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For the problem of reconstructing a low-rank matrix from a few linear measure-1

ments, two classes of algorithms have been widely studied in the literature: convex2

approaches based on nuclear normminimization, and non-convex approaches that3

use factorized gradient descent. Under certain statistical model assumptions, it is4

known that nuclear norm minimization recovers the ground truth as soon as the5

number of samples scales linearly with the number of degrees of freedom of the6

ground-truth. In contrast, while non-convex approaches are computationally less7

expensive, existing recovery guarantees assume that the number of samples scales8

at least quadratically with the rank r of the ground-truth matrix. In this paper, we9

close this gap by showing that the non-convex approaches can be as efficient as nu-10

clear norm minimization in terms of sample complexity. Namely, we consider the11

problem of reconstructing a positive semidefinite matrix from a fewGaussianmea-12

surements. We show that factorized gradient descent with spectral initialization13

converges to the ground truth with a linear rate as soon as the number of samples14

scales withΩ(rdκ2), where d is the dimension, and κ is the condition number of the15

ground truth matrix. This improves the previous rank-dependence in the sample16

complexity of non-convex matrix factorization from quadratic to linear. Our proof17

relies on a probabilistic decoupling argument, where we show that the gradient18

descent iterates are only weakly dependent on the individual entries of the mea-19

surement matrices. We expect that our proof technique is of independent interest20

for other non-convex problems.21

1. Introduction22

Low-rank matrix recovery refers to the problem of reconstructing an unknown matrixX⋆ ∈ Rd1×d223

with rank(X⋆) =: r ≪ min {d1; d2} from an underdetermined linear set of equations of the form24

y = A(X⋆) ∈ Rm,

where A represents a known linear measurement operator and y ∈ Rm are the observations. This25

ill-posed inverse problem has been the topic of intense study over many years, given its relevance26

to a variety of questions in machine learning, signal processing, and statistics. Notable applications27

include matrix completion [1], phase retrieval [2], robust PCA [3], blind deconvolution [4] and28

its extension to blind demixing [5]. A major goal has been to develop methods which are sample-29

efficient; that is, they can reconstruct the low-rank matrix X⋆ if the number of observations m is30

roughly of the same order as the number of degrees of freedom of X⋆. In addition, these methods31

should also be scalable, meaning they remain computationally efficient as the problem dimensions32

are increasing.33

Several different algorithmic approaches to solve this problem have been proposed. One line of34

research revolves around the idea of convex relaxation. Here, the nuclear norm ∥ · ∥∗, i.e., the sum35

of singular values, is considered as a convex proxy for the rank function. For many problem classes,36

includingmatrix sensing [6], matrix completion [7, 8], and blind deconvolution and demixing [9], it37

has been shown that this approach is able to recover the unknownmatrixX⋆ as soon as the number38

of samples m scales, up to logarithmic factors, with the information-theoretically optimal sample39
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complexity r(d1 + d2). However, a drawback of these convex approaches is that they tend to be40

computationally prohibitive.41

For this reason, many studies have considered non-convex heuristics where one minimizes an ob-42

jective of the form43

f(U,V) =

m∑
i=1

ℓ
(
yi,
(
A(UV⊤)

)
i

)
, (1)

with low-rank factorsU ∈ Rd1×r andV ∈ Rd2×r and a loss function ℓ : R×R → R. To minimize the44

objective function, local search methods such as gradient descent or alternating minimization with45

a suitable initialization are used. An advantage of these approaches is that they are computationally46

less demanding since there are only r(d1 + d2) optimization variables instead of at least d1d2 opti-47

mization variables in the convex approaches. However, due to the non-convexity of the objective48

function, it might initially seem unclear that local search methods can find the global minimum of49

the objective (1) efficiently.50

Nevertheless, in recent years a large body of literature has demonstrated that under certain statis-51

tical assumptions, these methods converge to the global minimum and are thus able to recover the52

unknown low-rank matrix X⋆. For instance, gradient descent with spectral initialization [10] and53

other variants of gradient descent [11–13] have been studied for matrix sensing and related prob-54

lems. Similarly, numerous works have established convergence and recovery guarantees for matrix55

completion [14–19] and blind deconvolution and demixing [20, 21]. In addition, recent studies56

also analyzed overparameterized models, where the exact rank r is either not known or where the57

number of parameters exceeds the number of samples [22–28]. Beyond gradient descent, also al-58

ternating minimization [29] and other non-convex methods based on matrix factorization such as59

GNMR [30] have been proposed and studied. For a more extensive overview of the literature, we60

refer the reader to [19].61

Despite this significant body of literature, the existing theoretical guarantees for non-convex meth-62

ods based on matrix factorization in the literature are weaker than the corresponding guarantees63

for nuclear norm minimization in terms of sample complexity. Namely, in all these results, it is re-64

quired that the number of samplesm scales at least quadratically with the rank r and thus the total65

number of samples scales at least with r2(d1+d2). This raises the question of whether this quadratic66

rank-dependence is just an artifact of the proof or whether it is inherent to the problem, see, e.g.,67

[31, p. 5264].68

In this paper, we resolve this question in the context of symmetric matrix sensing. Under the as-69

sumption that A is a Gaussian measurement operator and X⋆ ∈ Rd×d is symmetric and positive70

semidefinite, we show that factorized gradient descent with spectral initialization is able to recover71

the unknownmatrixX⋆ if the number of samples scales with rd, which, in particular, is linear in the72

rank ofX⋆. Our proof is based on a novel probabilistic decoupling argument. Namely, we show that73

the trajectory of the gradient descent iterates depends only weakly on any given generalized entry74

of the measurement matrices in a suitable sense. This allows us to prove stronger concentration75

bounds than what would be possible if one were to rely solely on uniform concentration bounds76

