

000 001 002 003 004 005 HIGHER-ORDER FOURIER NEURAL OPERATOR: 006 EXPLICIT MODE MIXER FOR NONLINEAR PDES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 Neural operators provide resolution-equivariant deep learning models for learning
025 mappings between function spaces. Among them, the Fourier Neural Operator
026 (FNO) is particularly effective: its spectral convolution combines a low-
027 dimensional Fourier representation with strong empirical performance, enabling
028 generalization across resolutions. While this design aligns with settings where
029 the Fourier basis diagonalizes the underlying operator, such as linear, constant-
030 coefficient PDEs on periodic domains, in which Fourier modes evolve independently,
031 nonlinear PDEs exhibit structured interactions between modes governed
032 by polynomial nonlinearities. To capture this inductive bias, we introduce the
033 **Higher-Order Spectral Convolution**, a spectral mixer that extends FNO from
034 diagonal modulation to explicit n -linear mode mixing aligned with nonlinear PDE
035 dynamics. Across benchmarks, including Burgers and Navier-Stokes equations,
036 our method consistently improves accuracy in nonlinear regimes, achieving lower
037 error while retaining the efficiency of FFT-based architectures.
038

1 INTRODUCTION

039 Partial differential equations (PDEs) serve as the fundamental tools for expressing the evolution
040 of physical and engineering processes in space and time. Accurate modeling of PDE-governed
041 systems is fundamental to understanding phenomena such as fluid dynamics (Burgers equation,
042 Navier-Stokes equation), transport phenomena (diffusion-reaction equation) and large-scale atmo-
043 spheric modeling (Shallow Water equation) (Staniforth, 2022).

044 For most of these equations, closed-form solutions are not available, making numerical approxima-
045 tion necessary. Over the past century, traditional numerical methods such as the finite difference
046 method (FDM) (LeVeque, 2007), the finite element method (FEM) (Johnson, 1994) and the finite
047 volume method (FVM) (LeVeque, 2002) have achieved both accuracy and interpretability, owing to
048 their foundation in fundamental physical principles. Despite their strengths, these methods face two
049 main limitations: high computational cost from fine spatiotemporal discretization, and reliance on
050 full knowledge of the governing PDEs.

051 Therefore, in recent years, motivated by the remarkable achievements of deep learning for model-
052 ing complex functions, numerous data-driven PDE solvers have been introduced to overcome the
053 limitations of traditional numerical methods. Among these approaches, the framework of operator
054 learning (Kovachki et al., 2023; Berner et al., 2025) stands out as the most physically grounded.
055 Neural operators, in particular, aim to approximate the underlying solution operator that maps in-
056 put functions, such as coefficients, forcing terms, or initial conditions, to output solutions, thereby
057 providing an approximate resolution-equivariant and efficient alternative to classical discretization-
058 based schemes.

059 Among them, the Fourier Neural Operator (FNO) (Li et al., 2020), inspired by spectral methods that
060 provide the highest spatial accuracy and exponential convergence on regular grids, stands out for
061 modeling dynamical systems on equally spaced meshes and for its ability to transfer across reso-
062 lutions without retraining, a consequence of its explicit representation in the Fourier basis, which
063 remains consistent under mesh refinement. For complex geometries, several variants of FNO have
064 been introduced by changing the spectral basis, for instance, the Spherical Fourier Neural Operator
065 (SFNO) (Bonev et al., 2023) on the sphere, and NORM (Chen et al., 2023) on general Riemannian
066 manifolds. Furthermore, extensions to irregular meshes have been proposed by mapping them onto
067

054 regular grids, either via a general learnable map (GNO (Li et al., 2023b)), a learnable diffeomor-
 055 phism (GEO-FNO (Li et al., 2023a)), or an optimal transport map (OTNO (Li et al., 2025)).
 056

057 In this work we will refer to this class of models as *spectral neural operators* (SNOs) due to their
 058 explicit modeling of the spectrum of modes of the input function, with a classic or generalized
 059 Fourier transform, with and without encoders and decoders. SNOs are typically composed of linear
 060 layers and nonlinear activation functions. The linear components are usually global convolutions
 061 over a truncated set of modes, and they evolve Fourier modes independently, without mixing. To
 062 augment the approximation power of the SNO layers we propose an n -order spectral convolution
 063 that implements a n -linear global mixing of Fourier coefficients while retaining the computational
 064 efficiency of a Fourier truncation.

065 The spectral convolution of a SNO closely mimics the action of the Green function, a kernel whose
 066 convolution yields the solution of linear PDEs with constant coefficients on periodic domains (Stak-
 067 gold & Holst, 2011). For nonlinear PDEs, variable coefficients or non-periodic geometries, the
 068 Green function no longer provides a useful representation, yet the composition of linear spectral
 069 convolutions with nonlinear activations endows SNOs with universal approximation capabilities
 070 (Kovachki et al., 2021).

071 Much like SNOs, 2-layer MLPs also enjoy universal approximation properties (Cybenko, 1989;
 072 Chen & Chen, 1996). However, modern deep learning has highlighted the advantages of richer
 073 nonlinear layers, most notably the attention mechanism (Bahdanau, 2014; Vaswani et al., 2017).
 074 Transformer models have rapidly become the dominant architecture across various application do-
 075 mains, spanning language, vision (Dosovitskiy et al., 2020), chemistry (Jumper et al., 2021), and
 076 more recently physical modeling (Alkin et al., 2024; Colagrande et al., 2025). A key factor behind
 077 their success is the ability of classical attention to capture pairwise interactions in physical space.
 078 This mechanism has recently been generalized to model interactions among an arbitrary number n
 079 of entities, giving rise to higher-order attention (Clift et al., 2019).

080 Despite their $O(\text{seq_len}^n)$ complexity in the sequence length, these higher-order variants show
 081 better scaling laws (Roy et al., 2025) and exponentially improved depth efficiency on dedicated
 082 tasks (Sanford et al., 2023). Following this line of work, we introduce a new framework that real-
 083 izes n -order interactions between coefficients directly in the Fourier domain, providing the spectral
 084 analogue of higher-order attention, which operates in the Dirac domain. Crucially, our method
 085 avoids the $O(\text{seq_len}^n)$ blow-up of higher-order attention and matches FFT-based SNOs with a
 086 complexity of $O(\text{seq_len} \log(\text{seq_len}))$ per layer.

087 More similar to our work are the triangular attention mechanism of the edge transformer (Bergen
 088 et al., 2021) and the triangle attention of AlphaFold2 (Jumper et al., 2021). In both cases, the triangle
 089 refers to three-way interactions in the spatial domain: given a triplet of nodes, triangular attention
 090 models the dependencies along the edges of the corresponding triangle, enabling richer geometric
 091 reasoning. In contrast, our triadic (order $n = 2$) spectral convolution realizes the analogue of this
 092 mechanism in the Fourier domain: the triangle here corresponds to a triplet of frequency modes
 093 whose wavevectors satisfy a closure relation (e.g. $k_1 + k_2 = k_3$), capturing the nonlinear triadic
 094 interactions that govern energy transfer in PDE dynamics. For $n > 2$, our method can be viewed as
 095 the Fourier analogue of a n -symplicial extension of the aforementioned attention mechanisms.

096 On the neural operator side, the Dynamic Schwartz–Fourier Neural Operator (DSFNO) Gao et al.
 097 (2025), has recently been introduced to address the limitations of the static convolution kernel used
 098 in FNO. DSFNO employs spectral convolutions whose kernels are dynamically generated, via a
 099 hyper-network, from truncated activations, leading to improved performance. However, the result-
 100 ing kernels remain largely unstructured. In this work, we extend this line of research by explicitly
 101 structuring the kernel to match the interaction patterns dictated by the solution operators of poly-
 102 nomial nonlinear PDEs.

103 Our contributions are the following:

1. **Higher-Order Fourier Neural Operators.** We design the first spectral neural operators
 104 modeling the exact mode interaction of non-linear PDEs.
2. **Interaction on different geometries.** We showcase the effect of modeling order 2 interac-
 105 tions on spherical data by applying our method to Spherical Harmonic convolutions.

108 3. **Experiments and ablation studies.** Through extensive experiments, we show the advantages
 109 of the proposed design in non-linear settings.
 110

111 2 SETTING AND NOTATION
 112

113 We consider a time-dependent PDE defined on a spatial domain $\Omega \subset \mathbb{R}^d$, with boundary $\partial\Omega$, d the
 114 number of spatial dimensions, and temporal domain $[0, T]$. A solution $u(x, t)$ of this PDE satisfies
 115 the general system described in Eq. 1, where F is a function of the solution u and of its spatial
 116 derivatives $\frac{\partial^i u}{\partial x_i}$, ν represents a set of PDE coefficients, \mathcal{B} encodes the boundary conditions, and u^0
 117 denotes the initial condition sampled from a probability distribution on $L_2(\Omega, \mathbb{R})$, i.e. $u^0 \sim p^0(\cdot)$.
 118

$$\begin{aligned} \frac{\partial u}{\partial t} &= F\left(\nu, t, x, u, \frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2}, \dots\right), \quad \forall x \in \Omega, \forall t \in (0, T], \\ \mathcal{B}(u)(t, x) &= 0, \quad \forall x \in \partial\Omega, \forall t \in (0, T], \\ u(0, x) &= u^0(x), \quad \forall x \in \Omega. \end{aligned} \quad (1)$$

124 The operator learning task we consider consists in predicting the solution operator \mathcal{G} , defined in
 125 Eq. 2, that propagates the physical state one time step forward:
 126

$$\begin{aligned} \mathcal{G} : L^2(\Omega, \mathbb{R}) &\rightarrow L^2(\Omega, \mathbb{R}) \\ u(\cdot, t) &\mapsto u(\cdot, t + 1) \end{aligned} \quad (2)$$

130 **Polynomial nonlinearities in PDEs.** We can write Eq. 1 as follows in Eq. 3 by aggregating its
 131 terms based on the degree of nonlinearity:
 132

$$\frac{\partial u}{\partial t} = \sum_{n \in \mathbb{N}} \mathsf{P}_{\mathcal{I}, n}(u(x, t)) \quad (3)$$

135 where $\mathsf{P}_{\mathcal{I}, n}(u(x, t))$ contains the n -linear components of the PDE and it is a homogeneous polynomial
 136 in the partial derivatives $\frac{\partial^i u}{\partial x_i}(x, t)$ and \mathcal{I} is the set of multi-indices $\alpha = (\alpha_1, \dots, \alpha_n)$ of the
 137 partial derivatives in each monomial $\prod_{i=1}^n \frac{\partial^{\alpha_i} u}{\partial x_i}$. We refer to the maximal value of n as the *degree*
 138 of nonlinearity of the PDE. We now focus on the n -linear part of the equation
 139

$$\mathsf{P}_{\mathcal{I}, n} = \sum_{\alpha \in \mathcal{I}} c_{\alpha} \prod_{i=1}^n \frac{\partial^{\alpha_i} u}{\partial x_{\alpha_i}} \quad (4)$$

140 For our analysis we consider functions defined on the torus, i.e. $\Omega = \mathbb{T}^d$, and we restrict to scalar
 141 functions, i.e. $u : \mathbb{T}^d \rightarrow \mathbb{R}$. In the periodic setting it is convenient to expand u in Fourier basis as in
 142 Eq. 5.
 143

$$u(x, t) = \sum_{k \in \mathbb{Z}^d} \hat{u}(k, t) e^{ik \cdot x}, \quad \hat{u}(k, t) \in \mathbb{C}. \quad (5)$$

144 Therefore we consider the Fourier transform of the n -linear part of the PDE in Eq. 4:
 145

$$\mathsf{P}_{\mathcal{I}, n}(\hat{u})(k, t) = \sum_{k_1 + \dots + k_n = k} C \hat{u}(k_1, t) \hat{u}(k_2, t) \dots \hat{u}(k_n, t) \quad (6)$$

