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ABSTRACT

Neural operators provide resolution-equivariant deep learning models for learn-
ing mappings between function spaces. Among them, the Fourier Neural Op-
erator (FNO) is particularly effective: its spectral convolution combines a low-
dimensional Fourier representation with strong empirical performance, enabling
generalization across resolutions. While this design aligns with the structure of
linear PDEs, where Fourier modes evolve independently, nonlinear PDEs exhibit
structured interactions between modes governed by polynomial nonlinearities. To
capture this inductive bias, we introduce the Higher-Order Spectral Convolu-
tion, a spectral mixer that extends FNO from diagonal modulation to explicit n-
linear mode mixing aligned with nonlinear PDE dynamics. Across benchmarks,
including Burgers and Navier-Stokes equations, our method consistently improves
accuracy in nonlinear regimes, achieving lower error while retaining the efficiency
of FFT-based architectures.

1 INTRODUCTION

Partial differential equations (PDEs) serve as the fundamental tools for expressing the evolution of
physical and engineering processes in space and time. Accurate modeling of PDE-governed sys-
tems is fundamental to understanding phenomena such as fluidodynamic (Burgers equation, Navier-
Stokes equation), transport phenomena (diffusion-reaction equation) and large-scale atmospheric
modeling (Shallow Water equation) (Staniforth, 2022).

For most of these equations, closed-form solutions are not available, making numerical approxima-
tion necessary. Over the past century, traditional numerical methods such as the finite difference
method (FDM) (LeVeque, 2007), the finite element method (FEM) (Johnson, 1994) and the finite
volume method (FVM) (LeVeque, 2002) have achieved both accuracy and interpretability, owing to
their foundation in fundamental physical principles. Despite their strengths, these methods face two
main limitations: high computational cost from fine spatiotemporal discretization, and reliance on
full knowledge of the governing PDEs.

Therefore, in recent years, motivated by the remarkable achievements of deep learning for model-
ing complex functions, numerous data-driven PDE solvers have been introduced to overcome the
limitations of traditional numerical methods. Among these approaches, the framework of operator
learning (Kovachki et al., 2023; Berner et al., 2025) stands out as the most physically grounded.
Neural operators, in particular, aim to approximate the underlying solution operator that maps in-
put functions, such as coefficients, forcing terms, or initial conditions, to output solutions, thereby
providing a resolution-equivariant and efficient alternative to classical discretization-based schemes.

Among them, the Fourier Neural Operator (FNO) (Li et al., 2020), inspired by spectral methods that
provide the highest spatial accuracy and exponential convergence on regular grids, stands out for
modeling dynamical systems on equally spaced meshes. For complex geometries, several variants
of FNO have been introduced by changing the spectral basis, for instance, the Spherical Fourier
Neural Operator (SFNO) (Bonev et al., 2023) on the sphere, and NORM (Chen et al., 2023) on
general Riemannian manifolds. Furthermore, extensions to irregular meshes have been proposed
by mapping them onto regular grids, either via a general learnable map (GNO (Li et al., 2023b)), a
learnable diffeomorphism (GEO-FNO (Li et al., 2023a)), or an optimal transport map (OTNO (Li
et al., 2025)).
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In this work we will refer to this class of models as spectral neural operators (SNOs) due to their
explicit modeling of the spectrum of modes of the input function, with a classic or generalized
Fourier transform, with and without encoders and decoders. SNOs are typically composed of linear
layers and nonlinear activation functions. The linear components are usually global convolutions
over a truncated set of modes, and they evolve Fourier modes independently, without mixing. To
augment the approximation power of the SNO layers we propose an n-order spectral convolution
that implement a n-linear global mixing of Fourier coefficients while retaining the computational
efficiency of a Fourier truncation.

The spectral convolution of a SNO closely mimicks the action of the Green function, a kernel whose
convolution yields the solution of linear PDEs (Stakgold & Holst, 2011). For nonlinear PDEs, the
Green function no longer provides a useful representation, yet the composition of linear spectral
convolutions with nonlinear activations endows SNOs with universal approximation capabilities
(Kovachki et al., 2021).

Much like SNOs, 2-layer MLPs also enjoy universal approximation properties (Cybenko, 1989;
Chen & Chen, 1996). However, modern deep learning has highlighted the advantages of richer
nonlinear layers, most notably the attention mechanism (Bahdanau, 2014; Vaswani et al., 2017).
Transformer models have rapidly become the dominant architecture across various application do-
mains, spanning language, vision (Dosovitskiy et al., 2020), chemistry (Jumper et al., 2021), and
more recently physical modeling (Alkin et al., 2024; Colagrande et al., 2025). A key factor behind
their success is the ability of classical attention to capture pairwise interactions in physical space.
This mechanism has recently been generalized to model interactions among an arbitrary number n
of entities, giving rise to higher-order attention (Clift et al., 2019).

Despite their O(seq lenn) complexity in the sequence length, these higher-order variants show
better scaling laws (Roy et al., 2025) and exponentially improved depth efficiency on dedicated
tasks (Sanford et al., 2023). Following this line of work, we introduce a new framework that real-
izes n-order interactions between coefficients directly in the Fourier domain, providing the spectral
analogue of higher-order attention, which operates in the Dirac domain. Crucially, our method
avoids the O(seq lenn) blow-up of higher-order attention and matches FFT-based SNOs with a
complexity of O(seq len log(seq len)) per layer.

More similar to our work are the triangular attention mechanism of the edge transformer (Bergen
et al., 2021) and the triangle attention of AlphaFold2 (Jumper et al., 2021). In both cases, the triangle
refers to three-way interactions in the spatial domain: given a triplet of nodes, triangular attention
models the dependencies along the edges of the corresponding triangle, enabling richer geometric
reasoning. In contrast, our triadic (order n = 2) spectral convolution realizes the analogue of this
mechanism in the Fourier domain: the triangle here corresponds to a triplet of frequency modes
whose wavevectors satisfy a closure relation (e.g. k1 + k2 = k3), capturing the nonlinear triadic
interactions that govern energy transfer in PDE dynamics. For n > 2, our method can be viewed as
the Fourier analogue of a n-symplicial extension of the aforementioned attention mechanisms.

