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Abstract

"The researchers wrote the paper" and "They
wrote it" share syntactic and semantic infor-
mation that is easily recognizable for humans.
Specifically, the latter is an abstraction of the
former. Can language models also recognize
the syntactic and semantic parallelism of the
two sentences, which relies on lexical abstrac-
tion? We present a study that aims to uncover
whether a language model encodes words and
sentences in a way that reflects this linguistic
abstraction.

We compare representations of nouns, on one
side, and the pronouns and adverbs (functional
words) that can replace these nouns, as well
as the corresponding lexicalized and functional
sentences, on the other. The shallow analyses
show that nouns and functional words inhabit
different areas of the embedding space, both
when considered in isolation or in the same
sentential contexts. Deeper analyses, however,
show that the structure shared between the lex-
icalized sentences and their functional varia-
tions is encoded and can be uncovered from
their embeddings.

Our results then indicate that, when prop-
erly constrained by the structure, the informa-
tion supporting the generalization through ab-
straction provided by pronouns and functional
words can be revealed.

1 Introduction

Large language models (LLMs) are very successful,
and much of their success stems from their ability
to induce word or token representations that encode
the extremely complex language data, with many
generative factors (Bengio et al., 2013). It is an
ongoing quest to understand these representations,
the kind of linguistic information they encode and
the way a system is able to successfully manipulate
them to solve a wide variety of tasks. It is difficult
to attribute their high performance on numerous lin-
guistic and NLP tasks to their understanding of lan-

guage and its structure (Waldis et al., 2024). One
of the criteria for judging the degree of language
understanding in LL.Ms is their capacity to “gener-
alize" well. This question is often approached from
a technical, rather than a linguistic, perspective.
Generalization is considered a crucial property of a
learned model, as it ensures trust in its deployment
outside of its training environment — whether this
application involves a slightly different task, out-
of-distribution data, a different language, or some
other level of distinction between the application
domain and the one it was trained on (Hupkes et al.,
2023). This point of view often involves learning a
probe on top of the pretrained model.

There are however other types of generalization,
namely linguistic generalizations and abstractions.
For example, speakers can easily strip down a sen-
tence to a basic syntactic-semantic structure, such
as Who did what to whom or She put that there or
She does that sometimes. The use of pronouns or
adverbs to reduce a sentence to a “skeleton” does
not rely on using out-of-vocabulary items, as pro-
nouns and adverbials such as somewhere/sometime
are some of the most frequent words in a corpus,
and appear in many shared contexts, as their fre-
quent use in coreferring expressions attests. In
semantics, pronominal forms are usually treated as
variables, placeholders for more structured lexical
elements within a sentence and thus highly abstract
entities (Biiring, 2019).

Is this particular property of functional words
— as abstract place-holders for nouns and preposi-
tional phrases — captured in LLMs? To explore this
question we start with a shallow exploration of the
embeddings of functional words and nouns in isola-
tion and in the same contexts. We then move on to
deeper analyses, where we use a system to search
for the shared syntactic structure of sentences that
differ only in the use of nouns and prepositional
phrases compared to using pronouns and adverbs.

The shallower analyses show that functional



words and nouns do not inhabit the same regions
of the embedding space, even when they appear in
the same context. The in-depth analyses, instead,
show that accessing deeper information in sentence
embeddings reveals shared features encoding infor-
mation about syntactic structure, whether these are
filled by content or functional words.