146 Where $C = C(k, \alpha)$ is a constant dependent on the multi-index α and the index k .
 147

148 The summation term of Eq. 6 corresponds to the n -linear convolution of Fourier modes. It captures
 149 how input frequencies combine under the nonlinearity, and it is precisely this mixing that our higher-
 150 order spectral convolution is designed to model, with $C(k, \alpha)$ providing the learnable kernel.
 151

152 Quadratic interactions ($n = 2$) appear in Burgers, in the Navier-Stokes equations and in the rotated,
 153 hyperviscous, forced Shallow Water Equations on the sphere while cubic non-linearities ($n = 3$)
 154 appear in the Diffusion-reaction equation.
 155

156 We refer to the appendix B for a more detailed discussion and present in section 3 the explicit
 157 construction in the case of Navier-Stokes equations.
 158

 162 3 A CONCRETE EXAMPLE: NAVIER-STOKES EQUATIONS
 163

 164 We present here, as example, the non-linear interactions on the incompressible Navier-Stokes equa-
 165 tion that is usually written as follows in Equation 7 in the velocity form.
 166

168
$$\partial_t w(x, t) + u(x, t) \cdot \nabla w(x, t) = \nu \Delta w(x, t) + f(x) \quad x \in (0, 1)^2, t \in (0, T] \quad (7)$$
 169

170
$$\nabla \cdot u(x, t) = 0 \quad x \in (0, 1)^2, t \in [0, T] \quad (8)$$
 171

172
$$w(x, 0) = w_0(x) \quad x \in (0, 1)^2 \quad (9)$$
 173

 173 The task typically requires to predict the evolution of the vorticity w (Li et al., 2020) (Serrano et al.,
 174 2024) so we express the PDE in the vorticity form as follows in Equation 10:
 175

176
$$\partial_t(w) = \nu \Delta w(x, t) - (\nabla^\perp \Delta^{-1} w) \cdot \nabla w(x, t) + f(x) \quad x \in (0, 1)^2, t \in (0, T] \quad (10)$$
 177

178
$$\nabla \cdot \nabla^\top \Delta^{-1} w = 0 \quad x \in (0, 1)^2, t \in [0, T] \quad (11)$$
 179

180
$$w(x, 0) = w_0(x) \quad x \in (0, 1)^2 \quad (12)$$
 181

 180 To observe the interaction of the Fourier modes of the vorticity we take the Fourier transform, for
 181 $k \in \mathbb{Z}^2$, $t \in (0, T]$:
 182

183
$$\partial_t(\hat{w})(k, t) = -\nu(2\pi)^2 |k|^2 \hat{w}(k, t) - \sum_{p+q=k} \frac{(p+q) \cdot p^\perp}{|p|^2} \hat{w}(p, t) \hat{w}(q, t) + \hat{f}(k, t). \quad (13)$$
 184

 186 In Fourier space, the nonlinear advection term in the Navier-Stokes equations becomes a convolution-
 187 integral, and a triad interaction term in the turbulence kinetic energy equation. Despite being
 188 conservative, and therefore contributing only to energy exchange between Fourier modes, this term
 189 is at the heart of many of the interesting questions in the literature.
 190

 190 As highlighted in (Cheung & Zaki, 2014), the primary difficulty in working with the spectral
 191 Navier-Stokes equations described in Eq.13, is to appropriately account for all nonlinear interactions.
 192 An analytical treatment requires some means of tracking energy transfer from two arbitrary
 193 modes p and q into a third mode k . Therefore, it motivates the use of architectures that go beyond
 194 diagonal modulation of Fourier coefficients by explicitly parameterizing higher-order interactions
 195 in the spectral domain. Note that quadratic nonlinearity (order $n = 2$) yields triadic interactions
 196 (p, q, k) with $p + q = k$; hence an order-2 corresponds to triads in spectral turbulence.
 197

 198 **Neural Operator.** Following the framework of (Kovachki et al., 2023), a Neural Operator \mathcal{G}_θ is
 199 implemented as a stacked structure of L learnable layers \mathcal{Q}_ℓ , inserted between point-wise neural
 200 networks denoted \mathcal{L} (lifting network) and \mathcal{P} (projection network) that elevate the lower-dimensional
 201 input to a higher-dimensional latent space and projects the transformed input back to a lower-
 202 dimensional output dimension, respectively.
 203

204
$$\mathcal{G}_\theta = \mathcal{P} \circ \mathcal{Q}_1 \cdots \circ \mathcal{Q}_L \circ \mathcal{L} \quad (14)$$
 205

 205 We denote by v_ℓ the hidden representation at layer ℓ . The operator layer $\mathcal{Q}_\ell : v_\ell \mapsto v_{\ell+1}$ performs
 206 the iterative update described in Eq. 15, where W_ℓ is a point-wise linear map, b_ℓ a bias and \mathcal{K}_ℓ an
 207 integral operator.
 208

209
$$\mathcal{Q}_\ell(v_\ell) = \sigma(W_\ell v_\ell + \mathcal{K}_\ell(v_\ell) + b_\ell) \quad (15)$$
 210

 210 **Fourier Neural Operator (FNO).** FNO (Li et al., 2020) follows the framework described in sec-
 211 tion 2 and implements the integral kernels \mathcal{K} as global convolution operators \mathcal{C} preceded by a trun-
 212 cation of Fourier coefficients $\mathsf{T}_M(u)(x) = \sum_{|k| \leq M} \hat{u}(k) e^{ik \cdot x}$ where M is the number of retained
 213 modes. The so-called *spectral convolution* writes as follows in Eq. 16 in physical space, where κ_θ
 214 is a kernel parameterized by θ .
 215

216
$$\mathcal{C}_\theta(v)(x) = \int_{\Omega} \kappa_\theta(x - y) \mathsf{T}_M v(y) dy \quad (16)$$
 217

216 The Fourier Neural Operator (FNO) implements this map efficiently by parameterizing κ_θ in the
 217 Fourier domain, acting mode-wise, and then returning to physical space via inverse FFT:
 218

$$\widehat{\mathcal{C}_\theta v}(k) = W_k \widehat{v}(k) \quad (17)$$

221 While successful on many tasks, this architecture does not explicitly capture *multi-linear frequency*
 222 *mixing*, since each mode is updated independently and interactions are only induced indirectly
 223 through point-wise nonlinearities between different layers.

224 **Higher-Order Fourier Neural Operators (HO-FNO).** We extend the kernel map to incorporate
 225 explicit m -linear interactions via the following Higher-Order Spectral Convolution:
 226

$$(\mathcal{H}_\theta u)(x) = \int_{\Omega} k_\theta(x - y) \mathsf{T}_M((A_1 u)(y)(A_2 u)(y) \cdots (A_m u)(y)) dy \quad (18)$$

230 Here, each A_i is a learnable linear operator acting channel-wise in physical space. In this work,
 231 we instantiate A_i as per-point linear maps shared across spatial locations but not across layers.
 232 Alternative parameterizations are left to future work.

233 The m -linear point-wise products in physical space induces a structured m -linear global mixing
 234 among Fourier coefficients as described in Eq. 19:

$$(\widehat{\mathcal{H}_\theta v})(k) = W_k \sum_{k_1 + \dots + k_m = k} A_1 \widehat{v}(k_1) A_2 \widehat{v}(k_2) \cdots A_m \widehat{v}(k_m) \quad (19)$$

238 Thus, each mode k aggregates all m -tuples of modes with indices summing to k , mirroring the
 239 nonlinear interaction structure of PDEs with polynomial nonlinearities.

240 We emphasize that the operator is evaluated only for modes $k \leq m$, preserving the computational
 241 efficiency of FNO. However, each retained mode k is updated using information from all Fourier
 242 modes, rather than being restricted to the truncated subset. We find it beneficial for training stability
 243 to normalize the multilinear terms. Table 2 reports results with and without RMS normalization,
 244 illustrating the consistent improvements obtained with this normalization scheme.

245 This m -linear convolution provides a principled, FFT-efficient mechanism for explicit mode mixing
 246 in neural operators, extending the FNO beyond purely mode-wise updates. The m -linear interaction
 247 can be carried out in $\mathcal{O}(N \log N)$ complexity by multiplying fields pointwise in the physical domain,
 248 transforming to Fourier space via FFT, applying spectral multipliers, and mapping back with an
 249 inverse FFT. In practice, each layer uses one FFT and one inverse FFT per channel group; m -linear
 250 mixing is effected via pointwise products, so the asymptotic cost remains $\mathcal{O}(N \log N)$.

251 **Parameter Count** For completeness, we report the number of parameters in a single spectral layer.
 252 The standard FNO employs a complex-valued kernel with MC^2 parameters, where C denotes the
 253 number of input and output channels, and M is the total number of retained Fourier modes. Our
 254 HO-spectral convolution of order m introduces m additional weight matrices of size $C \times C$, shared
 255 across spatial locations, contributing mc^2 parameters. Thus, the total parameter count becomes

$$MC^2 + mc^2 \quad (20)$$

258 growing linearly with the interaction order m . We emphasize that m is typically much smaller
 259 than the total number of retained modes M , making the additional parameters introduced by our
 260 higher-order blocks negligible in practice, as confirmed by the parameter counts reported in Table 2.

261 We summarize our proposition in Figure 1.

264 4 EXTENSION TO GENERALIZED FOURIER TRANSFORMS

266 The classical Fourier transform is defined for functions defined on the torus \mathbb{T}_d . When a function
 267 is instead defined on a manifold $\mathcal{M} \subset \mathbb{R}^D$, one can still apply the classical Fourier transform by
 268 first extending the function to the ambient euclidean space \mathbb{R}^D . While this procedure makes the
 269 transform computable, the resulting representation ignores the geometry of the domain \mathcal{M} of the
 function and therefore provides a sub-optimal representation.

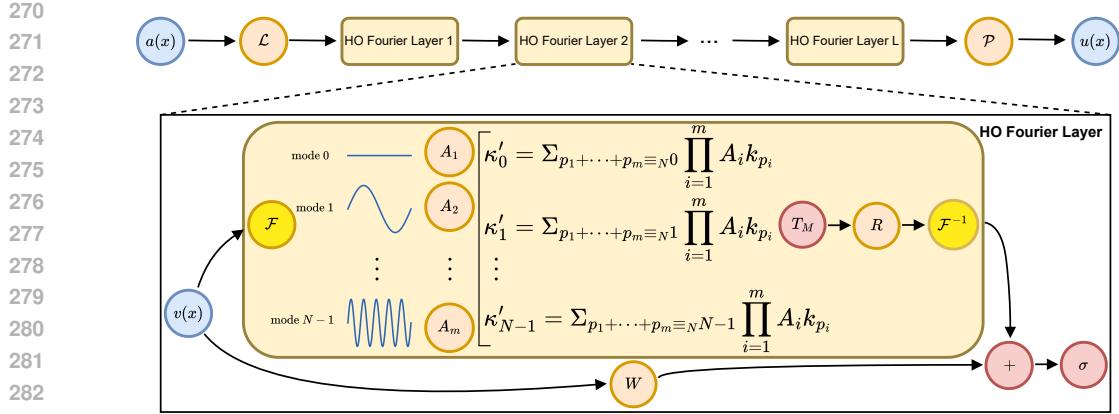


Figure 1: Overview of our proposed HO-FNO (illustration adapted from (Li et al., 2020)).

Top: Neural operator architecture. An input a is lifted to a higher-dimensional channel space by a neural network \mathcal{L} . A number L of HO-FNO layers are then applied to the lifted input, before it is projected back to the target dimension by a neural network \mathcal{P} to obtain the output u .

Bottom: High-Order Fourier layer. An intermediary input v is processed by a HO-Fourier layer. Its Fourier transform \mathcal{F} is computed, producing N modes. Our method mixes these modes to obtain N new pseudo-modes: $\kappa'_0, \dots, \kappa'_{N-1}$. Here, a pseudo-mode $\kappa'_i, i \in [0, N-1]$ is obtained by mixing the subset of m original modes defined by $\{p_1, p_2, \dots, p_m \in [0, N-1], p_1 + p_2 + \dots + p_m = i \bmod N\}$. Only the M lower Fourier pseudo-modes $\kappa'_0, \dots, \kappa'_M$ are kept. HO-FNO then applies a linear transform R on those M lower Fourier pseudo-modes, and applies the inverse Fourier transform \mathcal{F}^{-1} . Through a skipped connection, the mixed output is combined with the original input transformed by a local linear transform W and a non-linear activation σ is applied.