Our contributions are the following:

1. Higher-Order Fourier Neural operators. We design the first spectral neural operators
modeling the exact mode interaction of non-linear PDEs.

2. Interaction on different geometries. We showcase the effect of modeling order 2 interac-
tions on spherical data by applying our method to Spherical Harmonic convolutions.

3. Experiments and ablation studies. Through extensive experiments, we show the advan-
tages of the proposed design in non-linear settings.

2 SETTING AND NOTATION

We consider a time-dependent PDE defined on a spatial domain Ω ⊂ Rd, with boundary ∂Ω, d the
number of spatial dimensions, and temporal domain [0, T ]. A solution u(x, t) of this PDE satisfies
the general system described in Eq. 1, where F is a function of the solution u and of its spatial
derivatives ∂iu

∂xi
, ν represents a set of PDE coefficients, B encodes the boundary conditions, and u0
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denotes the initial condition sampled from a probability distribution on L2(Ω,R), i.e. u0 ∼ p0(·).
∂u

∂t
= F

(
ν, t, x, u,

∂u

∂x
,
∂2u

∂x2
, . . .

)
, ∀x ∈ Ω, ∀t ∈ (0, T ],

B(u)(t, x) = 0, ∀x ∈ ∂Ω, ∀t ∈ (0, T ],

u(0, x) = u0(x), ∀x ∈ Ω.

(1)

The operator learning task we consider consists in predicting the solution operator G, defined in
Eq. 2, that propagates the physical state one time step forward:

G : L2(Ω,R) → L2(Ω,R)
u(·, t) 7→ u(·, t+ 1)

(2)

Polynomial nonlinearities in PDEs. We can write Eq. 1 as follows in Eq. 3 by aggregating its
terms based on the degree of nonlinearity:

∂u

∂t
=

∑
n∈N

PI,n(u(x, t)) (3)

where PI,n(u(x, t)) contains the n-linear components of the PDE and it is an homogeneous poly-
nomial in the partial derivatives ∂iu

∂xi
(x, t) and I is the set of multi-indices α = (α1, . . . , αn) of the

partial derivatives in each monomial
∏n
i=1

∂αiu
∂uαi

. We refer to the maximal value of n as the degree
of nonlinearity of the PDE. We now focus on the n-linear part of the equation

PI,n =
∑
α∈I

cα

n∏
i=1

∂αiu

∂xαi

(4)

For our analysis we consider functions defined on the torus, i.e. Ω = Td, and we restrict to scalar
functions, i.e. u : Td → R. In the periodic setting it is convenient to expand u in Fourier basis as in
Eq. 5.

u(x, t) =
∑
k∈Zd

û(k, t)eik·x, û(k, t) ∈ C. (5)

Therefore we consider the Fourier transform of the n-linear part of the PDE in Eq. 4:

PI,n(û)(k, t) =
∑

k1+...+kn=k

C û(k1, t)û(k2, t) · · · û(kn, t) (6)

Where C = C(k, α) is a constant dependent on the multi-index α and the index k.

The summation term of Eq. 6 corresponds to the n-linear convolution of Fourier modes. It captures
how input frequencies combine under the nonlinearity, and it is precisely this mixing that our higher-
order spectral convolution is designed to model, with C(k, α) providing the learnable kernel.

Quadratic interactions (n = 2) appear in Burgers, in the Navier-Stokes equations and in the rotated,
hyperviscous, forced Shallow Water Equations on the sphere while cubic non-linearities (n = 3)
appear in the Diffusion-reaction equation.

We refer to the appendix B for a more detailed discussion and present in section 3 the explicit
construction in the case of Navier-Stokes equations.

3 A CONCRETE EXAMPLE: NAVIER-STOKES EQUATIONS

We present here, as example, the non-linear interactions on the incompressible Navier-Stokes equa-
tion that is usually written as follows in Equation 7 in the velocity form.

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x) x ∈ (0, 1)2, t ∈ (0, T ] (7)

∇ · u(x, t) = 0 x ∈ (0, 1)2, t ∈ [0, T ] (8)

w(x, 0) = w0(x) x ∈ (0, 1)2 (9)

3
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The task typically requires to predict the evolution of the vorticity w (Li et al., 2020) (Serrano et al.,
2024) so we express the PDE in the vorticity form as follows in Equation 10:

∂t(w) = ν∆w(x, t)− (∇⊥∆−1w) · ∇w(x, t) + f(x) x ∈ (0, 1)2, t ∈ (0, T ] (10)

∇ · ∇⊤∆−1w = 0 x ∈ (0, 1)2, t ∈ [0, T ] (11)

w(x, 0) = w0(x) x ∈ (0, 1)2 (12)

To observe the interaction of the Fourier modes of the vorticity we take the Fourier transform, for
k ∈ Z2, t ∈ (0, T ]:

∂t(ŵ)(k, t) = −ν(2π)2|k|2ŵ(k, t)−
∑
p+q=k

(p+ q) · p⊥

|p|2
ŵ(p, t)ŵ(q, t) + f̂(k, t). (13)

In Fourier space, the nonlinear advection term in the Navier-Stokes equations becomes a convolu-
tion integral, and a triad interaction term in the turbulence kinetic energy equation. Despite being
conservative, and therefore contributing only to energy exchange between Fourier modes, this term
is at the heart of many of the interesting questions in the literature.

As highlighted in (Cheung & Zaki, 2014), the primary difficulty in working with the spectral
Navier–Stokes equations described in Eq.13, is to appropriately account for all nonlinear interac-
tions. An analytical treatment requires some means of tracking energy transfer from two arbitrary
modes p and q into a third mode k. Therefore, it motivates the use of architectures that go beyond
diagonal modulation of Fourier coefficients by explicitly parameterizing higher-order interactions
in the spectral domain. Note that quadratic nonlinearity (order n = 2) yields triadic interactions
(p, q, k) with p+ q = k; hence an order-2 corresponds to triads in spectral turbulence.

Neural Operator. Following the framework of (Kovachki et al., 2023), a Neural Operator Gθ is
implemented as a stacked structure of L learnable layers Qℓ, inserted between point-wise neural
networks denoted L (lifting network) and P (projection network) that elevate the lower-dimensional
input to a higher-dimensional latent space and projects the transformed input back to a lower-
dimensional output dimension, respectively.

