HIGHER-ORDER FOURIER NEURAL OPERATOR: EXPLICIT MODE MIXER FOR NONLINEAR PDES

Anonymous authors

Paper under double-blind review

ABSTRACT

Neural operators provide resolution-equivariant deep learning models for learning mappings between function spaces. Among them, the Fourier Neural Operator (FNO) is particularly effective: its spectral convolution combines a low-dimensional Fourier representation with strong empirical performance, enabling generalization across resolutions. While this design aligns with the structure of linear PDEs, where Fourier modes evolve independently, nonlinear PDEs exhibit structured interactions between modes governed by polynomial nonlinearities. To capture this inductive bias, we introduce the **Higher-Order Spectral Convolution**, a spectral mixer that extends FNO from diagonal modulation to explicit *n*-linear mode mixing aligned with nonlinear PDE dynamics. Across benchmarks, including Burgers and Navier-Stokes equations, our method consistently improves accuracy in nonlinear regimes, achieving lower error while retaining the efficiency of FFT-based architectures.

1 Introduction

Partial differential equations (PDEs) serve as the fundamental tools for expressing the evolution of physical and engineering processes in space and time. Accurate modeling of PDE-governed systems is fundamental to understanding phenomena such as fluidodynamic (Burgers equation, Navier-Stokes equation), transport phenomena (diffusion-reaction equation) and large-scale atmospheric modeling (Shallow Water equation) (Staniforth, 2022).

For most of these equations, closed-form solutions are not available, making numerical approximation necessary. Over the past century, traditional numerical methods such as the finite difference method (FDM) (LeVeque, 2007), the finite element method (FEM) (Johnson, 1994) and the finite volume method (FVM) (LeVeque, 2002) have achieved both accuracy and interpretability, owing to their foundation in fundamental physical principles. Despite their strengths, these methods face two main limitations: high computational cost from fine spatiotemporal discretization, and reliance on full knowledge of the governing PDEs.

Therefore, in recent years, motivated by the remarkable achievements of deep learning for modeling complex functions, numerous data-driven PDE solvers have been introduced to overcome the limitations of traditional numerical methods. Among these approaches, the framework of operator learning (Kovachki et al., 2023; Berner et al., 2025) stands out as the most physically grounded. Neural operators, in particular, aim to approximate the underlying solution operator that maps input functions, such as coefficients, forcing terms, or initial conditions, to output solutions, thereby providing a resolution-equivariant and efficient alternative to classical discretization-based schemes.

Among them, the Fourier Neural Operator (FNO) (Li et al., 2020), inspired by spectral methods that provide the highest spatial accuracy and exponential convergence on regular grids, stands out for modeling dynamical systems on equally spaced meshes. For complex geometries, several variants of FNO have been introduced by changing the spectral basis, for instance, the Spherical Fourier Neural Operator (SFNO) (Bonev et al., 2023) on the sphere, and NORM (Chen et al., 2023) on general Riemannian manifolds. Furthermore, extensions to irregular meshes have been proposed by mapping them onto regular grids, either via a general learnable map (GNO (Li et al., 2023b)), a learnable diffeomorphism (GEO-FNO (Li et al., 2023a)), or an optimal transport map (OTNO (Li et al., 2025)).

In this work we will refer to this class of models as *spectral neural operators* (SNOs) due to their explicit modeling of the spectrum of modes of the input function, with a classic or generalized Fourier transform, with and without encoders and decoders. SNOs are typically composed of linear layers and nonlinear activation functions. The linear components are usually global convolutions over a truncated set of modes, and they evolve Fourier modes independently, without mixing. To augment the approximation power of the SNO layers we propose an *n*-order spectral convolution that implement a *n*-linear global mixing of Fourier coefficients while retaining the computational efficiency of a Fourier truncation.

The spectral convolution of a SNO closely mimicks the action of the Green function, a kernel whose convolution yields the solution of linear PDEs (Stakgold & Holst, 2011). For nonlinear PDEs, the Green function no longer provides a useful representation, yet the composition of linear spectral convolutions with nonlinear activations endows SNOs with universal approximation capabilities (Kovachki et al., 2021).

Much like SNOs, 2-layer MLPs also enjoy universal approximation properties (Cybenko, 1989; Chen & Chen, 1996). However, modern deep learning has highlighted the advantages of richer nonlinear layers, most notably the attention mechanism (Bahdanau, 2014; Vaswani et al., 2017). Transformer models have rapidly become the dominant architecture across various application domains, spanning language, vision (Dosovitskiy et al., 2020), chemistry (Jumper et al., 2021), and more recently physical modeling (Alkin et al., 2024; Colagrande et al., 2025). A key factor behind their success is the ability of classical attention to capture pairwise interactions in physical space. This mechanism has recently been generalized to model interactions among an arbitrary number n of entities, giving rise to higher-order attention (Clift et al., 2019).

Despite their $O(seq_len^n)$ complexity in the sequence length, these higher-order variants show better scaling laws (Roy et al., 2025) and exponentially improved depth efficiency on dedicated tasks (Sanford et al., 2023). Following this line of work, we introduce a new framework that realizes n-order interactions between coefficients directly in the Fourier domain, providing the spectral analogue of higher-order attention, which operates in the Dirac domain. Crucially, our method avoids the $O(seq_len^n)$ blow-up of higher-order attention and matches FFT-based SNOs with a complexity of $O(seq_len \log(seq_len))$ per layer.

More similar to our work are the triangular attention mechanism of the edge transformer (Bergen et al., 2021) and the triangle attention of AlphaFold2 (Jumper et al., 2021). In both cases, the triangle refers to three-way interactions in the spatial domain: given a triplet of nodes, triangular attention models the dependencies along the edges of the corresponding triangle, enabling richer geometric reasoning. In contrast, our triadic (order n=2) spectral convolution realizes the analogue of this mechanism in the Fourier domain: the triangle here corresponds to a triplet of frequency modes whose wavevectors satisfy a closure relation (e.g. $k_1 + k_2 = k_3$), capturing the nonlinear triadic interactions that govern energy transfer in PDE dynamics. For n>2, our method can be viewed as the Fourier analogue of a n-symplicial extension of the aforementioned attention mechanisms.

Our contributions are the following:

- 1. **Higher-Order Fourier Neural operators.** We design the first spectral neural operators modeling the exact mode interaction of non-linear PDEs.
- 2. **Interaction on different geometries.** We showcase the effect of modeling order 2 interactions on spherical data by applying our method to Spherical Harmonic convolutions.
- 3. **Experiments and ablation studies.** Through extensive experiments, we show the advantages of the proposed design in non-linear settings.

2 SETTING AND NOTATION

We consider a time-dependent PDE defined on a spatial domain $\Omega \subset \mathbb{R}^d$, with boundary $\partial\Omega$, d the number of spatial dimensions, and temporal domain [0,T]. A solution u(x,t) of this PDE satisfies the general system described in Eq. 1, where F is a function of the solution u and of its spatial derivatives $\frac{\partial^i u}{\partial x_i}$, ν represents a set of PDE coefficients, \mathcal{B} encodes the boundary conditions, and u^0

denotes the initial condition sampled from a probability distribution on $L_2(\Omega, \mathbb{R})$, i.e. $u^0 \sim p^0(\cdot)$.

$$\frac{\partial u}{\partial t} = F\left(\nu, t, x, u, \frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x_2}, \dots\right), \quad \forall x \in \Omega, \ \forall t \in (0, T],$$

$$\mathcal{B}(u)(t, x) = 0, \qquad \forall x \in \partial\Omega, \ \forall t \in (0, T],$$

$$u(0, x) = u^0(x), \qquad \forall x \in \Omega.$$
(1)

