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Abstract

Visual language models (VLMs) rapidly progressed with
the recent success of large language models. There have
been growing efforts on visual instruction tuning to extend
the LLM with visual inputs, but lacks an in-depth study of
the visual language pre-training process, where the model
learns to perform joint modeling on both modalities. In this
work, we examine the design options for VLM pre-training
by augmenting LLM towards VLM through step-by-step con-
trollable comparisons. We introduce three main findings:
(1) freezing LLMs during pre-training can achieve decent
zero-shot performance, but lack in-context learning capabil-
ity, which requires unfreezing the LLM; (2) interleaved pre-
training data is beneficial whereas image-text pairs alone
are not optimal; (3) re-blending text-only instruction data
to image-text data during instruction fine-tuning not only
remedies the degradation of text-only tasks, but also boosts
VLM task accuracy. With an enhanced pre-training recipe
we build VILA, a Visual Language model family that consis-
tently outperforms the state-of-the-art models, e.g., LLaVA-
1.5, across main benchmarks without bells and whistles.
Multi-modal pre-training also helps unveil appealing prop-
erties of VILA, including multi-image reasoning, enhanced
in-context learning, and better world knowledge.

1. Introduction

Large language models (LLMs) have demonstrated superior
capabilities for natural language tasks [4, 8, 10, 15, 16, 19,
31, 45, 50, 58–60]. Augmenting LLMs to support visual in-
puts allows the final model to inherit some of the appealing
properties like instruction following, zero-shot generaliza-
tion, and few-shot in-context learning (ICL), empowering
various visual language tasks [1, 2, 6, 9, 14, 20, 35, 39, 70].
The central challenge of unifying vision and language for
collaborative inference resides in connecting the LLM and
the vision foundation model (e.g., a CLIP encoder): both
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Figure 1. VILA’s enhanced visual-language pre-training consis-
tently improves the downstream task accuracy under a comparison
to recent methods [8, 18, 39].

foundation models are usually pre-trained individually, be-
fore aligned via vision-language joint training. Most of the
efforts in this field have been focusing on improving the
visual language instruction-tuning process, i.e., supervised
fine-tuning (SFT) or reinforcement learning from human
feedback (RLHF) [38, 39, 56]. However, there lacks a thor-
ough study of the pre-training process, where the model is
trained on image-text datasets/corpora at scale [11, 53, 71].
This process is costly but critical for the modality alignment.

In this work, we aim to explore different design options
for enhanced visual language model pre-training. In partic-
ular, we aim to answer “How do various design choices in
visual language model pre-training impact the downstream
performance?” We followed the pre-training + SFT pipeline
and ablated different design options for pre-training over-
seeing dataset properties and training protocols. We dis-
cover several findings: (1) Freezing the LLM during pre-
training can achieve a decent zero-shot performance, but
not in-context learning (ICL) capability, whereas updating
the LLMs encourages deep embedding alignment, which we
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Figure 2. We study auto-regressive visual language model, where
images are tokenized and fed to the input of LLMs. We find up-
dating the LLM is essential for in-context learning capabilities,
and interleaved corpus like [71] helps pre-training. Joint SFT with
text-only data helps maintain the text-only capabilities.

found is important for ICL; (2) Interleaved visual language
data is essential for pre-training, that provides accurate gra-
dient update and maintains text-only capability; (3) Adding
in text-only instruction data during SFT can further rem-
edy text-only degradation and boost visual language task
accuracy.

We introduce practical guidance to design Visual
Language models, dubbed VILA. Without bells and whis-
tles, VILA outperforms the state-of-the-art model [38] by
noticeable margins across a wide range of vision language
tasks (Figure 1), thanks to the help of improved pre-training.
Moreover, we observe that the pre-training process unlocked
several interesting capabilities for the model, such as (i)
multi-image reasoning (despite the model only sees single
image-text pairs during SFT), (ii) stronger in-context learn-
ing capabilities, and (iii) enhanced world knowledge. We
hope our findings can provide a good pre-training recipe for
future visual language models.

2. Background
Model architecture. Multi-modal LLMs can be generally
categorized into two settings: cross-attention-based [6, 35]
and auto-regressive-based [2, 20, 39]. The latter VLM fam-
ily tokenizes images into visual tokens, which are concate-
nated with textual tokens and fed as the input to LLMs (i.e.,
treating visual input as a foreign language). It is a natu-
ral extension of text-only LLMs by augmenting the input
with visual embeddings and can handle arbitrary interleaved
image-text inputs. In this study, we focus on the pre-training
of auto-regressive VLMs due to its flexibility and popular-
ity. As shown in Figure 2, auto-regressive VLMs consists of
three components: a visual encoder, an LLM, and a projector
that bridges the embeddings from the two modalities. The
projector can be a simple linear layer [39] or more capable
Transformer blocks [7, 18] – we will compare their efficacy
in our experiments. The model takes visual and text input
and generates text outputs.
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Figure 3. Prompt-tuning to support visual tokens can only enable
shallow alignment, while fine-tuning the LLM leads to alignment
at deeper layers. From configuration (b) to (d) (as in Table 1), the
alignment improves at deeper layer, so as ICL accuracy (4-shot).

Training stages. Following common practice [7, 20, 39],
we study how to augment a pre-trained text-only LLM with
visual input support. The training can be categorized into
three stages:

0. Projector initialization. The LLM and ViT are sepa-
rately pre-trained, while the projector is usually initialized
from random weights. Therefore, we first pre-train the pro-
jector while freezing both ViT and LLMs on image-caption
pairs following existing literature [18, 35, 39].

1. visual language pre-training. We then pre-train the
model (LLM and the projector) on visual language cor-
pus. We consider two types of corpus: interleaved image-
text corpus (e.g., MMC4 [71]) and image-text pairs (e.g.,
COYO [11] and LAION [53]). We focus the study of this
work on the pre-training process, which are most costly and
important for visual language alignment.