2 Data

To explore linguistic generalization through ab-
straction, in the special case of functional words,
we use a purposefully generated dataset on verb
alternations, with structure and lexical variation
at multiple levels. Unlike other linguistic phe-
nomena (e.g. agreement rules), where all neces-
sary syntactic elements for the rule are contained
within a single sentence, verb alternations require
observing at least two related sentences. They show
that the same verb can appear in different senten-
tial contexts, with systematically related syntactic-
semantic mappings of their arguments. This allows
us to study a variety of sentential contexts and their
lexical and functional expressions, within the con-
trolled environment of the same verb meaning.
The dataset is generated from a set of verbs be-
longing to the change-of-state (COS) and object-
drop (OD) classes (Levin, 1993). These classes pro-
vide an argument structure minimal pair: they share
the same syntactic structure - transitive/intransitive
alternation - but differ in their argument structure.
The object of the transitive verbs belonging to the
COS class bears the same semantic role (Patient) as
the subject of the intransitive verb (The artist opens
this door/This door opens). The transitive form
of the verb has a causative meaning. In contrast,
for OD verbs the subject bears the same semantic
role (Agent) in both the transitive and intransitive
forms and the verb does not have a causative mean-
ing (The artist paints this door/The artist paints)
(Levin, 1993; Merlo and Stevenson, 2001).
Moreover, we divide words into lexical and func-
tional. Lexical elements, or content words, are an
open class of words with a meaningful content, cor-
responding to concepts or entities and events in
the world. The role of the closed class of function
words, instead, is to express grammatical functions.
We focus specifically on pronouns, and a subset of
adverbs, those that can express temporal and spa-
tial concepts. These function words can be used as
general placeholders for nouns and prepositional
phrases: for instance, The researchers wrote the

article last week can also be expressed more ab-
stractly as They wrote it then.

2.1 Data templates

The dataset comprises instances that follow the
Blackbird Language Matrices framework (Merlo,
2023). Each instance is a multiple-choice puzzle
and it consists of (i) a rule-generated context se-
quence of sentences that illustrate the encoded phe-
nomenon. The rules are of two types: rules that
described the linguistic property under study (verb
alternation) and rules that are not related to it (e.g.
presence or absence of a prepositional phrase). One
sentence that would make the sequence complete is
missing, and must be chosen from (ii) an answer set
of minimally differing contrastive sentences — one
correct, and each of the others violating a sub-rule.

Context set The syntax-semantics features of the
verb alternation, and their combination rules, lead
to the construction of the context set. Specifically,
(i) the presence of one or two arguments and their
attributes (agents, Ag; patients, ) ; (i1) the ac-
tive (Akt) or passive (Pass) voice of the verb. The
phenomenon-external factors include an alternation
between a NP introduced (i) by any preposition
(e.g., in an instant, henceforth p-NP) and (ii) by
the preposition by (e.g., by chance, by-NP), but not
agentive (e.g., by the artist, by-Ag/by-Pat), which
remains a confounding variable. The OD context
minimally differs from the COS in the last sentence
of the context: the subject of the intransitive is an
Agent, and not the Patient.

Answer Set  All answers have the same structure:
(NP V by-NP) consisting of a verb, two nominal
constituents (giving rise to a structure of the type
NP V NP) and a preposition (by, or the lack of
the preposition) between the verb and the second
NP. The candidate answers comprise the correct
intransitive form of the alternation followed by a
by-NP which satisfy the rules of the BLM, and the
contrastive incorrect answers obtained by corrupt-
ing some properties of the rules (wrong argument,
wrong voice of the verb, lack of preposition, wrong
constituent of the PP).!

The answer set does not change across verb
classes, only the label of the correct answer: the cor-

"Error types: wrong semantic role on the first constituent
is a syntax-semantic mapping error (SSM), wrong last con-
stituent introduced by the preposition by WRBY, and the other
errors are labelled according to the type of resulting structure
— intransitive, INTR; transitive, TRANS; passive, PASS.



rect answer for COS is an error for OD, and vicev-
ersa. The BLM-template (context and answers) for
COS and OD are presented in Figure 1.

COS CONTEXT COS ANSWERS

1 Ag Akt p-NP 1 Akt by-NP | CORRECT

2 Ag Akt by-NP 2 Ag Akt by-NP | SSM-INT

3 Pass by-Ag p-NP 3 Pass by-Ag | PASS

4 Pass by-Ag by-NP 4 Ag Pass by- SSM-PASS

5 Pass p-NP 5 Akt Ag TRANS

6 Pass by-NP 6 Ag Akt SSM-TRANS

7 Akt p-NP 7 Akt by-Ag | WRBY

21 8 Ag Akt by- SSM-WRBY
OD CONTEXT OD ANSWERS

1 Ag Akt p-NP 1 Akt by-NP | SSM-INT

2 Ag Akt by-NP 2 Ag Akt by-NP | CORRECT

3 Pass by-Ag p-NP 3 Pass by-Ag | SSM-PASS

4 Pass by-Ag by-NP 4 Ag Pass by- PASS

5 Pass p-NP 5 Akt Ag SSM-TRANS

6 Pass by-NP 6 Ag Akt TRANS

7 Ag Akt p-NP 7 Akt by-Ag | SSM-WRBY

2.1 8 Ag Akt by- WRBY

Figure 1: BLM COS and OD contexts and answers.