(such as the Restricted Isometry Property, for example). To establish this weak dependence, we77

construct auxiliary virtual sequences and combine this with an ε-net argument. Our novel proof78

approach paves the way to improved sample complexity bounds for other non-convex algorithms79

and beyond.80

Finally, we note that there are also several non-convex algorithms for low-rank matrix recovery that81

are not explicitly based onmatrix factorization formulation as in equation (1). This includes, for ex-82

ample, Singular Value Projection [32, 33], Normalized Iterative Hard Thresholding [34], Iteratively83

Reweighted Least Squares (IRLS), see, e.g., [35–38], andAtomic Decomposition forMinimumRank84

Approximation (ADMiRA) [39]. However, since many of these algorithms operate in the full ma-85

trix space they are less computationally efficient than algorithms based on matrix factorization. In86

the case of IRLS, only local convergence guarantees (with explicit convergence rates) are known.87

There have also been algorithms studied that are based on Riemannian optimization, see, e.g., [40–88
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42]. However, these algorithms require that the sample complexity scales quadratically in the rank89

r. We believe our work can lead to improved sample size guarantees for these methods as well.90

Organization of the paper: This paper is structured as follows. In the remainder of Section 1,91

we will describe the formal setting and the algorithm, and we will state our main theoretical result,92

which is Theorem 1.2. In Section 2, we discuss some technical preliminaries regarding the Restricted93

Isometry Property and perturbation bounds for eigenspaces. In Section 3, we discuss the proof94

strategy, and we introduce the virtual sequences, which are the main ingredient to establish that95

the sample complexity depends only linearly on the rank. Section 4 contains the proof of the main96

result of this paper, Theorem 1.2. We discuss interesting directions for future research in Section 5.97

Notation: Before we state the problem formulation, we introduce some basic notation. For amatrix98

A ∈ Rd1×d2 , we denote its transpose by A⊤ and its trace by trace(A). For matrices A,B ∈ Rd1×d2 ,99

we define their inner product via ⟨A,B⟩ := trace (AB⊤). The Frobenius norm
∥∥ · ∥∥

F
denotes the100

norm induced by this inner product, i.e.,
∥∥A∥∥

F
:=
√

⟨A,A⟩. By
∥∥A∥∥ we denote the spectral norm101

of thematrixA, i.e., the largest singular value of thematrixA. By
∥∥v∥∥

2
:=
√∑d

i=1 v
2
i we denote the102

Euclidean norm of a vector v ∈ Rd. The set Sd ⊂ Rd×d represents the set of all symmetric matrices.103

The matrix Id ∈ Sd denotes the identity matrix. Moreover, I : Sd → Sd represents the identity104

mapping.105

Furthermore, for a matrixA ∈ Rd1×d2 of rank r we denote its singular value decomposition byA =106

VAΣAW⊤
A. ThematricesVA ∈ Rd1×r andWA ∈ Rd2×r contain the left-singular and right-singular107

vectors of the matrix A. The matrix ΣA ∈ Rr×r contains the singular values of A. Moreover,108

VA,⊥ ∈ R(d1−r)×r represents an orthogonal matrix whose column span is orthogonal to the column109

span of VA.110

1.1. Problem formulation111

In this paper, we focus on symmetric matrix sensing. More precisely, we study the problem of112

reconstructing a symmetric, positive semidefinite matrix X⋆ ∈ Rd×d with rank r from m linear113

observations of the form114

yi =
1√
m
⟨Ai,X⋆⟩ :=

1√
m
trace (AiX⋆) for i = 1, 2, . . . ,m. (2)

Definition 1.1 (Measurement operator). We define the linear measurement operator A : Sd → Rm by115

[A(X)]i :=
1√
m
⟨Ai,X⟩ for i = 1, 2, . . . ,m

for any matrix X ∈ Sd. Recall that Sd ⊂ Rd×d denotes the set of symmetric matrices. The matrices116

{Ai}mi=1 ⊂ Rd×d represent known, symmetric measurement matrices. We assume that their entries are i.i.d.117

with distributionN (0, 1) on the diagonal andN (0, 1/2) on the off-diagonal entries. EachAi is also known118

as a Gaussian orthogonal ensemble [43].119

This measurement model has been considered before in, e.g., [10, 22]. With this notation in place,120

equation (2) can be written more compactly as121

y = A (X⋆) .

To recover the ground-truth matrix X⋆, we consider the non-convex objective function122

L(U) :=
1

4

∥∥y −A
(
UU⊤) ∥∥2

2
=

1

4

∥∥A (X⋆ −UU⊤) ∥∥2
2
, (3)

whereU ∈ Rd×r is a matrix and ∥·∥2 denotes the ℓ2-norm of a vector. Tominimize this objective, we123

follow the two-stage approach introduced in [14] for matrix completion, which then subsequently124

was studied for matrix sensing in [10]. In the first stage, an initialization U0 is constructed via125

a so-called spectral initialization. This initialization is subsequently used as a starting point for126
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the gradient descent scheme in the second stage. To precisely define the spectral initialization, we127

denote by A∗ : Rm → Sd the adjoint operator of A with respect to the trace inner product defined128

in equation (2).129

With this definition in place, we can consider the eigendecomposition of the matrix130

A∗(y) =: ṼΛ̃Ṽ⊤,

where Ṽ ∈ Rd×d is an orthogonal matrix and the matrix Λ̃ ∈ Rd×d is diagonal matrix which con-131

tains the eigenvalues of A∗(y) sorted by their magnitude, i.e., |λ1(A∗(y))| ≥ |λ2 (A∗(y)) | ≥ . . . ≥132

|λd (A∗(y)) |.133

Since the measurement matrices Ai are Gaussian we have that134

E [A∗(y)] = E [(A∗A) (X⋆)] = X⋆.

