
〈 n∑

i=1

1i∈S
1

pi
Fi(x

∗),

n∑
j=1

1j∈S
1

pj
Fj(x

∗)

〉

=
1

n2

n∑
i,j=1

Pij

pipj
⟨Fi(x

∗), Fj(x
∗)⟩, (30)

where Pij = P (i, j ∈ S) and pi = P (i ∈ S). For τ -minibatch sampling, we obtain Pij = τ(τ−1)
n(n−1)

and pi =
τ
n . Plugging in these values of Pij and pi in (30) we get the closed-form expression of σ2

∗.
This completes the proof of Proposition 3.3.
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D.3 Proof of Proposition 3.4

Here we enlist the assumptions made on operators. Suppose g is an estimator of operator F .

1. Bounded Operator: E∥g(x)∥2 ≤ σ2

2. Bounded Variance: E∥g(x)− F (x)∥2 ≤ σ2

3. Growth Condition: E∥g(x)∥2 ≤ α∥F (x)∥2 + β

4. Expected Co-coercivity: E∥g(x)− g(x∗)∥2 ≤ lF ⟨F (x), x− x∗⟩

5. Expected Residual: E∥(g(x)− g(x∗))− (F (x)− F (x∗))∥2 ≤ δ

2
∥x− x∗∥2

6. Bound from Lemma 3.2: E∥g(x)∥2 ≤ δ∥x− x∗∥2 + ∥F (x)∥2 + 2σ2
∗

7. Fi are Lipschitz: ∥Fi(x)− Fi(y)∥ ≤ Li∥x− y∥ ∀ i = 1, . . . , n

Proof. Here we will prove Proposition 3.4

• 1 =⇒ 2. Note that E∥g(x)∥2 ≤ σ2 ≤ ∥F (x)∥2 + σ2 =⇒ E∥g(x)− F (x)∥ ≤ σ2.

• 2 =⇒ 3. Here E∥g(x) − F (x)∥2 ≤ σ2 =⇒ E∥g(x)∥2 ≤ ∥F (x)∥2 + σ2 as g is an
unbiased for estimator of F . Then take α = 1 and β = σ2.

• 3 =⇒ 6. Note that E∥g(x)∥2 ≤ α∥F (x)∥2 +β ≤ αL2∥x−x∗∥2 +β. The last inequality
follows from lipschitz property of F and F (x∗) = 0. Then choose δ = αL2 and σ2

∗ = β/2
to get the result.

• 4 =⇒ 5. Note that expected cocoercivity and L-Lipschitzness of F imply E∥(g(x) −
g(x∗)) − (F (x) − F (x∗))∥2 = E∥g(x) − g(x∗)∥2 − ∥F (x) − F (x∗)∥2 ≤ E∥g(x) −

g(x∗)∥2 ≤ lF ⟨F (x), x− x∗⟩
(B.2)
≤ lF

2L∥F (x)∥2 + lFL
2 ∥x− x∗∥2 ≤ lFL∥x− x∗∥2.

• 7 =⇒ 5. This follows from Proposition D.1.

• 5 =⇒ 6. This follows from Lemma 3.2
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E Main Convergence Analysis Results

First, we present some results followed by iterates of SPEG. These will play a key role in proving
the Theorems later in this section. Recall that iterates of SPEG are

x̂k = xk − γkFvk−1
(x̂k−1),

xk+1 = xk − ωkFvk(x̂k).

Lemma E.1. For SPEG iterates with step-size ωk = γk = ω, we have

∥xk+1 − x∗∥2 = ∥xk+1 − x̂k∥2 + ∥xk − x∗∥2 − ∥x̂k − xk∥2 − 2ω ⟨Fvk(x̂k), x̂k − x∗⟩ . (31)

Proof. We have

∥xk+1 − x∗∥2 = ∥xk+1 − x̂k + x̂k − xk + xk − x∗∥2

= ∥xk+1 − x̂k∥2 + ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨x̂k − xk, xk − x∗⟩
+2 ⟨xk+1 − x̂k, x̂k − xk⟩+ 2 ⟨xk+1 − x̂k, xk − x∗⟩

= ∥xk+1 − x̂k∥2 + ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − x̂k, x̂k − x∗⟩
+2 ⟨x̂k − xk, xk − x∗⟩

= ∥xk+1 − x̂k∥2 + ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − x̂k, x̂k − x∗⟩
+2 ⟨x̂k − xk, xk − x̂k + x̂k − x∗⟩

= ∥xk+1 − x̂k∥2 + ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − x̂k, x̂k − x∗⟩
+2 ⟨x̂k − xk, x̂k − x∗⟩ − 2∥x̂k − xk∥2

= ∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − x̂k, x̂k − x∗⟩
+2 ⟨x̂k − xk, x̂k − x∗⟩

= ∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − xk, x̂k − x∗⟩
= ∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2 + ∥xk − x∗∥2 − 2ω ⟨Fvk(x̂k), x̂k − x∗⟩ .

Lemma E.2. Let F be L-Lipschitz, and let ER hold. Then SPEG iterates satisfy

ED∥Fvk(x̂k)− Fvk−1
(x̂k−1)∥2 ≤ δ∥x̂k − x∗∥2 + 2δ∥x̂k−1 − x∗∥2 + 2L2∥x̂k − x̂k−1∥2 + 6σ2

∗.
(32)

Proof.