2. Visual instruction-tuning. Finally, we further per-
form instruction tuning of the pre-trained model on visual
language instruction datasets. We convert existing visual
language datasets into FLAN [63] style (i.e., with dataset-
specific prompts) following [18]. Please find the data blend
of the visual instruction data in the supplementary.

Evaluations. During our ablation study, we evaluate the
fine-tuned model on 4 visual language tasks: accuracy for
OKVQA [44] and TextVQA [54], and CIDEr score for
COCO [37] and Flickr [66]. We evaluate both 0-shot and
4-shot performance, which reflects the models’ in-context
learning capability.

3. On Pre-training for Visual Language Models
In this section, we discuss practical design choices and
learned lessons for the visual language pre-training process.

3.1. Updating LLM is Essential
Fine-tuning vs. prompt tuning. There are two popular
ways to augment a pre-trained text-only LM with visual



PreT SFT
Projector

OKVQA TextVQA COCO Flickr Average

Train LLM? 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot

(a) ✗ ✗ Transformer 10.4 19.2 14.8 23.1 17.4 60.2 11.0 47.4 13.4 37.5

(b) ✗ ✓ Transformer 47.1 47.7 37.2 36.6 109.4 88.0 73.6 58.1 66.8 57.6
(c) ✓ ✓ Transformer 44.8 49.8 38.5 38.8 112.3 113.5 71.5 72.9 66.8 68.8
(d) ✓ ✓ Linear 45.2 50.3 39.7 40.2 115.7 118.5 74.2 74.7 68.7 70.9

Table 1. Ablation study on whether to train LLM or freeze LLM and only perform prompt tuning during visual language pre-training (PreT).
Interestingly, freezing the LLM during pre-training does not hurt the 0-shot accuracy, but leads to worse in-context learning capability
(worse 4-shot). Using a simple linear projector forces the LLM to learn more and leads to better generalization. We report accuracy for VQA
datasets (OKVQA, TextVQA) and CIDEr score for captioning (COCO and Flickr). Note: we used a different evaluation setting just for
ablation study; the absolute value in this setting is lower and should not be compared against other work.

inputs: fine-tune LLMs on the visual input tokens [20, 39],
or freeze the LLM and train only the visual input projector as
prompt tuning [18, 35]. The latter is attractive since freezing
the LLMs prevents the degradation of the pre-trained text-
only LLM. Nonetheless, we found updating the base LLM
is essential to inherit some of the appealing LLM properties
like in-context learning.

To verify the idea, we compare the two training protocols
in Table 1. We use a Transformer block for the projector
instead of a single linear layer [39] in setting a-c, which
provides enough capacity when freezing LLMs. We use
MMC4-core [71]* for the comparison. We observed that:

(1) Training only the projector during SFT leads to poor
performance (setting a), despite using a high-capacity design.
It is rewarding to fine-tune LLM during SFT.

(2) Interestingly, freezing the LLM during pre-training
does not affect 0-shot performance, but degrades in-context
learning capabilities (i.e., 4-shot, comparing setting b and
c). The gap is even larger for captioning datasets (COCO &
Flickr) since they are out-of-distribution (the instruction tun-
ing data is mostly VQA-alike, see supplementary), showing
the worse generalization capability when freezing LLMs.

(3) When using a small-capacity projector (a linear layer
instead of a Transformer block), the accuracy is slightly bet-
ter (comparing c and d). We hypothesize a simpler projector
forces the LLM to learn more on handling visual inputs,
leading to better generalization.

The deep embedding alignment hypothesis. To under-
stand why fine-tuning LLM is beneficial, we hypothesize
that it is important to align the distribution of visual and tex-
tual latent embeddings (especially in the deeper layers), so
that the model can seamlessly model the interaction between
the two modalities. It is essential if we want to inherit some
of the good properties of LLM like in-context learning for
visual language applications.

To verify the idea, we calculate the Chamfer distance of
visual and textual embeddings in different layers to measure

*We downloaded only 25M of 30M images amid some expired URLs.

Dataset Type Text Src. #img/sample #tok./img

MMC4 [71] Interleave HTML 4.0 122.5
COYO [11] Img-text pair Alt-text 1 22.7

Table 2. Two image-text corpus considered for pre-training. The
COYO captions are generally very short, which has a different
distribution compared to the text-only corpus for LLM training.
We sample each data source to contain 25M images by choosing
samples with high CLIP similarities.

Pre-train
Data

VLM acc (avg)
MMLU acc.

0-shot 4-shot

Llama-2 - - 46.0%
COYO 51.1% 50.3% 28.8% (-17.2%)
MMC4-pairs 46.4% 44.5% 32.4% (-13.6%)
MMC4 68.7% 70.9% 40.7% (-5.3%)

MMC4+COYO 69.0% 71.3% 40.2% (-5.8%)

Table 3. Pre-training on MMC4 data provides better visual language
accuracy (0-shot and few-shot) and smaller degradation on text-
only accuracy compared to caption data (COYO). The benefits
comes from the interleave nature but not the better text distribution
(MMC4 vs. MMC4-pairs). Blending interleaved and caption data
provides a better diversity and downstream accuracy.

how well they align in Figure 3. We calculate the pairwise
cosine similarity to exclude the affect of magnitude. From
configuration (b) to (d), the similarity of deeper layer goes
higher, so as the 4-shot accuracy in Table 1, showing the
positive relationship between deep embedding alignment
and in-context learning.

Given the observations, we fine-tune the LLM during both
pre-training and instruction-tuning in later studies, and use
a simple linear projection layer.