Since X⋆ has rank r for a large enough enough sample size m, one has that the truncated rank-r135

eigendecomposition ofA∗(y) fulfills ṼrΛ̃rṼr ≈ X⋆. Here, by Ṽr ∈ Rd×r we denote a matrix which136

contains the first r columns of Ṽ and by Λ̃r we denote a diagonal matrix which contains the largest r137

eigenvalues of A∗ (y) in decreasing order. Motivated by this observation, the spectral initialization138

U0 is defined as139

U0 := ṼrΛ̃
1/2
r .

Here, the entries of the diagonal matrix Λ̃
1/2
r are given by

√
|λi (A∗(y)) |. As we will see, all entries140

of Λ̃r are positive with high probability.141

After having computed the initialization U0, we use U0 as a starting point of the gradient descent142

scheme in the second stage, which is defined as follows143

Ut+1 := Ut − µ∇L(Ut) for t = 0, 1, . . . ,

where µ > 0 denotes the step size. A direct computation shows that144

Ut+1 = Ut + µ
[
(A∗A)

(
X⋆ −UtU

⊤
t

)]
Ut (4)

= Ut +
µ

m

m∑
i=1

⟨Ai,X⋆ −UtU
⊤
t ⟩AiUt.

All steps of the two-stage approach are summarized below in Algorithm 1.1.

Algorithm 1 Two-Stage Approach for Low-Rank Matrix Recovery
Input: Measurement operator A : Sd → Rm, observations y ∈ Rm, step size µ > 0

Stage 1 (Spectral Initialization): Compute the truncated eigendecomposition ṼrΛ̃rṼ
⊤
r of the

datamatrixD := A∗(y) = 1√
m

∑m
i=1 yiAi. Here, Λ̃r ∈ Rd×d is the diagonalmatrixwhich contains

the r largest eigenvalues of the data matrix D (in absolute value). The columns of Λ̃r ∈ Rd×r

contain the corresponding eigenvectors. Define the initialization U0 ∈ Rd×r via

U0 := ṼrΛ̃
1/2
r .

Stage 2 (Gradient descent):
for t = 0, 1, 2, . . . do

Ut+1 := Ut − µ∇L (Ut)

end for

145
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1.2. Main result146

To formulate our main result, we need to introduce the condition number of X⋆, which is defined147

as148

κ :=

∥∥X⋆

∥∥
σmin(X⋆)

.

Here, σmin(X⋆) denotes the smallest non-zero singular value of X⋆.149

Next, letU⋆ ∈ Rd×r be a matrix such thatX⋆ = U⋆U
⊤
⋆ . The matrixU⋆ is uniquely defined only up150

to an orthogonal transformationR ∈ Rr×r, which iswhywe can only expect to be able to reconstruct151

U⋆ up to this ambiguity. To account for this, we will introduce the error metric152

dist (Ut,U⋆) := min
R∈Rr×r, R⊤R=Idr

∥∥UtR−U⋆

∥∥
F
. (5)

With this notation in place, we can state the main result of this paper.153

Theorem 1.2. Let A : Sd → Rm be a linear measurement operator as in Definition 1.1 with Gaussian154

measurement matrices. Moreover, letX⋆ ∈ Sd be a positive semidefinite matrix of rank r. Given observations155

y = A (X⋆) ∈ Rm, let U0,U1,U2, . . . be the sequence of gradient descent iterates which are obtained via156

the two-stage approach described in Algorithm 1. Assume that the number of observations m satisfies157

m ≥ Crdκ2,

and that the step size µ > 0 satisfies158

32

6dσmin(X⋆)
log (16r) ≤ µ ≤ c1

κ∥X⋆∥
. (6)

Then, with probability at least 1− 7 exp (−d), it holds for all iterations t ≥ 0 that159

dist2 (Ut,U⋆) ≤ c2r (1− c3µσmin (X⋆))
t
σmin (X⋆) .

Here, C, c1, c2, c3 > 0 denote absolute constants.160

Remark 1.3. The lower bound in assumption (6) is rather mild since the left-hand side in this inequality161

converges to 0 exponentially as the dimension d increases. If the dimension d is larger than an absolute162

constant, then condition (6) can always be satisfied for some step size µ.163

Theorem 1.2 shows that factorized gradient descent with spectral initialization converges to the164

ground truth with a linear rate as soon as the number of samples scales at least with rdκ2. In par-165

ticular, the bound on the sample complexity is linear in the rank r. This improves over previous166

results in the matrix sensing literature, which have a sample complexity of order at least r2dκ2, see,167

e.g., [10] or [11]. In particular, the sample complexity in Theorem 1.2 is optimal with respect to the168

rank r and dimension d. To the best of our knowledge, this is the first result in the literature which169

achieves this optimal dependence in the rank for the non-convex low-rank matrix recovery.170

