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Abstract

"The researchers wrote the paper" and "They001
wrote it" share syntactic and semantic infor-002
mation that is easily recognizable for humans.003
Specifically, the latter is an abstraction of the004
former. Can language models also recognize005
the syntactic and semantic parallelism of the006
two sentences, which relies on lexical abstrac-007
tion? We present a study that aims to uncover008
whether a language model encodes words and009
sentences in a way that reflects this linguistic010
abstraction.011

We compare representations of nouns, on one012
side, and the pronouns and adverbs (functional013
words) that can replace these nouns, as well014
as the corresponding lexicalized and functional015
sentences, on the other. The shallow analyses016
show that nouns and functional words inhabit017
different areas of the embedding space, both018
when considered in isolation or in the same019
sentential contexts. Deeper analyses, however,020
show that the structure shared between the lex-021
icalized sentences and their functional varia-022
tions is encoded and can be uncovered from023
their embeddings.024

Our results then indicate that, when prop-025
erly constrained by the structure, the informa-026
tion supporting the generalization through ab-027
straction provided by pronouns and functional028
words can be revealed.029

1 Introduction030

Large language models (LLMs) are very successful,031

and much of their success stems from their ability032

to induce word or token representations that encode033

the extremely complex language data, with many034

generative factors (Bengio et al., 2013). It is an035

ongoing quest to understand these representations,036

the kind of linguistic information they encode and037

the way a system is able to successfully manipulate038

them to solve a wide variety of tasks. It is difficult039

to attribute their high performance on numerous lin-040

guistic and NLP tasks to their understanding of lan-041

guage and its structure (Waldis et al., 2024). One 042

of the criteria for judging the degree of language 043

understanding in LLMs is their capacity to “gener- 044

alize" well. This question is often approached from 045

a technical, rather than a linguistic, perspective. 046

Generalization is considered a crucial property of a 047

learned model, as it ensures trust in its deployment 048

outside of its training environment – whether this 049

application involves a slightly different task, out- 050

of-distribution data, a different language, or some 051

other level of distinction between the application 052

domain and the one it was trained on (Hupkes et al., 053

2023). This point of view often involves learning a 054

probe on top of the pretrained model. 055

There are however other types of generalization, 056

namely linguistic generalizations and abstractions. 057

For example, speakers can easily strip down a sen- 058

tence to a basic syntactic-semantic structure, such 059

as Who did what to whom or She put that there or 060

She does that sometimes. The use of pronouns or 061

adverbs to reduce a sentence to a “skeleton” does 062

not rely on using out-of-vocabulary items, as pro- 063

nouns and adverbials such as somewhere/sometime 064

are some of the most frequent words in a corpus, 065

and appear in many shared contexts, as their fre- 066

quent use in coreferring expressions attests. In 067

semantics, pronominal forms are usually treated as 068

variables, placeholders for more structured lexical 069

elements within a sentence and thus highly abstract 070

entities (Büring, 2019). 071

Is this particular property of functional words 072

– as abstract place-holders for nouns and preposi- 073

tional phrases – captured in LLMs? To explore this 074

question we start with a shallow exploration of the 075

embeddings of functional words and nouns in isola- 076

tion and in the same contexts. We then move on to 077

deeper analyses, where we use a system to search 078

for the shared syntactic structure of sentences that 079

differ only in the use of nouns and prepositional 080

phrases compared to using pronouns and adverbs. 081

The shallower analyses show that functional 082
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words and nouns do not inhabit the same regions083