The operator learning task we consider consists in predicting the solution operator \mathcal{G} , defined in Eq. 2, that propagates the physical state one time step forward:

$$\mathcal{G}: L^2(\Omega, \mathbb{R}) \to L^2(\Omega, \mathbb{R})$$

$$u(\cdot, t) \mapsto u(\cdot, t+1)$$
(2)

Polynomial nonlinearities in PDEs. We can write Eq. 1 as follows in Eq. 3 by aggregating its terms based on the degree of nonlinearity:

$$\frac{\partial u}{\partial t} = \sum_{n \in \mathbb{N}} \mathsf{P}_{\mathcal{I},n}(u(x,t)) \tag{3}$$

where $P_{\mathcal{I},n}(u(x,t))$ contains the *n*-linear components of the PDE and it is an homogeneous polynomial in the partial derivatives $\frac{\partial^i u}{\partial x_i}(x,t)$ and \mathcal{I} is the set of multi-indices $\alpha=(\alpha_1,\ldots,\alpha_n)$ of the partial derivatives in each monomial $\prod_{i=1}^n \frac{\partial^{\alpha_i} u}{\partial u_{\alpha_i}}$. We refer to the maximal value of n as the degree of nonlinearity of the PDE. We now focus on the n-linear part of the equation

$$\mathsf{P}_{\mathcal{I},n} = \sum_{\alpha \in \mathcal{I}} c_{\alpha} \prod_{i=1}^{n} \frac{\partial^{\alpha_{i}} u}{\partial x_{\alpha_{i}}} \tag{4}$$

For our analysis we consider functions defined on the torus, i.e. $\Omega = \mathbb{T}^d$, and we restrict to scalar functions, i.e. $u: \mathbb{T}^d \to \mathbb{R}$. In the periodic setting it is convenient to expand u in Fourier basis as in Eq. 5.

$$u(x,t) = \sum_{k \in \mathbb{Z}^d} \widehat{u}(k,t)e^{ik \cdot x}, \quad \widehat{u}(k,t) \in \mathbb{C}.$$
 (5)

Therefore we consider the Fourier transform of the *n*-linear part of the PDE in Eq. 4:

$$\mathsf{P}_{\mathcal{I},n}(\widehat{u})(k,t) = \sum_{k_1 + \dots + k_n = k} C \,\widehat{u}(k_1,t) \widehat{u}(k_2,t) \cdots \widehat{u}(k_n,t) \tag{6}$$

Where $C = C(k, \alpha)$ is a constant dependent on the multi-index α and the index k.

The summation term of Eq. 6 corresponds to the n-linear convolution of Fourier modes. It captures how input frequencies combine under the nonlinearity, and it is precisely this mixing that our higherorder spectral convolution is designed to model, with $C(k, \alpha)$ providing the learnable kernel.

Quadratic interactions (n = 2) appear in Burgers, in the Navier-Stokes equations and in the rotated, hyperviscous, forced Shallow Water Equations on the sphere while cubic non-linearities (n = 3)appear in the Diffusion-reaction equation.

We refer to the appendix B for a more detailed discussion and present in section 3 the explicit construction in the case of Navier-Stokes equations.

A CONCRETE EXAMPLE: NAVIER-STOKES EQUATIONS

We present here, as example, the non-linear interactions on the incompressible Navier-Stokes equation that is usually written as follows in Equation 7 in the velocity form.

$$\partial_t w(x,t) + u(x,t) \cdot \nabla w(x,t) = \nu \Delta w(x,t) + f(x) \qquad x \in (0,1)^2, \ t \in (0,T] \qquad (7)$$

$$\nabla \cdot u(x,t) = 0 \qquad x \in (0,1)^2, \ t \in [0,T] \qquad (8)$$

$$w(x,0) = w_0(x) \qquad x \in (0,1)^2 \qquad (9)$$

$$w(x,0) = w_0(x) x \in (0,1)^2 (9)$$

The task typically requires to predict the evolution of the vorticity w (Li et al., 2020) (Serrano et al., 2024) so we express the PDE in the vorticity form as follows in Equation 10:

$$\partial_t(w) = \nu \Delta w(x, t) - (\nabla^{\perp} \Delta^{-1} w) \cdot \nabla w(x, t) + f(x) \qquad x \in (0, 1)^2, \ t \in (0, T] \quad (10)$$

$$\nabla \cdot \nabla^{\top} \Delta^{-1} w = 0 \qquad x \in (0, 1)^2, \ t \in [0, T] \quad (11)$$

$$w(x,0) = w_0(x) x \in (0,1)^2 (12)$$

To observe the interaction of the Fourier modes of the vorticity we take the Fourier transform, for $k \in \mathbb{Z}^2$, $t \in (0,T]$:

$$\partial_t(\widehat{w})(k,t) = -\nu(2\pi)^2 |k|^2 \widehat{w}(k,t) - \sum_{p+q=k} \frac{(p+q) \cdot p^{\perp}}{|p|^2} \widehat{w}(p,t) \widehat{w}(q,t) + \widehat{f}(k,t).$$
 (13)

In Fourier space, the nonlinear advection term in the Navier-Stokes equations becomes a convolution integral, and a triad interaction term in the turbulence kinetic energy equation. Despite being conservative, and therefore contributing only to energy exchange between Fourier modes, this term is at the heart of many of the interesting questions in the literature.

As highlighted in (Cheung & Zaki, 2014), the primary difficulty in working with the spectral Navier–Stokes equations described in Eq.13, is to appropriately account for all nonlinear interactions. An analytical treatment requires some means of tracking energy transfer from two arbitrary modes p and q into a third mode k. Therefore, it motivates the use of architectures that go beyond diagonal modulation of Fourier coefficients by explicitly parameterizing higher-order interactions in the spectral domain. Note that quadratic nonlinearity (order n=2) yields triadic interactions (p,q,k) with p+q=k; hence an order-2 corresponds to triads in spectral turbulence.

Neural Operator. Following the framework of (Kovachki et al., 2023), a Neural Operator \mathcal{G}_{θ} is implemented as a stacked structure of L learnable layers \mathcal{Q}_{ℓ} , inserted between point-wise neural networks denoted \mathcal{L} (lifting network) and \mathcal{P} (projection network) that elevate the lower-dimensional input to a higher-dimensional latent space and projects the transformed input back to a lower-dimensional output dimension, respectively.

$$\mathcal{G}_{\theta} = \mathcal{P} \circ \mathcal{Q}_1 \cdots \circ \mathcal{Q}_L \circ \mathcal{L} \tag{14}$$

We denote by v_{ℓ} the hidden representation at layer ℓ . The operator layer $\mathcal{Q}_{\ell}: v_{\ell} \mapsto v_{\ell+1}$ performs the iterative update described in Eq. 15, where W_{ℓ} is a point-wise linear map, b_{ℓ} a bias and \mathcal{K}_{ℓ} an integral operator.

$$Q_{\ell}(v_{\ell}) = \sigma(W_{\ell}v_{\ell} + \mathcal{K}_{\ell}(v_{\ell}) + b_{\ell})$$
(15)

Fourier Neural Operator (FNO). FNO (Li et al., 2020) follows the framework described in section 2 and implements the integral kernels $\mathcal K$ as global convolution operators $\mathcal C$ preceded by a truncation of Fourier coefficients $\mathsf{T}_M(u)(x) = \sum_{|k| \leq M} \hat u(k) e^{ik \cdot x}$ where M is the number of retained modes. The so-called *spectral convolution* writes as follows in Eq. 16 in physical space, where κ_θ is a kernel parameterized by θ .

$$C_{\theta}(v)(x) = \int_{\Omega} \kappa_{\theta}(x - y) \mathsf{T}_{M} v(y) dy \tag{16}$$

The Fourier Neural Operator (FNO) implements this map efficiently by parameterizing κ_{θ} in the Fourier domain, acting mode-wise, and then returning to physical space via inverse FFT:

$$\widehat{\mathcal{C}_{\theta}v}(k) = W_k \widehat{v}(k) \tag{17}$$

While successful on many tasks, this architecture does not explicitly capture *multi-linear frequency mixing*, since each mode is updated independently and interactions are only induced indirectly through point-wise nonlinearities between different layers.