Compared to approaches based on nuclear norm or trace minimization, which only need Ω(rd)171

samples in the matrix sensing scenario, our result is still suboptimal by a factor of κ2. However,172

all previous results in the literature on non-convex low-rank matrix recovery based on factorized173

gradient descent require having at least this quadratic dependence on the condition number. It174

remains an interesting open problem whether the dependence of the sample complexity on the175

condition number is necessary or an artifact of the proof.176

Our main result implies that dist (Ut,U⋆) ≤ ε after O
(

log(r/(εσmin(X⋆)))
µσmin(X⋆)

)
iterations. Thus, if177

we choose the largest possible step size µ ≍ 1/(κ
∥∥X⋆

∥∥) we obtain that we reach ε-accuracy af-178

ter O
(
κ2 log (r/(εσmin(X⋆)))

) iterations. Previous work [10] allows for a larger step size µ ≲179

1/(κ
∥∥X⋆

∥∥) which yields that one can reach ε-accuracy after O (κ log (r/(εσmin(X⋆)))) iterations,180

whereas Theorem 1.2 requires µ ≲ 1/(κ
∥∥X⋆

∥∥). It remains an open problemwhether this additional181

condition number in the step size bound can be removed.182
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Remark 1.4 (Landscape Analysis). Several works [44–47] have shown that if m ≳ rd, then the loss183

landscape of the objective function L in (3) is benign in the sense that L has no spurious local minima and all184

saddle points have at least one direction of strictly negative curvature. It has been established that in such a185

scenario gradient descent starting from random initializationwill converge to the ground truth [48]. However,186

these results do not imply any guarantees on the convergence rate or on the computational complexity. In fact,187

there exist examples [49] where gradient descent may take exponential time to escape saddle points. For this188

reason, the results mentioned above are not directly comparable to our results.189

2. Preliminaries190

In the following, we will discuss several technical preliminaries, which are needed in our proof.191

2.1. The Restricted Isometry Property192

We first recall the Restricted Isometry Property (RIP).193

Definition 2.1 (Restricted Isometry Property). The linear measurement operatorA : Sd → Rm satisfies194

the Restricted Isometry Property (RIP), of rank r with RIP-constant δr > 0, if it holds for all symmetric195

matrices Z ∈ Rd×d of rank at most r that196

(1− δr)
∥∥Z∥∥2

F
≤
∥∥A(Z)

∥∥2
2
≤ (1 + δr)

∥∥Z∥∥2
F
.

In previous works, it was shown that as soon as the measurement operator A has the RIP, then197

convex approaches based on nuclear normminimization as well as non-convex approaches are able198

to recover the ground truth matrix, see, e.g., [6, 10].199

It is well known that as soon as the number of samples m satisfies m ≳ rd then the measurement200

operator A has the RIP of order r with high probability. This fact is stated in the following lemma.201

Lemma 2.2. Let A : Sd → Rm be a Gaussian measurement operator as described in Section 1.1. Then the202

RIP constant δr satisfies δr ≤ δ ≤ 1 with probability 1− ε when203

m ≥ Cδ−2(rd+ log(2ε−1)),

where C > 0 is a universal constant. In particular, we have with probability at least 1 − exp(−d), m ≥204

Cδ−2rd.205

This lemma differs from similar lemmas in the literature (see, e.g., [50]) by specifying how m de-206

pends on the RIP-constant δ. A proof of this lemma is provided in Appendix D.1 together with a207

more detailed discussion of how this lemma relates to previous work.208

Remark 2.3. The works mentioned in Remark 1.4 have shown that the RIP implies that the optimization209

landscape of L is benign (in the sense of Remark 1.4). Moreover, previous work such as [10] or [11], which210

analyzed gradient descent with spectral initialization similar to the paper at hand, relied on their analysis211

of gradient descent exclusively on the RIP property of the measurement operator A. As we will explain in212

Section 3, purely relying on the RIP will not suffice to establish Theorem 1.2. For this reason, in addition to213

the RIP, we will use the orthogonal invariance of the Gaussian measurement operator A.214

The RIP has several important consequences, which we will need throughout our proof. We recall215

them in the following lemma.216

Lemma 2.4. LetA : Sd → Rm be a linear measurement operator on the set of symmetric matrices as defined217

above. Denote by δr the RIP constant of the operator A of order r. Then the following statements hold.218

1. Let V ∈ Rd×r′ be any matrix with orthonormal columns, i.e., V⊤V = Id. Then it holds for any219

symmetric matrix Z ∈ Rd×d of rank at most r that220 ∥∥ (I − A∗A) (Z)V
∥∥
F
≤ δr+2r′

∥∥Z∥∥
F
. (7)

In particular, it holds that221 ∥∥ (I − A∗A) (Z)
∥∥ ≤ δr+2

∥∥Z∥∥
F
. (8)
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2. Let w ∈ Rd such that
∥∥w∥∥

2
= 1. Define the orthogonal projection operators222

Pww⊤(Z) := ⟨ww⊤,Z⟩ww⊤, (9)
Pww⊤,⊥(Z) := Z− ⟨ww⊤,Z⟩ww⊤.