of the embedding space, even when they appear in084

the same context. The in-depth analyses, instead,085

show that accessing deeper information in sentence086

embeddings reveals shared features encoding infor-087

mation about syntactic structure, whether these are088

filled by content or functional words.089

2 Data090

To explore linguistic generalization through ab-091

straction, in the special case of functional words,092

we use a purposefully generated dataset on verb093

alternations, with structure and lexical variation094

at multiple levels. Unlike other linguistic phe-095

nomena (e.g. agreement rules), where all neces-096

sary syntactic elements for the rule are contained097

within a single sentence, verb alternations require098

observing at least two related sentences. They show099

that the same verb can appear in different senten-100

tial contexts, with systematically related syntactic-101

semantic mappings of their arguments. This allows102

us to study a variety of sentential contexts and their103

lexical and functional expressions, within the con-104

trolled environment of the same verb meaning.105

The dataset is generated from a set of verbs be-106

longing to the change-of-state (COS) and object-107

drop (OD) classes (Levin, 1993). These classes pro-108

vide an argument structure minimal pair: they share109

the same syntactic structure - transitive/intransitive110

alternation - but differ in their argument structure.111

The object of the transitive verbs belonging to the112

COS class bears the same semantic role (Patient) as113

the subject of the intransitive verb (The artist opens114

this door/This door opens). The transitive form115

of the verb has a causative meaning. In contrast,116

for OD verbs the subject bears the same semantic117

role (Agent) in both the transitive and intransitive118

forms and the verb does not have a causative mean-119

ing (The artist paints this door/The artist paints)120

(Levin, 1993; Merlo and Stevenson, 2001).121

Moreover, we divide words into lexical and func-122

tional. Lexical elements, or content words, are an123

open class of words with a meaningful content, cor-124

responding to concepts or entities and events in125

the world. The role of the closed class of function126

words, instead, is to express grammatical functions.127

We focus specifically on pronouns, and a subset of128

adverbs, those that can express temporal and spa-129

tial concepts. These function words can be used as130

general placeholders for nouns and prepositional131

phrases: for instance, The researchers wrote the132

article last week can also be expressed more ab- 133

stractly as They wrote it then. 134

2.1 Data templates 135

The dataset comprises instances that follow the 136

Blackbird Language Matrices framework (Merlo, 137

2023). Each instance is a multiple-choice puzzle 138

and it consists of (i) a rule-generated context se- 139

quence of sentences that illustrate the encoded phe- 140

nomenon. The rules are of two types: rules that 141

described the linguistic property under study (verb 142

alternation) and rules that are not related to it (e.g. 143

presence or absence of a prepositional phrase). One 144

sentence that would make the sequence complete is 145

missing, and must be chosen from (ii) an answer set 146

of minimally differing contrastive sentences – one 147

correct, and each of the others violating a sub-rule. 148

Context set The syntax-semantics features of the 149

verb alternation, and their combination rules, lead 150

to the construction of the context set. Specifically, 151

(i) the presence of one or two arguments and their 152

attributes (agents, Ag; patients, Pat) ; (ii) the ac- 153

tive (Akt) or passive (Pass) voice of the verb. The 154

phenomenon-external factors include an alternation 155

between a NP introduced (i) by any preposition 156

(e.g., in an instant, henceforth p-NP) and (ii) by 157

the preposition by (e.g., by chance, by-NP), but not 158

agentive (e.g., by the artist, by-Ag/by-Pat), which 159

remains a confounding variable. The OD context 160

minimally differs from the COS in the last sentence 161

of the context: the subject of the intransitive is an 162

Agent, and not the Patient. 163

Answer Set All answers have the same structure: 164

(NP V by-NP) consisting of a verb, two nominal 165

constituents (giving rise to a structure of the type 166

NP V NP) and a preposition (by, or the lack of 167

the preposition) between the verb and the second 168

NP. The candidate answers comprise the correct 169

intransitive form of the alternation followed by a 170

by-NP which satisfy the rules of the BLM, and the 171

contrastive incorrect answers obtained by corrupt- 172

ing some properties of the rules (wrong argument, 173

wrong voice of the verb, lack of preposition, wrong 174

constituent of the PP).1 175

The answer set does not change across verb 176

classes, only the label of the correct answer: the cor- 177

1Error types: wrong semantic role on the first constituent
is a syntax-semantic mapping error (SSM), wrong last con-
stituent introduced by the preposition by WRBY, and the other
errors are labelled according to the type of resulting structure
– intransitive, INTR; transitive, TRANS; passive, PASS.
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rect answer for COS is an error for OD, and vicev-178

ersa. The BLM-template (context and answers) for179

COS and OD are presented in Figure 1.180

COS CONTEXT
1 Ag Akt Pat p-NP
2 Ag Akt Pat by-NP
3 Pat Pass by-Ag p-NP
4 Pat Pass by-Ag by-NP
5 Pat Pass p-NP
6 Pat Pass by-NP
7 Pat Akt p-NP
? ???

COS ANSWERS
1 Pat Akt by-NP CORRECT
2 Ag Akt by-NP SSM-INT
3 Pat Pass by-Ag PASS
4 Ag Pass by-Pat SSM-PASS
5 Pat Akt Ag TRANS
6 Ag Akt Pat SSM-TRANS
7 Pat Akt by-Ag WRBY
8 Ag Akt by-Pat SSM-WRBY

OD CONTEXT
1 Ag Akt Pat p-NP
2 Ag Akt Pat by-NP
3 Pat Pass by-Ag p-NP
4 Pat Pass by-Ag by-NP
5 Pat Pass p-NP
6 Pat Pass by-NP
7 Ag Akt p-NP
? ???

OD ANSWERS
1 Pat Akt by-NP SSM-INT
2 Ag Akt by-NP CORRECT
3 Pat Pass by-Ag SSM-PASS
4 Ag Pass by-Pat PASS
5 Pat Akt Ag SSM-TRANS
6 Ag Akt Pat TRANS
7 Pat Akt by-Ag SSM-WRBY
8 Ag Akt by-Pat WRBY

Figure 1: BLM COS and OD contexts and answers.

2.2 Levels of lexical abstraction181

To explore generalisation through abstraction, we182

produce two main variants of the data – a lexi-183

calized one (labelled Lex), and a functional one,184

where functional words replace all content words185

except the main verb (labelled Fun). The lexi-186

calised variant comes in different types (type I,187

II, III), with varying amounts of lexicalisation, for188

comparison with the small size inventory of the189

functional words. The groups are exemplified in190

Figure 2, together with the generation process pre-191

sented in the next paragraph. Figure 9 and Figure192

10 in the appendix examples for type I data for both193

verb classes.194

2.3 Main Dataset195

The main dataset is built based on thirty (manu-196

ally chosen) verbs from each of the two classes197

discussed in Levin (1993). See Table 2 in the ap-198

pendix for the full list.199

The functional lexicon has been manually se-200

lected by the authors to maintain the syntactic and201

semantic acceptability of the sentences2. The lex-202

ical alternatives were provided by a masked lan-203

guage model (bert-base-uncased, (Devlin et al.,204

2018)). The models received sentences contain-205

ing only the masked constituent, the verb and the206

functional elements. For example, to retrieve the ar-207

guments for the verb break, two masked templates208

are used: the patient is masked and the agent is in209

pronominal form (e.g. she broke (the/a/some/...)210

2Following the discussion in Haspelmath (1997), we add
elements like somebody as pronominal elements.

Lexical Seed

Sentence generation

Type I
A breaks B p-NP
A breaks B by-NP
B is broken by A p-NP
B is broken by A by-NP
B is broken p-NP
B is broken by-NP
A breaks p-NP
???

Sampling (3000 instances)

Type II
A breaks B p-NP
C breaks D by-NP
E is broken by F p-NP
G is broken by H by-NP
I is broken p-NP
J is broken by-NP
K breaks p-NP
???

Type III
A breaks B p-NP
C melts D by-NP
E is closed by F p-NP
G is opened by H by-NP
I is improves p-NP
J is baked by-NP
K bends p-NP
???

Verb seed

Lexical Dataset Functional Dataset

Masking Functional seed

Figure 2: Process of generation of the three levels of
lexical variation (type I, II, III), exemplified for COS
data. Type I data contains instances with lexically con-
sistent material, with minimal change across the context
and the answer set. In type II the verb remains the same
while one constituent varies across the context and the
answer set. Type III data displays maximal lexical vari-
ation in both the context sentences and the answer set.