Figure 1: Overview of our proposed HO-FNO (illustration adapted from (Li et al., 2020)).

Top: Neural operator architecture. An input a is lifted to a higher-dimensional channel space by a neural network \mathcal{L} . A number L of HO-FNO layers are then applied to the lifted input, before it is projected back to the target dimension by a neural network \mathcal{P} to obtain the output u.

Bottom: High-Order Fourier layer. An intermediary input v is processed by a HO-Fourier layer. Its Fourier transform F is computed, producing N modes. Our method mixes these modes to obtain N new pseudo-modes: $\kappa'_0, \cdots, \kappa'_{N-1}$. Here, a pseudo-mode $\kappa_i, i \in [0, N-1]$ is obtained by mixing the subset of m original modes defined by $\mathcal{S}_i := \{p_1, p_2, ... p_m \in [1, N], p_1 + p_2 + ... + p_m = i \mod N\}$. Only the M lower Fourier pseudo-modes $\kappa'_1, \cdots, \kappa'_M$ are kept. HO-FNO then applies a linear transform R on those M lower Fourier pseudo-modes, and applies the inverse Fourier transform F^{-1} . Through a skipped connection, the mixed output is combined with the original input transformed by a local linear transform W and a non-linear activation σ is applied.

Higher-Order Fourier Neural Operators (HO-FNO). We extend the kernel map to incorporate explicit m-linear interactions via the following Higher-Order Spectral Convolution:

$$(\mathcal{H}_{\theta}u)(x) = \int_{\Omega} k_{\theta}(x-y) \mathsf{T}_{M}((A_{1}u)(y)(A_{2}u)(y) \cdots (A_{m}u)(y)) dy$$
 (18)

Here, each A_i is a learnable linear operator acting channel-wise in physical space. In this work, we instantiate A_i as per-point linear maps shared across spatial locations but not across layers. Alternative parameterizations are left to future work.

The *m*-linear point-wise products in physical space induces a structured *m*-linear global mixing among Fourier coefficients as described in Eq. 19:

$$(\widehat{\mathcal{H}_{\theta}v})(k) = W_k \sum_{k_1 + \dots + k_m = k} A_1 \widehat{v}(k_1) A_2 \widehat{v}(k_2) \cdots A_m \widehat{v}(k_m)$$
(19)

Thus, each mode k aggregates all m-tuples of modes with indices summing to k, mirroring the nonlinear interaction structure of PDEs with polynomial nonlinearities.

We emphasize that the operator is evaluated only for modes $k \leq m$, preserving the computational efficiency of FNO. However, each retained mode k is updated using information from all Fourier modes, rather than being restricted to the truncated subset.

This m-linear convolution provides a principled, FFT-efficient mechanism for explicit mode mixing in neural operators, extending the FNO beyond purely mode-wise updates. The m-linear interaction can be carried out in $\mathcal{O}(N\log N)$ complexity by multiplying fields pointwise in the physical domain, transforming to Fourier space via FFT, applying spectral multipliers, and mapping back with an inverse FFT. In practice, each layer uses one FFT and one inverse FFT per channel group; m-linear mixing is effected via pointwise products, so the asymptotic cost remains $O(N\log N)$. We summarize our proposition in Figure 1.

4 EXTENSION TO GENERALIZED FOURIER TRANSFORMS

The classical Fourier transform is defined for functions defined on the torus \mathbb{T}_d . When a function is instead defined on a manifold $\mathcal{M} \subset \mathbb{R}^D$, one can still apply the classical Fourier transform by first extending the function to the ambient euclidean space \mathbb{R}^D . While this procedure makes the transform computable, the resulting representation ignores the geometry of the domain \mathcal{M} of the function and therefore provides a sub-optimal representation.

To overcome this limitation, the notion of a Fourier basis has been generalized to arbitrary compact Riemannian manifolds $\mathcal M$ through the spectral decomposition of the Laplace–Beltrami operator. Concretely, one considers the eigenvalue problem

$$-\Delta_g \phi_j = \lambda_j \phi_j \quad \text{on } \mathcal{M}, \tag{20}$$

where $\Delta_g f = \operatorname{div}_g(\nabla_g f)$ denotes the Laplacian, defined as the divergence of the Riemannian gradient. The eigenfunctions ϕ_j serve as generalized Fourier modes, while the corresponding eigenvalues λ_j play the role of frequencies

For most manifolds, the eigenfunctions of the Laplace–Beltrami operator do not admit a closed-form expression and must be precomputed numerically (Chen et al., 2023). An important exception is the sphere, where the generalized Fourier modes correspond to the well-known *spherical harmonics*. This extension of the Fourier transform naturally induces a corresponding notion of convolution, defined as a linear diagonal operator in the generalized Fourier domain. In the same spirit, Higher-Order Spectral Convolutions also extend to arbitrary geometries, and the theoretical framework developed in the classical Fourier setting remains directly applicable.

We illustrate this by experimenting with the rotated, hyperviscous, forced Shallow Water Equation (SWE) on the sphere, with results reported in Table 2.

5 EXPERIMENTS

Tasks. We experiment with simulation tasks from PDEBench (Takamoto et al., 2022), namely the 1D Burger's equation with viscosity $\nu=0.001$, and the 2D Diffusion-Reaction equation. We consider two 2D Navier-Stokes dataset with viscosity $\nu=10^{-4}$ and 10^{-5} , provided by (Serrano et al., 2024; Li et al., 2020). In addition, we include the rotated, hyperviscous, forced Shallow Water Equation (SWE) on the sphere (McCabe et al., 2023a), made available through The Well (Ohana et al., 2024b). All datasets are used in their standard form, except for SWE, which we subsample for shorter training (see Appendix C.4). We focus on nonlinear dynamics to better highlight the advantages of the proposed method.

Metrics. We evaluate models using three complementary metrics: Mean Squared Error (MSE), Normalized Mean Squared Error (NRMSE), and Rollout NRMSE. MSE captures predictive accuracy in physical space, while NRMSE rescales the error by the target norm, enabling fair comparison across datasets of different magnitudes. We also report Rollout NRMSE over full trajectories: although rollout stability is not a focus of this work, it provides useful insight into long-term performance in settings closer to real-world applications. When data are normalized for training stability, predictions are denormalized before computing the loss. We refer to Appendix D for more details on each metric.

Baselines. We compare our proposed HO-FNO and HO-SFNO against several representative baselines. On planar geometries, we use the original FNO (Li et al., 2020), while for data on the sphere we adopt SFNO (Bonev et al., 2023). We further include UNO (Rahman et al., 2022), a U-Net-style *neural operator* that combines encoder–decoder contractions/skip connections with Fourier-domain operator layers (as in FNO), enabling much deeper stacks at similar memory cost. Together with FNO, which tests spectral operators without multiscale contracting paths, and U-Net, which tests purely pixel-space convolution without learned spectral operators, the baselines provide a point of comparison between standard convolutional models and spectral neural operators.

Architecture. We used models with comparable parameter counts across datasets, adjusting their size to match task difficulty while ensuring that all experiments can be trained for 100 epochs within

Table 1: Test performance of different models trained on MSE. We report validation MSE, normalized RMSE (nRMSE), and rollout nRMSE, visualizations are provided in E. Best results per metric are in **bold**.