Then it holds for any symmetric matrix Z ∈ Rd×d of rank at most r that223

|⟨A(ww⊤),A
(
Pww⊤,⊥(Z)

)
⟩| ≤ δr+2

∥∥Z∥∥
F
. (10)

Some variants of these inequalities appeared in the literature already before; see, e.g., [23]. For224

completeness, we decided to include a proof in Appendix D.2.225

Remark 2.5. To keep the notationmore concise, we will sometimes drop the subscript and just use the notation226

δ for the RIP constant. For all results below, the choices of δ satisfy δ ≤ δ6r due to the monotonicity of the227

RIP constant with respect to the rank.228

2.2. Perturbation bounds for eigenspaces229

The Davis-Kahan sin θ-theorem [51] states that the eigenspaces of a symmetric matrix are stable230

under perturbations of that matrix. Among others, we will need this result in order to show that231

the spectral initialization recovers the eigenspace of the ground truth matrix sufficiently well. We232

also will need it in order to show that U0,w is sufficiently close toU0.233

To state this theorem, recall that for a symmetric matrix Z ∈ Rn×n with eigendecomposition Z =234

UZΛZU
⊤
Z the matrix UZ,r ∈ Rn×r consists of the first r columns of UZ and the matrix UZ,r,⊥ ∈235

Rn×(n−r) consists of the remaining n − r columns. Moreover, recall that the eigenvalues of Z are236

ordered such that their magnitude is decreasing, i.e., |λ1(Z)| ≥ |λ2(Z)| ≥ . . . ≥ |λn(Z)|.237

Lemma 2.6 (Davis-Kahan inequality, Corollary 2.8 in [52]). Set |||·||| =
∥∥ ·
∥∥ or |||·||| =

∥∥ ·
∥∥
F
. Let

Z1 ∈ Rd×d and Z2 ∈ Rd×d be two symmetric matrices, such that the eigenvalues of Z1 satisfy |λr(Z1)| >
|λr+1 (Z1) | for an integer 1 ≤ r < d. Let the eigendecompositions ofZ1 andZ2 be given byZ1 = U1Λ1U

⊤
1 ,

respectively Z2 = U2Λ2U
⊤
2 . Then, if the assumption∥∥Z1 − Z2

∥∥ ≤
(
1− 1/

√
2
)
(|λr(Z1)| − |λr+1(Z1)|)

is fulfilled, it holds that238

∣∣∣∣∣∣U⊤
2,r,⊥U1,r

∣∣∣∣∣∣ ≤ √
2 |||(Z1 − Z2)U1,r|||

|λr(Z1)| − |λr+1(Z1)|
.

3. Outline of the proof239

3.1. A fundamental barrier in previous work240

Before we give an outline of our proof approach, we want to explain why in previous work the241

additional r-factor appeared in the sample complexity. As Lemma 4.1 below shows, it holds for the242

spectral initialization U0 with high probability that243

∥∥X⋆ −U0U
⊤
0

∥∥ ≤ Cκσmin(X⋆)

√
rd

m
.

In particular, for m ≫ κ2rdwe have that244 ∥∥X⋆ −U0U
⊤
0

∥∥≪ σmin(X⋆).

Thus, the spectral initialization ensures that the initializationU0 is in a neighborhood of the ground245

truth. We aim to establish that within this neighborhood, gradient descent converges with a linear246

rate. To show this, we note first that the gradient of our objective functionL depends on the random247
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matrices (Ai)
m
i=1. To deal with this, a common technique that has been used in previous works is to248

decompose the gradient of the objective function L into a sum of two terms:249

∇L (U) = E(Ai)mi=1
[∇L(U)] +

[
∇L(U)− E(Ai)mi=1

[∇L(U)]
]
.

The first term is the gradient of the population risk, i.e., the objective function one obtains in the250

limit case that the sample size m goes to infinity. The second term can be interpreted as a pertur-251

bation term that measures the deviation of the gradient of the empirical risk from the gradient of252

the population risk. In particular, this term converges to zero as the sample size m increases. For253

this reason, a major task in our proof is to show that the second summand is small with respect to254

a suitable norm as soon as the sample size m is sufficiently large. A direct computation shows that255

∇L(U)− E(Ai)mi=1
[∇L(U)] =

[
(A∗A− I)

(
UU⊤ −X⋆

)]
U

=
1

m

m∑
i=1

⟨Ai,UtU
⊤
t −X⋆⟩Ai −

(
UtU

⊤
t −X⋆

)
.

To deal with this deviation term, in previous works, bounds of the type256 ∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t

) ∥∥≪
∥∥X⋆ −UtU

⊤
t

∥∥ (11)
needed to be established. Amajor challenge in establishing such bounds is that the gradient descent257

iterates (Ut)t depend on the measurement matrices (Ai)
m
i=1 in an intricate way. For this reason,258

standard matrix concentration inequalities are not directly applicable. To circumvent this issue,259

previous work establishes uniform bounds for the quantity260

sup
Z∈T2r

∥∥ (A∗A− I) (Z)
∥∥

where261

Tr :=
{
Z ∈ Rd×d : Z = Z⊤, rank (Z) ≤ r,

∥∥Z∥∥ ≤ 1
}
,

denotes the collection of matrices with rank at most r and bounded operator norm. Indeed, such a262

bound can be directly derived from the Restricted Isometry Property. Namely, when A has the RIP263

of order 2r + 2 with constant δ2r+2 then Lemma 2.4 implies that264

sup
Z∈T2r

∥∥ (A∗A− I) (Z)
∥∥ ≤ δ2r+2 sup

Z∈T2r

∥∥Z∥∥
F
≤ δ2r+2

√
2r,

where in the second inequality, we used that the matrix Z has rank at most 2r and that
∥∥Z∥∥ = 1.265