ED∥Fvk(x̂k)− Fvk−1
(x̂k−1)∥2 = ED∥Fvk(x̂k)− F (x̂k)∥2 + ED∥F (x̂k)− Fvk−1

(x̂k−1)∥2

+2ED
〈
Fvk(x̂k)− F (x̂k), F (x̂k)− Fvk−1

(x̂k−1)
〉

= Evk∥Fvk(x̂k)− F (x̂k)∥2 + ED∥F (x̂k)− Fvk−1
(x̂k−1)∥2

(22)
≤ ED∥Fvk(x̂k)− F (x̂k)∥2 + 2ED∥F (x̂k)− F (x̂k−1)∥2

+2ED∥F (x̂k−1)− Fvk−1
(x̂k−1)∥2

= ED∥Fvk(x̂k)∥2 − ∥F (x̂k)∥2 + 2∥F (x̂k)− F (x̂k−1)∥2

+2ED∥Fvk−1
(x̂k−1)∥2 − 2∥F (x̂k−1)∥2

(8)
≤ δ∥x̂k − x∗∥2 + 2δ∥x̂k−1 − x∗∥2 + 6σ2

∗

+2∥F (x̂k)− F (x̂k−1)∥2
(18)
≤ δ∥x̂k − x∗∥2 + 2δ∥x̂k−1 − x∗∥2 + 6σ2

∗

+2L2∥x̂k − x̂k−1∥2.
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Lemma E.3. For ω ∈
[
0, 1

4L

]
the following two conditions hold:

2ω(µ− ωδ) + 8ω2L2 − 1 ≤ 0, (33)

and 8ω2(δ + L2) ≤ 1− ωµ+ 9ω2δ. (34)

Proof. Note that for ω ∈
[
0, 1

4L

]
, we have

2ω(µ− ωδ) + 8ω2L2 − 1
ω2δ≥0

≤ 2ωµ+ 8ω2L2 − 1
ω≤ 1

4L

≤ µ

2L
+

1

2
− 1

µ≤L

≤ 0.

This proves the first condition. The second condition is equivalent to ω(µ− ωδ) + 8ω2L2 − 1 ≤ 0,
which is again true using similar arguments.

E.1 Proof of Theorem 4.1

Proof. For ω ∈
[
0, µ

18δ

]
we have ω(µ− 9ωδ) ≥ 0 and 1− ω(µ− 9ωδ) ≤ 1− ωµ

2 . Then we derive

ED[∥xk+1 − x∗∥2 + ∥xk+1 − x̂k∥2]
(31)
= ∥xk − x∗∥2 + 2ED∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2

−2ωED ⟨Fvk(x̂k), x̂k − x∗⟩
= ∥xk − x∗∥2 + 2ED∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2

−2ω ⟨F (x̂k), x̂k − x∗⟩
(3)
≤ ∥xk − x∗∥2 + 2ED∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2

−2ωµ∥x̂k − x∗∥2

= ∥xk − x∗∥2 + 2ω2ED∥Fvk(x̂k)− Fvk−1
(x̂k−1)∥2

−∥x̂k − xk∥2 − 2ωµ∥x̂k − x∗∥2
(32)
≤ ∥xk − x∗∥2 + 2ω2

(
δ∥x̂k − x∗∥2 + 2δ∥x̂k−1 − x∗∥2

+2L2∥x̂k − x̂k−1∥2 + 6σ2
∗

)
− ∥x̂k − xk∥2

−2ωµ∥x̂k − x∗∥2

= ∥xk − x∗∥2 − 2ω(µ− ωδ)∥x̂k − x∗∥2

+4ω2δ∥x̂k−1 − x∗∥2 + 4ω2L2∥x̂k − x̂k−1∥2

−∥x̂k − xk∥2 + 12ω2σ2
∗

(22)
≤ ∥xk − x∗∥2 − ω(µ− ωδ)∥xk − x∗∥2

+2ω(µ− ωδ)∥xk − x̂k∥2 + 4ω2δ∥x̂k−1 − x∗∥2

+4ω2L2∥x̂k − x̂k−1∥2 − ∥x̂k − xk∥2

+12ω2σ2
∗

(22)
≤ ∥xk − x∗∥2 − ω(µ− ωδ)∥xk − x∗∥2

+2ω(µ− ωδ)∥xk − x̂k∥2 + 8ω2δ∥x̂k−1 − xk∥2

+8ω2δ∥xk − x∗∥2 + 8ω2L2∥x̂k − xk∥2

+8ω2L2∥xk − x̂k−1∥2 − ∥x̂k − xk∥2 + 12ω2σ2
∗

= (1− ωµ+ 9ω2δ)∥xk − x∗∥2

+(8ω2δ + 8ω2L2)∥xk − x̂k−1∥2

+(2ω(µ− ωδ) + 8ω2L2 − 1)∥xk − x̂k∥2 + 12ω2σ2
∗.
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Then using (33), (34) we have

ED[∥xk+1 − x∗∥2 + ∥xk+1 − x̂k∥2] ≤ (1− ωµ+ 9ω2δ)

(
∥xk − x∗∥2 + ∥xk − x̂k−1∥2

)
+12ω2σ2

∗.

Then we take total expectation with respect to the algorithm to obtain the following recurrence:

R2
k+1 ≤ (1− ωµ+ 9ω2δ)R2

k + 12ω2σ2
∗. (35)

Using the inequality 1− ω(µ− 9ωδ) ≤ 1− ωµ
2 , we have

E
[
∥xk+1 − x∗∥2 + ∥xk+1 − x̂k∥2

]
≤
(
1− ωµ

2

)
E
[
∥xk − x∗∥2 + ∥xk − x̂k−1∥2

]
+ 12ω2σ2

∗.

(36)

The theorem follows by unrolling the above recurrence. In order to compute the iteration complexity
of SPEG, we consider any arbitrary ε > 0. Then we choose the step-size ω such that 24ωσ2

∗
µ ≤ ε

2

i.e. ω ≤ εµ
48σ2

∗
. Next we will choose the number of iterations k such that (1 − ωµ

2 )kR2
0 ≤ ε

2 . It is
equivalent to choosing k such that

log

(
2R2

0

ε

)
≤ k log

(
1

1− ωµ
2

)
.

Now using the fact log
(
1
ρ

)
≥ 1 − ρ for 0 < ρ ≤ 1, we get log

(
2R2

0

ε

)
≤ kωµ

2 , or equivalently

k ≥ 2
ωµ log

(
2R2

0

ε

)
. Therefore, with step-size ω = min

{
µ

18δ ,
1
4L ,

εµ
48σ2

∗

}
we get the following lower

bound on the number of iterations

k ≥ max

{
8L

µ
,
36δ

µ2
,
96σ2

∗
εµ2

}
log

(
2R2

0

ε

)
.