To overcome this limitation, the notion of a Fourier basis has been generalized to arbitrary compact Riemannian manifolds \mathcal{M} through the spectral decomposition of the Laplace–Beltrami operator. Concretely, one considers the eigenvalue problem

$$-\Delta_g \phi_j = \lambda_j \phi_j \quad \text{on } \mathcal{M}, \quad (21)$$

where $\Delta_g f = \text{div}_g(\nabla_g f)$ denotes the Laplacian, defined as the divergence of the Riemannian gradient. The eigenfunctions ϕ_j serve as generalized Fourier modes, while the corresponding eigenvalues λ_j play the role of frequencies

For most manifolds, the eigenfunctions of the Laplace–Beltrami operator do not admit a closed-form expression and must be precomputed numerically (Chen et al., 2023). An important exception is the sphere, where the generalized Fourier modes correspond to the well-known *spherical harmonics*. This extension of the Fourier transform naturally induces a corresponding notion of convolution, defined as a linear diagonal operator in the generalized Fourier domain. In the same spirit, Higher-Order Spectral Convolutions also extend to arbitrary geometries, and the theoretical framework developed in the classical Fourier setting remains directly applicable.

We illustrate this by experimenting with the rotated, hyperviscous, forced Shallow Water Equation (SWE) on the sphere, with results reported in Table 3.

5 EXPERIMENTS

Tasks. We experiment with simulation tasks from PDEBench (Takamoto et al., 2022), namely the 1D Burger’s equation with viscosity $\nu = 0.001$, and the 2D Diffusion-Reaction equation. We consider three 2D Navier-Stokes datasets with viscosity $\nu = 10^{-3}$, $\nu = 10^{-4}$ and $\nu = 10^{-5}$, provided by (Serrano et al., 2024; Li et al., 2020). In addition, we include the rotated, hyperviscous, forced Shallow Water Equation (SWE) on the sphere (McCabe et al., 2023a), made available through The Well (Ohana et al., 2024b) and we show resolution-equivariance on the Darcy Flow dataset provided in (Li et al., 2020). All datasets are used in their standard form, except for SWE, which

324 we subsample for shorter training (see Appendix C.4). We focus on nonlinear dynamics to better
 325 highlight the advantages of the proposed method.
 326

327 **Metrics.** We evaluate models using three complementary metrics: Mean Squared Error (MSE),
 328 Normalized Mean Squared Error (NRMSE), and Rollout NRMSE. MSE captures predictive accu-
 329 racy in physical space, while NRMSE rescales the error by the target norm, enabling fair compar-
 330 ison across datasets of different magnitudes. We also report Rollout NRMSE over full trajectories:
 331 although rollout stability is not a focus of this work, it provides useful insight into long-term perfor-
 332 mance in settings closer to real-world applications. When data are normalized for training stability,
 333 predictions are denormalized before computing the loss. We refer to Appendix D for more details
 334 on each metric.
 335

336 **Baselines.** We compare our proposed HO-FNO and HO-SFNO against several representative base-
 337 lines. On planar geometries, we use the original FNO (Li et al., 2020), while for data on the sphere
 338 we adopt SFNO (Bonev et al., 2023). We further include UNO (Rahman et al., 2022), a U-Net-style
 339 *neural operator* that combines encoder-decoder contractions/skip connections with Fourier-domain
 340 operator layers (as in FNO), enabling much deeper stacks at similar memory cost. Together with
 341 FNO, which tests spectral operators without multiscale contracting paths, and U-Net, which tests
 342 purely pixel-space convolution without learned spectral operators, the baselines provide a point of
 343 comparison between standard convolutional models and spectral neural operators. We also include
 344 DSFNO (Gao et al., 2025) for comparison, reporting the original results from the paper.
 345

346 **Architecture.** We used models with comparable parameter counts across datasets, adjusting their
 347 size to match task difficulty while ensuring that all experiments can be trained for 100 epochs within
 348 15 hours on a single NVIDIA A100 GPU. The resulting models contain approximately 2.3M para-
 349 meters for PlanetSWE, 600K parameters for the Diffusion–Reaction equation, 80K parameters for
 350 the Burgers equation and approximately 1M parameters for Navier Stokes to ensure fair comparison
 351 with Gao et al. (2025) and Li et al. (2020).
 352

353 For our baselines based on Neural Operators, we adopt linear pointwise lifting and projection net-
 354 works, denoted \mathcal{P} and \mathcal{Q} . We use 4 layers, with embedding dimension 32, except for PlanetSWE
 355 where the embedding dimension is 64. We retain 16 modes for every task except for Navier Stokes,
 356 where 22 modes in each spatial dimension is kept to ensure same size models with Gao et al. (2025)
 357 and Li et al. (2020).
 358

359 In Table 1, we report our experiments on non-turbulent datasets, adding UNet and UNO baselines,
 360 for which we use the standard architecture with 4 layers and an initial embedding dimension of 12
 361 for Burgers and 16 for Diffusion Reaction, chosen to match or exceed the parameter counts of the
 362 operator-learning models. For UNO, we retain the same number of modes as in the corresponding
 363 Neural Operator baselines for each dataset. In Table 2, we report our experiments on three Navier
 364 Stokes dataset variants with various viscosity ν and compare our HO-FNO implementation with
 365 FNO and the results presented by Gao et al. (2025).
 366

367 **Hyperparameters.** The higher-order variation of the Fourier Neural Operator introduced in this
 368 work does not introduce additional hyperparameters beyond those of the standard architecture. The
 369 main hyperparameters of the models are therefore the number of layers, the latent embedding dimen-
 370 sion per layer, and the number of retained Fourier modes in each spatial dimension (1 for Burgers
 371 and 2 for all other datasets).
 372

373 All models were optimized with AdamW, for 100 epochs in Table 1 and Table 3 and for 500 epochs
 374 for Table 2 as done in Li et al. (2020) and Gao et al. (2025).
 375

376 **Results.** Table 1 compares U-Net, UNO, FNO, and our proposed HO-FNO across four PDE
 377 benchmarks under three criteria: MSE, nRMSE, and rollout nRMSE. Overall, HO-FNO at-
 378 tains the best single-step accuracy on all datasets, consistently outperforming both FNO and UNO
 379 (the latter sometimes by modest margins, e.g., on Diffusion–Reaction).
 380

381 On Burgers (1D), HO-FNO reduces MSE from 3.6×10^{-6} to 2.4×10^{-6} and nRMSE from 2.0×10^{-3}
 382 to 1.6×10^{-3} , while rollout nRMSE is comparable to FNO (8.0×10^{-2} vs 7.5×10^{-2}).
 383

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

Table 1: Test performance of different models trained on MSE. We report validation MSE, normalized RMSE (nRMSE), and rollout nRMSE, visualizations are provided in Appendix F. Best results per metric are in **bold**.

Dataset	Metric	U-Net	UNO	FNO	HO-FNO (ours)
Burgers (1D)	MSE	7.4×10^{-1}	3.5×10^{-6}	3.6×10^{-6}	2.4×10^{-6}
	nRMSE	3.3×10^{-1}	2.6×10^{-3}	2.0×10^{-3}	1.6×10^{-3}
	Rollout	Diverged	1.04	7.5×10^{-2}	8.0×10^{-2}
Diffusion-Reaction (2D)	MSE	3.3×10^{-3}	8.4×10^{-5}	9.2×10^{-5}	8.3×10^{-5}
	nRMSE	2.6×10^{-1}	7.3×10^{-2}	8.5×10^{-2}	6.7×10^{-2}
	Rollout	1.01	<u>1.59</u>	5.28	2.37

Table 2: Test performance of FNO and HO-FNO variants (orders up to 3) on Navier–Stokes datasets with and without RMS Norm applied to the multilinear terms. We report the number of parameters, the validation MSE, the normalized MSE (nRMSE), the rollout nRMSE as well as the wall-clock time for a single-sample inference and for a training batch of size 64. An extended version with baselines taken from Gao et al. (2025) can be found in Appendix E.

model	FNO			HO-FNO		DSFNO*
	order	1	2	3	yes	
RMS Norm	no	no	yes	no	yes	
N. parameters	NS ($\nu = 10^{-3}$)	1 085 729	1 094 177	1 094 177	1 098 401	1 098 401
	MSE	3.0×10^{-7}	2.5×10^{-7}	7.8×10^{-8}	2.1×10^{-7}	7.6×10^{-8}
	nRMSE	4.4×10^{-4}	4.0×10^{-4}	2.8×10^{-4}	3.8×10^{-4}	2.7×10^{-4}
NS ($\nu = 10^{-4}$)	Rollout	1.2×10^{-2}	1.1×10^{-2}	1.8×10^{-3}	9.7×10^{-3}	1.6×10^{-3}
	MSE	2.6×10^{-3}	1.0×10^{-3}	7.9×10^{-4}	9.8×10^{-4}	7.9×10^{-4}
	nRMSE	2.9×10^{-2}	1.5×10^{-2}	1.3×10^{-2}	1.5×10^{-2}	1.3×10^{-2}
NS ($\nu = 10^{-5}$)	Rollout	7.7×10^{-2}	4.8×10^{-2}	4.6×10^{-2}	4.8×10^{-2}	4.6×10^{-2}
	MSE	1.8×10^{-2}	1.7×10^{-2}	1.7×10^{-2}	1.8×10^{-2}	1.8×10^{-2}
	nRMSE	6.7×10^{-2}	6.5×10^{-2}	6.5×10^{-2}	6.8×10^{-2}	6.8×10^{-2}
Wall-clock time	Rollout	1.3×10^{-2}	1.1×10^{-2}	1.1×10^{-2}	1.2×10^{-2}	1.2×10^{-2}
	inference (ms)	1.4 ± 0.12	1.8 ± 0.14	2.2 ± 0.22	1.9 ± 0.19	2.7 ± 0.31
	training (ms)	7.91 ± 0.34	11.2 ± 0.44	16.1 ± 0.61	13.4 ± 0.50	21.9 ± 0.70

* Original errors reported in Gao et al. (2025), single-step metrics and results for Navier–Stokes with $\nu = 10^{-5}$ were not provided.

On Diffusion–Reaction (2D), HO-FNO improves one-step accuracy (MSE 8.3×10^{-5} vs 9.2×10^{-5} ; nRMSE 6.7×10^{-2} vs 8.5×10^{-2}) and substantially lowers rollout relative to FNO (2.37 vs 5.28). Notably, UNO achieves an even smaller rollout (1.59) despite weaker single-step metrics, and U-Net reports a low rollout (1.01) while being orders of magnitude worse on one-step errors, underscoring the need to interpret rollout normalization and horizon with care.

Across all Navier–Stokes settings, HO-FNO yields consistent accuracy gains over FNO without increasing parameter count, with the magnitude of improvements depending on viscosity. At $\nu = 10^{-3}$, where the dynamics are smoother, we observe the largest benefits: MSE drops from 3.0×10^{-7} to 7.8×10^{-8} , nRMSE from 4.4×10^{-4} to 2.8×10^{-4} , and rollout error decreases by more than an order of magnitude, from 1.2×10^{-2} to 1.1×10^{-3} . At $\nu = 10^{-4}$, HO-FNO continues to provide substantial improvements, reducing MSE from 2.6×10^{-3} to 7.9×10^{-4} , nRMSE from 2.9×10^{-2} to 1.3×10^{-2} , and rollout from 7.7×10^{-2} to 4.6×10^{-2} , outperforming DSFNO in rollout accuracy at comparable parameter count. Even in the most challenging regime $\nu = 10^{-5}$, where errors are smaller and gains are harder to achieve, HO-FNO still improves MSE (from 1.8×10^{-2} to 1.7×10^{-2}), nRMSE (from 6.7×10^{-2} to 6.5×10^{-2}), and rollout (from 1.3×10^{-2} to 1.1×10^{-2}). These results indicate that explicitly modeling higher-order mode interactions consistently enhances both single-step and long-term predictions, with the largest impact in regimes where structured spectral coupling is most informative. We also observe that applying RMS Norm to the multilinear terms noticeably improves the stability of HO-FNO, leading to consistent gains in both single-step and rollout metrics, at the cost of a modest increase in runtime.