Gθ = P ◦ Q1 · · · ◦ QL ◦ L (14)

We denote by vℓ the hidden representation at layer ℓ. The operator layer Qℓ : vℓ 7→ vℓ+1 performs
the iterative update described in Eq. 15, where Wℓ is a point-wise linear map, bℓ a bias and Kℓ an
integral operator.

Qℓ(vℓ) = σ(Wℓvℓ +Kℓ(vℓ) + bℓ) (15)

Fourier Neural Operator (FNO). FNO (Li et al., 2020) follows the framework described in sec-
tion 2 and implements the integral kernels K as global convolution operators C preceded by a trun-
cation of Fourier coefficients TM (u)(x) =

∑
|k|≤M û(k)eik·x where M is the number of retained

modes. The so-called spectral convolution writes as follows in Eq. 16 in physical space, where κθ
is a kernel parameterized by θ.

Cθ(v)(x) =
∫
Ω

κθ(x− y)TMv(y)dy (16)

The Fourier Neural Operator (FNO) implements this map efficiently by parameterizing κθ in the
Fourier domain, acting mode-wise, and then returning to physical space via inverse FFT:

Ĉθv(k) =Wkv̂(k) (17)

While successful on many tasks, this architecture does not explicitly capture multi-linear frequency
mixing, since each mode is updated independently and interactions are only induced indirectly
through point-wise nonlinearities between different layers.

4
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HO Fourier Layer 1 HO Fourier Layer 2 HO Fourier Layer L...

HO Fourier Layer

...
...

...

Figure 1: Overview of our proposed HO-FNO (illustration adapted from (Li et al., 2020)).
Top: Neural operator architecture. An input a is lifted to a higher-dimensional channel space
by a neural network L. A number L of HO-FNO layers are then applied to the lifted input, before
it is projected back to the target dimension by a neural network P to obtain the output u.
Bottom: High-Order Fourier layer. An intermediary input v is processed by a HO-Fourier layer.
Its Fourier transform F is computed, producing N modes. Our method mixes these modes to
obtainN new pseudo-modes: κ′0, · · · , κ′N−1. Here, a pseudo-mode κi, i ∈ [0, N−1] is obtained by
mixing the subset ofm original modes defined by Si := {p1, p2, ...pm ∈ [1, N ], p1+p2+...+pm =
i mod N}. Only the M lower Fourier pseudo-modes κ′1, · · · , κ′M are kept. HO-FNO then applies
a linear transform R on those M lower Fourier pseudo-modes, and applies the inverse Fourier
transform F−1. Through a skipped connection, the mixed output is combined with the original
input transformed by a local linear transform W and a non-linear activation σ is applied.

Higher-Order Fourier Neural Operators (HO-FNO). We extend the kernel map to incorporate
explicit m-linear interactions via the following Higher-Order Spectral Convolution:

(
Hθu

)
(x) =

∫
Ω

kθ(x− y)TM
(
(A1u)(y)(A2u)(y) · · · (Amu)(y)

)
dy (18)

Here, each Ai is a learnable linear operator acting channel-wise in physical space. In this work,
we instantiate Ai as per-point linear maps shared across spatial locations but not across layers.
Alternative parameterizations are left to future work.

The m-linear point-wise products in physical space induces a structured m-linear global mixing
among Fourier coefficients as described in Eq. 19:

(Ĥθv)(k) =Wk

∑
k1+...+km=k

A1v̂(k1)A2v̂(k2) · · ·Amv̂(km) (19)

Thus, each mode k aggregates all m-tuples of modes with indices summing to k, mirroring the
nonlinear interaction structure of PDEs with polynomial nonlinearities.

We emphasize that the operator is evaluated only for modes k ≤ m, preserving the computational
efficiency of FNO. However, each retained mode k is updated using information from all Fourier
modes, rather than being restricted to the truncated subset.

This m-linear convolution provides a principled, FFT-efficient mechanism for explicit mode mixing
in neural operators, extending the FNO beyond purely mode-wise updates. The m-linear interaction
can be carried out in O(N logN) complexity by multiplying fields pointwise in the physical domain,
transforming to Fourier space via FFT, applying spectral multipliers, and mapping back with an
inverse FFT. In practice, each layer uses one FFT and one inverse FFT per channel group; m-
linear mixing is effected via pointwise products, so the asymptotic cost remains O(N logN). We
summarize our proposition in Figure 1.
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4 EXTENSION TO GENERALIZED FOURIER TRANSFORMS

The classical Fourier transform is defined for functions defined on the torus Td. When a function
is instead defined on a manifold M ⊂ RD, one can still apply the classical Fourier transform by
first extending the function to the ambient euclidean space RD. While this procedure makes the
transform computable, the resulting representation ignores the geometry of the domain M of the
function and therefore provides a sub-optimal representation.

To overcome this limitation, the notion of a Fourier basis has been generalized to arbitrary compact
Riemannian manifolds M through the spectral decomposition of the Laplace–Beltrami operator.
Concretely, one considers the eigenvalue problem

−∆gϕj = λjϕj on M, (20)

where ∆gf = divg(∇gf) denotes the Laplacian, defined as the divergence of the Riemannian gradi-
ent. The eigenfunctions ϕj serve as generalized Fourier modes, while the corresponding eigenvalues
λj play the role of frequencies

For most manifolds, the eigenfunctions of the Laplace–Beltrami operator do not admit a closed-
form expression and must be precomputed numerically (Chen et al., 2023). An important excep-
tion is the sphere, where the generalized Fourier modes correspond to the well-known spherical
harmonics. This extension of the Fourier transform naturally induces a corresponding notion of
convolution, defined as a linear diagonal operator in the generalized Fourier domain. In the same
spirit, Higher-Order Spectral Convolutions also extend to arbitrary geometries, and the theoretical
framework developed in the classical Fourier setting remains directly applicable.

We illustrate this by experimenting with the rotated, hyperviscous, forced Shallow Water Equation
(SWE) on the sphere, with results reported in Table 2.