2.2 Levels of lexical abstraction

To explore generalisation through abstraction, we
produce two main variants of the data — a lexi-
calized one (labelled Lex), and a functional one,
where functional words replace all content words
except the main verb (labelled Fun). The lexi-
calised variant comes in different types (type I,
II, IIT), with varying amounts of lexicalisation, for
comparison with the small size inventory of the
functional words. The groups are exemplified in
Figure 2, together with the generation process pre-
sented in the next paragraph. Figure 9 and Figure
10 in the appendix examples for type I data for both
verb classes.

2.3 Main Dataset

The main dataset is built based on thirty (manu-
ally chosen) verbs from each of the two classes
discussed in Levin (1993). See Table 2 in the ap-
pendix for the full list.

The functional lexicon has been manually se-
lected by the authors to maintain the syntactic and
semantic acceptability of the sentences®. The lex-
ical alternatives were provided by a masked lan-
guage model (bert-base-uncased, (Devlin et al.,
2018)). The models received sentences contain-
ing only the masked constituent, the verb and the
functional elements. For example, to retrieve the ar-
guments for the verb break, two masked templates
are used: the patient is masked and the agent is in
pronominal form (e.g. she broke (the/a/some/...)

Following the discussion in Haspelmath (1997), we add
elements like somebody as pronominal elements.

Verb seed

——————————— Functional seed

Masking

4
Lexical Seed

Sentence generation

Type |
A breaks B p-NP
A breaks B by-NP
B is broken by A p-NP
B is broken by A by-NP
B is broken p-NP
B is broken by-NP

A breaks p-NP
7?

Type ll
Abreaks B p-NP

C breaks D by-NP

E is broken by F p-NP
G is broken by H by-NP
| is broken p-NP

Jis broken by-NP

K breaks p-NP

?7?

Type Il
Abreaks B p-NP

C melts D by-NP

Eis closed by F p-NP

G is opened by H by-NP
|is improves p-NP

Jis baked by-NP

K bends p-NP

?7?

Sampling (3000 instances)

Functional Dataset

Lexical Dataset

Figure 2: Process of generation of the three levels of
lexical variation (type I, II, IIT), exemplified for COS
data. Type I data contains instances with lexically con-
sistent material, with minimal change across the context
and the answer set. In type II the verb remains the same
while one constituent varies across the context and the
answer set. Type III data displays maximal lexical vari-
ation in both the context sentences and the answer set.

<MASK>), and the subject of the transitive is masked
and the patient is a pronoun (e.g. (the/a/some/...)
<MASK> broke it. Both the lexical seed and the
functional seed contain five semantically plausible
instances for each constituent class ( Ag, Pat, p-NP
and by-NP). We ensured a balanced distribution of
tense and number across verbal inflections.

For our experiment, we sampled 3000 instances
(out of 38400 combinations of arguments and
verbs) for each type, semi-automatically crafted
and manually evaluated for plausibility and gram-
maticality.

2.4 Dataset variations

Starting from the main datasets described above,
we build several variations that will be used in the
different experiments.

Words From each sentence in the type I subset of
the BLM dataset, we extract the functional words
and their corresponding nouns and prepositional
phrases. There are 17 functional words and phrases:
he, her, him, it, she, somebody, someone, that, that
one, them, these, these ones, they, this, this one,
those, those ones and 204 noun phrases.

Sentences We compile parallel versions of the
sentences in their lexicalized and functional word



forms from the FUN and LEX subsets of the type I
BLM dataset. Each sentence has associated its syn-
tactic pattern (the syntactic version of the syntactic-
semantic template shown in Figure 1, e.g. Pron
Vpass PP PP). From these, we sample 4000 sen-
tences, split 80:20 between training and testing,
and use 10% of the training data for validation.

BLM data Of the thirty verbs, all instances for
three of the verbs (3x100) are selected for testing.
Of the instances of the other 27 verbs, 2000 are
randomly sampled for training. Ten percent of the
training data is dynamically selected for validation.
The same 27:3 verb split is used for all Fun/Lex
and type I/ type Il/type III variations. All variations
have 2000 instances for training, 300 for testing.