432 Table 3: Test performance on rotated, hyperviscous, forced Shallow Water Equation (SWE). We
 433 trained the models with MSE and report test MSE, NRMSE and Rollout NRMSE for time intervals
 434 (0, 10), (11, 25), (26, 50) and full rollout. Best per metric in **bold**.

Model	MSE	NRMSE	Rollout (0 : 10)	Rollout (11 : 25)	Rollout (26 : 50)	Rollout
SFNO	8.23	1.7×10^{-2}	9.9×10^{-2}	3.0×10^{-1}	7.2×10^{-1}	7.7×10^{-1}
HO-SFNO (ours)	5.56	1.3×10^{-2}	8.0×10^{-2}	2.6×10^{-2}	6.2×10^{-1}	7.0×10^{-1}

439
 440
 441 The visualization of rollouts in the Appendix D (see Figures 3-9) offers a qualitative view of the
 442 stability of the simulation, and corroborates these trends. On Navier–Stokes, HO-FNO preserves
 443 coherent vortical filaments and shear layers over long horizons (e.g., see $t=10$, $t=19$), whereas UNO
 444 and U-Net seem to be unable to reconstruct an image close to the target. FNO is visually closer to
 445 HO-FNO at $\nu=10^{-4}$ and $\nu=10^{-5}$, but fails to reconstruct useful patterns in the Diffusion–Reaction
 446 equation. Overall, while UNO and U-Net can attain strong rollout performance, a visual check of
 447 their reconstructed images reveals that they are visually very far from the target, corroborating with
 448 their weaker one-step accuracy when compared to HO-FNO.

449 In summary, higher-order spectral mixing improves accuracy broadly and stabilizes long-horizon
 450 predictions in regimes with strong nonlinear mode coupling, with the largest relative gains on low-
 451 viscosity Navier–Stokes. UNO remains a strong baseline, particularly on Diffusion–Reaction roll-
 452 out, yet HO-FNO consistently provides the best single-step accuracy and the visually strongest roll-
 453 out improvements.

454 **Results on spherical data.** Table 3 compares the spherical baseline SFNO to our HO-SFNO on
 455 the rotated, hyperviscous, forced SWE. HO-SFNO achieves the best score on every metric: test
 456 MSE drops from 8.23 to **5.56** and NRMSE from 1.7×10^{-2} to **1.3×10^{-2}** ; rollout errors are
 457 uniformly lower across horizons (e.g., early [0, 10] decreases from 9.9×10^{-2} to **8.0×10^{-2}** , late
 458 [26, 50] from 7.2×10^{-1} to **6.2×10^{-1}**), and the overall rollout NRMSE improves from 7.7×10^{-1}
 459 to **7.0×10^{-1}** . These consistent gains support the inductive bias behind HO-SFNO: SWE on
 460 the sphere features quadratic wave–vortex couplings that are naturally represented in the spherical
 461 harmonic domain, and adding explicit m -linear spectral mixing on top of the SFNO backbone better
 462 aligns the model with these multi-mode interactions, yielding higher single-step fidelity and more
 463 stable long-horizon behavior.

464 **Comparison with FNO: Speed and resolution equivariance** To ensure HO-FNO maintains the
 465 resolution equivariance property of FNO, we train HO-FNO on the Darcy flow dataset at resolution
 466 200×200 and test the obtained model at resolutions ranging from 50×50 to 400×400 . The
 467 obtained results are showed Figure 2a. We also compare the speed of our proposed method to FNO
 468 and report the results for training and testing in Figure 2b, c.

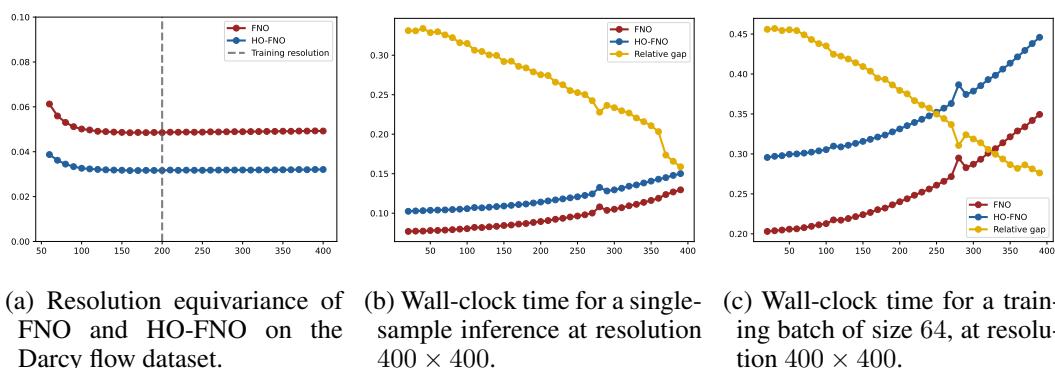


Figure 2: Comparison of HO-FNO with FNO. Resolution equivariance is shown on the left (a),
 where nRMSE in function of the tested resolution. Wall clock time comparisons for inference and
 training are shown in Figures (b) and (c), where the time is function of the number of retained
 modes (from 20 to 400). Relative gap is also reported (on a scale from 0 to 1)

486 From Figure 2, we see that the resolution equivariance property from FNO is kept with our proposed
 487 HO-FNO. Furthermore, we observe that mode mixing induces a fixed overhead when compared to
 488 FNO. Apart from this fixed additional cost, the time curves for training and inference are the same,
 489 with a relative gap decreasing, suggesting our method scales comparably to FNO.
 490

491 6 DISCUSSION AND CONCLUSION

493 We introduced Higher-Order Fourier Neural Operators (HO-FNO), which augment spectral opera-
 494 tor layers with explicit m -linear frequency mixing that mimics the polynomial nonlinearities found
 495 in many PDEs. Concretely, each retained mode aggregates all m -tuples of Fourier coefficients
 496 whose indices sum to the index of that mode, yielding an FFT-efficient higher-order spectral
 497 convolution that remains in $\mathcal{O}(\text{seq_len} \log(\text{seq_len}))$ complexity per layer, where `seq_len` is the
 498 input sequence length. This mechanism requires no additional hyperparameters beyond the standard
 499 FNO setup and integrates cleanly with existing operator backbones. Empirically, HO-FNO delivers
 500 consistent single-step accuracy gains across Burgers, Diffusion–Reaction, and Navier–Stokes, and
 501 improves long-horizon rollout stability in most regimes; on spherical data, the analogous HO-SFNO
 502 variant also outperforms SFNO.

503 **Efficiency.** From a computational standpoint, HO-FNO preserves the asymptotic cost of FNO: one
 504 forward and one inverse FFT per layer (per channel group), with the m -linear interaction effected
 505 via pointwise products in physical space. Thus, while there is a small constant-factor overhead
 506 from additional pointwise multiplications, the complexity remains $\mathcal{O}(\text{seq_len} \log(\text{seq_len}))$.
 507 Architecturally, our models were parameter-matched to baselines and trained under the same budget
 508 (100 epochs within ~ 15 hours on a single A100 for the hardest case), so accuracy gains cannot
 509 be ascribed to larger models. In short, HO-FNO trades a modest compute increase for meaningful
 510 predictive improvements, without introducing extra tuning knobs.

511 **Limitations.** First, rollout stability is informative but was not the central optimization target; in-
 512 terpreting rollout scores requires care because normalization and horizon can favor models whose
 513 visual fidelity is weak despite low aggregate error. Indeed, UNO and U-Net sometimes report com-
 514 petitive rollout nRMSE while being markedly worse on single-step metrics and visuals, particularly
 515 on Diffusion–Reaction.

516 Second, our formulation is motivated by PDEs with polynomial nonlinearities (quadratic/cubic), for
 517 which m -linear spectral couplings are a principled inductive bias. Whether similar gains hold for
 518 systems dominated by non-polynomial or stiff source terms remains to be established.

519 Third, we instantiated the linear maps A_i in the higher-order convolution as pointwise operators
 520 shared across spatial locations (and not across layers). More expressive choices (e.g., localized
 521 kernels, scale-dependent maps, or cross-channel structures) may further improve accuracy but were
 522 left for future work.

523 Finally, although we extended to spherical geometries using generalized Fourier bases, broader val-
 524 idation on irregular meshes or other manifolds would strengthen the case for universality.
 525

526 **Perspectives** A few natural directions follow.

- 527 (i) **Backbone integration:** Combine higher-order spectral mixing with deeper multiscale operators
 528 (e.g., UNO-style encoder–decoders) to exploit both cross-scale and cross-mode interactions.
- 529 (ii) **Adaptive order and structure:** Learn the effective interaction order m and the parameterization
 530 of A_i per layer/task; introduce sparsity or symmetry constraints to reflect known physics.
- 531 (iii) **Geometry and physics priors:** Extend to other manifolds/meshes via appropriate spectral
 532 bases; couple HO-FNO with conservation or stability regularizers to target rollout fidelity explicitly.
- 533 (iv) **Evaluation protocols:** Complement normalized rollout metrics with perceptual/physics-aware
 534 scores and standardized horizons to avoid misleading comparisons across models.

540 REFERENCES
541

542 Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
543 Brandstetter. Universal physics transformers: A framework for efficiently scaling neural opera-
544 tors. *Advances in Neural Information Processing Systems*, 37:25152–25194, 2024.

545 Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. *arXiv*
546 *preprint arXiv:1409.0473*, 2014.

547 Leon Bergen, Timothy O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge
548 transformers. *Advances in Neural Information Processing Systems*, 34:1390–1402, 2021.

549 Julius Berner, Miguel Liu-Schiaffini, Jean Kossaifi, Valentin Duruisseaux, Boris Bonev, Kamyar Az-
550 izzadenesheli, and Anima Anandkumar. Principled approaches for extending neural architectures
551 to function spaces for operator learning. *arXiv preprint arXiv:2506.10973*, 2025.

552 Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
553 Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
554 namics on the sphere. In *International conference on machine learning*, pp. 2806–2823. PMLR,
555 2023.

556 Keaton J Burns, Geoffrey M Vasil, Jeffrey S Oishi, Daniel Lecoanet, and Benjamin P Brown.
557 Dedalus: A flexible framework for numerical simulations with spectral methods. *Physical Re-
558 view Research*, 2(2):023068, 2020.

559 Gengxiang Chen, Xu Liu, Qinglu Meng, Lu Chen, Changqing Liu, and Yingguang Li. Learning
560 neural operators on riemannian manifolds. *arXiv preprint arXiv:2302.08166*, 2023.

561 Tianping Chen and Hong Chen. Universal approximation capability of EBF neural networks with ar-
562 bitrary activation functions. *Circuits, Systems and Signal Processing*, 15(5):671–683, September
563 1996. ISSN 1531-5878. doi: 10.1007/BF01188988. URL <https://doi.org/10.1007/BF01188988>.

564 Lawrence C. Cheung and Tamer A. Zaki. An exact representation of the nonlinear triad interaction
565 terms in spectral space. *Journal of Fluid Mechanics*, 748:175–188, 2014. doi: 10.1017/jfm.2014.
566 179.

567 James Clift, Dmitry Doryn, Daniel Murfet, and James Wallbridge. Logic and the 2-simplicial trans-
568 former. *arXiv preprint arXiv:1909.00668*, 2019.

569 Alex Colagrande, Paul Caillon, Eva Feillet, and Alexandre Allauzen. Linear attention with
570 global context: A multipole attention mechanism for vision and physics. *arXiv preprint*
571 *arXiv:2507.02748*, 2025.