..., "Easy to grow, and fruitful, these are a favorite amongst those who like to have 
their own at home garden.", <im1>, "There is a large number of different kinds of 
tomatoes, meaning that there is one for every different size garden.", "You can choose 
from a variety of these plants to accomplish different food missions, be them small 
cucumbers for pickling or larger ones for slicing.", ..., <im2>, "These tender green 
beans are durable and quite at home growing in the hot season air.", "To get the most out 
of planting them, space the seeds 4 to 6 inches apart and allow 3 feet between rows, …

<im1> <im2>

Figure 4. A sample from MMC4 [71] dataset consisting of interleaved images and text segments. The images are placed before the
corresponding text. The text are weakly conditioned on images: only colored text can be better inferred with the help of images.

Training iteration

Figure 5. The training loss is lower when pre-training on MMC4
compared to MMC4-pairs (samples broken into image-text pairs),
since the text segments provide more information for language
modeling.

3.2. Interleaved Visual Language Corpus Helps
Pre-training

Our goal is to “augment” the LLM to support visual input,
instead of training a model that only works well on visual
language inputs. Therefore, it is essential to preserve the
text-only capabilities of LLMs. We found that data blending
is a key factor, both for pre-training and instruction tuning.

Pre-training dataset options. Most of the VLM pre-
training [35, 39, 62] relies on image-text pairs (i.e., image
and captions) due to the wide availability and large diversity
(e.g., LAION [53], COYO [11]). On the other hand, inter-
leaved image-text datasets (MMC4 [71], M3W [6]) follow
a more similar distribution compared to the text-only cor-
pus and is found to be important in Flamingo-style model
training [6]. We hypothesize that the interleaved dataset
is even more important for VLMs when LLM backbone is
updated to accommodate the visual input. For a better un-
derstanding of the two data types, we compare statistics in
Table 2: COYO suffers from a short text distribution since
the accompanying text is taken from alt-text. We subsample
the COYO dataset by ranking CLIP similarities and keep
only 25M images (a similar size as MMC4-core).

We follow the same pre-training + SFT process and ablate
different pre-training corpus. We compare the 0-shot and
few-shot visual language accuracy as well as text-only accu-
racy (MMLU [27]) in Table 3. Due to space limit, we report
the average accuracy over four datasets (as in Table 1).

Interleaved data is essential. We notice using image-text
pairs (i.e., COYO) for pre-training can lead to catastrophic

forgetting. The text-only accuracy (MMLU) degrades by
17.2%. The visual language accuracy is also much worse
compared to MMC4 pre-training. Noticeably, the 4-shot ac-
curacy is even worse than 0-shot, showing the model cannot
properly do in-context learning for visual language inputs
(probably because it never sees more than one image during
pre-training). We hypothesize the catastrophic forgetting
is due to the distribution of text-based captions, which are
generally very short and concise.

On the contrary, dataset like MMC4 has a much closer dis-
tribution compared to text-only corpus (e.g., C4 [50]). When
using the interleaved data for pre-training, the degradation on
MMLU is only ˜5%. The degradation would be even smaller
when using a larger base LLM [20]. With proper instruction
tuning (Section 3.3), this degradation can be fully recov-
ered. It also promotes visual in-context learning, leading to
a higher 4-shot accuracy compared to 0-shot.

Interleave data structure matters, but not the text distri-
bution. We further question whether the benefits come
from the better text distribution (e.g., longer) or from the
interleave nature. To ablate this, we construct a new MMC4
variant by only keeping the images and their corresponding
text segments, without considering the interleave nature, de-
noted as “MMC4-pairs”. For example an MMC4 sample
may look like:

<txt1><im1><txt2><txt3><im2><txt4>

It will be converted into two MMC4-pairs samples†:

<im1><txt2>, <im2><txt4>

However, training on MMC4-pairs does not lead to a satis-
factory result: it slightly reduces the degradation on MMLU
due to a longer text distribution, but the VLM accuracy is
even lower compared to pre-training on COYO; there is also
no in-context improvement. We hypothesize the MMC4 sam-
ples do not have a very strict image-text correspondence; the
image only provides marginal information for text modeling
(i.e., most of the information is still from pure text modeling;
an example is provided in Figure 4). It is also demonstrated
by the loss curves in Figure 5, where training on the inter-
leave corpus leads to a much lower loss, indicating the full

†We followed [71] to match the image and text segments by CLIP scores.



PT
data

SFT
data

VLM acc. (avg)
MMLU acc.

0-shot 4-shot

Llama-2 - - - 46.0%
MMC4 Visual 68.7% 70.9% 40.7% (-5.3%)
MMC4+COYO Visual 69.0% 71.3% 40.2% (-5.8%)

Llama-2 Text - - 51.2%
MMC4 Vis.+Text 71.0% 72.1% 51.4% (+0.2%)
MMC4+COYO Vis.+Text 72.3% 73.6% 50.9% (-0.3%)

Table 4. Joint SFT (Vis. + Text) not only bridges the degradation
of text-only capability (MMLU acc.), but also improves the perfor-
mance on visual-language tasks (both zero-shot and few-shot).

text segments provides more information. Therefore, the
interleaved data structure is critical, allowing the model to
pick up the image-related information, without over-forcing
it to learn unrelated text modeling.

Data blending improves pre-training. Training on
image-text pairs only led to a sharp degradation on text-only
accuracy (more than 17%). Luckily, blending the interleaved
corpus and image-text pairs allows us to introduce more
diversity in the corpus, while also preventing the severe
degradation. Training on MMC4+COYO further boosts the
accuracy on visual language benchmarks (the gain is larger
when we perform joint SFT, as we will show later (Table 4).

3.3. Recover LLM Degradation with Joint SFT

Despite the interleave data helps maintain the text-only capa-
bility, there is still a 5% accuracy drop. A potential approach
is to maintain the text-only capability would be to add in
text-only corpus (the one used in the LLM pre-training).
However, such text corpus are usually proprietary even for
open-source models; it is also unclear how to subsample the
data to match the scale of vision-language corpus.