<MASK>), and the subject of the transitive is masked 211

and the patient is a pronoun (e.g. (the/a/some/...) 212

<MASK> broke it. Both the lexical seed and the 213

functional seed contain five semantically plausible 214

instances for each constituent class ( Ag, Pat, p-NP 215

and by-NP). We ensured a balanced distribution of 216

tense and number across verbal inflections. 217

For our experiment, we sampled 3000 instances 218

(out of 38400 combinations of arguments and 219

verbs) for each type, semi-automatically crafted 220

and manually evaluated for plausibility and gram- 221

maticality. 222

2.4 Dataset variations 223

Starting from the main datasets described above, 224

we build several variations that will be used in the 225

different experiments. 226

Words From each sentence in the type I subset of 227

the BLM dataset, we extract the functional words 228

and their corresponding nouns and prepositional 229

phrases. There are 17 functional words and phrases: 230

he, her, him, it, she, somebody, someone, that, that 231

one, them, these, these ones, they, this, this one, 232

those, those ones and 204 noun phrases. 233

Sentences We compile parallel versions of the 234

sentences in their lexicalized and functional word 235
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forms from the FUN and LEX subsets of the type I236

BLM dataset. Each sentence has associated its syn-237

tactic pattern (the syntactic version of the syntactic-238

semantic template shown in Figure 1, e.g. Pron239

Vpass PP PP). From these, we sample 4000 sen-240

tences, split 80:20 between training and testing,241

and use 10% of the training data for validation.242

BLM data Of the thirty verbs, all instances for243

three of the verbs (3x100) are selected for testing.244

Of the instances of the other 27 verbs, 2000 are245

randomly sampled for training. Ten percent of the246

training data is dynamically selected for validation.247

The same 27:3 verb split is used for all Fun/Lex248

and type I/ type II/type III variations. All variations249

have 2000 instances for training, 300 for testing.250

3 Analyses and experiments251

We aim to understand whether language models252

encode sentences that we perceive as syntactically253

and semantically parallel – due to the linguistic ab-254

straction property of pronouns and adverbs relative255

to nouns and noun phrases – such that this shared256

information is accessible.257

To achieve this, we proceed in several steps. We258

investigate the relative positions of lexical and func-259

tional word embeddings, obtained from isolated260

words or when presented in similar sentential con-261

texts (Section 3.1). We study the relative positions262

of the representations of two variations of sentences263

– with nouns, or with functional words (Section 3.2).264

We analyse the representation of functional and lex-265

icalized sentences for detecting the shared syntactic266

structure (Section 3.3). We deploy the BLM lin-267

guistic puzzles, whose solution relies on detecting268

shared structure at the level of input sequence and269

within each sentence (Section 3.4).270

We obtain word and sentence representations271

(as averaged token embeddings) from an Electra272

pretrained model (Clark et al., 2020)3. We choose273

Electra because it has been shown to perform better274

than models from the BERT family on the Holmes275

benchmark4, and to also encode information about276

syntactic and argument structure better (Yi et al.,277

2022; Nastase and Merlo, 2024).278

As a first step of analysis, we use 2D t-SNE pro-279

jections (Hinton and Roweis, 2002). We project the280

3google/electra-base-discriminator
4The HOLMES benchmark leaderboard: https://

holmes-leaderboard.streamlit.app/. At the time of writ-
ing, the ranks were as follows: Electra - 16, DeBERTa - 21,
BERT - 41, RoBERTa - 45.

embeddings of lexical and functional words, when 281

considered in isolation, or within parallel senten- 282

tial contexts. t-SNE is designed to project high- 283

dimensional data into a lower dimensional space 284

while preserving neighbourhood information. Con- 285

sidering that the embedding space was built based 286

on the notion of similarity and similarity metrics, 287

this type of visualization provides a valid first level 288

of analysis of the properties of the lexicalized and 289

functional word and sentence embeddings. 290

3.1 Word embeddings 291

Stand-alone embeddings Figure 3 shows the t- 292

SNE projection of the word embeddings (as aver- 293

ages over the respective token embeddings) for the 294

functional words and noun phrases in our data, ob- 295

tained in isolation (when presented to the pretrained 296

model alone). Functional words appear isolated in 297

this space, which indicates that the shared informa- 298

tion between the functional elements and the nouns 299

they can replace, should there by any, is not to be 300

found at a shallow level. 301

Figure 3: t-SNE projection of the embeddings of func-
tional words and nouns, without a sentential context.

Contextual word embeddings We use the paral- 302

lel versions of the sentences – with content words 303

or functional words – to build contextualized word 304

embeddings, and verify whether the added con- 305

straints of belonging in the same sentential con- 306

texts brings the word embeddings closer together. 307

Each point in the plot in Figure 4 corresponds to 308

the contextual embedding of a functional word or 309

noun in each of the input sentences. Figure 4 shows 310

that even when embedded in the same context, the 311

embeddings of the functional words remain apart 312

from the embeddings of the nouns. 313

4
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Figure 4: tSNE projection of the embeddings of func-
tional words and nouns obtained from parallel contexts.
Each point is a contextual embedding.

Figure 5: t-SNE projection of sentence representations
(averaged token embeddings) coloured by their syntactic
pattern and the use of lexicalized or functional words.