572 G. Cybenko. Approximation by superposition of a sigmoidal function. *Math. Control Signals
573 Systems*, 2:303–314, 1989.

574 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
575 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
576 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
577 *arXiv:2010.11929*, 2020.

578 Wenhao Gao, Jian Luo, Ruichen Xu, and Yi Liu. Dynamic schwartz-fourier neural operator for
579 enhanced expressive power. *Transactions on Machine Learning Research*, 2025. URL <https://openreview.net/forum?id=B0E2yjrNb8>.

580 Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-
581 Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cor-
582 nel Soci, Saleh Abdalla, Xavier Abellán, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati,
583 Jean Bidlot, Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Dia-
584 mantakis, Rossana Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer,
585 Leo Haimberger, Sean Healy, Robin J. Hogan, Elías Hólm, Marta Janisková, Sarah Keeley,
586 Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna
587

594 Rozum, Freja Vamborg, Sébastien Villaume, and Jean-Noël Thépaut. The era5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society*, 146(730):1999–2049, 2020. doi: <https://doi.org/10.1002/qj.3803>. URL <https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803>.

595

596

597

598 C Johnson. *Numerical solution of partial differential equations by the finite element method*. Studentlitteratur, 1994.

599

600

601 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michał Zieliński, Martin Steinegger, Michałina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873):583–589, August 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2. URL <https://doi.org/10.1038/s41586-021-03819-2>.

602

603

604

605

606

607

608

609

610 Gene A. Klaasen and William C. Troy. Stationary Wave Solutions of a System of Reaction-Diffusion Equations Derived from the FitzHugh–Nagumo Equations. *SIAM Journal on Applied Mathematics*, 44(1):96–110, 1984. doi: 10.1137/0144008. URL <https://doi.org/10.1137/0144008>. eprint: <https://doi.org/10.1137/0144008>.

611

612

613

614 Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds for Fourier neural operators. *Journal of Machine Learning Research*, 22(290):1–76, 2021.

615

616

617 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to PDEs. *Journal of Machine Learning Research*, 24(89):1–97, 2023.

618

619

620 R. J. LeVeque. *Finite Volume Methods for Hyperbolic Problems*. Cambridge University Press, 2002. ISBN 0-521-00924-3. URL http://www.clawpack.org/fvmhp_materials/.

621

622

623 Randall LeVeque. *Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathematics)*. Society for Industrial and Applied Mathematics, USA, 2007. ISBN 0898716292.

624

625

626 Xinyi Li, Zongyi Li, Nikola Kovachki, and Anima Anandkumar. Geometric operator learning with optimal transport. *arXiv preprint arXiv:2507.20065*, 2025.

627

628

629 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. *arXiv preprint arXiv:2010.08895*, 2020.

630

631

632 Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with learned deformations for PDEs on general geometries. *Journal of Machine Learning Research*, 24(388):1–26, 2023a.

633

634

635 Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed neural operator for large-scale 3D PDEs. *Advances in Neural Information Processing Systems*, 36:35836–35854, 2023b.

636

637

638

639

640 Michael McCabe, Peter Harrington, Shashank Subramanian, and Jed Brown. Towards stability of autoregressive neural operators. *arXiv preprint arXiv:2306.10619*, 2023a.

641

642 Michael McCabe, Peter Harrington, Shashank Subramanian, and Jed Brown. Towards stability of autoregressive neural operators. *arXiv preprint arXiv:2306.10619*, 2023b.

643

644 Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Marsha Berger, Blakesly Burkhardt, Stuart Dalziel, Drummond Fielding, et al. The well: a large-scale collection of diverse physics simulations for machine learning. *Advances in Neural Information Processing Systems*, 37:44989–45037, 2024a.

648 Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Mar-
 649 sha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well: a large-scale
 650 collection of diverse physics simulations for machine learning. *Advances in Neural Information
 651 Processing Systems*, 37:44989–45037, 2024b.

652 Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural oper-
 653 ators. *arXiv preprint arXiv:2204.11127*, 2022.

654

655 Aurko Roy, Timothy Chou, Sai Surya Duvvuri, Sijia Chen, Jiecao Yu, Xiaodong Wang, Manzil
 656 Zaheer, and Rohan Anil. Fast and simplex: 2-simplicial attention in triton. *arXiv preprint
 657 arXiv:2507.02754*, 2025.

658 Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
 659 transformers. *Advances in Neural Information Processing Systems*, 36:36677–36707, 2023.

660

661 Louis Serrano, Thomas X Wang, Etienne Le Naour, Jean-Noël Vittaut, and Patrick Gallinari. Aroma:
 662 Preserving spatial structure for latent pde modeling with local neural fields. *Advances in Neural
 663 Information Processing Systems*, 37:13489–13521, 2024.

664 Ivar Stakgold and Michael J Holst. *Green's functions and boundary value problems*. John Wiley &
 665 Sons, 2011.

666 Andrew N Staniforth. *Global Atmospheric and Oceanic Modelling: Fundamental Equations*. Cam-
 667 bridge University Press, 2022.

668

669 Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
 670 Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
 671 learning. *Advances in Neural Information Processing Systems*, 35:1596–1611, 2022.

672 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 673 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 674 tion processing systems*, 30, 2017.

675 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournau-
 676 peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
 677 Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
 678 son, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore,
 679 Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
 680 tero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van
 681 Mulbregt, Aditya Vijaykumar, Alessandro Pietro Bardelli, Alex Rothberg, Andreas Hilboll, An-
 682 drreas Kloeckner, Anthony Scopatz, Antony Lee, Ariel Rokem, C. Nathan Woods, Chad Ful-
 683 ton, Charles Masson, Christian Häggström, Clark Fitzgerald, David A. Nicolson, David R.
 684 Hagen, Dmitrii V. Pasechnik, Emanuele Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Fe-
 685 lix Lenders, Florian Wilhelm, G. Young, Gavin A. Price, Gert-Ludwig Ingold, Gregory E. Allen,
 686 Gregory R. Lee, Hervé Audren, Irvin Probst, Jörg P. Dietrich, Jacob Silterra, James T. Web-
 687 ber, Janko Slavić, Joel Nothman, Johannes Buchner, Johannes Kulick, Johannes L. Schönberger,
 688 José Vinícius de Miranda Cardoso, Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodríguez,
 689 Juan Nunez-Iglesias, Justin Kuczynski, Kevin Tritz, Martin Thoma, Matthew Newville, Matthias
 690 Kümmeler, Maximilian Bolingbroke, Michael Tartre, Mikhail Pak, Nathaniel J. Smith, Niko-
 691 lai Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk, Per A. Brodtkorb, Perry Lee, Robert T.
 692 McGibbon, Roman Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano Vigna, Ste-
 693 fan Peterson, Surhud More, Tadeusz Pudlik, Takuya Oshima, Thomas J. Pingel, Thomas P.
 694 Robitaille, Thomas Spura, Thouis R. Jones, Tim Cera, Tim Leslie, Tiziano Zito, Tom Krauss,
 695 Utkarsh Upadhyay, Yaroslav O. Halchenko, Yoshiki Vázquez-Baeza, and SciPy 1.0 Contri-
 696 butors. SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature Meth-
 697 ods*, 17(3):261–272, March 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0686-2. URL
<https://doi.org/10.1038/s41592-019-0686-2>.

698 David L. Williamson, John B. Drake, James J. Hack, Rüdiger Jakob, and Paul N. Swarztrauber.
 699 A standard test set for numerical approximations to the shallow water equations in spherical
 700 geometry. *Journal of Computational Physics*, 102(1):211–224, 1992. ISSN 0021-9991. doi:
 701 [https://doi.org/10.1016/S0021-9991\(05\)80016-6](https://doi.org/10.1016/S0021-9991(05)80016-6). URL <https://www.sciencedirect.com/science/article/pii/S0021999105800166>.

APPENDIX

A NOTATIONS

For convenience, we summarize the notation used throughout the paper.

Symbol	Meaning
Ω	Spatial domain.
d	Number of spatial dimensions.
\mathcal{I}	Set of d -uple of indices $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$, where α_i indicates the order of derivative in the i -th dimension, $\frac{\partial^{\alpha_i}}{\partial x_i}$.
$\partial\Omega$	Boundary of the spatial domain.
\mathbb{T}^d	d -dimensional torus, i.e. periodic domain.
$u(x, t) \in \mathbb{R}$	Solution field at space–time point (x, t) with C channels.
$\hat{u}(k, t) \in \mathbb{C}$	Fourier coefficient of $u(x, t)$ at frequency $k \in \mathbb{Z}^d$.
i	The imaginary number $i = \sqrt{-1}$.
n	Degree of nonlinearity ($n = 2$ for quadratic, $n = 3$ for cubic).
N	Total n
ν	PDE coefficients (e.g., diffusivity (Burgers), viscosity (Navier-Stokes) or hyperdiffusion coefficient (SWE)).
$\mathcal{B}(u)$	Boundary condition operator.
u^0	Initial condition.

B EXTENDED DERIVATION OF FOURIER MIXING IN NAVIER-STOKES

We present here a detailed discussion of the non-linear interactions on the incompressible Navier-Stokes equation.

The Incompressible Navier-Stokes equation is typically presented in the following form:

$$\partial_t w(x, t) + u(x, t) \cdot \nabla w(x, t) = \nu \Delta w(x, t) + f(x) \quad x \in (0, 1)^2, t \in (0, T] \quad (22)$$

$$\nabla \cdot u(x, t) = 0 \quad x \in (0, 1)^2, t \in [0, T] \quad (23)$$

$$w(x, 0) = w_0(x) \quad x \in (0, 1)^2 \quad (24)$$

Where $\nabla w(x, t) = (\partial_{x_1} w(x, t), \partial_{x_2} w(x, t))$ is the gradient of w , $\Delta w(x, t) = \partial_{x_1 x_1} w(x, t) + \partial_{x_2 x_2} w(x, t)$ is the Laplacian of w and $\nabla \cdot u = \frac{\partial u_1(x, t)}{\partial x_1} + \frac{\partial u_2(x, t)}{\partial x_2}$ is the divergence of u . $u(x, t)$ is the velocity at the point x at time t and w is the vorticity field $w(x, t) = \partial_{x_1} u_2(x, t) - \partial_{x_2} u_1(x, t)$.

From the velocity to the vorticity formulation Firstly we will express the PDE in terms of the sole vorticity w . To do so we need to express u in function of w . By the incompressibility condition $\nabla \cdot u = 0$ implies that exists a function, called streamfunction, $\psi = \psi(x, t)$ such that $u = \nabla^\perp \psi = \left(-\frac{\partial \psi}{\partial x_2}, \frac{\partial \psi}{\partial x_1} \right)$, therefore, by substitution we obtain w in function of the stream function

$$w = \partial_{x_1} u_2 - \partial_{x_2} u_1 = \partial_{x_1} \left(\frac{\partial \psi}{\partial x_1} \right) + \partial_{x_2} \left(\frac{\partial \psi}{\partial x_2} \right) = \Delta \psi \quad (25)$$

Therefore ψ is obtained from w by solving the Poisson problem $\Delta \psi = w$ in $(0, 1)^2$ with appropriate boundary conditions. Once ψ is founded, the velocity u is recovered by $u = \nabla^\perp \psi$ and since $w = \Delta \psi$ we can write u in function of w as $u = \nabla^\perp \Delta^{-1} w$ and same for Navier-Stokes equation:

756

757
$$\partial_t(w) = \nu \Delta w(x, t) - (\nabla^\perp \Delta^{-1} w) \cdot \nabla w(x, t) + f(x) \quad x \in (0, 1)^2, t \in (0, T] \quad (26)$$

759
$$\nabla \cdot \nabla^\top \Delta^{-1} w = 0 \quad x \in (0, 1)^2, t \in [0, T] \quad (27)$$

760
$$w(x, 0) = w_0(x) \quad x \in (0, 1)^2 \quad (28)$$

761

Fourier Transform of the Navier-Stokes equation Now we take the Fourier transform of the vorticity version of the Navier Stokes equation, by taking in consideration that $\widehat{\nabla w}(k, t) = 2\pi i k \cdot \widehat{w}(k, t)$, $\widehat{\Delta w}(k, t) = -(2\pi)^2 |k|^2 \widehat{w}(k, t)$ and $\widehat{w \odot w} = \sum_{q+p=k} \widehat{w}(q, t) \widehat{w}(p, t)$. Therefore equation 26 becomes

762

763
$$\partial_t(\widehat{w})(k, t) = -\nu(2\pi)^2 |k|^2 \widehat{w}(k, t) - \sum_{p+q=k} \frac{(p+q) \cdot p^\perp}{|p|^2} \widehat{w}(p, t) \widehat{w}(q, t) + \widehat{f}(k, t) \quad (29)$$

764

For $k \in \mathbb{Z}^2$, $t \in (0, T]$.