5 EXPERIMENTS

Tasks. We experiment with simulation tasks from PDEBench (Takamoto et al., 2022), namely
the 1D Burger’s equation with viscosity ν = 0.001, and the 2D Diffusion-Reaction equation. We
consider two 2D Navier-Stokes dataset with viscosity ν = 10−4 and 10−5, provided by (Serrano
et al., 2024; Li et al., 2020). In addition, we include the rotated, hyperviscous, forced Shallow Water
Equation (SWE) on the sphere (McCabe et al., 2023a), made available through The Well (Ohana
et al., 2024b). All datasets are used in their standard form, except for SWE, which we subsample
for shorter training (see Appendix C.4). We focus on nonlinear dynamics to better highlight the
advantages of the proposed method.

Metrics. We evaluate models using three complementary metrics: Mean Squared Error (MSE),
Normalized Mean Squared Error (NRMSE), and Rollout NRMSE. MSE captures predictive accu-
racy in physical space, while NRMSE rescales the error by the target norm, enabling fair compar-
ison across datasets of different magnitudes. We also report Rollout NRMSE over full trajectories:
although rollout stability is not a focus of this work, it provides useful insight into long-term perfor-
mance in settings closer to real-world applications. When data are normalized for training stability,
predictions are denormalized before computing the loss. We refer to Appendix D for more details
on each metric.

Baselines. We compare our proposed HO-FNO and HO-SFNO against several representative base-
lines. On planar geometries, we use the original FNO (Li et al., 2020), while for data on the sphere
we adopt SFNO (Bonev et al., 2023). We further include UNO (Rahman et al., 2022), a U-Net–style
neural operator that combines encoder–decoder contractions/skip connections with Fourier-domain
operator layers (as in FNO), enabling much deeper stacks at similar memory cost. Together with
FNO, which tests spectral operators without multiscale contracting paths, and U-Net, which tests
purely pixel-space convolution without learned spectral operators, the baselines provide a point of
comparison between standard convolutional models and spectral neural operators.

Architecture. We used models with comparable parameter counts across datasets, adjusting their
size to match task difficulty while ensuring that all experiments can be trained for 100 epochs within

6
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Table 1: Test performance of different models trained on MSE. We report validation MSE , nor-
malized RMSE ( nRMSE ), and rollout nRMSE , visualizations are provided in E. Best results
per metric are in bold.

Dataset Metric U-Net UNO FNO HO-FNO (ours)

Burgers (1D)
MSE 7.4× 10−1 3.5× 10−6 3.6× 10−6 2.4× 10−6

nRMSE 3.3× 10−1 2.6× 10−3 2.0× 10−3 1.6× 10−3

Rollout Diverged 1.04 7.5× 10−2 8.0× 10−2

Diffusion-Reaction (2D)
MSE 3.3× 10−3 8.4× 10−5 9.2× 10−5 8.3× 10−5

nRMSE 2.6× 10−1 7.3× 10−2 8.5× 10−2 6.7× 10−2

Rollout 1.01 1.59 5.28 2.37

Navier-Stokes (2D)
ν = 10−4

MSE 1.9× 10−1 5.3× 10−2 5.4× 10−3 2.2× 10−3

nRMSE 1.9× 10−1 4.0× 10−2 4.2× 10−2 2.8× 10−2

Rollout 1.06 3.4× 10−1 3.6× 10−1 3.2× 10−1

Navier-Stokes (2D)
ν = 10−5

MSE 7.4× 10−1 2.7× 10−2 3.0× 10−2 2.1× 10−2

nRMSE 3.4× 10−1 1.2× 10−1 1.4× 10−1 9.8× 10−2

Rollout 1.12 6.1× 10−1 3.1× 10−1 2.3× 10−1

15 hours on a single NVIDIA A100 GPU. The resulting models contain approximately 4.8M pa-
rameters for Navier–Stokes with ν = 10−5, 2.3M parameters for Navier–Stokes with ν = 10−4 and
for PlanetSWE, 600K parameters for the Diffusion–Reaction equation, and 80K parameters for the
Burgers equation.

For our baselines based on Neural Operators, we adopt linear pointwise lifting and projection net-
works, denoted P and Q. For Navier–Stokes with ν = 10−4, we use 8 layers Qi, while for all other
experiments we use 4 layers. The embedding dimension is set to 64 for Navier–Stokes ν = 10−4

and PlanetSWE, and to 32 for the remaining datasets. We retain 16 Fourier modes for Burgers,
32× 17 modes for Navier–Stokes ν = 10−5, and 16× 9 modes for the other datasets.

For the UNet and UNO baselines, we use the standard architecture with 4 layers and an initial
embedding dimension of 12 for Burgers and 16 for the other datasets, chosen to match exceed the
parameter counts of the operator-learning models. For UNO, we retain the same number of modes
as in the corresponding Neural Operator baselines for each dataset.

Hyperparameters. The higher-order variation of the Fourier Neural Operator introduced in this
work does not introduce additional hyperparameters beyond those of the standard architecture. The
main hyperparameters of the models are therefore the number of layers, the latent embedding dimen-
sion per layer, and the number of retained Fourier modes in each spatial dimension (1 for Burgers
and 2 for all other datasets).

We typically retain between 16 and 32 modes in each spatial dimension. Accounting for Hermitian
symmetry, in the standard FNO implementation (Kossaifi et al., 2024), this corresponds to 8 or 16
modes for 1D data and 16 × 9 or 32 × 17 modes for 2D experiments. Interestingly, we found that
FNO and HO-FNO, as well as SFNO and HO-SFNO, achieve their best performance under nearly
the same hyperparameter settings.

Results. Table 1 compares U-Net, UNO, FNO, and our proposed HO-FNO across four PDE
benchmarks under three criteria: MSE , nRMSE , and rollout nRMSE . Overall, HO-FNO at-
tains the best single-step accuracy on all datasets, consistently outperforming both FNO and UNO
(the latter sometimes by modest margins, e.g., on Diffusion–Reaction).

On Burgers (1D), HO-FNO reduces MSE from 3.6×10−6 to 2.4×10−6 and nRMSE from 2.0×10−3

to 1.6×10−3, while rollout nRMSE is comparable to FNO (8.0×10−2 vs 7.5×10−2).
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Table 2: Test performance on rotated, hyperviscous, forced Shallow Water Equation (SWE). We
trained the models with MSE and report test MSE, NRMSE and Rollout NRMSE for time intervals
[0, 10], [11, 25], [26, 50], [51, 100]. Best per metric in bold.