Luckily, we found the text-only capabilities are temporar-
ily hidden, but not forgotten. Adding in text-only data during
SFT can help bridge the degradation, despite using a much
smaller scale compared to the text pre-training corpora (usu-
ally trillion scale).

Joint supervised fine-tuning. The common way for
instruction tuning is to fine-tune the model on some vi-
sual language datasets (VQA/Caption style [18] or GPT-
generated [39]). We found blending in text-only instruction
data can simultaneously (i) recover the degradation in text-
only accuracy, and (ii) improve the visual language accuracy.
To this end, we also blended in 1M text-only instruction tun-
ing data sampled from FLAN [17], which we termed as joint
SFT. We provide the comparison in Table 4.

We can see that blending in the text-only SFT data not
only bridges the degradation on text-only capability (the

MMLU accuracy is on par compared to the original Llama-2
model fine-tuned on the same text-only instruction data), but
also improves the visual language capability. We hypothe-
size that the text-only instruction data improves the model’s
instruction-following capability, which is also important for
visual language tasks. Interestingly, the benefits of blending
in COYO data is more significant with joint SFT. We believe
that with joint SFT, the model no longer suffers from the text-
only degradation when pre-trained with short captions, thus
unlocking the full benefits from the better visual diversity.

4. Experiments
4.1. Scaling up VLM pre-training

We scale up the training of VLM in the following aspects to
form our final model:

Higher image resolution. Above ablation studies used
the OpenAI CLIP-L [48] with 224×224 resolutions as the
visual encoder. We now use 336×336 image resolutions to
include more visual details for the model, which can help
tasks requiring fine-grained details (e.g., TextVQA [54]).

Larger LLMs. By default, we used Llama-2 [60] 7B for
ablation study. We also scaled to a larger LLM backbone
(e.g., Llama-2 [60] 13B) to further improve the performance.

Pre-training data. We used both interleaved image-text
data and image-text pairs for pre-training (we sample roughly
1:1 image proportions) to improve the data diversity. The
total the pre-training corpus contains about 50M images.
It is smaller than the billion-scale pre-training data [6, 14,
62], but already demonstrates impressive improvements on
downstream tasks.

SFT data. We also include a better SFT data blend from
LLaVA-1.5 [38], which is more diverse (e.g., contains
reference-based annotations) and has high-quality prompt.
The new SFT data blend can significantly improve the down-
stream evaluation metrics. We include details the Appendix.

Limitations. Due to the limited compute budget, we have
not been able to further scale up the size of the pre-training
corpus to billion-scale, which we leave as future work.
Nonethess, pre-training on 50M images already demon-
strated significant performance improvement.

4.2. Quantitative Evaluation
visual language tasks. We perform a comprehensive com-
parison with state-of-the-art models on 12 visual language
benchmarks in Table 5. Compared to existing models (e.g.,
LLaVA-1.5 [38]), our model achieves consistent improve-
ments over most datasets at different model sizes under a
head-to-head setting (using the same prompts and base LLM;



Method LLM Res. PT IT VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MMBCN SEED LLaVAW MM-Vet

BLIP-2 [35] Vicuna-13B 224 129M - 41.0 41 19.6 61 42.5 85.3 1293.8 – – 46.4 38.1 22.4
InstructBLIP [18] Vicuna-7B 224 129M 1.2M – 49.2 34.5 60.5 50.1 – – 36 23.7 53.4 60.9 26.2
InstructBLIP [18] Vicuna-13B 224 129M 1.2M – 49.5 33.4 63.1 50.7 78.9 1212.8 – – – 58.2 25.6
Shikra [12] Vicuna-13B 224 600K 5.5M 77.4∗ – – – – – – 58.8 – – – –
IDEFICS-9B [30] LLaMA-7B 224 353M 1M 50.9 38.4 35.5 – 25.9 – – 48.2 25.2 – – –
IDEFICS-80B [30] LLaMA-65B 224 353M 1M 60.0 45.2 36.0 – 30.9 – – 54.5 38.1 – – –
Qwen-VL [9] Qwen-7B 448 1.4B 50M 78.8∗ 59.3∗ 35.2 67.1 63.8 – – 38.2 7.4 56.3 – –
Qwen-VL-Chat [9] Qwen-7B 448 1.4B 50M 78.2∗ 57.5∗ 38.9 68.2 61.5 – 1487.5 60.6 56.7 58.2 – –
LLaVA-1.5 [38] Vicuna-1.5-7B 336 0.6M 0.7M 78.5∗ 62.0∗ 50.0 66.8 58.2 85.9 1510.7 64.3 58.3 58.6 63.4 30.5
LLaVA-1.5 [38] Vicuna-1.5-13B 336 0.6M 0.7M 80.0∗ 63.3∗ 53.6 71.6 61.3 85.9 1531.3 67.7 63.6 61.6 70.7 35.4

VILA-7B (ours) Llama-2-7B 336 50M 1M 79.9∗ 62.3∗ 57.8 68.2 64.4 85.5 1533.0 68.9 61.7 61.1 69.7 34.9
VILA-13B (ours) Llama-2-13B 336 50M 1M 80.8∗ 63.3∗ 60.6 73.7 66.6 84.2 1570.1 70.3 64.3 62.8 73.0 38.8

+ShareGPT4V Llama-2-13B 336 50M 1M 80.6∗ 63.2∗ 62.4 73.1 65.3 84.8 1556.5 70.8 65.4 61.4 78.4 45.7

Table 5. Comparison with state-of-the-art methods on 12 visual-language benchmarks. Our models consistently outperform LLaVA-1.5 under
a head-to-head comparison, using the same prompts and the same base LLM (Vicuna-1.5 is based on Llama-2), showing the effectiveness of
visual-language pre-training. We mark the best performance bold and the second-best underlined. Benchmark names are abbreviated due to
space limits. VQA-v2 [25]; GQA [29]; VisWiz [26]; SQAI: ScienceQA-IMG [41]; VQAT: TextVQA [54]; POPE [36]; MME [24]; MMB:
MMBench [40]; MMBCN: MMBench-Chinese [40]; SEED: SEED-Bench [33]; LLaVAW: LLaVA-Bench (In-the-Wild) [39]; MM-Vet [67].
∗The training images of the datasets are observed during training. We also tried adding the ShareGPT4V [13] to the SFT blend on top of
VILA-13B (last row), leading to a significant improvement on LLaVA-Bench and MM-Vet (marked in green).