3.2 Sentence embeddings314

Figure 5 shows the t-SNE projection of the repre-315

sentations of the two variations of each sentence.316

They also occupy different regions of the embed-317

ding space, just as the contextualised or out-of-318

context word embeddings.319

3.3 Shared structure320

The projections of the word and sentence embed-321

dings show that the functional words and the nouns322

inhabit different regions of the embedding space.323

The distinctions we observe in these analyses, how-324

ever, may be only superficial. According to the325

principle of superposition (Bengio et al., 2013; El-326

hage et al., 2022), each dimension can contribute327

to several features, and a feature may be encoded328

by a combination of dimensions. It is however dif-329

ficult to define what features are, and how they are330

encoded in a deep learning model.331

We mine for information about the structure of332

the sentences: these are our shared “features”. To333

train on
test on

Fun Lex

Fun 1.000 0.441
Lex 0.493 0.990
Mixed 0.995 0.990

Table 1: F1 scores on predicting the sentence with
the same structure as the input, through a variational
encoder-decoder system. For all eperiments the system
uses 2000 training instances, 10% of which are dynami-
cally selected in each experiment for validation.

reflect this notion of features, we use sentences 334

that are parallel in grammatical structure and se- 335

mantic roles. We use the sentences extracted from 336

the BLM data, as described in Section 2.4, and 337

form instances by pairing an input sentence si with 338

structure stri with a sentence sj ̸= si that has the 339

same structure (strj = stri), and with several (7) 340

negative examples sk that have different structures 341

(strk ̸= stri). The structure information is only 342

used to build the dataset and obtain a deeper eval- 343

uation of the results, but will not be provided to 344

the system. We built separate datasets for Fun and 345

Lex. 346

To mine for the structure of the sentences we fol- 347

low the approach described in Nastase and Merlo 348

(2024), which uses a variational encoder-decoder 349

to compress sentences into representations that cap- 350

ture syntactic and semantic information. To encour- 351

age the desired information – in this case syntactic- 352

semantic structure – to be encoded on the latent 353

layer, input sentences are paired to correct outputs 354

that have the same internal structure, and use ad- 355

ditional contrastive negative candidates that have 356

different structure than the input. There is no overt 357

signal about a sentence’s structure. 358

This approach enables a two-fold evaluation: 359

(i) in terms of performance in detecting the cor- 360

rect structure, by choosing the candidate answer 361

that has the same syntactic-semantic information 362

as the input; (ii) in terms of the compressed repre- 363

sentation on the latent layer, which captures these 364

syntactic and semantic properties. 365

Table 1 shows the averaged F1 scores over three 366

experiments. The results on test data of the same 367

type as the training are very different from those 368

on the test of the other type. This indicates that 369

for each of the Fun and Lex data variations, the 370

system discovers different clues to match two sen- 371

tences with the same structure. The high results 372

when training on the sentences with functional 373
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Training on Fun

Training on Lex

Training on mixed data

Figure 6: Latent representation analysis: t-SNE projec-
tion of vectors on the latent layer for the sentences in
the training instances.

words may also indicate overfitting. Additional374

information comes from the analysis of the com-375

pressed representations on the latent layer, which376

are expected to capture the sentence structure that377

is shared by the functional and lexicalized data.378

The top two plots of Figure 6 show the projection379

on the latent layer of the sentence representations380

with functional and content words, when trained on381

the sentences with functional words (top) or on the382

sentences with content words (middle). The plots,383

matching the F1 scores, show clear clusters for the384

data that matches the training type, but only slight385

separation for the data points from the other type.386

To test whether there is a shared level of informa- 387

tion between sentences with functional or content 388

words, despite what the shallow analyses in Sec- 389

tions 3.1 and 3.2 indicate, we train the system with 390

a dataset containing a mixture of instances. Evi- 391

dence for shared information will come from two 392

directions: high results on both test sets when train- 393

ing with the mixed training data, and overlapping 394

clusters for the compressed representations on the 395

latent layer. If there is no shared information, the 396

results may be high on each test set (because sepa- 397

rately they have been very well modelled), but the 398

clusters of the compressed representations would 399

be separate. 400

The results in Table 1 shows very high results 401

for both datasets for the mixed data training. The 402

analysis of the representations on the latent layer, 403

at the bottom of Figure 6, shows that the system has 404

discovered a shared space between the sentences 405

with functional and those with content words. What 406

these sentences have in common is the syntactic 407

and semantic structure, and the overlapping clusters 408

of the compressed representations on the latent 409

layer confirms that the system has uncovered this 410

shared structure. 411

3.4 Task solving 412

We add another step to the investigation into how 413

the shared structure that supports abstraction is 414

encoded in sentence embeddings. Instead of pre- 415

senting the system with isolated sentences, we 416

present it with change-of-state (COS) and object- 417

drop (OD) verb paradigms, as described in section 418

2. To choose the correct answer, the relevant lin- 419

guistic objects (verbs and noun phrases) and their 420

properties (grammatical and semantic roles in the 421

given contexts) must be identified. This dataset also 422

allows us to test generalization at several levels, be- 423

cause of the several levels of lexical variation. 424

We use the system described by Nastase and 425

Merlo (2024), that solves the BLM problem in 426

two steps: compresses the sentence into a repre- 427

sentation that encodes the structure relevant to the 428

BLM puzzle, and use these compressed represen- 429

tations to solve the multiple-choice puzzle. The 430

system construct the representation of an answer, 431

then chooses the closest one from the given options. 432

The two steps are encoded through interconnected 433

variational encoder-decoders, as illustrated in Fig- 434

ure 7, which are trained together. The learning 435

objective is to maximize the score of the correct an- 436

swer from the candidate answer set, and minimize 437
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Figure 7: Two-step VAE BLM solver

COS

OD

Figure 8: Results in terms of average F1 over three runs
for solving the type III (maximal lexical variation) COS
and OD BLM tasks for three models. Joint training vs.
separate training.