Dataset	Metric	U-Net	UNO	FNO	HO-FNO (ours)
Burgers (1D)	MSE nRMSE	7.4×10^{-1} 3.3×10^{-1}	$3.5 \times 10^{-6} $ 2.6×10^{-3}	$\frac{3.6 \times 10^{-6}}{2.0 \times 10^{-3}}$	2.4×10^{-6} 1.6×10^{-3}
	Rollout	Diverged	1.04	7.5×10^{-2}	8.0×10^{-2}
Diffusion-Reaction (2D)	MSE	3.3×10^{-3}	8.4×10^{-5}	9.2×10^{-5}	$8.3 imes10^{-5}$
	nRMSE	2.6×10^{-1}	7.3×10^{-2}	8.5×10^{-2}	$6.7 imes10^{-2}$
	Rollout	1.01	<u>1.59</u>	5.28	2.37
Navier-Stokes (2D) $\nu = 10^{-4}$	MSE	1.9×10^{-1}	5.3×10^{-2}	5.4×10^{-3}	$2.2\times\mathbf{10^{-3}}$
	nRMSE	1.9×10^{-1}	4.0×10^{-2}	4.2×10^{-2}	$2.8\times\mathbf{10^{-2}}$
	Rollout	1.06	$\underline{3.4 \times 10^{-1}}$	3.6×10^{-1}	$3.2 imes 10^{-1}$
Navier-Stokes (2D) $\nu = 10^{-5}$	MSE	7.4×10^{-1}	2.7×10^{-2}	3.0×10^{-2}	$2.1 \times \mathbf{10^{-2}}$
	nRMSE	3.4×10^{-1}	1.2×10^{-1}	1.4×10^{-1}	$9.8 imes10^{-2}$
	Rollout	1.12	6.1×10^{-1}	$\underline{3.1\times10^{-1}}$	$2.3 imes10^{-1}$

15 hours on a single NVIDIA A100 GPU. The resulting models contain approximately 4.8M parameters for Navier–Stokes with $\nu=10^{-5}, 2.3$ M parameters for Navier–Stokes with $\nu=10^{-4}$ and for PlanetSWE, 600K parameters for the Diffusion–Reaction equation, and 80K parameters for the Burgers equation.

For our baselines based on Neural Operators, we adopt linear pointwise lifting and projection networks, denoted $\mathcal P$ and $\mathcal Q$. For Navier–Stokes with $\nu=10^{-4}$, we use 8 layers $\mathcal Q_i$, while for all other experiments we use 4 layers. The embedding dimension is set to 64 for Navier–Stokes $\nu=10^{-4}$ and PlanetSWE, and to 32 for the remaining datasets. We retain 16 Fourier modes for Burgers, 32×17 modes for Navier–Stokes $\nu=10^{-5}$, and 16×9 modes for the other datasets.

For the UNet and UNO baselines, we use the standard architecture with 4 layers and an initial embedding dimension of 12 for Burgers and 16 for the other datasets, chosen to match exceed the parameter counts of the operator-learning models. For UNO, we retain the same number of modes as in the corresponding Neural Operator baselines for each dataset.

Hyperparameters. The higher-order variation of the Fourier Neural Operator introduced in this work does not introduce additional hyperparameters beyond those of the standard architecture. The main hyperparameters of the models are therefore the number of layers, the latent embedding dimension per layer, and the number of retained Fourier modes in each spatial dimension (1 for Burgers and 2 for all other datasets).

We typically retain between 16 and 32 modes in each spatial dimension. Accounting for Hermitian symmetry, in the standard FNO implementation (Kossaifi et al., 2024), this corresponds to 8 or 16 modes for 1D data and 16×9 or 32×17 modes for 2D experiments. Interestingly, we found that FNO and HO-FNO, as well as SFNO and HO-SFNO, achieve their best performance under nearly the same hyperparameter settings.

Results. Table 1 compares U-Net, UNO, FNO, and our proposed HO-FNO across four PDE benchmarks under three criteria: MSE, nRMSE, and rollout nRMSE. Overall, HO-FNO attains the best single-step accuracy on all datasets, consistently outperforming both FNO and UNO (the latter sometimes by modest margins, e.g., on Diffusion–Reaction).

On Burgers (1D), HO-FNO reduces MSE from 3.6×10^{-6} to 2.4×10^{-6} and nRMSE from 2.0×10^{-3} to 1.6×10^{-3} , while rollout nRMSE is comparable to FNO $(8.0\times10^{-2} \text{ vs } 7.5\times10^{-2})$.

Table 2: Test performance on rotated, hyperviscous, forced Shallow Water Equation (SWE). We trained the models with MSE and report test MSE, NRMSE and Rollout NRMSE for time intervals [0, 10], [11, 25], [26, 50], [51, 100]. Best per metric in **bold**.

Model	MSE	NRMSE	Rollout (0 : 10)	Rollout (0 : 25)	Rollout (26 : 50)	Rollout
SFNO HO-SFNO (ours)	00	1.7×10^{-2} 1.3×10^{-2}		3.0×10^{-1} $2.6 \times \mathbf{10^{-2}}$	7.2×10^{-1} 6.2×10^{-1}	7.7×10^{-1} 7.0×10^{-1}

On Diffusion–Reaction (2D), HO-FNO improves one-step accuracy (MSE 8.3×10^{-5} vs 9.2×10^{-5} ; nRMSE 6.7×10^{-2} vs 8.5×10^{-2}) and substantially lowers rollout relative to FNO (2.37 vs 5.28). Notably, UNO achieves an even smaller rollout (1.59) despite weaker single-step metrics, and U-Net reports a low rollout (1.01) while being orders of magnitude worse on one-step errors, underscoring the need to interpret rollout normalization and horizon with care.

On Navier–Stokes (2D) with $\nu=10^{-4}$, HO-FNO delivers strong, consistent gains: MSE drops from 5.4×10^{-3} to 2.2×10^{-3} , nRMSE from 4.2×10^{-2} to 2.8×10^{-2} , and rollout from 3.6×10^{-1} to 3.2×10^{-1} . UNO is competitive on rollout here $(3.4\times10^{-1},$ close to HO-FNO), though its MSE is much higher in this setting. At $\nu=10^{-5}$, the trend amplifies: HO-FNO improves MSE from 3.0×10^{-2} to 2.1×10^{-2} , nRMSE from 1.4×10^{-1} to 9.8×10^{-2} , and rollout from 3.1×10^{-1} to 2.3×10^{-1} . Here UNO remains competitive in single-step accuracy (MSE 2.7×10^{-2} ; nRMSE 1.2×10^{-1}) but lags in rollout (6.1×10^{-1}) .

The visualization of rollouts in the Appendix D (see Figures 2-8) offers a qualitative view of the stability of the simulation, and corroborates these trends. On Navier–Stokes, HO-FNO preserves coherent vortical filaments and shear layers over long horizons (e.g., see t=10, t=19), whereas UNO and U-Net seem to be unable to reconstruct an image close to the target. FNO is visually closer to HO-FNO at ν =10⁻⁴ and ν =10⁻⁵, but fails to reconstruct useful patterns in the Diffusion-Reaction equation.

Overall, while UNO and U-Net can attain strong rollout performance, a visual check of their reconstructed images reveals that they are visually very far from the target, corroborating with their weaker one-step accuracy when compared to HO-FNO.

In summary, higher-order spectral mixing improves accuracy broadly and stabilizes long-horizon predictions in regimes with strong nonlinear mode coupling, with the largest relative gains on low-viscosity Navier–Stokes. UNO remains a strong baseline—particularly on Diffusion–Reaction roll-out and on the ν =10⁻⁴ Navier–Stokes rollout—yet HO-FNO consistently provides the best single-step accuracy and the visually strongest rollout improvements.

Long term stability. We demonstrate the stability of HO-FNO by applying the model iteratively in rollout simulations. Across all tasks in Table 1, HO-FNO achieves the lowest NRMSE. Visual examples of these rollouts are provided in Appendix D.