Thus, it follows from Lemma 2.2 that whenever m ≫ rd that with high probability we have that266

sup
Z∈T2r

∥∥ (A∗A− I) (Z)
∥∥ ≲

√
r2d

m
. (12)

This shows that if we want to deduce inequality (11) from the uniform bound (12) wemust assume267

thatm ≫ r2d. Indeed, several works, e.g., [22, 23, 53], relied precisely on this bound.268

This leads to the question of whether the bound (12) can be sharpened. For example, in [53, p. 9],269

it was conjectured that using more refined techniques from empirical process theory, one may be270

able to refine (12). However, as the following result shows, inequality (12) is tight up to absolute271

numerical constants and thus cannot be improved further.272

Theorem 3.1. Let (Ai)i∈[m] be independent d × d symmetric random matrices, where each Ai has inde-273

pendent entries with distribution N (0, 1) on the diagonal and N (0, 1/2) on the off-diagonal entries. As-274

sume d ≥ 6, m ≥ C0 for some universal constant C0 > 0, and r ≤ d
16 . Then, with probability at least275

1− 2 exp(−m
32 )− 2 exp(− d

32 ), it holds that276

sup
Z∈Tr

∥∥ (A∗A− I) (Z)
∥∥ ≥ 1

16

√
r2d

m
.
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Theorem 3.1 shows that we will need to use different proof techniques to establish a bound similar277

to (11). In particular, we cannot rely on uniform concentration inequalities. These novel techniques278

will be introduced in Section 3.2 below. Before that, we want to prove Theorem 3.1.279

Proof. First, we note that280

sup
Z∈Tr

∥∥ (A∗A− I) (Z)
∥∥ = sup

Z∈Tr

∥∥ 1

m

m∑
i=1

⟨Ai,Z⟩Ai − Z
∥∥ = sup

∥u∥=1

sup
Z∈Tr

∣∣∣⟨ 1
m

m∑
i=1

⟨Ai,Z⟩Ai − Z,uu⊤⟩
∣∣∣.

Now for any fixed u ∈ Rd with
∥∥u∥∥

2
= 1, define281

Tu :=
{
Z ∈ Rd×d : Z = Z⊤, rank (Z) ≤ r,

∥∥Z∥∥ ≤ 1,Zu = 0
}
,

i.e., the set consisting of matrices in Tr, whose row space is orthogonal to u. It follows that282

sup
Z∈Tr

∥∥ 1

m

m∑
i=1

⟨Ai,Z⟩Ai − Z
∥∥ ≥ sup

Z∈Tu

⟨ 1
m

m∑
i=1

⟨Ai,Z⟩Ai − Z,uu⊤⟩

= sup
Z∈Tu

⟨ 1
m

m∑
i=1

⟨Ai,Z⟩Ai,uu
⊤⟩

= sup
Z∈Tu

1

m

m∑
i=1

⟨⟨Ai,uu
⊤⟩Ai,Z⟩.

Now note that ⟨Ai,uu
⊤⟩ is independent of (⟨Ai,Z⟩)Z∈Tu

. Let A ∈ Rd×d be a matrix with the283

same distribution as Ai and which is independent of (Ai)
m
i=1. We claim that conditional on284 {

⟨Ai,uu
⊤⟩
}m
i=1

we have that the following two random variables are equal in distribution:285

sup
Z∈Tu

1

m

m∑
i=1

⟨Ai,uu
⊤⟩⟨Ai,Z⟩

d
=

1√
m

√√√√ 1

m

m∑
i=1

⟨Ai,uu⊤⟩2 sup
Z∈Tu

⟨A,Z⟩. (13)

To show (13), one can check that conditional on {⟨Ai,uu
⊤⟩
}m
i=1

, the randomvariables on both sides286

of (13) are the supremum of Gaussian processes indexed by Tu with the same covariance structure,287

so they have the same distribution.288

In the following, we set289

u := (0, . . . , 0, 1)⊤ ∈ Rd. (14)
It follows that290

m∑
i=1

⟨Ai,uu
⊤⟩2 =

m∑
i=1

(Ai)
2
d,d .

By Lipschitz concentration for Gaussian random variables [54, Theorem 5.6], we obtain291

P

∣∣∣∣∣∣
√√√√ m∑

i=1

(Ai)
2
d,d − E

√√√√ m∑
i=1

(Ai)
2
d,d

∣∣∣∣∣∣ ≥ √
m/4

 ≤ 2 exp(−m/32).

This shows that with probability at least 1− 2 exp(−m/32),292 √√√√ m∑
i=1

(Ai)
2
d,d ≥ E

√√√√ m∑
i=1

(Ai)
2
d,d −

√
m

4
≥

√
m/2 (15)

for sufficiently largem, where we have used that the expectation of chi-distribution with parameter293

m has asymptotic value
√
m− 1

2 (see, e.g., [55]). In addition, with u given in (14), all entries in294

the d-th row and d-th column of the matrix Z ∈ Tu are equal to zero. Let Ã ∈ R(d−1)×(d−1) be the295
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submatrixAwhere the last row and column ofA are removed, and define Z̃ in the same way. Then296

we have297

sup
Z∈Tu

⟨A,Z⟩ = sup
∥Z̃∥≤1,Z̃=Z̃⊤, rank(Z̃)≤r

⟨Ã, Z̃⟩ =
r∑

i=1

σi(Ã).