E.2 Proof of Theorem 4.3

Proof. For ω ≤ min
{

1
4L ,

µ
18δ

}
, from Theorem 4.1 we obtain

R2
k+1 ≤

(
1− ωµ

2

)k+1

R2
0 +

24ωσ2
∗

µ
.

Let the step-size ωk = 2k+1
(k+1)2

2
µ and k∗ be an integer that satisfies ωk∗ ≤ ω̄. In particular this holds

when k∗ ≥
⌈

4
µω̄ − 1

⌉
. Note that ωk is decreasing in k and consequently ωk ≤ ω̄ for all k ≥ k∗.

Therefore, from (36) we derive

R2
k+1 ≤

(
1− ωk

µ

2

)
R2

k + 12ω2
kσ

2
∗

for all k ≥ k∗. Then we replace ωk with 2k+1
(k+1)2

2
µ to obtain

R2
k+1 ≤

(
1− 2k + 1

(k + 1)2

)
R2

k + 48σ2
∗
(2k + 1)2

µ2(k + 1)4

=
k2

(k + 1)2
R2

k + 48σ2
∗
(2k + 1)2

µ2(k + 1)4
.

Multiplying both sides by (k + 1)2 we get

(k + 1)2R2
k+1 ≤ k2R2

k +
48σ2

∗
µ2

(
2k + 1

k + 1

)2

≤ k2R2
k +

192σ2
∗

µ2
,
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where in the last line follows from 2k+1
k+1 < 2. Rearranging and summing the last expression for

t = k∗, · · · , k we obtain

k∑
t=k∗

(t+ 1)2R2
t+1 − t2R2

t ≤ 192σ2
∗

µ2
(k − k∗).

Using telescopic sum and dividing both sides by (k + 1)2 we obtain

R2
k+1 ≤

(
k∗

k + 1

)2

R2
k∗ +

192σ2
∗(k − k∗)

µ2(k + 1)2
. (37)

Suppose for k ≤ k∗, we have ωk = ω̄ = min
{

1
4L ,

µ
18δ

}
i.e. constant step-size. Then from (10), we

obtain R2
k∗ ≤

(
1− µω̄

2

)k∗

R2
0 +

24ω̄σ2
∗

µ . This bound on R2
k∗ , combined with (37) yields

R2
k+1 ≤

(
k∗

k + 1

)2(
1− µω̄

2

)k∗

R2
0 +

(
k∗

k + 1

)2
24ω̄σ2

∗
µ

+
192σ2

∗(k − k∗)

µ2(k + 1)2
.

Now we want to choose k∗ which minimizes the expression
(

k∗

k+1

)2 24ω̄σ2
∗

µ +
192σ2

∗(k−k∗)
µ2(k+1)2 . Note that,

it is minimized at 4
µω̄ , hence we choose k∗ =

⌈
4
µω̄

⌉
. Therefore, using this value of k∗, we obtain

R2
k+1 ≤

(
k∗

k + 1

)2(
1− 2

k∗

)k∗

R2
0 +

24σ2
∗

µ2(k + 1)2
(8k − 4k∗)

≤
(

k∗

k + 1

)2(
1− 2

k∗

)k∗

R2
0 +

192kσ2
∗

µ2(k + 1)2

≤
(

k∗

k + 1

)2
R2

0

e2
+

192σ2
∗

µ2(k + 1)
.

The last line follows from
(
1− 1

x

)x
≤ e−1 for all x ≥ 1. This completes the proof.

E.3 Proof of Theorem 4.4

Proof. For 0 < ωk ≤
{

1
4L ,

µ
18δ

}
we obtain the following bound from Theorem 4.1:

R2
k ≤

(
1− µωk

2

)
R2

k−1 + 12ω2
kσ

2
∗.

Then using Lemma B.4 with a = µ
2 , h = 1

ω̄ and c = 12σ2
∗ we complete the proof of this Theorem.

E.4 Proof of Theorem E.4

Theorem E.4. Let F be L-Lipschitz and satisfy Weak Minty condition with parameter ρ < 1/(2L).
Assume that inequality (8) holds (e.g., it holds whenever Assumption 3.1 holds, see Lemma 3.2).
Assume that γk = γ, ωk = ω and

max

{
2ρ,

1

2L

}
< γ <

1

L
, 0 < ω < min

{
γ − 2ρ,

1

4L
− γ

4

}
, δ ≤ (1− Lγ)L3ω

32
.
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Then, for all K ≥ 2 the iterates produced by SPEG satisfy

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤

(1 + 8ωγ(δ + L2)− Lγ)
(
1 + 48ωγδ

(1−Lγ)2

)K−1

∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+

8

(
8 + (1−Lγ)2

K−1

(
1 + 48ωγδ

(1−Lγ)2

)K−1
)
σ2
∗

(1− Lγ)2(1− L(γ + 4ω))
. (38)

Proof. The proof closely follows the proof of Lemma C.3 and Theorem C.4 from [23]. The update
rule of SPEG implies for k ≥ 1

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ω⟨xk − x∗, Fvk(x̂k)⟩+ ω2∥Fvk(x̂k)∥2

= ∥xk − x∗∥2 − 2ω⟨x̂k − x∗, Fvk(x̂k)⟩ − 2ωγ⟨Fvk−1
(x̂k−1), Fvk(x̂k)⟩

+ω2∥Fvk(x̂k)∥2

= ∥xk − x∗∥2 − 2ω⟨x̂k − x∗, Fvk(x̂k)⟩ − ωγ∥Fvk−1
(x̂k−1)∥2

−ω(γ − ω)∥Fvk(x̂k)∥2 + ωγ∥Fvk(x̂k)− Fvk−1
(x̂k−1)∥2,

where in the last step we apply 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a − b∥2, which holds for all a, b ∈ Rd.
Taking the full expectation and using E[Evk [·]] = E[·] and Weak Minty condition, we derive

E
[
∥xk+1 − x∗∥2

]
≤ E

[
∥xk − x∗∥2

]
− 2ωE [⟨x̂k − x∗, F (x̂k)⟩]− ωγE

[
∥Fvk−1

(x̂k−1)∥2
]