Results on spherical data. Table 2 compares the spherical baseline SFNO to our HO-SFNO on the rotated, hyperviscous, forced SWE. HO-SFNO achieves the best score on every metric: test MSE drops from 8.23 to 5.56 and NRMSE from 1.7×10^{-2} to 1.3×10^{-2} ; rollout errors are uniformly lower across horizons (e.g., early [0,10] decreases from 9.9×10^{-2} to 8.0×10^{-2} , late [26,50] from 7.2×10^{-1} to 6.2×10^{-1}), and the overall rollout NRMSE improves from 7.7×10^{-1} to 7.0×10^{-1} . These consistent gains support the inductive bias behind HO-SFNO: SWE on the sphere features quadratic wave–vortex couplings that are naturally represented in the spherical harmonic domain, and adding explicit m-linear spectral mixing on top of the SFNO backbone better aligns the model with these multi-mode interactions, yielding higher single-step fidelity and more stable long-horizon behavior.

6 DISCUSSION AND CONCLUSION

We introduced Higher-Order Fourier Neural Operators (HO-FNO), which augment spectral operator layers with explicit *m*-linear frequency mixing that mimics the polynomial nonlinearities found in many PDEs. Concretely, each retained mode aggregates all *m*-tuples of Fourier coefficients

whose indices sum to the index of that mode, yielding an FFT-efficient higher-order spectral convolution that remains in $\mathcal{O}(\texttt{seq_len}\log(\texttt{seq_len}))$ complexity per layer, where $\texttt{seq_len}$ is the input sequence length. This mechanism requires no additional hyperparameters beyond the standard FNO setup and integrates cleanly with existing operator backbones. Empirically, HO-FNO delivers consistent single-step accuracy gains across Burgers, Diffusion–Reaction, and Navier–Stokes, and improves long-horizon rollout stability in most regimes; on spherical data, the analogous HO-SFNO variant also outperforms SFNO.

Efficiency From a computational standpoint, HO-FNO preserves the asymptotic cost of FNO: one forward and one inverse FFT per layer (per channel group), with the m-linear interaction effected via pointwise products in physical space. Thus, while there is a small constant-factor overhead from additional pointwise multiplications, the complexity remains $\mathcal{O}(\text{seq_len}\log(\text{seq_len}))$. Architecturally, our models were parameter-matched to baselines and trained under the same budget (100 epochs within \sim 15 hours on a single A100 for the hardest case), so accuracy gains cannot be ascribed to larger models. In short, HO-FNO trades a modest compute increase for meaningful predictive improvements, without introducing extra tuning knobs.

The quantitative picture is consistent across datasets. For example, on Navier–Stokes with $\nu=10^{-5}$, HO-FNO improves MSE from 3.0×10^{-2} to 2.1×10^{-2} and rollout nRMSE from 3.1×10^{-1} to 2.3×10^{-1} ; with $\nu=10^{-4}$, MSE drops from 5.4×10^{-3} to 2.2×10^{-3} and rollout from 3.6×10^{-1} to 3.2×10^{-1} . On Burgers, it reduces MSE from 3.6×10^{-6} to 2.4×10^{-6} . On Diffusion–Reaction, it improves one-step metrics and substantially lowers rollout versus FNO. On the sphere (rotated, hyperviscous, forced SWE), HO-SFNO improves all reported metrics over SFNO, indicating that higher-order mixing aligns well with the harmonic structure and quadratic interactions of geophysical flows on \mathbb{S}^2 .

Limitations First, rollout stability is informative but was not the central optimization target; interpreting rollout scores requires care because normalization and horizon can favor models whose visual fidelity is weak despite low aggregate error. Indeed, UNO and U-Net sometimes report competitive rollout nRMSE while being markedly worse on single-step metrics and visuals, particularly on Diffusion–Reaction.

Second, our formulation is motivated by PDEs with polynomial nonlinearities (quadratic/cubic), for which m-linear spectral couplings are a principled inductive bias. Whether similar gains hold for systems dominated by non-polynomial or stiff source terms remains to be established.

Third, we instantiated the linear maps A_i in the higher-order convolution as pointwise operators shared across spatial locations (and not across layers). More expressive choices (e.g., localized kernels, scale-dependent maps, or cross-channel structures) may further improve accuracy but were left for future work.

Finally, although we extended to spherical geometries using generalized Fourier bases, broader validation on irregular meshes or other manifolds would strengthen the case for universality.

Perspectives A few natural directions follow.

- (i) **Backbone integration:** Combine higher-order spectral mixing with deeper multiscale operators (e.g., UNO-style encoder-decoders) to exploit both cross-scale and cross-mode interactions.
- (ii) Adaptive order and structure: Learn the effective interaction order m and the parameterization of A_i per layer/task; introduce sparsity or symmetry constraints to reflect known physics.
- (iii) **Geometry and physics priors:** Extend to other manifolds/meshes via appropriate spectral bases; couple HO-FNO with conservation or stability regularizers to target rollout fidelity explicitly.
- (iv) **Evaluation protocols:** Complement normalized rollout metrics with perceptual/physics-aware scores and standardized horizons to avoid misleading comparisons across models.

REFERENCES

- Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes Brandstetter. Universal physics transformers: A framework for efficiently scaling neural operators. *Advances in Neural Information Processing Systems*, 37:25152–25194, 2024.
- Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. *arXiv* preprint arXiv:1409.0473, 2014.
- Leon Bergen, Timothy O'Donnell, and Dzmitry Bahdanau. Systematic generalization with edge transformers. *Advances in Neural Information Processing Systems*, 34:1390–1402, 2021.
- Julius Berner, Miguel Liu-Schiaffini, Jean Kossaifi, Valentin Duruisseaux, Boris Bonev, Kamyar Azizzadenesheli, and Anima Anandkumar. Principled approaches for extending neural architectures to function spaces for operator learning. *arXiv preprint arXiv:2506.10973*, 2025.
- Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics on the sphere. In *International conference on machine learning*, pp. 2806–2823. PMLR, 2023.
- Keaton J Burns, Geoffrey M Vasil, Jeffrey S Oishi, Daniel Lecoanet, and Benjamin P Brown. Dedalus: A flexible framework for numerical simulations with spectral methods. *Physical Review Research*, 2(2):023068, 2020.
- Gengxiang Chen, Xu Liu, Qinglu Meng, Lu Chen, Changqing Liu, and Yingguang Li. Learning neural operators on riemannian manifolds. *arXiv preprint arXiv:2302.08166*, 2023.
- Tianping Chen and Hong Chen. Universal approximation capability of EBF neural networks with arbitrary activation functions. *Circuits, Systems and Signal Processing*, 15(5):671–683, September 1996. ISSN 1531-5878. doi: 10.1007/BF01188988. URL https://doi.org/10.1007/BF01188988.
- Lawrence C. Cheung and Tamer A. Zaki. An exact representation of the nonlinear triad interaction terms in spectral space. *Journal of Fluid Mechanics*, 748:175–188, 2014. doi: 10.1017/jfm.2014. 179.
- James Clift, Dmitry Doryn, Daniel Murfet, and James Wallbridge. Logic and the 2-simplicial transformer. *arXiv preprint arXiv:1909.00668*, 2019.
- Alex Colagrande, Paul Caillon, Eva Feillet, and Alexandre Allauzen. Linear attention with global context: A multipole attention mechanism for vision and physics. *arXiv* preprint arXiv:2507.02748, 2025.
- G. Cybenko. Approximation by superposition of a sigmoidal function. *Math. Control Signals Systems*, 2:303–314, 1989.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cornel Soci, Saleh Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati, Jean Bidlot, Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Diamantakis, Rossana Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haimberger, Sean Healy, Robin J. Hogan, Elías Hólm, Marta Janisková, Sarah Keeley, Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna Rozum, Freja Vamborg, Sebastien Villaume, and Jean-Noël Thépaut. The era5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society*, 146(730):1999–2049, 2020. doi: https://doi.org/10.1002/qj.3803. URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803.