3 Analyses and experiments

We aim to understand whether language models
encode sentences that we perceive as syntactically
and semantically parallel — due to the linguistic ab-
straction property of pronouns and adverbs relative
to nouns and noun phrases — such that this shared
information is accessible.

To achieve this, we proceed in several steps. We
investigate the relative positions of lexical and func-
tional word embeddings, obtained from isolated
words or when presented in similar sentential con-
texts (Section 3.1). We study the relative positions
of the representations of two variations of sentences
— with nouns, or with functional words (Section 3.2).
We analyse the representation of functional and lex-
icalized sentences for detecting the shared syntactic
structure (Section 3.3). We deploy the BLM lin-
guistic puzzles, whose solution relies on detecting
shared structure at the level of input sequence and
within each sentence (Section 3.4).

We obtain word and sentence representations
(as averaged token embeddings) from an Electra
pretrained model (Clark et al., 2020)3. We choose
Electra because it has been shown to perform better
than models from the BERT family on the Holmes
benchmark?, and to also encode information about
syntactic and argument structure better (Yi et al.,
2022; Nastase and Merlo, 2024).

As a first step of analysis, we use 2D t-SNE pro-
jections (Hinton and Roweis, 2002). We project the

3google/electra-base-discriminator

“The HOLMES benchmark leaderboard: https://
holmes-1leaderboard.streamlit.app/. At the time of writ-
ing, the ranks were as follows: Electra - 16, DeBERTa - 21,
BERT - 41, RoBERTa - 45.

embeddings of lexical and functional words, when
considered in isolation, or within parallel senten-
tial contexts. t-SNE is designed to project high-
dimensional data into a lower dimensional space
while preserving neighbourhood information. Con-
sidering that the embedding space was built based
on the notion of similarity and similarity metrics,
this type of visualization provides a valid first level
of analysis of the properties of the lexicalized and
functional word and sentence embeddings.

3.1 Word embeddings

Stand-alone embeddings Figure 3 shows the t-
SNE projection of the word embeddings (as aver-
ages over the respective token embeddings) for the
functional words and noun phrases in our data, ob-
tained in isolation (when presented to the pretrained
model alone). Functional words appear isolated in
this space, which indicates that the shared informa-
tion between the functional elements and the nouns
they can replace, should there by any, is not to be
found at a shallow level.
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Figure 3: t-SNE projection of the embeddings of func-
tional words and nouns, without a sentential context.

Contextual word embeddings We use the paral-
lel versions of the sentences — with content words
or functional words — to build contextualized word
embeddings, and verify whether the added con-
straints of belonging in the same sentential con-
texts brings the word embeddings closer together.
Each point in the plot in Figure 4 corresponds to
the contextual embedding of a functional word or
noun in each of the input sentences. Figure 4 shows
that even when embedded in the same context, the
embeddings of the functional words remain apart
from the embeddings of the nouns.
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Figure 4: tSNE projection of the embeddings of func-
tional words and nouns obtained from parallel contexts.
Each point is a contextual embedding.
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Figure 5: t-SNE projection of sentence representations
(averaged token embeddings) coloured by their syntactic
pattern and the use of lexicalized or functional words.

3.2 Sentence embeddings

Figure 5 shows the t-SNE projection of the repre-
sentations of the two variations of each sentence.
They also occupy different regions of the embed-
ding space, just as the contextualised or out-of-
context word embeddings.

3.3 Shared structure

The projections of the word and sentence embed-
dings show that the functional words and the nouns
inhabit different regions of the embedding space.
The distinctions we observe in these analyses, how-
ever, may be only superficial. According to the
principle of superposition (Bengio et al., 2013; El-
hage et al., 2022), each dimension can contribute
to several features, and a feature may be encoded
by a combination of dimensions. It is however dif-
ficult to define what features are, and how they are
encoded in a deep learning model.