−ω(γ − ω)E
[
∥Fvk(x̂k)∥2

]
+ ωγE

[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]

(4)
≤ E

[
∥xk − x∗∥2

]
+ 2ωρE

[
∥F (x̂k)∥2

]
− ωγE

[
∥Fvk−1

(x̂k−1)∥2
]

−ω(γ − ω)E
[
∥Fvk

(x̂k)∥2
]
+ ωγE

[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]

≤ E
[
∥xk − x∗∥2

]
− ωγE

[
∥Fvk−1

(x̂k−1)∥2
]

−ω(γ − 2ρ− ω)E
[
∥Fvk(x̂k)∥2

]
+ωγE

[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]

≤ E
[
∥xk − x∗∥2

]
− ωγE

[
∥Fvk−1

(x̂k−1)∥2
]

+ωγE
[
∥Fvk

(x̂k)− Fvk−1
(x̂k−1)∥2

]
, (39)

where we apply Jensen’s inequality ∥F (x̂k)∥2 = ∥Evk
[Fvk(x̂k)]∥2 ≤ Evk [∥Fvk(x̂k)∥2] and γ >

2ρ+ ω. For k = 0 we have x1 = x0 − ωFv0
(x̂0) = x0 − ωFv0(x0) and

E
[
∥x1 − x∗∥2

]
= ∥x0 − x∗∥2 − 2ωE [⟨x0 − x∗, Fv0(x0)⟩] + ω2E

[
∥Fv0(x0)∥2

]
= ∥x0 − x∗∥2 − 2ω⟨x0 − x∗, F (x0)⟩+ ω2E

[
∥Fv0(x0)∥2

]
.

Applying Weak Minty condition, we get

E
[
∥x1 − x∗∥2

]
= ∥x0 − x∗∥2 + 2ωρ∥F (x0)∥2 + ω2E

[
∥Fv0(x0)∥2

]
≤ ∥x0 − x∗∥2 + ω(ω + 2ρ)E

[
∥Fv0(x0)∥2

]
. (40)
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The next step of our proof is in estimating the last term from (39). Using Young’s inequality
∥a + b∥2 ≤ (1 + α)∥a∥2 + (1 + α−1)∥b∥2, which holds for any a, b ∈ Rd, α > 0, we get for all
k ≥ 2

E
[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]
≤ (1 + α)E

[
∥F (x̂k)− F (x̂k−1)∥2

]
+(1 + α−1)E [∥Fvk(x̂k)− F (x̂k)

−(Fvk−1
(x̂k−1)− F (x̂k−1))∥2

]
≤ (1 + α)L2E

[
∥x̂k − x̂k−1∥2

]
+2(1 + α−1)E

[
∥Fvk(x̂k)− F (x̂k)∥2

+∥Fvk−1
(x̂k−1)− F (x̂k−1)∥2

]
(8)
≤ (1 + α)L2E

[
∥x̂k − xk + xk − xk−1 + xk−1 − x̂k−1∥2

]
+2(1 + α−1)δE

[
∥x̂k − x∗∥2 + ∥x̂k−1 − x∗∥2

]
+8(1 + α−1)σ2

∗

≤ (1 + α)L2E
[
∥(γ + ω)Fvk−1

(x̂k−1)− γFvk−2
(x̂k−2)∥2

]
+4(1 + α−1)δE

[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2E

[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+8(1 + α−1)σ2

∗

=(1 + α)L2(γ + ω)2E
[
∥Fvk−1

(x̂k−1)∥2
]

+(1 + α)L2γ2E
[
∥Fvk−2

(x̂k−2)∥2
]

−2(1 + α)L2γ(γ + ω)E
[
⟨Fvk−1

(x̂k−1), Fvk−2
(x̂k−2)⟩

]
+4(1 + α−1)δE

[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2E

[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+8(1 + α−1)σ2

∗

=(1 + α)L2(γ + ω)2E
[
∥Fvk−1

(x̂k−1)∥2
]

+(1 + α)L2γ2E
[
∥Fvk−2

(x̂k−2)∥2
]

−(1 + α)L2γ(γ + ω)E
[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+(1 + α)L2γ(γ + ω)E

[
∥Fvk−1

(x̂k−1)− Fvk−2
(x̂k−2)∥2

]
+4(1 + α−1)δE

[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2E

[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+8(1 + α−1)σ2

∗

=(1 + α)L2ω(γ + ω)E
[
∥Fvk−1

(x̂k−1)∥2
]

−(1 + α)L2γωE
[
∥Fvk−2

(x̂k−2)∥2
]

+(1 + α)L2γ(γ + ω)E
[
∥Fvk−1

(x̂k−1)− Fvk−2
(x̂k−2)∥2

]
+4(1 + α−1)δE

[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2E

[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+8(1 + α−1)σ2

∗.

Since x̂0 = x0 and x̂1 = x1 − γFv0(x0) = x0 − (γ + ω)Fv0(x0), for k = 1 we have

E
[
∥Fv1(x̂1)− Fv0(x̂0)∥2

]
= E

[
∥Fv1(x̂1)− Fv0(x0)∥2

]
≤ (1 + α)E

[
∥F (x̂1)− F (x0)∥2

]
+(1 + α−1)E

[
∥Fv1(x̂1)− F (x̂1)− (Fv0(x0)− F (x0))∥2

]
≤ (1 + α)L2E

[
∥x̂1 − x0∥2

]
+2(1 + α−1)E

[
∥Fv1(x̂1)− F (x̂1)∥2 + ∥Fv0(x0)− F (x0)∥2

]
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Then using (8) we get,

E
[
∥Fv1(x̂1)− Fv0(x̂0)∥2

] (8)
≤ (1 + α)L2(γ + ω)2E

[
∥Fv0(x0)∥2

]
+2(1 + α−1)δE

[
∥x̂1 − x∗∥2 + ∥x0 − x∗∥2

]
+ 8(1 + α)σ2

∗

≤
(
(1 + α)L2 + 4(1 + α−1)δ

)
(γ + ω)2E

[
∥Fv0(x0)∥2

]
+6(1 + α−1)δ∥x0 − x∗∥2 + 8(1 + α)σ2

∗.