- C Johnson. Numerical solution of partial differential equations by the finite element method. Studentlitteratur, 1994.
- John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873):583–589, August 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2. URL https://doi.org/10.1038/s41586-021-03819-2.
- Gene A. Klaasen and William C. Troy. Stationary Wave Solutions of a System of Reaction-Diffusion Equations Derived from the FitzHugh–Nagumo Equations. *SIAM Journal on Applied Mathematics*, 44(1):96–110, 1984. doi: 10.1137/0144008. URL https://doi.org/10.1137/0144008. eprint: https://doi.org/10.1137/0144008.
- Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Valentin Duruisseaux, Robert Joseph George, Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, et al. A library for learning neural operators. *arXiv* preprint arXiv:2412.10354, 2024.
- Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds for fourier neural operators. *Journal of Machine Learning Research*, 22(290):1–76, 2021.
- Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to pdes. *Journal of Machine Learning Research*, 24(89):1–97, 2023.
- R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002. ISBN 0-521-00924-3. URL http://www.clawpack.org/fvmhp_materials/.
- Randall LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat). Society for Industrial and Applied Mathematics, USA, 2007. ISBN 0898716292.
- Xinyi Li, Zongyi Li, Nikola Kovachki, and Anima Anandkumar. Geometric operator learning with optimal transport. *arXiv preprint arXiv:2507.20065*, 2025.
- Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. *arXiv* preprint arXiv:2010.08895, 2020.
- Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with learned deformations for pdes on general geometries. *Journal of Machine Learning Research*, 24(388):1–26, 2023a.
- Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed neural operator for large-scale 3d pdes. *Advances in Neural Information Processing Systems*, 36:35836–35854, 2023b.
- Michael McCabe, Peter Harrington, Shashank Subramanian, and Jed Brown. Towards stability of autoregressive neural operators. *arXiv preprint arXiv:2306.10619*, 2023a.
- Michael McCabe, Peter Harrington, Shashank Subramanian, and Jed Brown. Towards stability of autoregressive neural operators. *arXiv preprint arXiv:2306.10619*, 2023b.
- Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Marsha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well: a large-scale collection of diverse physics simulations for machine learning. *Advances in Neural Information Processing Systems*, 37:44989–45037, 2024a.

595

596

597

598

600 601

602

603 604

605

606

607

608

609 610

611

612

613

614

615

616

617 618

619

620

621

622

623

624

625

626

627

629

630

631

632

633

634

635

636

637

638

639

640

641

642

644

645

646

Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Marsha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well: a large-scale collection of diverse physics simulations for machine learning. *Advances in Neural Information Processing Systems*, 37:44989–45037, 2024b.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural operators. *arXiv preprint arXiv*:2204.11127, 2022.

- Aurko Roy, Timothy Chou, Sai Surya Duvvuri, Sijia Chen, Jiecao Yu, Xiaodong Wang, Manzil Zaheer, and Rohan Anil. Fast and simplex: 2-simplicial attention in triton. *arXiv preprint arXiv:2507.02754*, 2025.
- Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of transformers. *Advances in Neural Information Processing Systems*, 36:36677–36707, 2023.
- Louis Serrano, Thomas X Wang, Etienne Le Naour, Jean-Noël Vittaut, and Patrick Gallinari. Aroma: Preserving spatial structure for latent pde modeling with local neural fields. *Advances in Neural Information Processing Systems*, 37:13489–13521, 2024.
- Ivar Stakgold and Michael J Holst. *Green's functions and boundary value problems*. John Wiley & Sons, 2011.
- Andrew N Staniforth. *Global Atmospheric and Oceanic Modelling: Fundamental Equations*. Cambridge University Press, 2022.
- Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. *Advances in Neural Information Processing Systems*, 35:1596–1611, 2022.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, Aditya Vijaykumar, Alessandro Pietro Bardelli, Alex Rothberg, Andreas Hilboll, Andreas Kloeckner, Anthony Scopatz, Antony Lee, Ariel Rokem, C. Nathan Woods, Chad Fulton, Charles Masson, Christian Häggström, Clark Fitzgerald, David A. Nicholson, David R. Hagen, Dmitrii V. Pasechnik, Emanuele Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Felix Lenders, Florian Wilhelm, G. Young, Gavin A. Price, Gert-Ludwig Ingold, Gregory E. Allen, Gregory R. Lee, Hervé Audren, Irvin Probst, Jörg P. Dietrich, Jacob Silterra, James T. Webber, Janko Slavič, Joel Nothman, Johannes Buchner, Johannes Kulick, Johannes L. Schönberger, José Vinícius de Miranda Cardoso, Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodríguez, Juan Nunez-Iglesias, Justin Kuczynski, Kevin Tritz, Martin Thoma, Matthew Newville, Matthias Kümmerer, Maximilian Bolingbroke, Michael Tartre, Mikhail Pak, Nathaniel J. Smith, Nikolai Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk, Per A. Brodtkorb, Perry Lee, Robert T. McGibbon, Roman Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano Vigna, Stefan Peterson, Surhud More, Tadeusz Pudlik, Takuya Oshima, Thomas J. Pingel, Thomas P. Robitaille, Thomas Spura, Thouis R. Jones, Tim Cera, Tim Leslie, Tiziano Zito, Tom Krauss, Utkarsh Upadhyay, Yaroslav O. Halchenko, Yoshiki Vázquez-Baeza, and SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3):261–272, March 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0686-2. URL https://doi.org/10.1038/s41592-019-0686-2.
- David L. Williamson, John B. Drake, James J. Hack, Rüdiger Jakob, and Paul N. Swarztrauber. A standard test set for numerical approximations to the shallow water equations in spherical geometry. *Journal of Computational Physics*, 102(1):211–224, 1992. ISSN 0021-9991. doi: https://doi.org/10.1016/S0021-9991(05)80016-6. URL https://www.sciencedirect.com/science/article/pii/S0021999105800166.

APPENDIX

A NOTATIONS

For convenience, we summarize the notation used throughout the paper.

Symbol	Meaning
Ω	Spatial domain.
d	Number of spatial dimensions.
\mathcal{I}	Set of <i>d</i> -uple of indices $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$, where α_i indicates the order of derivative in the <i>i</i> -th dimension, $\frac{\partial^{\alpha_i}}{\partial x_i}$.
$\partial\Omega$	Boundary of the spatial domain.
\mathbb{T}^d	d-dimensional torus, i.e. periodic domain.
$u(x,t) \in \mathbb{R}$	Solution field at space–time point (x,t) with C channels.
$\widehat{u}(k,t)\in\mathbb{C}$	Fourier coefficient of $u(x,t)$ at frequency $k \in \mathbb{Z}^d$.
i	The imaginary number $i = \sqrt{-1}$.
n	Degree of nonlinearity ($n = 2$ for quadratic, $n = 3$ for cubic).
N	Total n
ν	PDE coefficients (e.g., diffusivity (Burgers), viscosity (Navier-Stokes) or hyperdiffusion coefficient (SWE).
$\mathcal{B}(u)$	Boundary condition operator.
u^0	Initial condition.

B EXTENDED DERIVATION OF FOURIER MIXING IN NAVIER-STOKES

We present here a detailed discussion of the non-linear interactions on the incompressible Navier-Stokes equation.