765

C DATASETS

766

Dataset Name	# Trajectories	# Timesteps	Mesh Type	Resolution
Burgers (1D)	10 000	200	Regular (1D line)	1024
Diffusion-Reaction (2D)	1000	100	Regular (2D periodic box)	128×128
Navier-Stokes (2D)				
$\nu = 10^{-4}$	10000	50	Regular (2D periodic box)	64×64
Navier-Stokes (2D)				
$\nu = 10^{-5}$	1200	20	Regular (2D periodic box)	64×64
PlanetSWE (2D)	50	100	Sphere (latitude-longitude grid)	256×128

767

Table 4: Benchmark PDE datasets used in our experiments.

768

C.1 1D BURGERS EQUATION

769

The Burgers' equation is a PDE modeling the non-linear behavior and diffusion process in fluid dynamics as

770

771
$$\partial_t u(t, x) + \partial_x \left(\frac{u^2(t, x)}{2} \right) = \frac{\nu}{\pi} \partial_{xx} u(t, x) \quad x \in (0, 1), t \in (0, 2] \quad (30)$$

772

773
$$u(0, x) = u_0(x) \quad x \in (0, 1) \quad (31)$$

774

where ν is the diffusion coefficient, which assumed constant, $\nu = 0.001$ in our dataset. Our dataset use the periodic boundary condition and, as initial condition, we use the following super-position of sinusoidal waves:

775

776
$$u_0(x) = \sum_{k_i=k_1, \dots, k_N} A_i \sin(k_i x + \phi_i) \quad (32)$$

777

where $k_i = \frac{2\pi n_i}{L_x}$ are wave numbers whose n_i are integer numbers selected randomly in $[1, n_{\max}]$, N is the integer determining how many waves to be added, L_x is the calculation domain size, A_i is a random float number uniformly chosen in $[0, 1]$, and ϕ_i is the randomly chosen phase in $(0, 2\pi)$.

778

The numerical solution was calculated with the temporally and spatially 2nd-order upwind difference scheme for the advection term, and the central difference scheme for the diffusion term.

779

The dataset we considered is provided by PDEBench (Takamoto et al., 2022).

780

C.2 2D DIFFUSION-REACTION EQUATION

781

The 2D diffusion-reaction equation is a PDE modeling two non-linearly coupled variables, namely the activator $u = u(t, x, y)$ and the inhibitor $v = v(t, x, y)$. The activator models a quantity that

810 promotes or "activates" some process (e.g. chemical concentration in a reaction). The inhibitor
 811 models a quantity that suppresses or "inhibits" the process triggered by the activator (e.g. consuming
 812 the activator in a chemical reaction). The equation is written as
 813

$$\partial_t u = D_u \partial_{xx} u + D_u \partial_{yy} u + R_u \quad (33)$$

$$\partial_t v = D_v \partial_{xx} v + D_c \partial_{yy} v + R_v \quad (34)$$

816 where D_u and D_v are the diffusion coefficient for the activator and inhibitor, respectively, $R_u =$
 817 $R_u(u, v)$ and $R_v = R_v(u, v)$ are the activator and inhibitor reaction function, respectively. The
 818 domain of the simulation includes $x \in (-1, 1)$, $y \in (-1, 1)$, $t \in (0, 5]$.
 819

820 The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation
 821 (Klaasen & Troy, 1984), written as:
 822

$$R_u(u, v) = u - u^3 - k - v \quad (35)$$

$$R_v(u, v) = u - v \quad (36)$$

823 where $k = 5 \times 10^{-3}$, and the diffusion coefficients for the activator and inhibitor are $D_u = 1 \times 10^{-3}$
 824 and $D_v = 5 \times 10^{-3}$, respectively. The initial condition is generated as standard normal random noise
 825 $u(0, x, y) \sim \mathcal{N}(0, 1)$ for $x \in (-1, 1)$ and $y \in (-1, 1)$.
 826

827 We employ a no-flow Neumann boundary condition, meaning that
 828

$$D_u \partial_x u = 0 \quad (37)$$

$$D_v \partial_x v = 0 \quad (38)$$

$$D_u \partial_y u = 0 \quad (39)$$

$$D_v \partial_y v = 0 \quad \text{for } x, y \in (-1, 1)^2 \quad (40)$$

829 The spatial discretization is preformed using the finite volume method (LeVeque, 2002), and the time
 830 integration is performed using the built-in fourth order Runge-Kutta method in the `scipy` package
 831 (Virtanen et al., 2020).
 832

833 The dataset on Diffusion-Reaction was taken from PDEBench (Takamoto et al., 2022)
 834

835 C.3 2D NAVIER STOKES EQUATIONS

836 The 2D Navier-Stokes equation for a viscous, incompressible fluid in vorticity form on the unit
 837 torus:
 838

$$\partial_t w(x, t) + u(x, t) \cdot \nabla w(x, t) = \nu \Delta w(x, t) + f(x) \quad x \in (0, 1)^2, t \in (0, T] \quad (41)$$

$$\nabla \cdot u(x, t) = 0 \quad x \in (0, 1)^2, t \in [0, T] \quad (42)$$

$$w(x, 0) = w_0(x) \quad x \in (0, 1)^2 \quad x \in (0, 1)^2 \quad (43)$$

839 The initial condition $w_0(x)$ is generated according to $w_0 \sim \mu$ where
 840

$$\mu = \mathcal{N}(0, 7^{3/2}(-\Delta + 49I)^{-2.5}) \quad (44)$$

841 with periodic boundary conditions. The forcing is kept fixed:
 842

$$f(x) = 0.1(\sin(2\pi(x_1 + x_2)) + \cos(2\pi(x_1 + x_2))) \quad (45)$$

843 The equation is solved using the stream-function formulation with a pseudospectral method. First
 844 a Poisson equation is solved in Fourier space to find the velocity field. Then the vorticity is differ-
 845 entiated and the non-linear term is computed in physical space after which it is dealiased. Time is
 846 advanced with a Crank–Nicolson update where the non-linear term does not enter the implicit part.
 847

848 All data are generated on a 256×256 grid and are downsampled to 64×64 . We use a timestep
 849 of 10^{-4} for the Crank–Nicolson scheme in the data-generated process where we record the solution
 850 every $t = 1$ time units.
 851

852 We use two datasets on Navier-Stokes equations, with viscosity $\nu = 10^{-4}$ and $\nu = 10^{-5}$, provided
 853 in (Serrano et al., 2024) (Li et al., 2020).
 854

864 C.4 PLANETSWE
865

866 The rotated, hyperviscous, forced Shallow Water Equation (SWE) on a sphere is a classical test
867 problem for dynamical systems cores to be used in large-scale weather and climate models as they
868 capture a number of similar phenomena but are better understood and operate at a more practical
869 scale (Williamson et al., 1992). We used the forced hyperviscous equations in two dimensions:

$$870 \partial_t u(x, t) = -u(x, t) \cdot \nabla_x u(x, t) - g \nabla_x h(x, t) - \nu \nabla_x^4 u(x, t) - 2\Omega \times u(x, t) \quad (46)$$

$$871 \partial_t h(x, t) = -H \nabla_x \cdot u(x, t) - \nabla_x \cdot (h(x, t)u(x, t)) - \nu \nabla_x^4 h(x, t) + F(x, t) \quad (47)$$

872 where ν is the hyper-diffusion coefficient, Ω is the Coriolis parameter, u is the velocity field, H is
873 the mean height, and h denotes deviation from the mean height. F is a daily/seasonally varying
874 forcing with periods of 24 and 1008 simulation “hour” respectively.

875 Initial conditions are randomly sampled from ERA5(Hersbach et al., 2020). u , v , z are taken
876 from the hpa 500 level with z used as h is the shallow water set-up. Prefiltering was performed by
877 executing ten iterations of 50 steps followed by solving a balance BVP. The dataset we used was
878 generated in (McCabe et al., 2023b) and is part of The Well dataset (Ohana et al., 2024a).

879 The simulations were performed using the spin-weighted spherical harmonic spectral method in
880 Dedalus (Burns et al., 2020) with 500 simulation hours of burn-in where the next three simulation
881 years (3024 hours), were collected for the data set. Integration is performed forward in time using
882 a semi-implicit RK2 integrator. Step-sizes are computed using the CFL-checker in Dedalus. The
883 3/2 rule is used for de-aliasing. Background orography is taken from earth orography and passed
884 through mean-pooling three times (until the simulations became stable empirically). Hyperdiffusion
885 is matched at $\ell = 96$.

886 The original dataset from The Well (Ohana et al., 2024a) contains 120 trajectories of 3024, each
887 consisting of 3024 timesteps at a spatial resolution of 256×512 . For faster training, we restricted
888 our experiments to the first 50 trajectories, truncated to the initial 100 timesteps, and downsampled
889 the spatial resolution to 256×128 by averaging.

891 C.5 DARCY FLOW
892

893 Along with the previous time-dependent PDEs we also benchmark against the steady-state of the
894 2D Darcy Flow equation provided by Li et al. (2020). The equation is the following second-order,
895 linear, elliptic PDE:

$$896 -\nabla \cdot (a(x) \nabla u(x)) = f(x) \quad x \in (0, 1)^2 \quad (48)$$

$$897 u(x) = 0 \quad x \in \partial(0, 1)^2 \quad (49)$$

898 with a Dirichlet boundary where $a \in L^\infty((0, 1)^2, \mathbb{R}_+)$ is the diffusion coefficient and $f \in$
899 $L^2((0, 1)^2, \mathbb{R})$ is the forcing function. We are interested in learning the operator mapping the diffu-
900 sion coefficient $a(x)$ to the solution $u(x)$.

901 D METRICS DESCRIPTION
902

903 We evaluate the predictive performance of our models using the following metrics:

904 **Mean Squared Error (MSE).** Given ground truth $y \in \mathbb{R}^d$ and prediction $\hat{y} \in \mathbb{R}^d$, the MSE,
905 sometimes called L_2 -norm, is defined as

$$906 \text{MSE}(y, \hat{y}) = \frac{1}{d} \sum_{i=1}^d \|y_i - \hat{y}_i\|^2. \quad (50)$$

907 This metric measures the average squared deviation between predictions and targets. It is numeri-
908 cally stable and therefore commonly used as a training loss, as we do in our experiments. At test
909 time, MSE is also informative since it provides a physically meaningful error measure in the origi-
910 nal space. However, MSE scales quadratically with multiplicative factors applied to y and \hat{y} , and
911 it is affected by the discretization of the domain. As a result, it is not directly comparable across
912 different datasets or resolutions. For this reason, it is often preferred to also report the Normalized
913 Mean Squared Error (NRMSE) at evaluation time.