Let {wk}K−1
k=0 be a non-increasing sequence of positive numbers that will be specified later and

WK =
∑K−1

k=0 wk. Summing up the above two inequalities with weights {wk}K−1
k=1 , we derive

K−1∑
k=1

wkE
[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]
≤ (1 + α)L2

K−3∑
k=1

(
ω(γ + ω)wk+1E

[
∥Fvk(x̂k)∥2

]
−γωwk+2E

[
∥Fvk(x̂k)∥2

])
+(1 + α)L2ω(γ + ω)wK−1E

[
∥FvK−2

(x̂K−2)∥2
]

−(1 + α)L2γωw2E
[
∥Fv0(x0)∥2

]
+(1 + α)L2γ(γ + ω)

K−2∑
k=1

wk+1E [∥Fvk(x̂k)

−Fvk−1
(x̂k−1)∥2

]
+ 4(1 + α−1)δ

K−1∑
k=2

wkE
[
∥xk − x∗∥2

]
+wkE

[
∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2

K−2∑
k=1

wk+1E
[
∥Fvk(x̂k)∥2

+∥Fvk−1
(x̂k−1)∥2

]
+ 8(1 + α−1)(WK − w0 − w1)σ

2
∗

+
(
(1 + α)L2 + 4(1 + α−1)δ

)
(γ + ω)2w1E

[
∥Fv0(x0)∥2

]
+6(1 + α−1)δw1∥x0 − x∗∥2 + 8(1 + α)w1σ

2
∗.

Next, we rearrange the terms using wk ≥ wk+1 and new notation ∆k =
E
[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]
:

(
1− (1 + α)L2γ(γ + ω)

)K−1∑
k=1

wk∆k≤
K−2∑
k=1

(1 + α)L2ω(γ + ω)wkE
[
∥Fvk(x̂k)∥2

]
+8(1 + α−1)δγ2wkE

[
∥Fvk(x̂k)∥2

]
+
(
(1 + α)L2 + 8(1 + α−1)δ

)
(γ + ω)2w0E

[
∥Fv0(x0)∥2

]
+12(1 + α−1)δ

K−1∑
k=1

wkE
[
∥xk − x∗∥2

]
+8(1 + α−1)(WK − w0)σ

2
∗.

To simplify the above inequality we choose α = 1
2L2γ(γ+ω) −

1
2 , which is positive due to γ < 1/L

and γ + ω < 1/L. In this case, we have

(1 + α)L2γ(γ + ω) =
1

2
L2γ(γ + ω) +

1

2
,

(1 + α)L2(γ + ω)2 =
1

2
L2(γ + ω)2 +

γ + ω

2γ
≤ 3

2
,

(1 + α)L2ω(γ + ω) =
1

2
L2ω(γ + ω) +

ω

2γ
=

Lω

2

(
L(γ + ω) +

1

γL

)
≤ 3Lω

2
,

1 + α−1 = 1 +
2L2γ(γ + ω)

1− L2γ(γ + ω)
=

1 + L2γ(γ + ω)

1− L2γ(γ + ω)
≤ 2

1− L2γ(γ + ω)
,
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where we also use 1/2L < γ < 1/L and γ + ω < 1/L. Using these relations, we can continue our
derivation as follows:

1

2

(
1− L2γ(γ + ω)

)K−1∑
k=1

wk∆k ≤
K−2∑
k=1

(
3Lω

2
+

16

1− L2γ(γ + ω)
δγ2

)
wkE

[
∥Fvk(x̂k)∥2

]
+

(
3

2
+

16

1− L2γ(γ + ω)
δ(γ + ω)2

)
w0E

[
∥Fv0(x0)∥2

]
+

24

1− L2γ(γ + ω)
δ

K−1∑
k=1

wkE
[
∥xk − x∗∥2

]
+

16

1− L2γ(γ + ω)
(WK − w0)σ

2
∗.

Dividing both sides by 1
2

(
1− L2γ(γ + ω)

)
, we derive

K−1∑
k=1

wk∆k ≤
K−2∑
k=1

(
3Lω

1− L2γ(γ + ω)
+

32

(1− L2γ(γ + ω))2
δγ2

)
wkE

[
∥Fvk(x̂k)∥2

]
+

(
3

1− L2γ(γ + ω)
+

32

(1− L2γ(γ + ω))2
δ(γ + ω)2

)
w0E

[
∥Fv0(x0)∥2

]
+

48

(1− L2γ(γ + ω))2
δ

K−1∑
k=1

wkE
[
∥xk − x∗∥2

]
+

32

(1− L2γ(γ + ω))2
(WK − w0)σ

2
∗

=

K−2∑
k=1

C1wkE
[
∥Fvk(x̂k)∥2

]
+ C2w0E

[
∥Fv0(x0)∥2

]
+3C3δ

K−1∑
k=1

wkE
[
∥xk − x∗∥2

]
+ 2C3WKσ2

∗, (41)

where C1 = 3Lω
1−L2γ(γ+ω) + 32

(1−L2γ(γ+ω))2 δγ
2, C2 = 3

1−L2γ(γ+ω) + 32
(1−L2γ(γ+ω))2 δ(γ + ω)2,

and C3 = 16
(1−L2γ(γ+ω))2 . Summing up inequalities (39) for k = 1, . . . ,K − 1 with weights

w1, . . . , wK−1 and (40) with weight w0, we get
K−1∑
k=0

wkE
[
∥xk+1 − x∗∥2

]
≤

K−1∑
k=0

wkE
[
∥xk − x∗∥2

]
− ωγ

K−1∑
k=1

wkE
[
∥Fvk−1

(x̂k−1)∥2
]

+ωγ

K−1∑
k=1

wk∆k + ω(ω + 2ρ)w0E
[
∥Fv0(x0)∥2

]
.