that of the incorrect ones.438

Figure 8 shows the F1 results (as averages over439

three runs) of joint vs. separate training for the440

two BLM tasks: change of state (COS) and object441

drop (OD). The results are for type III data, with442

maximum lexical variation. The complete results443

are in Tables 3 and 4 in the appendix.444

Processing separately datasets of sentences with445

and without functional words leads to high results446

within each task, but leads to low results when447

testing across tasks. This shows, as in the case448

of the mining for the shared sentence structure,449

that for each of the Fun and Lex subsets, the sys-450

tems discovers and exploits different regularities in451

the training data. Using a mixed training dataset,452

instead, encourages all systems to find a shared453

feature space.5454

5Other architectures – a feed-forward neural network, and

4 Discussion 455

The primary goal of this paper is to investigate if 456

sentence representations produced by LLMs en- 457

code an abstract notion of nominal and preposi- 458

tional phrase and, as such, if LLMs can gener- 459

alise through abstraction. Specifically, we investi- 460

gate whether the contextualised word embeddings 461

and sentence embeddings of structurally identical 462

sentences are similar, whether they contain noun 463

phrases and prepositional phrases or their homolo- 464

gous pronouns and functional place-holders. 465

Embeddings of words, and variation of sen- 466

tences with content or functional words occupy 467

different regions of the embedding space. This 468

result aligns with observations that LLMs general- 469

ize based on idiosyncratic lexical similarity, not on 470

structure (Baroni, 2019; Nikolaev and Padó, 2023). 471

It also indicates that pronouns are not represented 472

as place-holders of lexical nominal expressions. It 473

is interesting to remark, in this respect, that the se- 474

mantic literature also contains proposals suggesting 475

that pronominal forms are not place-holders, but 476

are better considered as equivalent to noun phrase 477

(NP) descriptions, where they refer to a less ab- 478

stract, fuller expression in context, in relevant envi- 479

ronments (Elbourne, 2002; Lewis, 2022). However, 480

the fact that functional words are represented sepa- 481

rately does not immediately imply they cannot be 482

used as place-holders by a process of mapping onto 483

the homologous nominal expressions in a more 484

structured environment. The result of separation of 485

spaces, though, stems from a shallow analysis, and 486

may hide similarities at a deeper level. 487

We can detect information about the shared 488

syntactic structure in the embeddings of the 489

functional and lexical variations of the same 490

sentences, in the right environment. Our follow- 491

up experiments uncover information about shared 492

syntactic structure in Fun and Lex variation of sen- 493

tences, and of a larger linguistic puzzle. The results 494

show, though, that to find this information we must 495

use both types of data, to direct the system to the 496

right abstraction. It is likely that in absence of this 497

constraint a system may exploit other regularities 498

in the data. It is well-known that this is one of the 499

weaknesses of deep learning systems, stemming 500

from their main strength of discovering and exploit- 501

ing patterns in data. Contrary to out conclusion that 502

the system has discovered a shared space based on 503

the abstraction of nouns, one might argue that the 504

a variational encoder-decoder – show the same result pattern.
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shared space we find is due only to the shared verb.505