The Incompressible Navier-Stokes equation is tipically presented in the following form:

$$\partial_t w(x,t) + u(x,t) \cdot \nabla w(x,t) = \nu \Delta w(x,t) + f(x) \qquad x \in (0,1)^2, \ t \in (0,T] \qquad (21)$$

$$\nabla \cdot u(x,t) = 0 \qquad x \in (0,1)^2, \ t \in [0,T] \qquad (22)$$

$$w(x,0) = w_0(x) \qquad x \in (0,1)^2 \qquad (23)$$

Where $\nabla w(x,t) = \left(\partial_{x_1} w(x,t),\ \partial_{x_2} w(x,t)\right)$ is the gradient of $w,\ \Delta w(x,t) = \partial_{x_1 x_1} w(x,t) + \partial_{x_2 x_2} w(x,t)$ is the Laplacian of w and $\nabla \cdot u = \frac{\partial u_1(x,t)}{\partial x_1} + \frac{\partial u_2(x,t)}{\partial x_2}$ is the divergence of $u.\ u(x,t)$ is the velocity at the point x at time t and w is the vorticity field $w(x,t) = \partial_{x_1} u_2(x,t) - \partial_{x_2} u_1(x,t)$.

From the velocity to the vorticity formulation Firstly we will express the PDE in terms of the sole vorticity w. To do so we need to express u in function of w. By the incompressibility condition $\nabla \cdot u = 0$ implies that exists a function, called streamfunction, $\psi = \psi(x,t)$ such that $u = \nabla^{\perp} \psi = \left(-\frac{\partial \psi}{\partial x_2}, \frac{\partial \psi}{\partial x_1}\right)$, therefore, by substitution we obtain w in function of the stream function

$$w = \partial_{x_1} u_2 - \partial_{x_2} u_1 = \partial_{x_1} \left(\frac{\partial \psi}{\partial x_1} \right) + \partial_{x_2} \left(\frac{\partial \psi}{\partial x_2} \right) = \Delta \psi \tag{24}$$

Therefore ψ is obtained from w by solving the Poisson problem $\Delta \psi = w$ in $(0,1)^2$ with appropriate boundary conditions. Once ψ is founded, the velocity u is recovered by $u = \nabla^{\perp} \psi$ and since $w = \Delta \psi$ we can write u in function of w as $u = \nabla^{\perp} \Delta^{-1} w$ and same for Navier-Stokes equation:

$$\partial_t(w) = \nu \Delta w(x, t) - (\nabla^{\perp} \Delta^{-1} w) \cdot \nabla w(x, t) + f(x) \qquad x \in (0, 1)^2, \ t \in (0, T]$$
 (25)

$$\nabla \cdot \nabla^{\top} \Delta^{-1} w = 0 x \in (0, 1)^2, \ t \in [0, T] (26)$$

$$w(x,0) = w_0(x) x \in (0,1)^2 (27)$$

Fourier Transform of the Navier-Stokes equation Now we take the Fourier transform of the vorticity version of the Navier Stokes equation, by taking in consideration that $\widehat{\nabla w}(k,t) = 2\pi i k \cdot \widehat{w}(k,t)$, $\widehat{\Delta w}(k,t) = -(2\pi)^2 |k|^2 \widehat{w}(k,t)$ and $\widehat{w\odot w} = \sum_{q+p=k} \widehat{w}(q,t) \widehat{w}(p,t)$. Therefore equation 25 becomes

$$\partial_t(\widehat{w})(k,t) = -\nu(2\pi)^2 |k|^2 \widehat{w}(k,t) - \sum_{p+q=k} \frac{(p+q) \cdot p^{\perp}}{|p|^2} \widehat{w}(p,t) \widehat{w}(q,t) + \widehat{f}(k,t)$$
 (28)

For $k \in \mathbb{Z}^2$, $t \in (0, T]$.

C DATASETS

Dataset Name	# Trajectories	# Timesteps	Mesh Type	Resolution
Burgers (1D)	10 000	200	Regular (1D line)	1024
Diffusion-Reaction (2D) Navier-Stokes (2D)	1000	100	Regular (2D periodic box)	128×128
$\nu = 10^{-4}$ Navier-Stokes (2D)	10000	50	Regular (2D periodic box)	64×64
$\nu = 10^{-5}$	1200	20	Regular (2D periodic box)	64×64
PlanetSWE (2D)	50	100	Sphere (latitude-longitude grid)	256×128

Table 3: Benchmark PDE datasets used in our experiments.

C.1 1D BURGERS EQUATION

The Burgers' equation is a PDE modeling the non-linear behavior and diffusion process in fluid dynamics as

$$\partial_t u(t,x) + \partial_x \left(\frac{u^2(t,x)}{2}\right) = \frac{\nu}{\pi} \partial_{xx} u(t,x) \qquad x \in (0,1), \ t \in (0,2]$$

$$u(0,x) = u_0(x) \qquad x \in (0,1)$$
(30)

where ν is the diffusion coefficient, which assumed constant, $\nu=0.001$ in our dataset. Our dataset use the periodic boundary condition and, as initial condition, we use the following super-position of sinusoidal waves:

$$u_0(x) = \sum_{k_i = k_1, \dots, k_N} A_i \sin(k_i x + \phi_i)$$
(31)

where $k_i = \frac{2\pi n_i}{L_x}$ are wave numbers whose n_i are integer numbers selected randomly in $[1, n_{\text{max}}]$, N is the integer determining how many waves to be added, L_x is the calculation domain size, A_i is a random float number uniformly chosen in [0, 1], and ϕ_i is the randomly chosen phase in $(0, 2\pi)$.

The numerical solution was calculated with the temporally and spatially 2nd-order upwind difference scheme for the advection term, and the central difference scheme for the diffusion term.

The dataset we considered is provided by PDEBench (Takamoto et al., 2022).

C.2 2D DIFFUSION-REACTION EQUATION

The 2D diffusion-reaction equation is a PDE modeling two non-linearly coupled variables, namely the activator u = u(t, x, y) and the inhibitor v = v(t, x, y). The activator models a quantity that

promotes or "activates" some process (e.g. chemical concentration in a reaction). The inhibitor models a quantity that suppresses or "inhibits" the process triggered by the activator (e.g. consuming the activator in a chemical reaction). The equation is written as

$$\partial_t u = D_u \partial_{xx} u + D_u \partial_{yy} u + R_u \tag{32}$$

$$\partial_t v = D_v \partial_{xx} v + D_c \partial_{yy} v + R_v \tag{33}$$

where D_u and D_v are the diffusion coefficient for the activator and inhibitor, respectively, R_u $R_u(u,v)$ and $R_v=R_v(u,v)$ are the activator and inhibitor reaction function, respectively. The domain of the simulation includes $x \in (-1,1), y \in (-1,1), t \in (0,5]$.

The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation (Klaasen & Troy, 1984), written as:

$$R_u(u, v) = u - u^3 - k - v (34)$$

$$R_v(u,v) = u - v \tag{35}$$

where $k=5\times 10^{-3}$, and the diffusion coefficients for the activator and inhibitor are $D_u=1\times 10^{-3}$ and $D_v=5\times 10^{-3}$, respectively. The initial condition is generated as standard normal random noise $u(0, x, y) \sim \mathcal{N}(0, 1)$ for $x \in (-1, 1)$ and $y \in (-1, 1)$.

We employ a no-flow Neumann boundary condition, meaning that

$$D_u \partial_x u = 0 (36)$$

$$D_v \partial_x v = 0 (37)$$

$$D_u \partial_y u = 0 (38)$$

$$D_v \partial_y v = 0 \quad \text{for } x, y \in (-1, 1)^2$$
(39)

The spatial discretization is preformed using the finite volume method (LeVeque, 2002), and the time integration is performed using the built-in fourth order Runge-Kutta method in the scipy package (Virtanen et al., 2020).