We mine for information about the structure of
the sentences: these are our shared “features”. To

. teston Fun Lex
train on
Fun 1.000 0.441
Lex 0.493 0.990
Mixed 0.995 0.990

Table 1: F1 scores on predicting the sentence with
the same structure as the input, through a variational
encoder-decoder system. For all eperiments the system
uses 2000 training instances, 10% of which are dynami-
cally selected in each experiment for validation.

reflect this notion of features, we use sentences
that are parallel in grammatical structure and se-
mantic roles. We use the sentences extracted from
the BLM data, as described in Section 2.4, and
form instances by pairing an input sentence s; with
structure str; with a sentence s; # s; that has the
same structure (str; = str;), and with several (7)
negative examples sy, that have different structures
(stry # str;). The structure information is only
used to build the dataset and obtain a deeper eval-
uation of the results, but will not be provided to
the system. We built separate datasets for Fun and
Lex.

To mine for the structure of the sentences we fol-
low the approach described in Nastase and Merlo
(2024), which uses a variational encoder-decoder
to compress sentences into representations that cap-
ture syntactic and semantic information. To encour-
age the desired information — in this case syntactic-
semantic structure — to be encoded on the latent
layer, input sentences are paired to correct outputs
that have the same internal structure, and use ad-
ditional contrastive negative candidates that have
different structure than the input. There is no overt
signal about a sentence’s structure.

This approach enables a two-fold evaluation:
(i) in terms of performance in detecting the cor-
rect structure, by choosing the candidate answer
that has the same syntactic-semantic information
as the input; (ii) in terms of the compressed repre-
sentation on the latent layer, which captures these
syntactic and semantic properties.

Table 1 shows the averaged F1 scores over three
experiments. The results on test data of the same
type as the training are very different from those
on the test of the other type. This indicates that
for each of the Fun and Lex data variations, the
system discovers different clues to match two sen-
tences with the same structure. The high results
when training on the sentences with functional
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Figure 6: Latent representation analysis: t-SNE projec-
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the training instances.
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words may also indicate overfitting. Additional
information comes from the analysis of the com-
pressed representations on the latent layer, which
are expected to capture the sentence structure that
is shared by the functional and lexicalized data.
The top two plots of Figure 6 show the projection
on the latent layer of the sentence representations
with functional and content words, when trained on
the sentences with functional words (top) or on the
sentences with content words (middle). The plots,
matching the F1 scores, show clear clusters for the
data that matches the training type, but only slight
separation for the data points from the other type.

To test whether there is a shared level of informa-
tion between sentences with functional or content
words, despite what the shallow analyses in Sec-
tions 3.1 and 3.2 indicate, we train the system with
a dataset containing a mixture of instances. Evi-
dence for shared information will come from two
directions: high results on both test sets when train-
ing with the mixed training data, and overlapping
clusters for the compressed representations on the
latent layer. If there is no shared information, the
results may be high on each test set (because sepa-
rately they have been very well modelled), but the
clusters of the compressed representations would
be separate.

The results in Table 1 shows very high results
for both datasets for the mixed data training. The
analysis of the representations on the latent layer,
at the bottom of Figure 6, shows that the system has
discovered a shared space between the sentences
with functional and those with content words. What
these sentences have in common is the syntactic
and semantic structure, and the overlapping clusters
of the compressed representations on the latent
layer confirms that the system has uncovered this
shared structure.

3.4 Task solving

We add another step to the investigation into how
the shared structure that supports abstraction is
encoded in sentence embeddings. Instead of pre-
senting the system with isolated sentences, we
present it with change-of-state (COS) and object-
drop (OD) verb paradigms, as described in section
2. To choose the correct answer, the relevant lin-
guistic objects (verbs and noun phrases) and their
properties (grammatical and semantic roles in the
given contexts) must be identified. This dataset also
allows us to test generalization at several levels, be-
cause of the several levels of lexical variation.

We use the system described by Nastase and
Merlo (2024), that solves the BLM problem in
two steps: compresses the sentence into a repre-
sentation that encodes the structure relevant to the
BLM puzzle, and use these compressed represen-
tations to solve the multiple-choice puzzle. The
system construct the representation of an answer,
then chooses the closest one from the given options.
The two steps are encoded through interconnected
variational encoder-decoders, as illustrated in Fig-
ure 7, which are trained together. The learning
objective is to maximize the score of the correct an-
swer from the candidate answer set, and minimize
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Figure 8: Results in terms of average F1 over three runs
for solving the type III (maximal lexical variation) COS
and OD BLM tasks for three models. Joint training vs.
separate training.

that of the incorrect ones.