But, had that been the case, the cross-testing results,506

when training on separate data types, would have507

been closer to the results on mixed data, given that508

the verb is not replaced by a functional category509

and it remains the same across all types of data510

and sentences. This argument is especially true511

for the type III subset of the BLM task, which has512

maximal lexical variation.513

We think instead that the results indicate that the514

model trained on the functional data, which has515

a very small and consistent vocabulary, relies on516

shallower features, while the model learned on the517

lexicalized data is more robust, but not sufficiently518

abstract. Training the system with mixed data leads519

not only to a model that performs very well on both520

data variations, but all sentences are projected into521

the same compressed embedding space, establish-522

ing the necessary links between nominal expres-523

sions and thir functional equivalents that support524

abstraction and generalisation.525

5 Related work526

A generalization taxonomy based on an extensive527

analysis of publications in NLP that deal with the528

topic of generalization is proposed in Hupkes et al.529

(2023). They distinguish five main dimensions for530

generalization analysis: motivation (concerning the531

higher-level aims of the model), generalization type532

(the properties of language or domain or model the533

model is intended to capture), shift type (the kind534

of differences between training and testing data535

distributions), shift source (the source of the differ-536

ence in data distributions) and shift locus (where537

in the pipeline does the shift in data distributions538

occurs). This analysis reflects the focus in the NLP539

community on the model, and its properties from a540

machine learning point of view.541

Language has its own generalization and abstrac-542

tion dimensions, which could be at the lexical level543

(Regneri et al., 2024; Sukumaran et al., 2024), con-544

cern verb frames (Wilson et al., 2023; Yi et al.,545

2022), grammar (Kim and Smolensky, 2021) or546

a combination of these (Wang et al., 2024). The547

results of such investigations do not reveal a clear548

picture. While Kim and Smolensky (2021) observe549

a limited degree of generalization based on gram-550

matical categories, they note that the results may551

not have been driven by abstraction. Yi et al. (2022)552

show that both verb and sentence representations553

encode information about a verb’s alternation class,554

but the linguistic generalization within the verb 555

argument structure is limited, as models fail on 556

unseen contexts. In experiments on an entailment 557

graph that contains abstract concepts entailed by 558

components of events (nouns, verbs, the event as 559

a whole), Wang et al. (2024) show that the LLMs 560

have difficulty understanding abstract knowledge, 561

but they can be improved with fine-tuning. 562

Structural priming is used in Michaelov et al. 563

(2023) to investigate the degree of grammatical 564

abstraction in LLMs for three verb alternations: ac- 565

tive/passive, dative alternation and two forms of 566

possessive. In monolingual and cross-lingual set- 567

tings, they find evidence for abstract grammatical 568

representations of these phenomena. 569

Close to the topic of this paper, Regneri et al. 570

(2024) investigate whether hyponymy is encoded in 571

the transformer by analysing the attention matrices 572

when presented with hyponymous noun pairs. In 573

our work, instead, we have analysed the output 574

of a pretrained language model, and whether the 575

word and sentence embeddings it produces encode 576

particular linguistic information that would allow 577

us to establish a parallel between lexicalized and 578

abstract expressions of a sentence. 579

All this work shows an unclear picture of sen- 580

tence embeddings, and the information – and its 581

degree of abstractness – it encodes. Our work 582

provides further linguistically-oriented evidence to 583

clarify the relation between embeddings, abstrac- 584

tion and generalisation. 585

6 Conclusions 586

Our study contributes to the discussion of general- 587

ization in language models, and in particular stud- 588

ies linguistic generalization, rather than task or 589

model generalization. It starts from the assumption 590

that generalisation must proceed by a process of 591

abstraction, which is encoded in the word and sen- 592

tence embeddings. While the initial shallow analy- 593

sis of isolated and in-context word embeddings, 594

and the embeddings of the parallel (lexicalized 595

and functional) sentences indicate little superficial 596

shared information, a deeper analysis, searching 597

for sentence structure, has shown that structural 598

information is shared between the representation 599

of lexicalized and functional sentence variations. 600

These conclusions are further reinforced by the re- 601

sults on a problem solving task task, the BLM task, 602

whose solution relies on the proper detection of 603

linguistic objects and their relations. 604
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7 Limitations605

We use a synthetic dataset, for controlled experi-606

mentation, which primarily consists of simple sen-607

tence structures. The dataset, then, may not fully608

capture the complexity of language. Future ex-609

tensions will include many more structures and610

variations. Another limitation is the all-or-nothing611

pronominalisation of sentences, where each sen-612

tence is either fully categorized into a predefined613

functional element or not. Future work will have614

to modulate the amount of pronominalisation and615

study different patterns of interactions between616

nominal expressions and their pronominal equiva-617

lent. Moreover, at the moment, we do not have com-618

parable results with a human experiment, which619

could shed light on more human-like abstraction620

processes. Finally, this study relies exclusively on621

English data. While many pronominal systems622

are structured like the one of English, many other623

pronominal systems exist. Future studies should624

add a cross-linguistic dimension.625

References626

Marco Baroni. 2019. Linguistic generalization and627
compositionality in modern artificial neural networks.628
Philosophical Transactions of the Royal Society B,629
375.630

Yoshua Bengio, Aaron Courville, and Pascal Vincent.631
2013. Representation learning: A review and new632
perspectives. IEEE Transactions on Pattern Analysis633
and Machine Intelligence, 35(8):1798–1828.634

Daniel Büring. 2019. 1. Pronouns, pages 1–32. De635
Gruyter Mouton, Berlin, Boston.636

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and637
Christopher D. Manning. 2020. ELECTRA: Pre-638
training text encoders as discriminators rather than639
generators. In ICLR.640

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and641
Kristina Toutanova. 2018. BERT: pre-training of642
deep bidirectional transformers for language under-643
standing. CoRR, abs/1810.04805.644

Paul Elbourne. 2002. Situations and individuals. Ph.D.645
thesis, Massachusetts Institute of Technology.646

Nelson Elhage, Tristan Hume, Catherine Olsson,647
Nicholas Schiefer, Tom Henighan, Shauna Kravec,648
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,649
Carol Chen, Roger Grosse, Sam McCandlish, Jared650
Kaplan, Dario Amodei, Martin Wattenberg, and651
Christopher Olah. 2022. Toy models of superpo-652
sition. Preprint, arXiv:2209.10652.653

Martin Haspelmath. 1997. Indefinite pronouns. 654
Oxford Studies in Typology and Linguistic The- 655
ory)/Clarendon Press. 656

Geoffrey E Hinton and Sam Roweis. 2002. Stochastic 657
neighbor embedding. In Advances in Neural Infor- 658
mation Processing Systems, volume 15. MIT Press. 659

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers, 660
Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris- 661
tos Christodoulopoulos, Karim Lasri, Naomi Saphra, 662
Arabella Sinclair, Dennis Ulmer, Florian Schottmann, 663
Khuyagbaatar Batsuren, Kaiser Sun, Koustuv Sinha, 664
Leila Khalatbari, Maria Ryskina, Rita Frieske, Ryan 665
Cotterell, and Zhijing Jin. 2023. A taxonomy and 666
review of generalization research in nlp. Nature Ma- 667
chine Intelligence, 5(10):1161–1174. 668

Najoung Kim and Paul Smolensky. 2021. Testing for 669
grammatical category abstraction in neural language 670
models. In Proceedings of the Society for Compu- 671
tation in Linguistics 2021, pages 467–470, Online. 672
Association for Computational Linguistics. 673

Beth Levin. 1993. English Verb Classes and Alter- 674
nations A Preliminary Investigation. University of 675
Chicago Press, Chicago and London. 676

Karen S Lewis. 2022. Descriptions, pronouns, and 677
uniqueness. Linguistics and Philosophy, 45(3):559– 678
617. 679

Paola Merlo. 2023. Blackbird language matrices 680
(BLM), a new task for rule-like generalization in neu- 681
ral networks: Motivations and formal specifications. 682
ArXiv, cs.CL 2306.11444. 683

Paola Merlo and Suzanne Stevenson. 2001. Automatic 684
verb classification based on statistical distributions 685
of argument structure. Computational Linguistics, 686
27(3):373–408. 687

James Michaelov, Catherine Arnett, Tyler Chang, and 688
Ben Bergen. 2023. Structural priming demonstrates 689
abstract grammatical representations in multilingual 690
language models. In Proceedings of the 2023 Con- 691
ference on Empirical Methods in Natural Language 692
Processing, pages 3703–3720, Singapore. Associa- 693
tion for Computational Linguistics. 694

Vivi Nastase and Paola Merlo. 2024. Are there iden- 695
tifiable structural parts in the sentence embedding 696
whole? In Proceedings of the 7th BlackboxNLP 697
Workshop: Analyzing and Interpreting Neural Net- 698
works for NLP, pages 23–42, Miami, Florida, US. 699
Association for Computational Linguistics. 700