The dataset on Diffusion-Raction was taken form PDEBench (Takamoto et al., 2022)

2D NAVIER STOKES EQUATIONS

The 2D Navier-Stokes equation for a viscous, incompressible fluid in vorticity form on the unit torus:

$$\partial_t w(x,t) + u(x,t) \cdot \nabla w(x,t) = \nu \Delta w(x,t) + f(x) \qquad x \in (0,1)^2, \ t \in (0,T] \qquad (40)$$

$$\nabla \cdot u(x,t) = 0 \qquad x \in (0,1)^2, \ t \in [0,T] \qquad (41)$$

$$w(x,0) = w_0(x) \quad x \in (0,1)^2 \qquad x \in (0,1)^2 \qquad (42)$$

$$\nabla \cdot u(x,t) = 0 x \in (0,1)^2, \ t \in [0,T] (41)$$

$$w(x,0) = w_0(x) \quad x \in (0,1)^2 \qquad x \in (0,1)^2 \tag{42}$$

The initial condition $w_0(x)$ is generated according to $w_0 \sim \mu$ where

$$\mu = \mathcal{N}(0, 7^{3/2}(-\Delta + 49I)^{-2.5}) \tag{43}$$

with periodic boundary conditions. The forcing is kept fixed:

$$f(x) = 0.1(\sin(2\pi(x_1 + x_2)) + \cos(2\pi(x_1 + x_2))) \tag{44}$$

The equation is solved using the stream-function formulation with a pseudospectral method. First a Poisson equation is solved in Fourier space to find the velocity field. Then the vorticity is differentiated and the non-linear term is computed is physical space after which it is dealiased. Time is advanced with a Crank-Nicolson update where the non-linear term does not enter the implicit part.

All data are generated on a 256×256 grid and are downsampled to 64×64 . We use a timestep of 10^{-4} for the Crank-Nicolson scheme in the data-generated process where we record the solution every t = 1 time units.

We use two datasets on Navier-Stokes equations, with viscosity $\nu = 10^{-4}$ and $\nu = 10^{-5}$, provided in (Serrano et al., 2024) (Li et al., 2020).

C.4 PLANETSWE

 The rotated, hyperviscous, forced Shallow Water Equation (SWE) on a sphere is a classical test problem for dynamical systems cores to be used in large-scale weather and climate models as they capture a number of similar phenomena but are better understood and operate at a more practical scale (Williamson et al., 1992). We used the forced hyperviscous equations in two dimensions:

$$\partial_t u(x,t) = -u(x,t) \cdot \nabla_x u(x,t) - g \nabla_x h(x,t) - \nu \nabla_x^4 u(x,t) - 2\Omega \times u(x,t) \tag{45}$$

$$\partial_t h(x,t) = -H\nabla_x \cdot u(x,t) - \nabla_x \cdot (h(x,t)u(x,t)) - \nu \nabla_x^4 h(x,t) + F(x,t)$$
(46)

where ν is the hyper-diffusion coefficient, Ω is the Coriolis parameter, u is the velocity field, H is the mean height, and h denotes deviation from the mean height. F is a daily/seasonally varying forcing with periods of 24 and 1008 simulation "hour" respectively.

Initial conditions are randomly sampled from ERA5(Hersbach et al., 2020). u, v, z are taken from the hpa 500 level with z used as h is the shallow water set-up. Prefiltering was performed by executing ten iterations of 50 steps followed by solving a balance BVP.

The dataset we used was generated in (McCabe et al., 2023b) and is part of The Well dataset (Ohana et al., 2024a).

The simulations were performed using the spin-weighted spherical harmonic spectral method in Dedalus (Burns et al., 2020) with 500 simulation hours of burn-in where the next three simulation years (3024 hours), were collected for the data set. Integration is performed forward in time using a semi-implicit RK2 integrator. Step-sizes are computed using the CFL-checker in Dedalus. The 3/2 rule is used for de-aliasing. Background orography is taken from earth orography and passed through mean-pooling three times (until the simulations became stable empirically). Hyperdiffusion is matched at $\ell=96$.

The original dataset from The Well (Ohana et al., 2024a) contains 120 trajectories of 3024, each consisting of 3024 timesteps at a spatial resolution of 256×512 . For faster training, we restricted our experiments to the first 50 trajectories, truncated to the initial 100 timesteps, and downsampled the spatial resolution to 256×128 by averaging.

D METRICS DESCRIPTION

We evaluate the predictive performance of our models using the following metrics:

Mean Squared Error (MSE). Given ground truth $y \in \mathbb{R}^d$ and prediction $\hat{y} \in \mathbb{R}^d$, the MSE, sometimes called L_2 -norm, is defined as

$$MSE(y, \hat{y}) = \frac{1}{d} \sum_{i=1}^{d} ||y_i - \hat{y}_i||^2.$$
 (47)

This metric measures the average squared deviation between predictions and targets. It is numerically stable and therefore commonly used as a training loss, as we do in our experiments. At test time, MSE is also informative since it provides a physically meaningful error measure in the original space.

However, MSE scales quadratically with multiplicative factors applied to y and \hat{y} , and it is affected by the discretization of the domain. As a result, it is not directly comparable across different datasets or resolutions. For this reason, it is often preferred to also report the Normalized Mean Squared Error (NRMSE) at evaluation time.

Normalized Mean Squared Error (NRMSE). The RMSE, often called relative L_2 -norm, is the MSE normalized by the norm of the target:

NRMSE
$$(y, \hat{y}) = \frac{1}{d} \sum_{i=1}^{d} \frac{\|y_i - \hat{y}_i\|^2}{\|y\|^2}.$$
 (48)

Unlike MSE, which reports squared units, RMSE is expressed in the same units as the target variable.

 This makes the error magnitude directly comparable to the physical scale of the data, providing a more intuitive sense of accuracy therefore providing a fair comparisons across datasets and resolutions.

Rollout Error. Since we deal with time-dependent systems, we evaluate multi-step predictions by iteratively feeding model outputs back as inputs. The rollout error is computed as the average of a choosen loss, \mathcal{L} , across all timesteps:

Rollout
$$(y_{1:T}, \hat{y}_{1:T}) = \frac{1}{T} \sum_{t=1}^{T} \mathcal{L}(y_t, \hat{y}_t),$$
 (49)

where T is the total number of time steps of the dataset. This metric captures error accumulation over long-term forecasts.

Even though rollout stability is beyond the scope of this work, it remains informative to assess how new models perform in this setting, which more closely reflects real-world applications than the teacher-forcing setup. For this reason, we report rollout metrics in all our experiments.

E ROLLOUT VISUALIZATIONS

In this section, we present visualizations of the rollout predictions corresponding to Table 1. Across all datasets, HO-FNO consistently produces visually superior results. For the Diffusion–Reaction PDEs (Figures 4 and 6), none of the models accurately capture the dynamics from time 0 to 100. Nevertheless, HO-FNO is able to recover the high-level structure of the solution. For this dataset, to enable a fairer comparison, we additionally report rollout visualizations from time 25 to 100 (Figures 5 and 7), where all models achieve more accurate predictions, thus providing a clearer benchmark for visual assessment.

Figure 2: Visualization of Rollout predictions on Navier Stokes with $\nu = 10^{-4}$.

Figure 3: Visualization of Rollout predictions on Navier Stokes with $\nu=10^{-5}$.

Figure 4: Visualization of Rollout predictions of the activator in the Diffusion-Reaction equation.

Figure 5: Visualization of Rollout predictions of the activator in the Diffusion-Reaction equation with rollout starting at time 25.

Figure 6: Visualization of Rollout predictions of the inhibitor in the Diffusion-Reaction equation.

Figure 7: Visualization of Rollout predictions of the inhibitor in the Diffusion-Reaction equation with rollout starting at time 25.

Figure 8: Visualization of Rollout predictions of the inhibitor in the Burgers equation with rollout.