Size Model MMLU [27] BBH [57] DROP [22]

7B

Llama-2 46.0% 32.0% 31.7%
Llama-2+SFT 51.8% 39.3% 53.1%
Vicuna-1.5 49.8% 36.9% 29.2%

VILA 50.8% 38.5% 52.7%

13B

Llama-2 55.7% 37.5% 41.6%
Llama-2+SFT 54.3% 43.2% 59.2%
Vicuna-1.5 55.8% 38.4% 43.6%

VILA 56.0% 44.2% 63.6%

Table 6. VILA maintains competitive accuracy on text-only bench-
marks. There is a small gap compared to the text-only model under
7B; but the accuracy is even better under 13B.

Vicuna-1.5 is based on Llama-2). Remarkably, we 7B model
is able to outperform LLaVA-1.5 13B on VisWiz [26] and
TextVQA [54] by a large margin thanks to the pre-training.
Our 7B model even outperforms the 13B LLaVA model on
these datasets. Our model also has multi-lingual capability
despite the vision-language instruction data is in English, out-
performing LLaVA-1.5 on MMBench-Chinese benchmark.
Our results demonstrates the benefits of vision-language
pre-training on downstream tasks, even when using a high-
quality instruction tuning dataset [38].

Text-only performance. Our goal is to augment an LLM
to support visual inputs. It is essential that the model can
retain the text-only capability. Therefore, we further evaluate
the text-only performance of the models under three bench-
marks: MMLU [27], BBH [57], and DROP [22] in Table 6.

We did not choose benchmarks like MT-Bench [69] since
text instrution tuning is not the focus of the work. Overall,
our model achieves performance as Llama-2 fine-tuned with
the same text SFT data: the accuracy of our 7B model is a
bit lower, while the 13B is higher. We suspect the smaller
model may suffer from a larger text performance degradation
during the pre-training, as observed in [20].

4.3. Qualitative Evaluation

Here we study how visual language pre-training enables new
capabilities for the model. Part of the image samples are
taken from [6, 14, 64].

Multi-image reasoning. Thanks to the pre-training, our
model has the ability to reason over multiple images, de-
spite the SFT data is composed of single-image samples.
We provide two examples in Figure 6. In the first example,
our model is able to figure out the common object (i.e., a
flamingo) across the three images and the different art styles
of each one, while the LLaVA model failed. The LLaVA
model hallucinates and cannot distinguish the information
from different input images. In the second example, our
model is able to find one of the differences (i.e., the head-
wear) out of the two.

In-context learning. In-context learning is an important
characteristic of LLMs, allowing people to prompt the LLM
with few-shot samples to enable new tasks. We provide in-
context learning samples in Figure 7. Interestingly LLaVA-
1.5 [38] can also perform in-context learning to some extend,
despite only being trained on single-image-text-paired sam-
ples. We believe the capability is inherited from text-only



LLaVA-1.5: The common theme among these three images is the presence of a pink flamingo. In each image, the 
flamingo is standing in the water, with one image showing the bird in the water, another image showing the bird's 
legs, and the third image showing the bird's head. The flamingo is the central subject in all three images, and its 
distinctive pink color and unique appearance make it the focal point of each photo. 

Prompt: Image 1: <img1>\nImage 2: <img2>\nImage 3: <img3>\n 
What is the common thing about these three images?

LLaVA-1.5: In image 1, there is a small girl wearing a pink dress and a crown. She is smiling and appears to be happy. In 
image 2, the girl is wearing a pink dress and a crown, but she is not smiling. The main difference between the two images 
is the girl's facial expression, with one showing a smile and the other not showing any expression.

Prompt: Image 1: <img1>\nImage 2: <img2>\n 
Tell me about the differences between image 1 and image 2.

Ours: The common theme among these three images is the presence of a flamingo. In the first image, the flamingo is a 3D model, while in the 
second image, it is a pink cartoon. In the third image, it is a real flamingo standing in the water. All three images showcase the bird in different 
styles and formats, but they all share the same subject.

Ours: The two images feature a cartoon girl wearing a pink dress. In the first image, the girl is wearing a crown, while in the second image, she is wearing a 
tiara. Both images showcase the girl in a princess-like attire, but the difference lies in the type of headwear she is wearing. The crown is a more traditional and 
regal accessory, while the tiara is a more playful and common accessory associated with princesses in popular culture.

Figure 6. Our model VILA can reason over multiple images thanks to the pre-training process. The samples are taken from [6, 64].

LLaVA-1.5: Soulemes. 
Ours: Soulomes.

Underground. Congress.

2+1=3 5+6=11

LLaVA-1.5: 3x6=18 
Ours: 3x6=18

Input few shot examples + target image Output

Romanticism Surrealism

LLaVA-1.5: Surrealism 
Ours: Impressionism

?

?

?

Figure 7. VILA has better in-context learning capability thanks
to interleaved image text pretraining rather than single image-text
pairs.We feed two image+text pairs and a third image as the context
to prompt the VLM. LLaVA failed the first sample due to limited
OCR capability, and failed the third examples by repeating the
second sample semantic.

pre-training of the base LLM. Nonetheless, our model out-
performs LLaVA-1.5 for in-context learning: LLaVA-1.5
failed the first sample due to limited OCR capability, and
failed the third example by repeating the semantics.