Since wk ≥ wk+1, we can continue the derivation as follows:
K−1∑
k=0

wkE
[
∥xk+1 − x∗∥2

]
≤

K−1∑
k=0

wkE
[
∥xk − x∗∥2

]
− ωγ

K−2∑
k=0

wkE
[
∥Fvk(x̂k)∥2

]
+ωγ

K−1∑
k=1

wk∆k + ω(ω + 2ρ)w0E
[
∥Fv0(x0)∥2

]
(41)
≤

K−1∑
k=0

(1 + 3C3ωγδ)wkE
[
∥xk − x∗∥2

]
−ωγ(1− C1)

K−2∑
k=0

wkE
[
∥Fvk(x̂k)∥2

]
+2ωγC2w0E

[
∥Fv0(x̂0)∥2

]
+ 2ωγC3WKσ2

∗.
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Now we need to specify the weights w−1, w0, w1, . . . , wK−1. Let wK−2 = 1 and wk−1 = (1 +
3C3ωγδ)wk. Then, rearranging the terms, dividing both sides by ωγ(1− C1)WK−1, we get

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ min

0≤k≤K−1
E
[
∥Fvk(x̂k)∥2

]
≤

K−2∑
k=0

wk

WK−1
E
[
∥Fvk(x̂k)∥2

]
≤ 1

ωγ(1− C1)WK−1

K−1∑
k=0

(
wk−1E

[
∥xk − x∗∥2

]
−wkE

[
∥xk+1 − x∗∥2

])
+

2C2w0E
[
∥Fv0(x̂0)∥2

]
(1− C1)WK−1

+
2C3WKσ2

∗
(1− C1)WK−1

≤ w−1∥x0 − x∗∥2

ωγ(1− C1)WK−1
+

2C2w0E
[
∥Fv0(x̂0)∥2

]
(1− C1)WK−1

+
2C3WKσ2

∗
(1− C1)WK−1

.

It remains to simplify the right-hand side of the above inequality. First, we notice that WK−1 =∑K−2
k=0 wk ≥ (K − 1)wK−2 = K − 1 since wk ≥ wk+1. Moreover, w−1 = (1 + 3C3ωγδ)

K−1.
Next,

C1 =
3Lω

1− L2γ(γ + ω)
+

32

(1− L2γ(γ + ω))2
δγ2

≤ 3Lω

1− Lγ
+

32

(1− Lγ)2
· (1− Lγ)L3ω

32
· γ2 ≤ 4Lω

1− Lγ
,

C2 =
3

1− L2γ(γ + ω)
+

32

(1− L2γ(γ + ω))2
δ(γ + ω)2

≤ 3

1− Lγ
+

32

(1− Lγ)2
· (1− Lγ)L3ω

32
· (γ + ω)2 ≤ 4

1− Lγ
,

C3 =
16

(1− L2γ(γ + ω))2
≤ 16

(1− Lγ)2
,

where we use δ ≤ (1−Lγ)L3ω/16 and γ + ω < 1/L. Using these inequalities, we simplify the bound as
follows:

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ (1− Lγ)(1 + 3C3ωγδ)

K−1∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+
8(1 + 3C3ωγδ)

K−2E
[
∥Fv0(x̂0)∥2

]
(1− L(γ + 4ω))(K − 1)

+
32σ2

∗
(1− Lγ)(1− L(γ + 4ω))

≤
(1− Lγ)

(
1 + 48ωγδ

(1−Lγ)2

)K−1

∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+
8
(
1 + 48ωγδ

(1−Lγ)2

)K−2

E
[
∥Fv0(x̂0)∥2

]
(1− L(γ + 4ω))(K − 1)

+
32σ2

∗
(1− Lγ)(1− L(γ + 4ω))

(42)

where we use WK = WK−1 + wK−1 ≤ WK−1 + wK−2 ≤ 2WK−1. Finally, we use (8) to
upper-bound E

[
∥Fv0(x̂0)∥2

]
:

E
[
∥Fv0(x̂0)∥2

]
= E

[
∥Fv0(x0)∥2

] (8)
≤ δ∥x0 − x∗∥2 + ∥F (x0)∥2 + 2σ2

∗

≤ (δ + L2)∥x0 − x∗∥2 + 2σ2
∗.

32



Plugging this inequality in (42), we derive

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤

(1 + 8ωγ(δ + L2)− Lγ)
(
1 + 48ωγδ

(1−Lγ)2

)K−1

∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+

4

(
8 + 1−Lγ

K−1

(
1 + 48ωγδ

(1−Lγ)2

)K−1
)
σ2
∗

(1− Lγ)(1− L(γ + 4ω))
,

which concludes the proof.

E.5 Proof of Theorem 4.5
Theorem E.5. Let F be L-Lipschitz and satisfy Weak Minty condition with parameter ρ < 1/(2L).
Assume that inequality (8) holds (e.g., it holds whenever Assumption 3.1 holds, see Lemma 3.2).
Assume that γk = γ, ωk = ω and

max

{
2ρ,

1

2L

}
< γ <

1

L
, 0 < ω < min

{
γ − 2ρ,

1

4L
− γ

4

}
.

Then, for all K ≥ 2 the iterates produced by mini-batched SPEG with batch-size

τ ≥ max

{
1,

32δ

(1− Lγ)L3ω
,
48ωγδ(K − 1)

(1− Lγ)2
,

2ωγσ2
∗(K − 1)

(1− Lγ)∥x0 − x∗∥2

}
(43)

satisfy

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ 48∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
. (44)

Proof. Mini-batched SPEG uses estimator

Fvk(x̂k) =
1

τ

τ∑
i=1

Fvk,i
(x̂k),

where Fvk,1
(x̂k), . . . , Fvk,τ

(x̂k) are independent samples satisfying (8) with parameters δ and σ2
∗.

Using variance decomposition and independence of Fvk,1
(x̂k), . . . , Fvk,τ

(x̂k), we get

Evk

[
∥Fvk(x̂k)∥2

]
= Evk

[
∥Fvk(x̂k)− F (x̂k)∥2

]
+ ∥F (x̂k)∥2

= Evk

∥∥∥∥∥1τ
b∑

i=1

(Fvk,i
(x̂k)− F (x̂k))

∥∥∥∥∥
2
+ ∥F (x̂k)∥2

=
1

τ2

τ∑
i=1

Evk

[
∥Fvk,i

(x̂k)− F (x̂k)∥2
]
+ ∥F (x̂k)∥2

(8)
≤ δ

τ
∥x̂k − x∗∥2 + ∥F (x̂k)∥2 +

2σ2
∗

τ
.