Dmitry Nikolaev and Sebastian Padó. 2023. Represen- 701
tation biases in sentence transformers. In Proceed- 702
ings of the 17th Conference of the European Chap- 703
ter of the Association for Computational Linguistics, 704
pages 3701–3716, Dubrovnik, Croatia. Association 705
for Computational Linguistics. 706

9

https://api.semanticscholar.org/CorpusID:90260325
https://api.semanticscholar.org/CorpusID:90260325
https://api.semanticscholar.org/CorpusID:90260325
https://doi.org/doi:10.1515/9783110589443-001
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2209.10652
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://doi.org/10.1038/s42256-023-00729-y
https://doi.org/10.1038/s42256-023-00729-y
https://doi.org/10.1038/s42256-023-00729-y
https://aclanthology.org/2021.scil-1.59/
https://aclanthology.org/2021.scil-1.59/
https://aclanthology.org/2021.scil-1.59/
https://aclanthology.org/2021.scil-1.59/
https://aclanthology.org/2021.scil-1.59/
https://doi.org/10.48550/arXiv.2306.11444
https://doi.org/10.48550/arXiv.2306.11444
https://doi.org/10.48550/arXiv.2306.11444
https://doi.org/10.48550/arXiv.2306.11444
https://doi.org/10.48550/arXiv.2306.11444
https://doi.org/10.18653/v1/2023.emnlp-main.227
https://doi.org/10.18653/v1/2023.emnlp-main.227
https://doi.org/10.18653/v1/2023.emnlp-main.227
https://doi.org/10.18653/v1/2023.emnlp-main.227
https://doi.org/10.18653/v1/2023.emnlp-main.227
https://doi.org/10.18653/v1/2024.blackboxnlp-1.3
https://doi.org/10.18653/v1/2024.blackboxnlp-1.3
https://doi.org/10.18653/v1/2024.blackboxnlp-1.3
https://doi.org/10.18653/v1/2024.blackboxnlp-1.3
https://doi.org/10.18653/v1/2024.blackboxnlp-1.3
https://doi.org/10.18653/v1/2023.eacl-main.268
https://doi.org/10.18653/v1/2023.eacl-main.268
https://doi.org/10.18653/v1/2023.eacl-main.268


Michaela Regneri, Alhassan Abdelhalim, and Soeren707
Laue. 2024. Detecting conceptual abstraction in708
LLMs. In Proceedings of the 2024 Joint In-709
ternational Conference on Computational Linguis-710
tics, Language Resources and Evaluation (LREC-711
COLING 2024), pages 4697–4704, Torino, Italia.712
ELRA and ICCL.713

Priyanka Sukumaran, Conor Houghton, and Nina714
Kazanina. 2024. Investigating grammatical abstrac-715
tion in language models using few-shot learning of716
novel noun gender. In Findings of the Association717
for Computational Linguistics: EACL 2024, pages718
747–765, St. Julian’s, Malta. Association for Compu-719
tational Linguistics.720

Andreas Waldis, Yotam Perlitz, Leshem Choshen, Yu-721
fang Hou, and Iryna Gurevych. 2024. Holmes a722
benchmark to assess the linguistic competence of lan-723
guage models. Transactions of the Association for724
Computational Linguistics, 12:1616–1647.725

Zhaowei Wang, Haochen Shi, Weiqi Wang, Tianqing726
Fang, Hongming Zhang, Sehyun Choi, Xin Liu, and727
Yangqiu Song. 2024. AbsPyramid: Benchmarking728
the abstraction ability of language models with a uni-729
fied entailment graph. In Findings of the Association730
for Computational Linguistics: NAACL 2024, pages731
3991–4010, Mexico City, Mexico. Association for732
Computational Linguistics.733

Michael Wilson, Jackson Petty, and Robert Frank. 2023.734
How abstract is linguistic generalization in large lan-735
guage models? experiments with argument structure.736
Transactions of the Association for Computational737
Linguistics, 11:1377–1395.738

David Yi, James Bruno, Jiayu Han, Peter Zukerman,739
and Shane Steinert-Threlkeld. 2022. Probing for un-740
derstanding of English verb classes and alternations741
in large pre-trained language models. In Proceedings742
of the Fifth BlackboxNLP Workshop on Analyzing743
and Interpreting Neural Networks for NLP, pages744
142–152, Abu Dhabi, United Arab Emirates (Hybrid).745
Association for Computational Linguistics.746

10

https://aclanthology.org/2024.lrec-main.420/
https://aclanthology.org/2024.lrec-main.420/
https://aclanthology.org/2024.lrec-main.420/
https://aclanthology.org/2024.findings-eacl.50/
https://aclanthology.org/2024.findings-eacl.50/
https://aclanthology.org/2024.findings-eacl.50/
https://aclanthology.org/2024.findings-eacl.50/
https://aclanthology.org/2024.findings-eacl.50/
https://doi.org/10.1162/tacl_a_00718
https://doi.org/10.1162/tacl_a_00718
https://doi.org/10.1162/tacl_a_00718
https://doi.org/10.1162/tacl_a_00718
https://doi.org/10.1162/tacl_a_00718
https://doi.org/10.18653/v1/2024.findings-naacl.252
https://doi.org/10.18653/v1/2024.findings-naacl.252
https://doi.org/10.18653/v1/2024.findings-naacl.252
https://doi.org/10.18653/v1/2024.findings-naacl.252
https://doi.org/10.18653/v1/2024.findings-naacl.252
https://doi.org/10.1162/tacl_a_00608
https://doi.org/10.1162/tacl_a_00608
https://doi.org/10.1162/tacl_a_00608
https://doi.org/10.18653/v1/2022.blackboxnlp-1.12
https://doi.org/10.18653/v1/2022.blackboxnlp-1.12
https://doi.org/10.18653/v1/2022.blackboxnlp-1.12
https://doi.org/10.18653/v1/2022.blackboxnlp-1.12
https://doi.org/10.18653/v1/2022.blackboxnlp-1.12


A Data 747

Class Verb
COS bake, bend, blacken, break, brighten, caramelize, chip, close, corrode, crinkle, defrost, empty,

expand, fry, harden, harmonize, heat, improve, increase, intensify, melt, open, propagate, purify,
sharpen, shrink, sweeten, tear, whiten, widen.