Model MSE NRMSE Rollout (0 : 10) Rollout (0 : 25) Rollout (26 : 50) Rollout

SFNO 8.23 1.7× 10−2 9.9× 10−2 3.0× 10−1 7.2× 10−1 7.7× 10−1

HO-SFNO (ours) 5.56 1.3× 10−2 8.0× 10−2 2.6× 10−2 6.2× 10−1 7.0× 10−1

On Diffusion–Reaction (2D), HO-FNO improves one-step accuracy (MSE 8.3×10−5 vs 9.2×10−5;
nRMSE 6.7×10−2 vs 8.5×10−2) and substantially lowers rollout relative to FNO (2.37 vs 5.28).
Notably, UNO achieves an even smaller rollout (1.59) despite weaker single-step metrics, and U-Net
reports a low rollout (1.01) while being orders of magnitude worse on one-step errors, underscoring
the need to interpret rollout normalization and horizon with care.

On Navier–Stokes (2D) with ν = 10−4, HO-FNO delivers strong, consistent gains: MSE drops
from 5.4×10−3 to 2.2×10−3, nRMSE from 4.2×10−2 to 2.8×10−2, and rollout from 3.6×10−1

to 3.2×10−1. UNO is competitive on rollout here (3.4×10−1, close to HO-FNO), though its MSE
is much higher in this setting. At ν = 10−5, the trend amplifies: HO-FNO improves MSE from
3.0×10−2 to 2.1×10−2, nRMSE from 1.4×10−1 to 9.8×10−2, and rollout from 3.1×10−1 to
2.3×10−1. Here UNO remains competitive in single-step accuracy (MSE 2.7×10−2; nRMSE
1.2×10−1) but lags in rollout (6.1×10−1).

The visualization of rollouts in the Appendix D (see Figures 2-8) offers a qualitative view of the
stability of the simulation, and corroborates these trends. On Navier–Stokes, HO-FNO preserves
coherent vortical filaments and shear layers over long horizons (e.g., see t=10, t=19), whereas
UNO and U-Net seem to be unable to reconstruct an image close to the target. FNO is visually
closer to HO-FNO at ν=10−4 and ν=10−5, but fails to reconstruct useful patterns in the Diffusion-
Reaction equation.

Overall, while UNO and U-Net can attain strong rollout performance , a visual check of their re-
constructed images reveals that they are visually very far from the target, corroborating with their
weaker one-step accuracy when compared to HO-FNO.

In summary, higher-order spectral mixing improves accuracy broadly and stabilizes long-horizon
predictions in regimes with strong nonlinear mode coupling, with the largest relative gains on low-
viscosity Navier–Stokes. UNO remains a strong baseline—particularly on Diffusion–Reaction roll-
out and on the ν=10−4 Navier–Stokes rollout—yet HO-FNO consistently provides the best single-
step accuracy and the visually strongest rollout improvements.

Long term stability. We demonstrate the stability of HO-FNO by applying the model iteratively
in rollout simulations. Across all tasks in Table 1, HO-FNO achieves the lowest NRMSE. Visual
examples of these rollouts are provided in Appendix D.

Results on spherical data. Table 2 compares the spherical baseline SFNO to our HO-SFNO on
the rotated, hyperviscous, forced SWE. HO-SFNO achieves the best score on every metric: test
MSE drops from 8.23 to 5.56 and NRMSE from 1.7 × 10−2 to 1.3× 10−2; rollout errors are
uniformly lower across horizons (e.g., early [0, 10] decreases from 9.9 × 10−2 to 8.0× 10−2, late
[26, 50] from 7.2×10−1 to 6.2× 10−1), and the overall rollout NRMSE improves from 7.7×10−1

to 7.0× 10−1. These consistent gains support the inductive bias behind HO-SFNO: SWE on
the sphere features quadratic wave–vortex couplings that are naturally represented in the spherical
harmonic domain, and adding explicitm-linear spectral mixing on top of the SFNO backbone better
aligns the model with these multi-mode interactions, yielding higher single-step fidelity and more
stable long-horizon behavior.

6 DISCUSSION AND CONCLUSION

We introduced Higher-Order Fourier Neural Operators (HO-FNO), which augment spectral opera-
tor layers with explicit m-linear frequency mixing that mimics the polynomial nonlinearities found
in many PDEs. Concretely, each retained mode aggregates all m-tuples of Fourier coefficients

8
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whose indices sum to the index of that mode, yielding an FFT-efficient higher-order spectral con-
volution that remains in O(seq len log(seq len)) complexity per layer, where seq len is the
input sequence length. This mechanism requires no additional hyperparameters beyond the standard
FNO setup and integrates cleanly with existing operator backbones. Empirically, HO-FNO delivers
consistent single-step accuracy gains across Burgers, Diffusion–Reaction, and Navier–Stokes, and
improves long-horizon rollout stability in most regimes; on spherical data, the analogous HO-SFNO
variant also outperforms SFNO.

Efficiency From a computational standpoint, HO-FNO preserves the asymptotic cost of FNO: one
forward and one inverse FFT per layer (per channel group), with the m-linear interaction effected
via pointwise products in physical space. Thus, while there is a small constant-factor overhead
from additional pointwise multiplications, the complexity remains O(seq len log(seq len)).
Architecturally, our models were parameter-matched to baselines and trained under the same budget
(100 epochs within ∼15 hours on a single A100 for the hardest case), so accuracy gains cannot
be ascribed to larger models. In short, HO-FNO trades a modest compute increase for meaningful
predictive improvements, without introducing extra tuning knobs.

The quantitative picture is consistent across datasets. For example, on Navier–Stokes with ν =
10−5, HO-FNO improves MSE from 3.0 × 10−2 to 2.1 × 10−2 and rollout nRMSE from 3.1 ×
10−1 to 2.3 × 10−1; with ν = 10−4, MSE drops from 5.4 × 10−3 to 2.2 × 10−3 and rollout
from 3.6 × 10−1 to 3.2 × 10−1. On Burgers, it reduces MSE from 3.6 × 10−6 to 2.4 × 10−6.
On Diffusion–Reaction, it improves one-step metrics and substantially lowers rollout versus FNO.
On the sphere (rotated, hyperviscous, forced SWE), HO-SFNO improves all reported metrics over
SFNO, indicating that higher-order mixing aligns well with the harmonic structure and quadratic
interactions of geophysical flows on S2.