Figure 8 shows the F1 results (as averages over
three runs) of joint vs. separate training for the
two BLM tasks: change of state (COS) and object
drop (OD). The results are for type III data, with
maximum lexical variation. The complete results
are in Tables 3 and 4 in the appendix.

Processing separately datasets of sentences with
and without functional words leads to high results
within each task, but leads to low results when
testing across tasks. This shows, as in the case
of the mining for the shared sentence structure,
that for each of the Fun and Lex subsets, the sys-
tems discovers and exploits different regularities in
the training data. Using a mixed training dataset,
instead, encourages all systems to find a shared
feature space.’

3QOther architectures — a feed-forward neural network, and

4 Discussion

The primary goal of this paper is to investigate if
sentence representations produced by LLMs en-
code an abstract notion of nominal and preposi-
tional phrase and, as such, if LLMs can gener-
alise through abstraction. Specifically, we investi-
gate whether the contextualised word embeddings
and sentence embeddings of structurally identical
sentences are similar, whether they contain noun
phrases and prepositional phrases or their homolo-
gous pronouns and functional place-holders.

Embeddings of words, and variation of sen-
tences with content or functional words occupy
different regions of the embedding space. This
result aligns with observations that LLMs general-
ize based on idiosyncratic lexical similarity, not on
structure (Baroni, 2019; Nikolaev and Pado, 2023).
It also indicates that pronouns are not represented
as place-holders of lexical nominal expressions. It
is interesting to remark, in this respect, that the se-
mantic literature also contains proposals suggesting
that pronominal forms are not place-holders, but
are better considered as equivalent to noun phrase
(NP) descriptions, where they refer to a less ab-
stract, fuller expression in context, in relevant envi-
ronments (Elbourne, 2002; Lewis, 2022). However,
the fact that functional words are represented sepa-
rately does not immediately imply they cannot be
used as place-holders by a process of mapping onto
the homologous nominal expressions in a more
structured environment. The result of separation of
spaces, though, stems from a shallow analysis, and
may hide similarities at a deeper level.

We can detect information about the shared
syntactic structure in the embeddings of the
functional and lexical variations of the same
sentences, in the right environment. Our follow-
up experiments uncover information about shared
syntactic structure in Fun and Lex variation of sen-
tences, and of a larger linguistic puzzle. The results
show, though, that to find this information we must
use both types of data, to direct the system to the
right abstraction. It is likely that in absence of this
constraint a system may exploit other regularities
in the data. It is well-known that this is one of the
weaknesses of deep learning systems, stemming
from their main strength of discovering and exploit-
ing patterns in data. Contrary to out conclusion that
the system has discovered a shared space based on
the abstraction of nouns, one might argue that the

a variational encoder-decoder — show the same result pattern.



shared space we find is due only to the shared verb.
But, had that been the case, the cross-testing results,
when training on separate data types, would have
been closer to the results on mixed data, given that
the verb is not replaced by a functional category
and it remains the same across all types of data
and sentences. This argument is especially true
for the type III subset of the BLM task, which has
maximal lexical variation.

We think instead that the results indicate that the
model trained on the functional data, which has
a very small and consistent vocabulary, relies on
shallower features, while the model learned on the
lexicalized data is more robust, but not sufficiently
abstract. Training the system with mixed data leads
not only to a model that performs very well on both
data variations, but all sentences are projected into
the same compressed embedding space, establish-
ing the necessary links between nominal expres-
sions and thir functional equivalents that support
abstraction and generalisation.

5 Related work

A generalization taxonomy based on an extensive
analysis of publications in NLP that deal with the
topic of generalization is proposed in Hupkes et al.
(2023). They distinguish five main dimensions for
generalization analysis: motivation (concerning the
higher-level aims of the model), generalization type
(the properties of language or domain or model the
model is intended to capture), shift type (the kind
of differences between training and testing data
distributions), shift source (the source of the differ-
ence in data distributions) and shift locus (where
in the pipeline does the shift in data distributions
occurs). This analysis reflects the focus in the NLP
community on the model, and its properties from a
machine learning point of view.