That is, mini-batched estimator Fvk(x̂k) satisfies (8) with parameters δ/τ and σ2
∗/τ . Therefore,

Theorem E.4 implies

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤

(1 + 4ωγ
(
δ
τ + L2

)
− Lγ)

(
1 + 48ωγδ

(1−Lγ)2τ

)K−1

∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+

8

(
8 + 1−Lγ

K−1

(
1 + 48ωγδ

(1−Lγ)2τ

)K−1
)
σ2
∗

(1− Lγ)(1− L(γ + 4ω))τ
. (45)
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Since τ satisfies (43) and γ ≤ 1/L, ω ≤ 1/4L, we have

4ωγ

(
δ

τ
+ L2

)
≤ 1

4L2

(
δ · (1− Lγ)L3ω

16δ
+ L2

)
≤ 1,(

1 +
48ωγδ

(1− Lγ)2τ

)K−1

≤
(
1 +

48ωγδ

(1− Lγ)2
· (1− Lγ)2

48ωγδ(K − 1)

)K−1

=

(
1 +

1

K − 1

)K−1

≤ exp(1) < 3.

Using this, we can simplify (45) as follows:

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ 6∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
+

88σ2
∗

(1− Lγ)(1− L(γ + 4ω))τ

(43)
≤ 6∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+
88σ2

∗
(1− Lγ)(1− L(γ + 4ω))

· (1− Lγ)∥x0 − x∗∥2

2ωγσ2
∗

=
48∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
.

This concludes the proof.

On Oracle Complexity of Theorem 4.5. Let us now express the result of Theorem 4.5 via oracle
complexity.

Oracle complexity captures the computational requirements required to solve a specific optimization
problem. That is, given a prespecified accuracy ε > 0, it measures the number of oracle calls needed
to solve the problem to this ε accuracy. In our setting, an oracle call indicates the computation of one
operator, Fi (for some i ∈ [n]). Therefore, in Theorem 4.5, where a mini-batch of size τ is required
in each iteration of the update rule, we have τ many oracle calls per iteration. In that scenario, the
total number of oracle calls required to obtain specific accuracy ε > 0 is given by Kτ (multiplication
of K iterations with τ oracle calls).

Note that according to Theorem 4.5 to achieve an ε accuracy, we need K ≥ C∥x0−x∗∥2

ϵ iterations.
This follows trivially by

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

] Theorem 4.5
≤ C∥x0 − x∗∥2

K − 1
≤ ε. (46)

Therefore, using K ≥ C∥x0−x∗∥2

ϵ in combination with the lower bound on τ from (15), the total
number of oracle calls to satisfy (46) is given by:

Kτ ≥ max

{
C||x0 − x∗||2

ϵ
,
32Cδ||x0 − x∗||2

(1− Lγ)L3ωϵ
,
48C2ωγδ||x0 − x∗||4

(1− γL)2ϵ2
,
2C2ωγσ2

∗||x0 − x∗||2

(1− Lγ)ϵ2

}
.
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F Further Results on Arbitrary Sampling

F.1 Proof of Proposition 5.1

Expanding the left hand side of Expected Residual (ER) condition we have

E∥(Fv(x)− Fv(x
∗))− (F (x)− F (x∗))∥2 (25)

= E∥(Fv(x)− Fv(x
∗))∥2 − ∥F (x)− F (x∗)∥2

≤ E∥Fv(x)− Fv(x
∗)∥2. (47)

For any x and y with vi =
1
pi

we obtain

∥Fv(x)− Fv(y)∥2 =
1

n2

∥∥∥∥∑
i∈S

1

pi
(Fi(x)− Fi(y))

∥∥∥∥2
=

∑
i,j∈S

〈
1

npi
(Fi(x)− Fi(y)),

1

npj
(Fj(x)− Fj(y))

〉
.

Then taking expectation on both sides we get

E∥Fv(x)− Fv(y)∥2 =
∑
C

pC
∑
i,j∈C

〈
1

npi
(Fi(x)− Fi(y)),

1

npj
(Fj(x)− Fj(y))

〉

=

n∑
i,j=1

∑
C:i,j∈C

pC

〈
1

npi
(Fi(x)− Fi(y)),

1

npj
(Fj(x)− Fj(y))

〉

=

n∑
i,j=1

Pij

pipj

〈
1

n
(Fi(x)− Fi(y)),

1

n
(Fj(x)− Fj(y))

〉
.

Now we consider the case, where the ratio Pij

pipj
= c2 i.e. constant for i ̸= j and Pii = pi. Then from

the above computations we derive

E∥Fv(x)− Fv(y)∥2 =

n∑
i ̸=j

c2

〈
1

n
(Fi(x)− Fi(y)),

1

n
(Fi(x)− Fi(y))

〉

+

n∑
i=1

1

n2pi
∥Fi(x)− Fi(y)∥2

=

n∑
i,j=1

c2

〈
1

n
(Fi(x)− Fi(y)),

1

n
(Fi(x)− Fi(y))

〉

+

n∑
i=1

1− pic2
n2pi

∥Fi(x)− Fi(y)∥2

(19)
≤ c2∥F (x)− F (y)∥2 +

n∑
i=1

1− pic2
n2pi

L2
i ∥x− y∥2

(18)
≤

(
c2L

2 +
1

n2

n∑
i=1

1− pic2
pi

L2
i

)
∥x− y∥2.

Thus replacing y = x∗ and combining with (47) we get the following bound on the Expected
Residual:

E∥(Fv(x)− Fv(x
∗))− (F (x)− F (x∗))∥2 ≤

(
c2L

2 +
1

n2

n∑
i=1

1− pic2
pi

L2
i

)
∥x− x∗∥2. (48)

For single-element sampling c2 = 0 (as probability of two points appearing in same sample is zero
for single element sampling i.e. Pij = 0). Then we obtain

δ ≤ 2

n2

n∑
i=1

L2
i

pi
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from (48). This completes the derivation of δ for single element sampling. To compute σ2
∗ for single

element sampling, we replace

Pij =

{
pi if i = j

0 otherwise

in (30) to get

σ2
∗ =

1

n2

n∑
i=1

1

pi
∥Fi(x

∗)∥2.
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G Numerical Experiments

In Appendix G.1, we add more details on the experiments discussed in the main paper. Furthermore,
in Appendix G.2, we run more experiments to evaluate the performance of SPEG on quasi-strongly
monotone and weak MVI problems.