Our goal is to bound the sum of singular values on the right-hand side from below. For that, we298

define the matrix299

Â :=

(
0(⌈(d−1)/2⌉−1)×r 0⌈(d−1)/2⌉×(d−r)

Ã⌈(d−1)/2⌉:(d−1),1:r 0(d−1−⌈(d−1)/2⌉)×(d−r)

)
∈ R(d−1)×(d−1).

Here, Ã⌈(d−1)/2⌉:(d−1),1:r denotes the submatrix ofA obtained by restrictingA to the ⌈(d− 1)/2⌉-th300

to (d − 1)-th rows and the first r columns. By 0a×b we denote the zero matrix of size a times b. To301

relate the singular values of Ã with the singular values of Â, we will use the following lemma.302

Lemma 3.2 (Corollary 3.1.3 in [56]). LetA ∈ R(d−1)×(d−1) and letB ∈ R(d−1)×(d−1) be a matrix which303

is obtained from the matrix A by setting the entries of one row or one column to zero. Then it holds that304

σi(B) ≤ σi(A) for all i = 1, . . . , d− 1.305

By repeatedly applying Lemma 3.2, we find306

r∑
i=1

σi(Â) ≤
r∑

i=1

σi(Ã).

On the other hand, we can identify the r largest singular singular values of Â with the singular307

values of a Gaussianmatrix of size ⌊d−1
2 ⌋×r. By standard concentration inequalities for the singular308

values of Gaussian matrices, see, e.g., [57, Corollary 5.35], we find that with probability at least309

1− 2 exp(−t2/2),310

σr(Â) ≥
√⌊d− 1

2

⌋
−
√
r − t.

Taking t =
√
d
8 , and using the assumption that r ≤ d

16 , we find for d ≥ 6,311

r∑
i=1

σi(Ã) ≥ r
√
d

8
(16)

with probability at least 1− 2 exp(−d/32). Combining (16) and (15) finishes the proof.312

Note that the key idea in this proof was to fix a vector u ∈ Rd and to pick a matrix Z ∈ Tr based on313

eigenvectors corresponding to the largest eigenvalues (of a submatrix) of314

A =
1

m

m∑
i=1

⟨Ai,uu
⊤⟩Ai.

By design, this implies that the matrix Z was chosen in a way which strongly depends on315 (
⟨Ai,uu

⊤⟩
)m
i=1

. This observation leads to the key idea in our proof. Namely, we will show that316

our gradient descent iterates Ut depend, in a suitable sense, only weakly (⟨Ai,uu
⊤⟩
)m
i=1

for fixed317

u ∈ Rd. This will allow us to prove stronger upper bounds for the term
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥318

than what can be achieved using uniform concentration inequalities.319

3.2. Virtual sequences320

As explained at the end of Section 3.1, we aim to establish that the gradient descent iterates (Ut)t321

depend onlyweakly on (⟨Ai,ww⊤⟩
)m
i=1

in a suitable sense. For this aim, wewill use so-called virtual322

sequences (Ut,w)t∈N ⊂ Sd. The central idea is to introduce for w ∈ Sd−1 :=
{
x ∈ Rd :

∥∥x∥∥
2
= 1
} a323

sequence with the following two properties.324
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1. The sequence (Ut,w)t∈N is stochastically independent of (⟨Ai,ww⊤⟩
)m
i=1

.325

2. The sequence (Ut,w)t∈N stays sufficiently close to the sequence (Ut)t∈N. More precisely, we326

require that
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
stays sufficiently small.327

The sequences (Ut,w)t∈N are called virtual since they are introduced solely for proof purposes.328

Remark 3.3 (Related work). In the context of non-convex optimization, the use of virtual sequences has329

been pioneered in the influential works [18] and [33]. In these works, leave-one-out sequences, which can be330

seen as a special case of virtual sequences, were introduced to show that the gradient descent iterates depend331

only weakly on the individual samples or measurements. These works lead to a number of follow-up works.332

For example, several works used virtual sequences to establish convergence from random initialization for333

gradient descent in phase retrieval [58] or for alternating minimization in rank-one matrix sensing [59]. In334

[27], leave-one-out sequences were used to establish that in overparameterized matrix completion gradient335

descent with small random initialization converges to the ground truth. Similar to the paper at hand, the336

virtual sequence argument was combined with an ε-net argument. However, the technical details are arguably337

quite different.338

Before defining the virtual sequences we recall the notion of an ε-net.339

Definition 3.4 (ε-net). Let A ⊂ Rd. A subset B ⊂ A is called ε-net of A if for every x ∈ A there is a point340

x0 ∈ B such that
∥∥x− x0

∥∥
2
≤ ε.341

It is well-known that for Sd−1 =
{
x ∈ Rd :

∥∥x∥∥
2
= 1
} there exists an ε-netNε ⊂ Sd−1 with cardinal-342

ity |Nε| ≤ (3/ε)
d [60]. In the remainder of this paper, we will assume thatNε is a fixed ε-net of Sd−1343

with ε = 1/2 such that |Nε| ≤ 6d. We will define one virtual sequence (Ut,w)t for each w ∈ Nε.344

Recall from equation (9) that for w ∈ Nε the orthogonal projection operators Pww⊤ and Pww⊤,⊥345

were defined for Z ∈ Sd via346

Pww⊤(Z) = ⟨ww⊤,Z⟩ww⊤, Pww⊤,⊥(Z) = Z− ⟨ww⊤,Z⟩ww⊤.

Next, for w ∈ Nε we define the modified measurement matrices via347

Ai,w := Pww⊤,⊥(Ai) = Ai − ⟨ww⊤,Ai⟩ww⊤.