Language has its own generalization and abstrac-
tion dimensions, which could be at the lexical level
(Regneri et al., 2024; Sukumaran et al., 2024), con-
cern verb frames (Wilson et al., 2023; Yi et al.,
2022), grammar (Kim and Smolensky, 2021) or
a combination of these (Wang et al., 2024). The
results of such investigations do not reveal a clear
picture. While Kim and Smolensky (2021) observe
a limited degree of generalization based on gram-
matical categories, they note that the results may
not have been driven by abstraction. Yi et al. (2022)
show that both verb and sentence representations
encode information about a verb’s alternation class,

but the linguistic generalization within the verb
argument structure is limited, as models fail on
unseen contexts. In experiments on an entailment
graph that contains abstract concepts entailed by
components of events (nouns, verbs, the event as
a whole), Wang et al. (2024) show that the LLMs
have difficulty understanding abstract knowledge,
but they can be improved with fine-tuning.

Structural priming is used in Michaelov et al.
(2023) to investigate the degree of grammatical
abstraction in LLMs for three verb alternations: ac-
tive/passive, dative alternation and two forms of
possessive. In monolingual and cross-lingual set-
tings, they find evidence for abstract grammatical
representations of these phenomena.

Close to the topic of this paper, Regneri et al.
(2024) investigate whether hyponymy is encoded in
the transformer by analysing the attention matrices
when presented with hyponymous noun pairs. In
our work, instead, we have analysed the output
of a pretrained language model, and whether the
word and sentence embeddings it produces encode
particular linguistic information that would allow
us to establish a parallel between lexicalized and
abstract expressions of a sentence.

All this work shows an unclear picture of sen-
tence embeddings, and the information — and its
degree of abstractness — it encodes. Our work
provides further linguistically-oriented evidence to
clarify the relation between embeddings, abstrac-
tion and generalisation.

6 Conclusions

Our study contributes to the discussion of general-
ization in language models, and in particular stud-
ies linguistic generalization, rather than task or
model generalization. It starts from the assumption
that generalisation must proceed by a process of
abstraction, which is encoded in the word and sen-
tence embeddings. While the initial shallow analy-
sis of isolated and in-context word embeddings,
and the embeddings of the parallel (lexicalized
and functional) sentences indicate little superficial
shared information, a deeper analysis, searching
for sentence structure, has shown that structural
information is shared between the representation
of lexicalized and functional sentence variations.
These conclusions are further reinforced by the re-
sults on a problem solving task task, the BLM task,
whose solution relies on the proper detection of
linguistic objects and their relations.



7 Limitations

We use a synthetic dataset, for controlled experi-
mentation, which primarily consists of simple sen-
tence structures. The dataset, then, may not fully
capture the complexity of language. Future ex-
tensions will include many more structures and
variations. Another limitation is the all-or-nothing
pronominalisation of sentences, where each sen-
tence is either fully categorized into a predefined
functional element or not. Future work will have
to modulate the amount of pronominalisation and
study different patterns of interactions between
nominal expressions and their pronominal equiva-
lent. Moreover, at the moment, we do not have com-
parable results with a human experiment, which
could shed light on more human-like abstraction
processes. Finally, this study relies exclusively on
English data. While many pronominal systems
are structured like the one of English, many other
pronominal systems exist. Future studies should
add a cross-linguistic dimension.
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A Data

Class Verb
COS  bake, bend, blacken, break, brighten, caramelize, chip, close, corrode, crinkle, defrost, empty,
expand, fry, harden, harmonize, heat, improve, increase, intensify, melt, open, propagate, purify,
sharpen, shrink, sweeten, tear, whiten, widen.
OD clean, cook, draw, drink, eat, fish, hum, iron, knead, knit, mend, milk, nurse, paint, play, plow,
polish, read, recite, sculpt, sew, sing, sow, study, sweep, teach, wash, weave, whittle, write.
Table 2: Verbs categorized by class
COSFUN - CONTEXT COSFUN - ANSWERS
1| She broke it with this 1| It broke by those there
2 | She broke it by those there 2 | She broke by those there
3 | It was broken by her with this 3 | It was broken by her
4 | It was broken by her by those there 4 | She was broken by it
5 | It was broken with this 5| It broke her
6 | It was broken by those there 6 | She broke it
7 | It broke with this 7 | It broke by her
70777 8 | She broke by it
COSLEX - CONTEXT COSLEX - ANSWERS
1 | The archaeologist broke a vase in the lab 1| The vase broke by mistake
2 | The archaeologist broke a vase by mistake 2 | The archaeologist broke by mistake
3 | The vase was broken by the archaeologist in the lab 3 | The vase was broken by the archaeologist
4 | The vase was broken by the archaeologist by mistake 4 | The archaeologist was broken by the vase
5 | The vase was broken in the lab 5 | The vase broke the archaeologist
6 | The vase was broken by mistake 6 | The archaeologist broke the vase
7 | The vase broke in the lab 7| The vase broke by the archaeologist
70777 8 | The archaeologist broke by the vase