Visual Chain-of-Thoughts (CoT). Our model is able to
perform chain-of-thought reasoning given visual inputs. As
shown in Figure 8, VILA is able to perform complex CoT rea-
soning over the input images (multi-image or single-image)
when adding “Think step-by-step” to the end of the prompt.
We believe the CoT capability is inherited from text-only
SFT, despite there is no such samples from the visual lan-
guage instruction data.

Prompt: Photo: <img1>\nMenu: <img2>\nHow much should I pay 
for all the beer on the table according to the price on the menu? 
Answer: According to the menu, the price for the beer on the table is $6. 

Example: Visual Chain-of-Though (CoT)

Prompt: … + Think step-by-step.  
Answer: The beer on the table is Magna, which is priced at $6.00. There 
are two bottles of Magna on the table. Therefore, the total cost of the 
beer should be $6.00 x 2 = $12.00.

Prompt: <img>\nI am getting just two 
custom pizza for me and my friend. How much 
should I pay in total according to the image? 
Answer: According to the image, you should 
pay $11.99 for two custom pizzas.

Prompt: … + Let’s think step-by-step.  
Answer: The image shows a chalkboard menu with a special for today, 
which is to create your own pizza. The price for this special is $9.99. 
Since you are getting two custom pizzas, you should pay $9.99 x 2 = 
$19.98 for the two pizzas. So, the answer is $19.98.

Figure 8. Our model is able to perform chain-of-thought reasoning
given visual inputs. It is able to generate the correct answer when
adding “Think step-by-step” to the prompt. Zoom in for a better
view of the image details. Samples from [20, 64].

Better world knowledge. Since our model is pre-trained
on a large-scale corpus, it has better understanding of world
knowledge. We perform a case study by prompting the
model to recognize the locations of some famous landmarks
(please see supplementary due to space limits). VILA can
correctly recognize 4 out of the 4 samples, while LLaVA-1.5



Resolution Projector #Tokens
Evaluation ↑

OKVQA TextVQA COCO

224 linear 256 49.9% 41.6% 116.0
336 linear 576 49.7% 49.8% 117.7

336 downsample 144 49.3% 45.6% 115.7

Table 7. Improving the image resolution from 224 to 336 can
significantly improve TextVQA accuracy. The raw resolution mat-
ters more than #tokens; high-resolution with token downsampling
works better than low-resolution. We report accuracy for OKVQA
and TextVQA, and CIDEr for COCO. Note: the evaluation protocol
is different from Table 5 and can only be compared within the table.

only gets 2 out of the 4, demonstrating the effectiveness of
the pre-training. Samples are taken from [64].

4.4. Other Learnings.
Image resolution matters, not #tokens. We chose an
image resolution of 3362 since it provides more fine-grained
details compared to 2242, leading to improved accuracy on
tasks like TextVQA [54]. As shown in Table 7, increasing
the resolution from 224 to 336 can improve the TextVQA
accuracy from 41.6% to 49.8%. However, a higher resolu-
tion leads to more tokens per image (3362 corresponds to
576 tokens/image) and a higher computational cost. It also
limits the number of demonstrations for in-context learning.

Luckily, we find that the raw resolution matters more
than the #visual tokens/image. We can use different pro-
jector designs to compress the visual tokens. Here we try
a “downsample” projector, which simply concatenates ev-
ery 2× 2 tokens into a single one and use a linear layer to
fuse the information. It reduces the #tokens to 144 under
the 336 resolution, that is even smaller than the 224+linear
setup. Nonetheless, the TextVQA accuracy is higher (∼46%
vs. 41.6%), despite still 3% worse compared to 336+linear
setup, showing a large redundancy in the image tokens. The
gap on other datasets such as OKVQA and COCO is smaller
since they usually require higher-level semantics.

In our main results, we did not use any token compression
methods to provide the best accuracy despite this encourag-
ing observation, and leave it to future work.

Comparison to frozen LLMs with visual experts. An-
other interesting method for retaining the text capabilities of
LLMs during the pre-training is to freeze the base LLM and
add an extra visual expert to process the visual tokens [62].
The definition of expert is similar to MoE frameworks, but
with a manual routing mechnism according to token types.
Since the base LLM is frozen, the model fully retains the
original functionality for text-only inputs during pre-training.
However, we find that directly fine-tuning the LLM during
visual language pre-training still leads to a better VLM accu-
racy and in-context learning capability (Table 8). Adding an

#Param
VLM acc. (avg)

0-shot 4-shot

Visual Expert [62] 1.9× 67.0% 64.8%
Fine-tune 1× 71.0% 72.1%

Table 8. Directly fine-tuning the LLM during pre-training leads to
better VLM accuracy and in-context learning capabilities. It also
enjoys a smaller model size. Both settings are pre-trained on the
MMC4-core dataset [71].

extra visual expert also leads to near 2× model size increase,
which is not friendly for edge deployment. Therefore, we
chose to directly fine-tune the base LLM.

5. Related Work
Large language models (LLMs). LLMs based on Trans-
formers [61] have fundamentally changed the language
processing field. They are achieving increasing capabili-
ties by scaling up the model size and the pre-training cor-
pus [1, 10, 16, 19, 21, 23, 28, 49, 55]. It is believed that
most the capability of the LLM is obtained from the large-
scale pre-training process, which are later unlocked through
instruction tuning [17, 45, 46]. There is a growing effort
from the open-source community to build a strong base
LLM [59, 60, 68] and the conversational variants [15, 58].
In this work, we start with the base Llama-2 model [60].