OD clean, cook, draw, drink, eat, fish, hum, iron, knead, knit, mend, milk, nurse, paint, play, plow,
polish, read, recite, sculpt, sew, sing, sow, study, sweep, teach, wash, weave, whittle, write.

Table 2: Verbs categorized by class

COSFUN - CONTEXT
1 She broke it with this
2 She broke it by those there
3 It was broken by her with this
4 It was broken by her by those there
5 It was broken with this
6 It was broken by those there
7 It broke with this
? ???

COSFUN - ANSWERS
1 It broke by those there
2 She broke by those there
3 It was broken by her
4 She was broken by it
5 It broke her
6 She broke it
7 It broke by her
8 She broke by it

COSLEX - CONTEXT
1 The archaeologist broke a vase in the lab
2 The archaeologist broke a vase by mistake
3 The vase was broken by the archaeologist in the lab
4 The vase was broken by the archaeologist by mistake
5 The vase was broken in the lab
6 The vase was broken by mistake
7 The vase broke in the lab
? ???

COSLEX - ANSWERS
1 The vase broke by mistake
2 The archaeologist broke by mistake
3 The vase was broken by the archaeologist
4 The archaeologist was broken by the vase
5 The vase broke the archaeologist
6 The archaeologist broke the vase
7 The vase broke by the archaeologist
8 The archaeologist broke by the vase

Figure 9: Examples of FUN and LEX for the English verb break, one of the verbs belonging to COS class.

ODLEX - CONTEXT
1 They paint it with this
2 They paint it by that
3 It was painted by them with this
4 It was painted by them by that
5 It was painted with this
6 It was painted by that
7 They painted with this
? ???

ODFUN - ANSWERS
1 It painted by that
2 They painted by that
3 It was painted by them
4 They were painted by it
5 It painted them
6 They painted it
7 It painted by them
8 They painted by it

COSLEX - CONTEXT
1 These artists paint a portrait with a brush
2 These artists paint a portrait by the lake
3 A portrait was painted by these artists with a brush
4 A portrait was painted by these artists by the lake
5 A portrait was painted with a brush
6 A portrait was painted by the lake
7 These artists painted with a brush
? ???

COSLEX - ANSWERS
1 A portrait painted by the lake
2 These artists painted by the lake
3 A portrait was painted by the artists
4 These artists were painted by a portrait
5 A portrait painted these artists
6 These artists painted a portrait
7 A portrait painted by these artists
8 These artists painted by a portrait

Figure 10: Examples of Type_I FUN and LEX data for the English verb paint, one of the verbs belonging to OD
class
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B BLM task results748

The experiments were run on an HP PAIR Workstation Z4 G4 MT, with an Intel Xeon W-2255 processor,749

64G RAM, and a MSI GeForce RTX 3090 VENTUS 3X OC 24G GDDR6X GPU.750

test on train on
Joint training

type_I type_II type_III
type_I_Fun 0.983 0.987 0.997
type_I_Lex 0.763 0.723 0.833
type_II_Fun 0.857 0.897 0.957
type_II_Lex 0.690 0.680 0.787
type_III_Fun 0.920 0.967 0.970
type_III_Lex 0.837 0.887 0.913

Training on Fun
type_I_Fun type_II_Fun type_III_Fun

type_I_Fun 1.000 1.000 1.000
type_I_Lex 0.510 0.553 0.410
type_II_Fun 0.907 0.963 0.993
type_II_Lex 0.457 0.490 0.383
type_III_Fun 0.963 0.983 0.990
type_III_Lex 0.407 0.477 0.403

Trainig on Lex
type_I_Lex type_II_Lex type_III_Lex

type_I_Fun 0.460 0.457 0.497
type_I_Lex 0.733 0.763 0.967
type_II_Fun 0.450 0.450 0.457
type_II_Lex 0.680 0.717 0.937
type_III_Fun 0.540 0.523 0.450
type_III_Lex 0.877 0.927 0.963

Table 3: BLM-COS: Results as averaged F1 over three runs, for three training set-ups: joint training (training using
both Fun and Lex instances), training on Fun instances, training on Lex instances. For all set-ups we use 2000
training instances. For the joint training these are evenly split between Fun and Lex. Standard deviation is less that
1e-3, so we do not include it.
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test on train on
Joint training

type_I type_II type_III
type_I_Fun 0.983 0.987 0.997
type_I_Lex 0.763 0.723 0.833
type_II_Fun 0.857 0.897 0.957
type_II_Lex 0.690 0.680 0.787
type_III_Fun 0.920 0.967 0.970
type_III_Lex 0.837 0.887 0.913

Train on Fun
type_I_Fun type_II_Fun type_III_Fun

type_I_Fun 1.000 1.000 1.000
type_I_Lex 0.510 0.553 0.410
type_II_Fun 0.907 0.963 0.993
type_II_Lex 0.457 0.490 0.383
type_III_Fun 0.963 0.983 0.990
type_III_Lex 0.407 0.477 0.403

Training on Lex
type_I_Lex type_II_Lex type_III_Lex

type_I_Fun 0.460 0.457 0.497
type_I_Lex 0.733 0.763 0.967
type_II_Fun 0.450 0.450 0.457
type_II_Lex 0.680 0.717 0.937
type_III_Fun 0.540 0.523 0.450
type_III_Lex 0.877 0.927 0.963

Table 4: BLM-OD: Results as averaged F1 over three runs, for three training set-ups: joint training (training using
both Fun and Lex instances), training on Fun instances, training on Lex instances. For all set-ups we use 2000
training instances. For the joint training these are evenly split between Fun and Lex. Standard deviation is less that
1e-3, so we do not include it.
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