G.1 More Details on the Numerical Experiments of Section 6

On Constant vs Switching Stepsize Rule. We run the experiments on two synthetic datasets. In
Fig. 1 of the main paper, we take µA = µC = 0.6. Here we include one more plot with a similar
flavor but in a different setting. For Fig. 5, we generate the data such that eigenvalues of A1, B1, C1

are generated uniformly from the interval [0.1, 10]. In the new plot, similar to the main paper, we can
see the benefit of switching the step-size rule of Theorem 4.3.
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Figure 5: Comparison of the constant step-size rule (9) with the switching step-sizes (11) on the strongly
monotone quadratic game.

On Weak Minty VIPs. In this experiment, we generate ξi, ζi such that 1
n

∑n
i=1 ξi =

√
63 and

1
n

∑n
i=1 ζi = −1. This choice of ξi, ζi ensures that L = 8 and ρ = 1/32 for the min-max problem

we considered in Section 6.2. In Fig. 6, we again implement the SPEG on (17) with batchsize =
0.15× n (different batchsize compare to the plot of the main paper).
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Figure 6: Trajectory of SPEG for solving weak MVI using a batchsize = 0.15× n.

G.2 Additional Experiments

In this subsection, we include more experiments to evaluate the performance of SPEG on quasi-
strongly monotone and weak MVI problems. First, we run the experiment comparing constant and
switching step-size rules on a different setup than the one we included in the main paper to analyze
the performance of SPEG under different condition numbers. Then, we implement SPEG on the
weak MVI of (17). To evaluate the performance in this experiment, we plot ∥F (x̂k)∥2

/∥F (x0)∥2 on the
y-axis.
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G.2.1 Strongly Monotone Quadratic Game:

In this experiment, we compare the proposed constant step-size (9) and the switching step-size
rule (11). We implement our algorithm on operator F : R4 → R4 given by

F (x) :=
1

3
(M1(x− x∗

1) +M2(x− x∗
2) +M3(x− x∗

3)) ,

where M1, M2 and M3 are the diagonal matrices,

M1 =

∆
1

1
1

 , M2 =

1
∆

1
1

 , M3 =

1
1

∆
1


and

x∗
1 =

∆
0
0
∆

 , x∗
2 =

 0
∆
0
0

 , x∗
3 =

 0
0
∆
0

 .

This choice of Mi and x∗
i ensures that the Lipschitz constant of operator F is ∆+2

3 while quasi-strong
monotonicity parameter (3) is µ = 1. Hence the condition number of F is given by ∆+2

3 . This allows
us to vary the condition number of operator F by changing the value of ∆. For Fig. 7a we take ∆ = 3
(condition number = 1.67) while for Fig. 7b we choose ∆ = 10 (condition number = 10.67). The
vertical dotted line in plots of Fig. 7 marks the transition point from constant to switching step-size
rule as predicted by our theoretical result in Theorem 4.3.

0 20000 40000 60000 80000 100000
Number of Iterations

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

Constant Stepsize (Theorem 4.1)
Decreasing Stepsize (Theorem 4.4)
Change of step-size

(a) Condition Number L
µ
= 1.67.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Iterations 1e6

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

Constant Stepsize (Theorem 4.1)
Decreasing Stepsize (Theorem 4.4)
Change of step-size

(b) Condition Number L
µ
= 10.67.

Figure 7: Illustration of switching rule (11) in Theorem 4.3. The dotted line marks the transition from phase 1
(where we use constant step-size) to phase 2 (where we use decreasing step-size).

G.2.2 Weak Minty VIPs Continued

In this experiment, we reevaluate the performance of SPEG on weak MVI example of (17). That
is, we generate the data in exactly the same way as the ones in section 6.2 with n = 100. In Fig. 8a
and 8b, we implement SPEG with batchsize 10 and 15, respectively (we note that in this setting the
full-gradient evaluation requires a batchsize of 100). For these plots, we use the relative operator
norm on the y-axis, i.e. ∥F (x̂k)∥2

/∥F (x0)∥2, where x0 denotes the starting point of SPEG. As expected,
the plots illustrate that SPEG performs better as we increase the batchsize. From Fig. 8 it is clear
that with batchsize 15 SPEG reaches an accuracy close to 10−10 while when we use a batchsize of
10 for the same number of iterations we are only able to converge to an accuracy of 10−4.
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(a) Batchsize = 0.1× n.
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(b) Batchsize = 0.15× n.

Figure 8: Performance of SPEG for solving weak MVI with different batchsizes. In plot (a) we use a batchsize
of 10 while in plot (b) we use 15.

39


	Introduction
	Main Contributions

	Stochastic Reformulation of VIPs & Single-Call Extragradient Methods
	Expected Residual
	Convergence Analysis
	Quasi-Strongly Monotone Problems
	Weak Minty Variational Inequality Problems

	Beyond Uniform Sampling
	Numerical Experiments
	Strongly Monotone Problems
	Weak Minty Variational Inequality Problems

	Further Related Work
	Technical Preliminaries
	Example: A Problem where the Bounded Variance Condition not Hold
	Proofs of Results on Expected Residual
	Proof of Lemma 3.2
	Proof of Proposition 3.3
	Proof of Proposition 3.4

	Main Convergence Analysis Results
	Proof of Theorem 4.1
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Theorem E.4
	Proof of Theorem 4.5

	Further Results on Arbitrary Sampling
	Proof of Proposition 5.1

	Numerical Experiments
	More Details on the Numerical Experiments of Section 6
	Additional Experiments
	Strongly Monotone Quadratic Game:
	Weak Minty VIPs Continued