Visual language models (VLMs). VLMs are LLMs aug-
mented with visual inputs to provide a unified interface for
visual language tasks. There are two main designs for VLMs:
1. cross-attention based, where the LLM is frozen while the
visual information is fused into intermediate embeddings
with a cross-attention mechanism [6, 7]; 2. auto-regressive
based, where the visual input is tokenized and fed to the
LLM alongside text tokens [2, 5, 8, 14, 20, 35, 39, 65, 70].
The latter is a natural extension by treating visual inputs as a
foreign language. VLMs are also instruction-tuned so that
they can better follow human instructions or perform conver-
sations [18, 39, 56]. In this work, we study the pre-training
process of the auto-regressive VLMs due to their flexibility
when handling multi-modal inputs.

Following text-only LLMs, people also study different
training recipes for VLMs. Some work freezes the LLM and
train auxiliary components [6, 34, 35, 62], others fine-tune
the LLM to enable visual capabilities [14, 20]. There is
also usage of different data corpora, including image-text
pairs [14, 20, 34, 39], interleaved datasets [7], video-text
pairs [42], visual-grounded annotations [38, 47], etc. In
this work, we provide a holistic ablation of different design
choices for the pre-training stage.



6. Conclusion
This paper has explored effective pretraining design options
to augment LLMs towards vision tasks. Leveraging full
strength of LLM learning, interleaved-nature of image-text
data, and careful text data re-blending, VILA has surpassed
state-of-the-art methods for vision tasks while preserving
text-only capabilities. VILA has also depicted strong reason-
ing capability for multi-image analysis, in-context learning
and zero/few-shot tasks. We hope our paper can help spur
further research on VLM pretraining and collection of cross-
modality datasets.
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A. SFT Blend for Ablation Study

We used an in-house data blend for supervised fine-
tuning/instruction tuning during the ablation study. We
followed [18] to build the FLAN-style instructions from
the training set of 18 visual language datasets, as shown
in Table 9. We may see that most of the datasets are in
a VQA format. For the final model, we also blend in the
LLaVA-1.5 SFT dataset [38], which has better quality and
diversity (for example, it contains visual reference data like
RefCOCO [37, 43]).

Categories Datasets

Captioning Image Paragraph Captioning, MSR-VTT, TextCaps
Reasoning CLEVR, NLVR, VisualMRC
Translation Multi30k
VQA ActivityNet-QA, DocVQA, GQA, iVQA,

MSRVTT-QA, MSVD-QA, OCR-VQA, ST-
VQA, ViQuAE, VQAv2, Visual Dialog

Table 9. The SFT blend we used during the ablation study.

B. Training Cost

We perform training on 16 A100 GPU nodes, each node
has 8 GPUs. The training hours for each stage of the 7B
model are: projector initialization: 4 hours; visual language
pre-training: 30 hours; visual instruction-tuning: 6 hours.
The training corresponds to a total of 5.1k GPU hours. Most
of the computation is spent on the pre-training stage.

We have not performed training throughput optimizations
like sample packing [32] or sample length clustering. We
believe we can reduce at least 30% of the training time with
proper optimization. We also notice that the training time is
much longer as we used a high image resolution of 336×336
(corresponding to 576 tokens/image). We should be able to
reduce the training time by more than 50% by using lower-
resolution images for pre-training (e.g., 224×224) and scale
up the resolution at the later stage of the training [14], which
we leave to future work.

C. Details on COYO Subsampling

We were able to download 25M out of 30M images for the
MMC4-core dataset [71]. The COYO-700M dataset [11]
contains about 700M images. To maintain a similar dataset
size, we subsample 25M images from the COYO-700M
dataset. Specifically, we sort all the samples based on the
CLIP similarity between images and captions and keep the
25M images with the highest similarities. Samples with
a high CLIP similarity usually have better image-caption
correspondence.

D. More Qualitative Samples
Here we provide more qualitative samples that we were not
able to include in the main paper due to space limits. Many
of the image samples are taken from [6, 64].

<img1> 
LLaVA-1.5: The landmark is in Tokyo, Japan. 
Ours: The landmark in the image is located in Taipei, Taiwan. 

<img2> 
LLaVA-1.5: This landmark is in New York City. 
Ours: This landmark is located in New York City.

<img4> 
LLaVA-1.5: This landmark is located in Tokyo, Japan. 
Ours: This landmark is located in Kyoto, Japan.

<img3> 
LLaVA-1.5: This landmark is in New York City. 
Ours: The landmark in the image is located in New York City.

Prompt: Which city is this landmark in?

Figure 9. Landmark city recognition. Visual-language pre-training
gives the model better world knowledge. It reduces the bias towards
answering “Tokyo” compared to LLaVA-1.5 [38]. We mark the
wrong responses in red. Samples are taken from [64].

Better world knowledge. Pre-training on a large-scale
corpus allows the model to have better visual-related world
knowledge. Here we take four landmark images from [64]
(without curation) and ask the model which city is the land-
mark located in (Figure 9). VILA can correctly recognize
4 out of the 4 samples, while LLaVA-1.5 only gets 2 out of
the 4, with an output bias on more common cities like Tokyo
and New York.

Visual reference understanding. Our model can under-
stand visual reference overlaid on images and perform rea-
soning. We provide a sample of visual reference reasoning
in Figure 10 (from [64]). VILA is able to correctly figure
out what is in the circled glass, while LLaVA-1.5 failed.

More in-context learning samples. We provide more
in-context learning samples in Figure 13, including com-
pany knowledge, object counting, and French poems. VILA
demonstrates strong in-context learning capabilities under
various demonstrations.

More VQA samples. We provide more VQA samples in
Figure 14. VILA is able to understand memes, reason on



Visual input example: Understanding visual reference

User What is in the circled glass? Object 1 or 2? Describe what is
Object 1 and object 2. Then check what is in the circled glass.