Limitations First, rollout stability is informative but was not the central optimization target; in-
terpreting rollout scores requires care because normalization and horizon can favor models whose
visual fidelity is weak despite low aggregate error. Indeed, UNO and U-Net sometimes report com-
petitive rollout nRMSE while being markedly worse on single-step metrics and visuals, particularly
on Diffusion–Reaction.

Second, our formulation is motivated by PDEs with polynomial nonlinearities (quadratic/cubic), for
which m-linear spectral couplings are a principled inductive bias. Whether similar gains hold for
systems dominated by non-polynomial or stiff source terms remains to be established.

Third, we instantiated the linear maps Ai in the higher-order convolution as pointwise operators
shared across spatial locations (and not across layers). More expressive choices (e.g., localized
kernels, scale-dependent maps, or cross-channel structures) may further improve accuracy but were
left for future work.

Finally, although we extended to spherical geometries using generalized Fourier bases, broader val-
idation on irregular meshes or other manifolds would strengthen the case for universality.

Perspectives A few natural directions follow.

(i) Backbone integration: Combine higher-order spectral mixing with deeper multiscale operators
(e.g., UNO-style encoder–decoders) to exploit both cross-scale and cross-mode interactions.

(ii) Adaptive order and structure: Learn the effective interaction orderm and the parameterization
of Ai per layer/task; introduce sparsity or symmetry constraints to reflect known physics.

(iii) Geometry and physics priors: Extend to other manifolds/meshes via appropriate spectral
bases; couple HO-FNO with conservation or stability regularizers to target rollout fidelity explicitly.

(iv) Evaluation protocols: Complement normalized rollout metrics with perceptual/physics-aware
scores and standardized horizons to avoid misleading comparisons across models.

9
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ysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020. doi:
https://doi.org/10.1002/qj.3803. URL https://rmets.onlinelibrary.wiley.com/
doi/abs/10.1002/qj.3803.

10

https://doi.org/10.1007/BF01188988
https://doi.org/10.1007/BF01188988
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

C Johnson. Numerical solution of partial differential equations by the finite element method. Stu-
dentlitteratur, 1994.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland,
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Kümmerer, Maximilian Bolingbroke, Michael Tartre, Mikhail Pak, Nathaniel J. Smith, Niko-
lai Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk, Per A. Brodtkorb, Perry Lee, Robert T.
McGibbon, Roman Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano Vigna, Ste-
fan Peterson, Surhud More, Tadeusz Pudlik, Takuya Oshima, Thomas J. Pingel, Thomas P.
Robitaille, Thomas Spura, Thouis R. Jones, Tim Cera, Tim Leslie, Tiziano Zito, Tom Krauss,
Utkarsh Upadhyay, Yaroslav O. Halchenko, Yoshiki Vázquez-Baeza, and SciPy 1.0 Contrib-
utors. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Meth-
ods, 17(3):261–272, March 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0686-2. URL
https://doi.org/10.1038/s41592-019-0686-2.

David L. Williamson, John B. Drake, James J. Hack, Rüdiger Jakob, and Paul N. Swarztrauber.
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APPENDIX

A NOTATIONS

For convenience, we summarize the notation used throughout the paper.

Symbol Meaning

Ω Spatial domain.
d Number of spatial dimensions.
I Set of d-uple of indices α = (α1, . . . , αd) ∈ Nd, where αi indicates the order

of derivative in the i-th dimension, ∂
αi

∂xi
.

∂Ω Boundary of the spatial domain.
Td d-dimensional torus, i.e. periodic domain.
u(x, t) ∈ R Solution field at space–time point (x, t) with C channels.
û(k, t) ∈ C Fourier coefficient of u(x, t) at frequency k ∈ Zd.
i The imaginary number i =

√
−1.

n Degree of nonlinearity (n = 2 for quadratic, n = 3 for cubic).
N Total n
ν PDE coefficients (e.g., diffusivity (Burgers), viscosity (Navier-Stokes) or hy-

perdiffusion coefficient (SWE).
B(u) Boundary condition operator.
u0 Initial condition.

B EXTENDED DERIVATION OF FOURIER MIXING IN NAVIER-STOKES

We present here a detailed discussion of the non-linear interactions on the incompressible Navier-
Stokes equation.

The Incompressible Navier-Stokes equation is tipically presented in the following form:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x) x ∈ (0, 1)2, t ∈ (0, T ] (21)

∇ · u(x, t) = 0 x ∈ (0, 1)2, t ∈ [0, T ] (22)

w(x, 0) = w0(x) x ∈ (0, 1)2 (23)

Where ∇w(x, t) =
(
∂x1

w(x, t), ∂x2
w(x, t)

)
is the gradient of w, ∆w(x, t) = ∂x1x1

w(x, t) +

∂x2x2
w(x, t) is the Laplacian of w and ∇ · u = ∂u1(x,t)

∂x1
+ ∂u2(x,t)

∂x2
is the divergence of u. u(x, t) is

the velocity at the point x at time t and w is the vorticity field w(x, t) = ∂x1
u2(x, t)− ∂x2

u1(x, t).