Figure 9: Examples of FUN and LEX for the English verb break, one of the verbs belonging to COS class.

ODLEX - CONTEXT ODFUN - ANSWERS
1 | They paint it with this 1| It painted by that
2 | They paint it by that 2 | They painted by that
3 | It was painted by them with this 3 | It was painted by them
4 | It was painted by them by that 4 | They were painted by it
5 | It was painted with this 5| It painted them
6 | It was painted by that 6 | They painted it
7 | They painted with this 7 | It painted by them
710777 8 | They painted by it

COSLEX - CONTEXT COSLEX - ANSWERS
1 | These artists paint a portrait with a brush 1 | A portrait painted by the lake
2 | These artists paint a portrait by the lake 2 | These artists painted by the lake
3 | A portrait was painted by these artists with a brush 3 | A portrait was painted by the artists
4 | A portrait was painted by these artists by the lake 4 | These artists were painted by a portrait
5 | A portrait was painted with a brush 5| A portrait painted these artists
6 | A portrait was painted by the lake 6 | These artists painted a portrait
7 | These artists painted with a brush 7| A portrait painted by these artists
70777 8 | These artists painted by a portrait

Figure 10: Examples of Type_I FUN and LEX data for the English verb paint, one of the verbs belonging to OD

class
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B BLM task results

The experiments were run on an HP PAIR Workstation Z4 G4 MT, with an Intel Xeon W-2255 processor,
64G RAM, and a MSI GeForce RTX 3090 VENTUS 3X OC 24G GDDR6X GPU.

test on train on
Joint training
type_I type_II type_III

type_I_Fun 0.983 0.987 0.997
type_I_Lex 0.763 0.723 0.833
type_II_Fun 0.857 0.897 0.957
type_II_Lex 0.690 0.680 0.787
type_III_Fun 0.920 0.967 0.970
type_III_Lex 0.837 0.887 0.913

Training on Fun
type_I_Fun type_II_Fun type_IlI_Fun

type_I_Fun 1.000 1.000 1.000
type_I_Lex 0.510 0.553 0.410
type_II_Fun 0.907 0.963 0.993
type_II_Lex 0.457 0.490 0.383
type_III_Fun 0.963 0.983 0.990
type_III_Lex 0.407 0.477 0.403

Trainig on Lex
type_I_Lex type_II_Lex type_IlI_Lex

type_I_Fun 0.460 0.457 0.497
type_I_Lex 0.733 0.763 0.967
type_II_Fun 0.450 0.450 0.457
type_II_Lex 0.680 0.717 0.937
type_III_Fun 0.540 0.523 0.450
type_III_Lex 0.877 0.927 0.963

Table 3: BLM-COS: Results as averaged F1 over three runs, for three training set-ups: joint training (training using
both Fun and Lex instances), training on Fun instances, training on Lex instances. For all set-ups we use 2000
training instances. For the joint training these are evenly split between Fun and Lex. Standard deviation is less that
le-3, so we do not include it.
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type_I_Lex 0.733 0.763 0.967
type_II_Fun 0.450 0.450 0.457
type_II_Lex 0.680 0.717 0.937
type_III_Fun 0.540 0.523 0.450
type_III_Lex 0.877 0.927 0.963

Table 4: BLM-OD: Results as averaged F1 over three runs, for three training set-ups: joint training (training using
both Fun and Lex instances), training on Fun instances, training on Lex instances. For all set-ups we use 2000
training instances. For the joint training these are evenly split between Fun and Lex. Standard deviation is less that
le-3, so we do not include it.
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