918 **Normalized Mean Squared Error (NRMSE).** The RMSE, often called relative L_2 -norm, is the
 919 MSE normalized by the norm of the target:
 920

$$921 \quad 922 \quad 923 \quad \text{NRMSE}(y, \hat{y}) = \frac{1}{d} \sum_{i=1}^d \frac{\|y_i - \hat{y}_i\|^2}{\|y\|^2}. \quad (51)$$

924 Unlike MSE, which reports squared units, RMSE is expressed in the same units as the target variable.
 925 The error magnitude is thus directly comparable to the physical scale of the data, providing a more
 926 intuitive sense of accuracy therefore providing a fair comparisons across datasets and resolutions.
 927

928 **Rollout Error.** Since we deal with time-dependent systems, we evaluate multi-step predictions by
 929 iteratively feeding model outputs back as inputs. The rollout error is computed as the average of a
 930 chosen loss, \mathcal{L} , across all timesteps:

$$931 \quad 932 \quad 933 \quad \text{Rollout}(y_{1:T}, \hat{y}_{1:T}) = \frac{1}{T} \sum_{t=1}^T \mathcal{L}(y_t, \hat{y}_t), \quad (52)$$

934 where T is the total number of time steps of the dataset. This metric captures error accumulation
 935 over long-term forecasts. Even though rollout stability is beyond the scope of this work, it remains
 936 informative to assess how new models perform in this setting, which more closely reflects real-
 937 world applications than the teacher-forcing setup. For this reason, we report rollout metrics in all
 938 our experiments.

939 E ADDITIONAL RESULTS

940 **Table 5:** Test performance of FNO and HO-FNO variants (orders up to 3) on Navier–Stokes datasets
 941 with and without RMS Norm applied to the multilinear terms. We report the number of parameters,
 942 the validation MSE, the normalized MSE (nRMSE), the rollout nRMSE as well as the wall-
 943 clock time for a single-sample inference and for a training batch of size 64.
 944

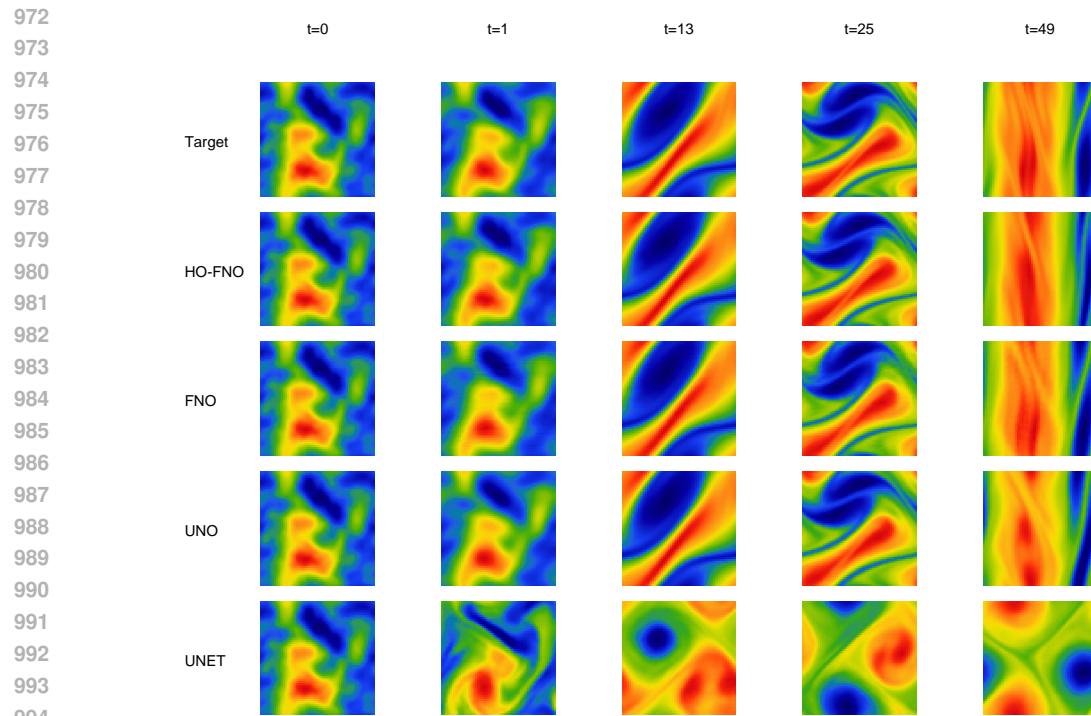
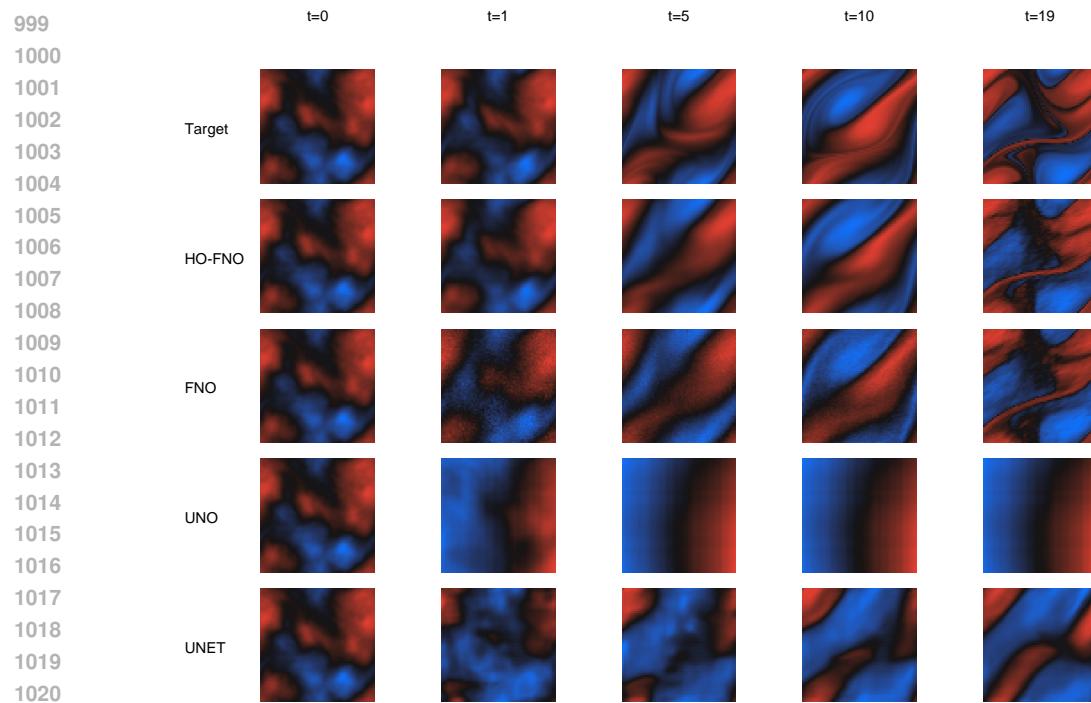
945	model	FNO			HO-FNO			DFENO*	FFNO*	CNO*	GNO*
		order	1	2	3						
947	RMS Norm	no	no	yes	no	yes	948	949	950	951	952
950	N. parameters	1085 729	1094 177	1094 177	1098 401	1098 401	1.06M	0.44M	2.66M	4.61M	
	NS ($\nu = 10^{-3}$)	MSE	3.0×10^{-7}	2.5×10^{-7}	7.8×10^{-8}	2.1×10^{-7}	7.6×10^{-8}	–	–	–	–
		nRMSE	4.4×10^{-4}	4.0×10^{-4}	2.8×10^{-4}	3.8×10^{-4}	2.7×10^{-4}	–	–	–	–
953	NS ($\nu = 10^{-4}$)	Rollout	1.2×10^{-2}	1.1×10^{-2}	1.8×10^{-3}	9.7×10^{-3}	1.6×10^{-3}	5.6×10^{-3}	1.1×10^{-2}	2.0×10^{-2}	2.7×10^{-1}
	MSE	2.6×10^{-3}	1.0×10^{-3}	7.9×10^{-4}	9.8×10^{-4}	7.9×10^{-4}	–	–	–	–	
	nRMSE	2.9×10^{-2}	1.5×10^{-2}	1.3×10^{-2}	1.5×10^{-2}	1.3×10^{-2}	–	–	–	–	
955	NS ($\nu = 10^{-5}$)	Rollout	7.7×10^{-2}	4.8×10^{-2}	4.6×10^{-2}	4.8×10^{-2}	4.6×10^{-2}	6.0×10^{-2}	1.1×10^{-2}	1.1×10^{-1}	5.3×10^{-1}
	MSE	1.8×10^{-2}	1.7×10^{-2}	1.7×10^{-2}	1.8×10^{-2}	1.8×10^{-2}	–	–	–	–	
	nRMSE	6.7×10^{-2}	6.5×10^{-2}	6.5×10^{-2}	6.8×10^{-2}	6.8×10^{-2}	–	–	–	–	
957	Wall-clock time	Rollout	1.3×10^{-2}	1.1×10^{-2}	1.1×10^{-2}	1.2×10^{-2}	1.2×10^{-2}	–	–	–	–
	inference (ms)	1.4 ± 0.12	1.8 ± 0.14	2.2 ± 0.22	1.9 ± 0.19	2.7 ± 0.31	–	–	–	–	–
	training (ms)	7.91 ± 0.34	11.2 ± 0.44	16.1 ± 0.61	13.4 ± 0.50	21.9 ± 0.70	–	–	–	–	–

959 * Original errors reported in Gao et al. (2025), single-step metrics and results for Navier–Stokes with $\nu = 10^{-5}$ were not provided.

960 F ROLLOUT VISUALIZATIONS

961 In this section, we present visualizations of the rollout predictions corresponding to Table 1. Across
 962 all datasets, HO-FNO consistently produces visually superior results. For the Diffusion–Reaction
 963 PDEs (Figures 5 and 7), none of the models accurately capture the dynamics from time 0 to 100.
 964 Nevertheless, HO-FNO is able to recover the high-level structure of the solution. For this dataset,
 965 to enable a fairer comparison, we additionally report rollout visualizations from time 25 to 100
 966 (Figures 6 and 8), where all models achieve more accurate predictions, thus providing a clearer
 967 benchmark for visual assessment.
 968

969
 970
 971

Figure 3: Visualization of Rollout predictions on Navier Stokes with $\nu = 10^{-4}$.Figure 4: Visualization of Rollout predictions on Navier Stokes with $\nu = 10^{-5}$.

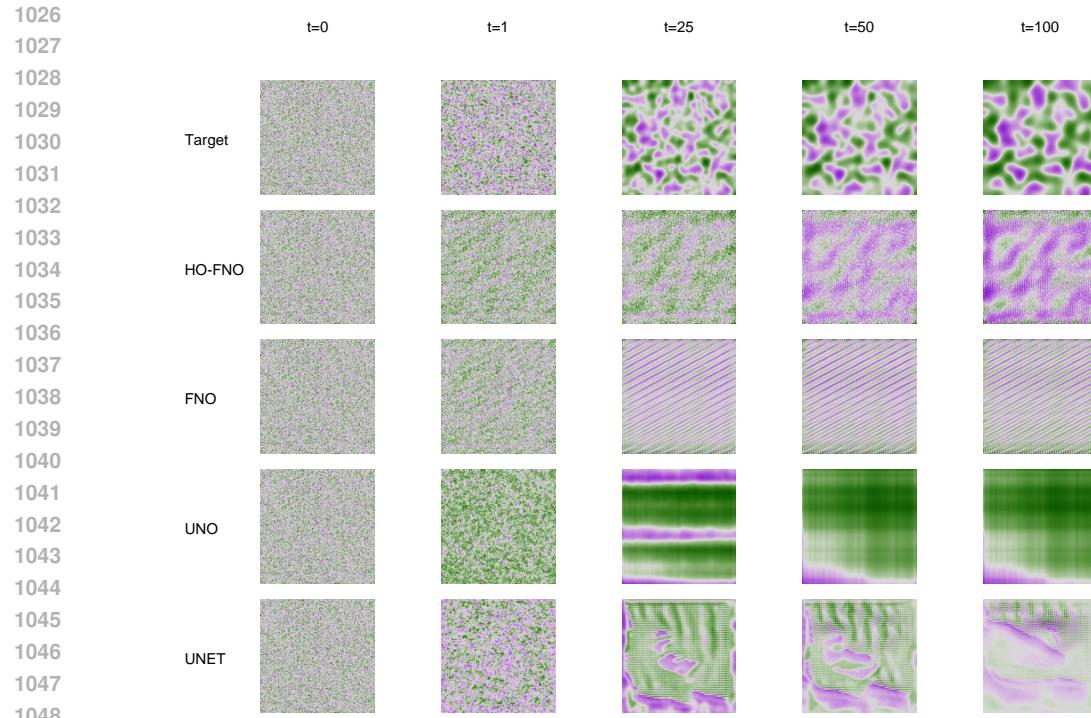


Figure 5: Visualization of Rollout predictions of the activator in the Diffusion-Reaction equation.