From the velocity to the vorticity formulation Firstly we will express the PDE in terms of the
sole vorticity w. To do so we need to express u in function of w. By the incompressibility condition
∇ · u = 0 implies that exists a function, called streamfunction, ψ = ψ(x, t) such that u = ∇⊥ψ =(
− ∂ψ
∂x2

, ∂ψ∂x1

)
, therefore, by substitution we obtain w in function of the stream function

w = ∂x1u2 − ∂x2u1 = ∂x1

(
∂ψ

∂x1

)
+ ∂x2

(
∂ψ

∂x2

)
= ∆ψ (24)

Therefore ψ is obtained from w by solving the Poisson problem ∆ψ = w in (0, 1)2 with appropriate
boundary conditions. Once ψ is founded, the velocity u is recovered by u = ∇⊥ψ and since
w = ∆ψ we can write u in function of w as u = ∇⊥∆−1w and same for Navier-Stokes equation:
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∂t(w) = ν∆w(x, t)− (∇⊥∆−1w) · ∇w(x, t) + f(x) x ∈ (0, 1)2, t ∈ (0, T ] (25)

∇ · ∇⊤∆−1w = 0 x ∈ (0, 1)2, t ∈ [0, T ] (26)

w(x, 0) = w0(x) x ∈ (0, 1)2 (27)

Fourier Transform of the Navier-Stokes equation Now we take the Fourier transform of the
vorticity version of the Navier Stokes equation, by taking in consideration that ∇̂w(k, t) = 2πik ·
ŵ(k, t), ∆̂w(k, t) = −(2π)2|k|2ŵ(k, t) and ŵ ⊙ w =

∑
q+p=k ŵ(q, t)ŵ(p, t). Therefore equation

25 becomes

∂t(ŵ)(k, t) = −ν(2π)2|k|2ŵ(k, t)−
∑
p+q=k

(p+ q) · p⊥

|p|2
ŵ(p, t)ŵ(q, t) + f̂(k, t) (28)

For k ∈ Z2, t ∈ (0, T ].

C DATASETS

Dataset Name # Trajectories # Timesteps Mesh Type Resolution

Burgers (1D) 10 000 200 Regular (1D line) 1024

Diffusion-Reaction (2D) 1000 100 Regular (2D periodic box) 128× 128
Navier-Stokes (2D)
ν = 10−4 10000 50 Regular (2D periodic box) 64× 64
Navier-Stokes (2D)
ν = 10−5 1200 20 Regular (2D periodic box) 64× 64

PlanetSWE (2D) 50 100 Sphere (latitude-longitude grid) 256× 128

Table 3: Benchmark PDE datasets used in our experiments.

C.1 1D BURGERS EQUATION

The Burgers’ equation is a PDE modeling the non-linear behavior and diffusion process in fluid
dynamics as

∂tu(t, x) + ∂x

(
u2(t, x)

2

)
=
ν

π
∂xxu(t, x) x ∈ (0, 1), t ∈ (0, 2] (29)

u(0, x) = u0(x) x ∈ (0, 1) (30)

where ν is the diffusion coefficient, which assumed constant, ν = 0.001 in our dataset. Our dataset
use the periodic boundary condition and, as initial condition, we use the following super-position of
sinusoidal waves:

u0(x) =
∑

ki=k1,...,kN

Ai sin(kix+ ϕi) (31)

where ki = 2πni

Lx
are wave numbers whose ni are integer numbers selected randomly in [1, nmax],

N is the integer determining how many waves to be added, Lx is the calculation domain size, Ai is
a random float number uniformly chosen in [0, 1], and ϕi is the randomly chosen phase in (0, 2π).

The numerical solution was calculated with the temporally and spatially 2nd-order upwind differ-
ence scheme for the advection term, and the central difference scheme for the diffusion term.

The dataset we considered is provided by PDEBench (Takamoto et al., 2022).

C.2 2D DIFFUSION-REACTION EQUATION

The 2D diffusion-reaction equation is a PDE modeling two non-linearly coupled variables, namely
the activator u = u(t, x, y) and the inhibitor v = v(t, x, y). The activator models a quantity that
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promotes or ”activates” some process (e.g. chemical concentration in a reaction). The inhibitor
models a quantity that suppresses or “inhibits” the process triggered by the activator (e.g. consuming
the activator in a chemical reaction). The equation is written as

∂tu = Du∂xxu+Du∂yyu+Ru (32)
∂tv = Dv∂xxv +Dc∂yyv +Rv (33)

where Du and Dv are the diffusion coefficient for the activator and inhibitor, respectively, Ru =
Ru(u, v) and Rv = Rv(u, v) are the activator and inhibitor reaction function, respectively. The
domain of the simulation includes x ∈ (−1, 1), y ∈ (−1, 1), t ∈ (0, 5].

The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation
(Klaasen & Troy, 1984), written as:

Ru(u, v) = u− u3 − k − v (34)
Rv(u, v) = u− v (35)

where k = 5×10−3, and the diffusion coefficients for the activator and inhibitor areDu = 1×10−3

andDv = 5×10−3, respectively. The initial condition is generated as standard normal random noise
u(0, x, y) ∼ N (0, 1) for x ∈ (−1, 1) and y ∈ (−1, 1).

We employ a no-flow Neumann boundary condition, meaning that

Du∂xu = 0 (36)
Dv∂xv = 0 (37)
Du∂yu = 0 (38)

Dv∂yv = 0 for x, y ∈ (−1, 1)2 (39)

The spatial discretization is preformed using the finite volume method (LeVeque, 2002), and the time
integration is performed using the built-in fourth order Runge-Kutta method in the scipy package
(Virtanen et al., 2020).

The dataset on Diffusion-Raction was taken form PDEBench (Takamoto et al., 2022)

C.3 2D NAVIER STOKES EQUATIONS

The 2D Navier-Stokes equation for a viscous, incompressible fluid in vorticity form on the unit
torus:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x) x ∈ (0, 1)2, t ∈ (0, T ] (40)

∇ · u(x, t) = 0 x ∈ (0, 1)2, t ∈ [0, T ] (41)

w(x, 0) = w0(x) x ∈ (0, 1)2 x ∈ (0, 1)2 (42)

The initial condition w0(x) is generated according to w0 ∼ µ where

µ = N (0, 73/2(−∆+ 49I)−2.5) (43)

with periodic boundary conditions. The forcing is kept fixed:

f(x) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2))) (44)

The equation is solved using the stream-function formulation with a pseudospectral method. First
a Poisson equation is solved in Fourier space to find the velocity field. Then the vorticity is differ-
entiated and the non-linear term is computed is physical space after which it is dealiased. Time is
advanced with a Crank–Nicolson update where the non-linear term does not enter the implicit part.

All data are generated on a 256 × 256 grid and are downsampled to 64 × 64. We use a timestep
of 10−4 for the Crank–Nicolson scheme in the data-generated process where we record the solution
every t = 1 time units.