GPT-4V Object 1 is a glass bottle of water. It is clear and has a blue label
on it. Object 2 is a glass bottle of Magna beer. It is green and
has a red and white label on it. In the circled glass, it appears to
be a clear liquid, likely water. So, it is likely that the contents of
the circled glass are from Object 1, the glass bottle of water.

LLaVA-1.5 Object 1 is a bottle of water, and Object 2 is a bottle of beer. The
circled glass contains the beer.

Ours Object 1 is a bottle of water, and Object 2 is a bottle of beer. The
circled glass contains Object 1, which is a bottle of water.

Figure 10. Our model can understand visual reference overlaid on
images and perform reasoning.

Visual input example: Visual logic reasoning

User Which of these cars is more aerodynamic? The one on the left
or the right? Explain why, using specific visual details.

Gemini The car on the right is more aerodynamic. It has a lower profile
and a more streamlined shape. The car on the left has a higher
profile and a more boxy shape, which makes it less aerodynamic.

LLaVA-1.5 The car on the right is more aerodynamic than the one on the
left. This is evident from the fact that the car on the right is
shown going down a hill, while the car on the left is shown going
up a hill. When a car is going downhill, it experiences less air
resistance, which allows it to maintain higher speeds with less
energy expenditure. In contrast, when a car is going uphill, it
encounters more air resistance, making it more challenging to
maintain speed and requiring more energy to overcome the resis-
tance. Therefore, the car on the right is more aerodynamic due
to the downhill slope, which allows it to travel more efficiently.

Ours The car on the right is more aerodynamic than the one on the left.
This is because the car on the right has a more streamlined shape,
which reduces air resistance and drag. The car on the left has a
more traditional, boxy shape, which increases air resistance and
drag. The aerodynamic car on the right would be more efficient
and faster, while the car on the left would be slower and less
efficient.

Figure 11. Our model can understand visual details on images and
perform logical reasoning.

multiple images or video frames, and provide help on corner
cases in autonomous driving.

More logical reasoning samples. We check VILA on the
most recent samples from Gemini’s release [3] in Figure 11.
VILA is able to understand the logic utilizing visual features
in detail, whereas the LLAVA-1.5 cannot yield reasonable
responses.

Using VILA for detailed captioning. People have been
using datasets like LAION [53] to train text-to-image gen-
erative models [51, 52]. The quality of the image-text pairs
can significantly affect the performance of the trained model.
Some captions in the training datasets are quite noisy: they
are either not quite related to the images or are too abbre-
viated and contain limited details. We show that we can
use VLM models to generate high-quality and detailed cap-
tioning (Figure 12). We use a simple prompt “Describe
the image in detail.” to generate the captions. VILA can
generate more related descriptions compared to the original
caption (sample 1) and provide more details compared to
previous models like BLIP-2 [35] (sample 2).

Original caption (LAION): Best Location in Sydney!!! 
Ours: The image captures a beautiful nighttime scene of a city skyline 
with a large body of water in front of it. The city is illuminated by the 
lights of various buildings, creating a vibrant atmosphere. The water is 
filled with numerous boats of different sizes.

Example: Detailed Captioning

BLIP-2: There is a mountain of meat and a river in the background 
Ours: The image is a surreal and colorful scene featuring a landscape 
made entirely of meat. The landscape is filled with various types of meat, 
including bacon, ham, and sausage, creating a unique and eye-catching 
scene. The meat is arranged in the form of mountains, hills, and valleys, 
giving the impression of a fantasy world. In addition to the meat, there 
are several birds scattered throughout the scene.

Figure 12. VILA can provide detailed captions. The raw captions
in datasets like LAION [53] can be noisy and irrelevant. VILA
can generate meaningful captions with more details compared to
BLIP-2 [35]. The results are obtained by prompting the model with
“Describe the image in detail.”.



Les sanglots longs 
des violons de 
l’automne blessent 
mon coeur d’une 
langueur 
monotone.

Pour qui sont ces 
serpents qui 
sifflent sur vos 
têtes?

Les flamands roses s'embrassent 
avec passion, leurs cœurs se 
touchant, leur amour se partageant.

Input few shot examples + target image Output

The company is 
famous for its 
search engine.

The company is 
famous for 
iPhone and Mac.

The company is famous for its 
graphics processing units.

pandas: 3 dogs: 2 giraffes: 4

Figure 13. In-context learning samples on company knowledge, object counting, and French poem. The predictions are from VILA-13B.

Q: Can you explain the meme? 
A: The meme depicts a man's reaction to the price of a computer 
graphics card. In the first image, the man is smiling and appears excited 
about the product. In the second image, he is shocked and disappointed 
by the high price of the graphics card, which is $1,200. The meme is a 
playful representation of the contrast between the man's initial 
enthusiasm and his subsequent disappointment upon learning the cost of 
the product.

Example: VQA Samples

Q: What happens to the man after hitting the ball? 
A: After hitting the ball, the man falls down onto the grass. 
Q: Why does the man fall to the grass? 
A: The man falls to the grass because he is swinging his golf club too 
hard, causing him to lose his balance and fall.

Q: Photo 1, at 10:30 am: <img1> 
Photo 2, at 12:45 pm: <img2> 
Photo 3, at 3:45 pm: <img3> 
What did I have for lunch, and what time was it? 
A: I had a sandwich for lunch, and it was at 12:45 pm.

Q: What is unusual about this image? 
A: The unusual aspect of this image is that a chair is flying through the 
air on a highway, seemingly coming out of the back of a truck. 
Q: What should you do if you encounter this? 
A: If you encounter this situation, you should immediately stop your 
vehicle and move to a safe distance from the truck and the flying chair. It 
is essential to avoid any potential hazards and contact the authorities to 
report the incident and ensure the safety of everyone involved.

Figure 14. VQA samples. VILA is able to understand memes, reason on multiple images or video frames, and provide help on corner cases
in autonomous driving. The answers are from VILA-13B.
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