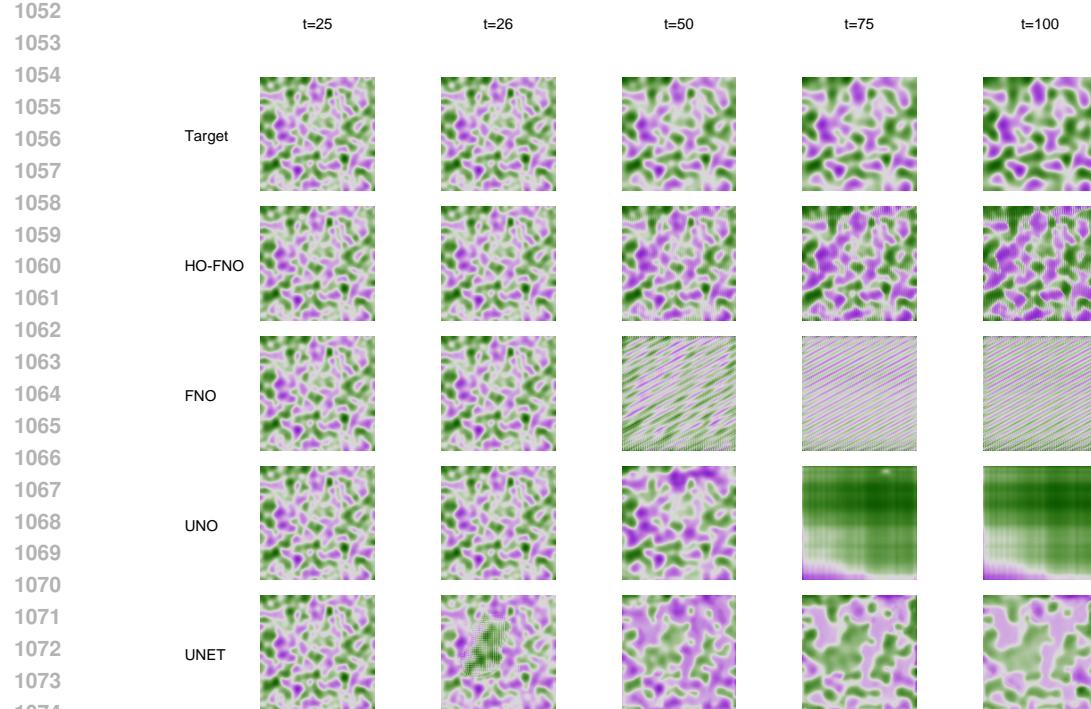


Figure 6: Visualization of Rollout predictions of the activator in the Diffusion-Reaction equation with rollout starting at time 25.

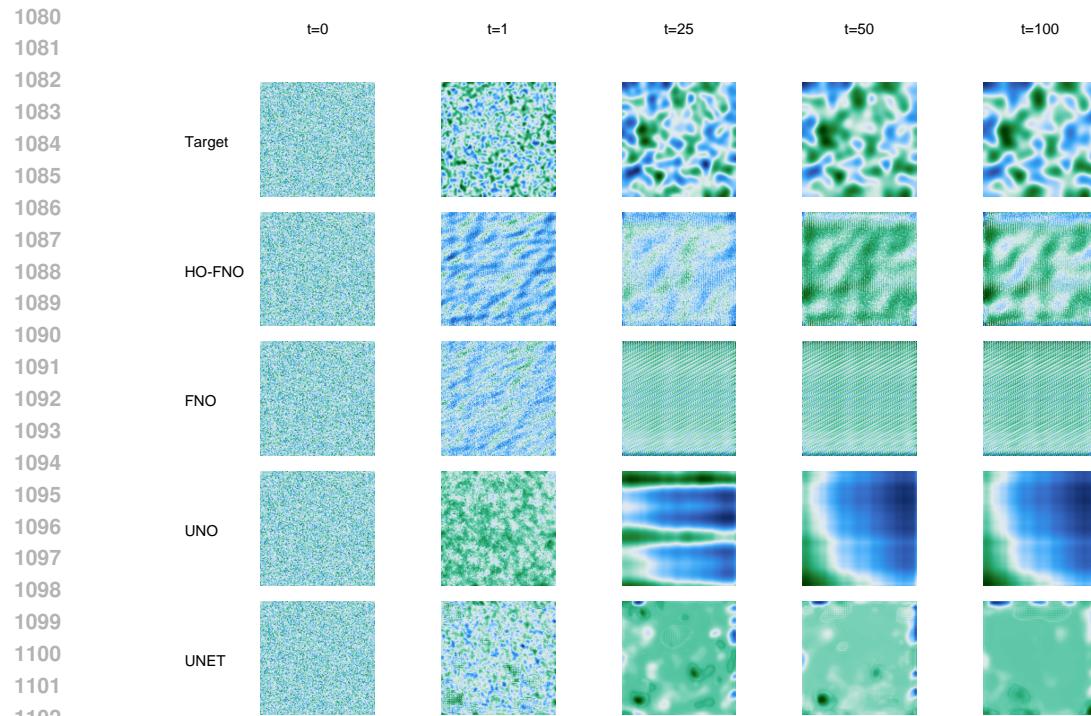


Figure 7: Visualization of Rollout predictions of the inhibitor in the Diffusion-Reaction equation.

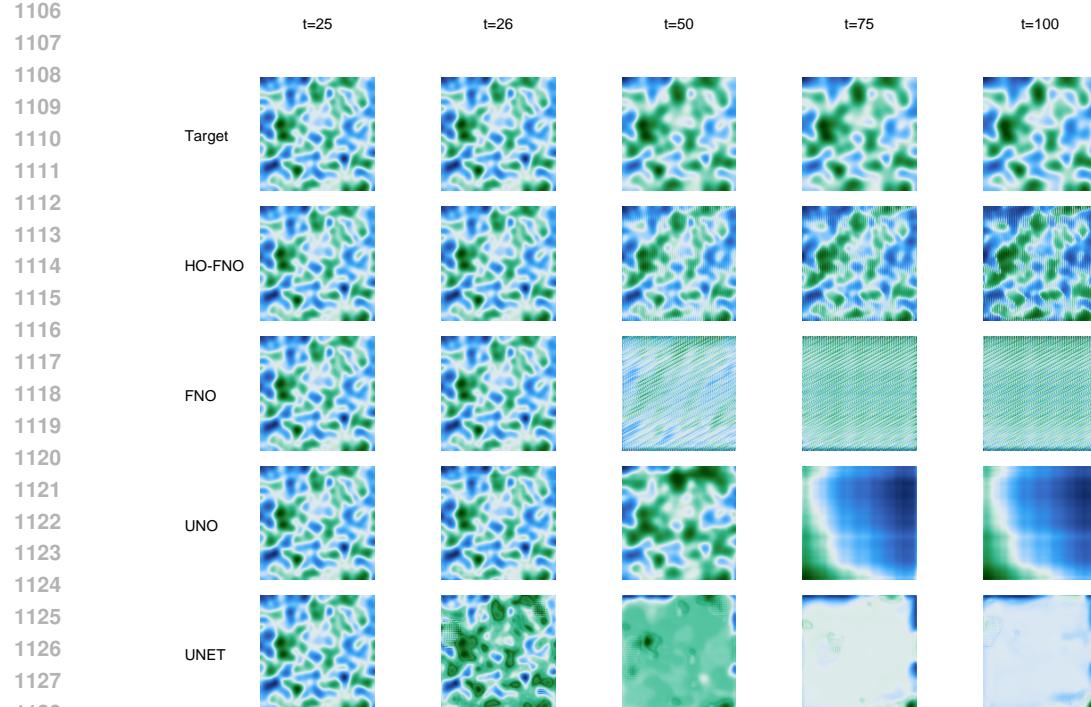


Figure 8: Visualization of Rollout predictions of the inhibitor in the Diffusion-Reaction equation with rollout starting at time 25.

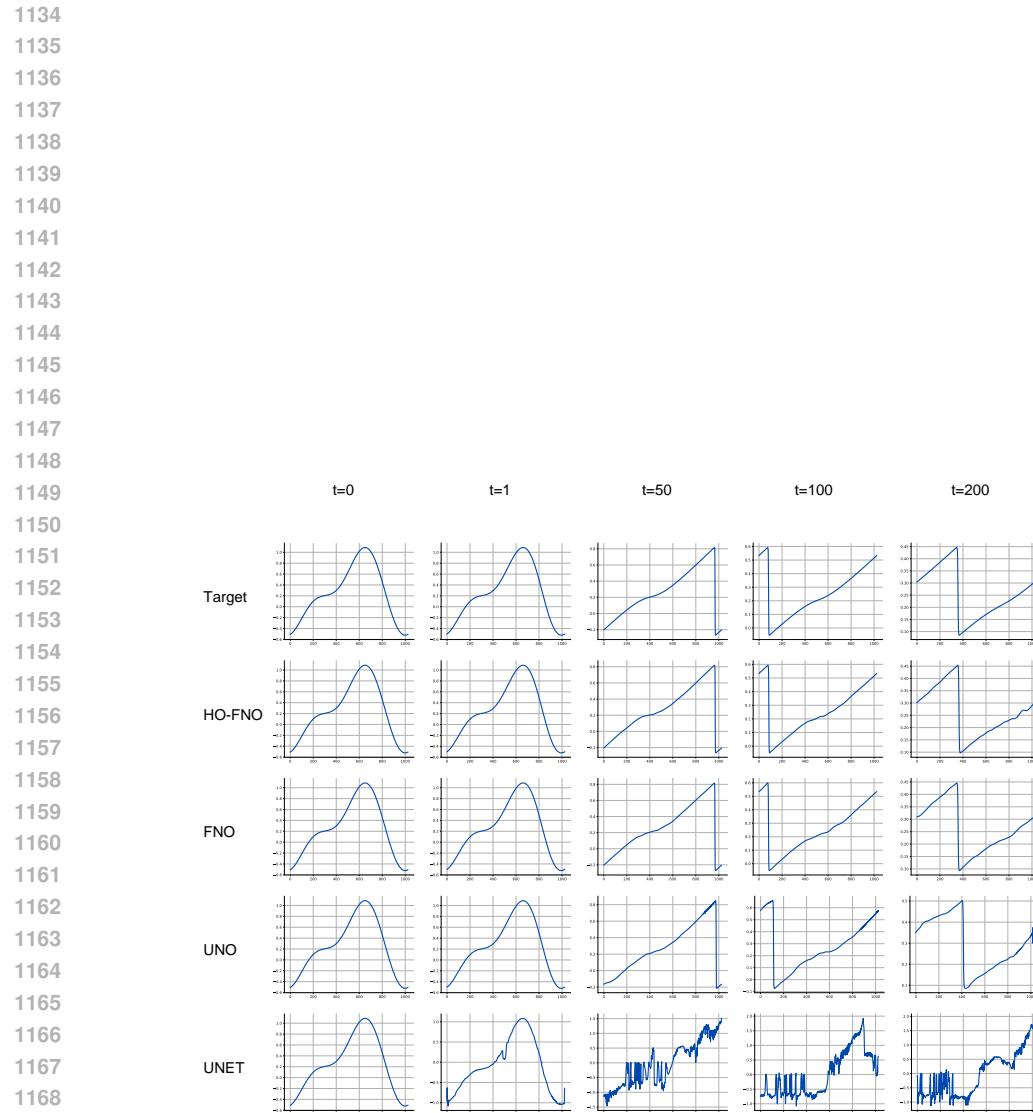


Figure 9: Visualization of Rollout predictions of the inhibitor in the Burgers equation with rollout.