We use two datasets on Navier-Stokes equations, with viscosity ν = 10−4 and ν = 10−5, provided
in (Serrano et al., 2024) (Li et al., 2020).
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C.4 PLANETSWE

The rotated, hyperviscous, forced Shallow Water Equation (SWE) on a sphere is a classical test
problem for dynamical systems cores to be used in large-scale weather and climate models as they
capture a number of similar phenomena but are better understood and operate at a more practical
scale (Williamson et al., 1992). We used the forced hyperviscous equations in two dimensions:

∂tu(x, t) = −u(x, t) · ∇xu(x, t)− g∇xh(x, t)− ν∇4
xu(x, t)− 2Ω× u(x, t) (45)

∂th(x, t) = −H∇x · u(x, t)−∇x · (h(x, t)u(x, t))− ν∇4
xh(x, t) + F (x, t) (46)

where ν is the hyper-diffusion coefficient, Ω is the Coriolis parameter, u is the velocity field, H is
the mean height, and h denotes deviation from the mean height. F is a daily/seasonally varying
forcing with periods of 24 and 1008 simulation “hour” respectively.

Initial conditions are randomly sampled from ERA5(Hersbach et al., 2020). u, v, z are taken
from the hpa 500 level with z used as h is the shallow water set-up. Prefiltering was performed by
executing ten iterations of 50 steps followed by solving a balance BVP.

The dataset we used was generated in (McCabe et al., 2023b) and is part of The Well dataset (Ohana
et al., 2024a).

The simulations were performed using the spin-weighted spherical harmonic spectral method in
Dedalus (Burns et al., 2020) with 500 simulation hours of burn-in where the next three simulation
years (3024 hours), were collected for the data set. Integration is performed forward in time using
a semi-implicit RK2 integrator. Step-sizes are computed using the CFL-checker in Dedalus. The
3/2 rule is used for de-aliasing. Background orography is taken from earth orography and passed
through mean-pooling three times (until the simulations became stable empirically). Hyperdiffusion
is matched at ℓ = 96.

The original dataset from The Well (Ohana et al., 2024a) contains 120 trajectories of 3024, each
consisting of 3024 timesteps at a spatial resolution of 256 × 512. For faster training, we restricted
our experiments to the first 50 trajectories, truncated to the initial 100 timesteps, and downsampled
the spatial resolution to 256× 128 by averaging.

D METRICS DESCRIPTION

We evaluate the predictive performance of our models using the following metrics:

Mean Squared Error (MSE). Given ground truth y ∈ Rd and prediction ŷ ∈ Rd, the MSE,
sometimes called L2-norm, is defined as

MSE(y, ŷ) =
1

d

d∑
i=1

∥yi − ŷi∥2. (47)

This metric measures the average squared deviation between predictions and targets. It is numeri-
cally stable and therefore commonly used as a training loss, as we do in our experiments. At test
time, MSE is also informative since it provides a physically meaningful error measure in the original
space.

However, MSE scales quadratically with multiplicative factors applied to y and ŷ, and it is affected
by the discretization of the domain. As a result, it is not directly comparable across different datasets
or resolutions. For this reason, it is often preferred to also report the Normalized Mean Squared Error
(NRMSE) at evaluation time.

Normalized Mean Squared Error (NRMSE). The RMSE, often called relative L2-norm, is the
MSE normalized by the norm of the target:

NRMSE(y, ŷ) =
1

d

d∑
i=1

∥yi − ŷi∥2

∥y∥2
. (48)

Unlike MSE, which reports squared units, RMSE is expressed in the same units as the target variable.
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This makes the error magnitude directly comparable to the physical scale of the data, providing a
more intuitive sense of accuracy therefore providing a fair comparisons across datasets and resolu-
tions.

Rollout Error. Since we deal with time-dependent systems, we evaluate multi-step predictions by
iteratively feeding model outputs back as inputs. The rollout error is computed as the average of a
choosen loss , L, across all timesteps:

Rollout(y1:T , ŷ1:T ) =
1

T

T∑
t=1

L(yt, ŷt), (49)

where T is the total number of time steps of the dataset. This metric captures error accumulation
over long-term forecasts.

Even though rollout stability is beyond the scope of this work, it remains informative to assess how
new models perform in this setting, which more closely reflects real-world applications than the
teacher-forcing setup. For this reason, we report rollout metrics in all our experiments.

E ROLLOUT VISUALIZATIONS

In this section, we present visualizations of the rollout predictions corresponding to Table 1. Across
all datasets, HO-FNO consistently produces visually superior results. For the Diffusion–Reaction
PDEs (Figures 4 and 6), none of the models accurately capture the dynamics from time 0 to 100.
Nevertheless, HO-FNO is able to recover the high-level structure of the solution. For this dataset,
to enable a fairer comparison, we additionally report rollout visualizations from time 25 to 100
(Figures 5 and 7), where all models achieve more accurate predictions, thus providing a clearer
benchmark for visual assessment.

t=0 t=1 t=13 t=25 t=49

Target

HO-FNO

FNO

UNO

UNET

Figure 2: Visualization of Rollout predictions on Navier Stokes with ν = 10−4.
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t=0 t=1 t=5 t=10 t=19

Target

HO-FNO

FNO

UNO

UNET

Figure 3: Visualization of Rollout predictions on Navier Stokes with ν = 10−5.

t=0 t=1 t=25 t=50 t=100

Target

HO-FNO

FNO

UNO

UNET

Figure 4: Visualization of Rollout predictions of the activator in the Diffusion-Reaction equation.
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t=25 t=26 t=50 t=75 t=100

Target

HO-FNO

FNO

UNO

UNET

Figure 5: Visualization of Rollout predictions of the activator in the Diffusion-Reaction equation
with rollout starting at time 25.

t=0 t=1 t=25 t=50 t=100

Target

HO-FNO

FNO

UNO

UNET

Figure 6: Visualization of Rollout predictions of the inhibitor in the Diffusion-Reaction equation.
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t=25 t=26 t=50 t=75 t=100

Target

HO-FNO

FNO

UNO

UNET

Figure 7: Visualization of Rollout predictions of the inhibitor in the Diffusion-Reaction equation
with rollout starting at time 25.

t=0 t=1 t=50 t=100 t=200

Target

HO-FNO

FNO

UNO

UNET
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Figure 8: Visualization of Rollout predictions of the inhibitor in the Burgers equation with rollout.
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