Thus, the matrix Ai,w is obtained from the matrix Ai by setting the generalized entry ⟨Ai,ww⊤⟩348

equal to 0. We observe that by definition the matrices (Ai,w)
m
i=1 are stochastically independent of349 (

⟨Ai,ww⊤⟩
)m
i=1

. We define the virtual measurement operator Aw : Sd → Rm+1 via350

[Aw(Z)]i :=
1√
m
⟨Ai,X⟩

for i ∈ [m] and351

[Aw(Z)]m+1 := ⟨ww⊤,Z⟩.
Again, we observe that by construction, the measurement operator Aw is independent of352 (
⟨Ai,ww⊤⟩

)m
i=1

. As a next step, analogously to the definition of the objective function L, we can353

define the modified objective function Lw : Sd → R via354

Lw (U) :=
1

4

∥∥Aw

(
X⋆ −UU⊤) ∥∥2

2
.

With these definitions in place, the virtual sequence (Ut,w)t can be defined analogously to the orig-355

inal sequence (Ut)t. Namely, to define the spectral initialization, we consider the eigendecomposi-356

tion357

(A∗
wAw) (X⋆) =: ṼwΛ̃wṼ⊤

w. (17)
Then, analogously as for the original spectral initialization U0, the matrix U0,w is defined as358

U0,w =: Ṽr,wΛ̃1/2
r,w. (18)
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Then the virtual sequence {Ut,w}t∈N via359

Ut+1,w := Ut,w − µ∇Lw (Ut,w) = Ut,w + µ
[
(A∗

wAw)
(
X⋆ −Ut,wU⊤

t,w

)]
Ut,w.

It follows directly from the definition of (Ut,w)t that this sequence is stochastically independent of360 (
⟨Ai,ww⊤⟩

)m
i=1

. At the end of this section, we state and prove the following lemma, which is a361

direct consequence of the definition of Aw. This lemma will be useful in the convergence analysis362

where we establish that
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
stays sufficiently small.363

Lemma 3.5. For any symmetric matrix Z ∈ Rd×d it holds that364

(A∗
wAw) (Pww⊤(Z)) = Pww⊤(Z),

(A∗
wAw)

(
Pww⊤,⊥(Z)

)
= (A∗A)

(
Pww⊤,⊥(Z)

)
− ⟨A(ww⊤),A

(
Pww⊤,⊥(Z)

)
⟩ww⊤.

Proof of Lemma 3.5. To prove the first inequality we note first that it follows directly from the defini-365

tion of Ai,w that ⟨Ai,w,Pww⊤(Z)⟩ = 0. It follows that366

(A∗
wAw) (Pww⊤(Z)) =

1√
m

m∑
i=1

[Aw (Pww⊤(Z))]i Ai,w + (Aw (Pww⊤(Z)))m+1 ww⊤

=
1

m

m∑
i=1

⟨Ai,w,Pww⊤(Z)⟩Ai,w + ⟨ww⊤,Z⟩ww⊤

= ⟨ww⊤,Z⟩ww⊤.

This proves the first equation. In order to prove the second equation, we note that367

(A∗
wAw)

(
Pww⊤,⊥(Z)

)
=

1

m

m∑
i=1

⟨Ai,w,Pww⊤,⊥(Z)⟩Ai,w + ⟨ww⊤,Pww⊤,⊥(Z)⟩ww⊤

=
1

m

m∑
i=1

⟨Ai,w,Pww⊤,⊥(Z)⟩Ai,w

=
1

m

m∑
i=1

⟨Ai,Pww⊤,⊥(Z)⟩Ai,w

=
1

m

m∑
i=1

⟨Ai,Pww⊤,⊥(Z)⟩Ai −
1

m

m∑
i=1

⟨Ai,Pww⊤,⊥(Z)⟩⟨ww⊤,Ai⟩ww⊤

= (A∗A)
(
Pww⊤,⊥(Z)

)
− ⟨A(ww⊤),A(Pww⊤,⊥(X))⟩ww⊤.

This proves the second equation.368

3.3. Upper bounds for the spectral norm of the deviation term369

Recall that by construction, it holds for anyw ∈ Nε that the sequence (Ut,w)t=0,1,...,T is independent370

of (⟨ww⊤,Ai⟩
)m
i=1

. This property allows us to establish the following key lemmawhich we will use371

several times throughout our proof.372

Lemma 3.6. Let Nε be the ε-net with ε = 1/2 introduced in Section 3.2 which we used to construct the373

virtual sequences (Ut,w)t. Assume that for the cardinality of Nε, we have that |Nε| ≤ 6d. Moreover, let374

T ∈ N such that 2T ≤ 6d. Then, with probability at least 1− 2 exp (−10d), it holds for all w ∈ Nε and all375

1 ≤ t ≤ T that376

|⟨ww⊤, (A∗A)
(
Pww⊤,⊥

(
X⋆ −Ut,wU⊤

t,w

))
⟩| ≤ 4

√
d

m

∥∥A (Pww⊤,⊥
(
X⋆ −Ut,wU⊤

t,w

)) ∥∥
2
.

Proof. We introduce the shorthand377

∆t,w := X⋆ −Ut,wU⊤
t,w.
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Due to the definition of Ai,w and due to the rotation invariance of the Gaussian distribution,378

{Ai,w}mi=1 and {⟨ww⊤,Ai⟩}mi=1 are independent. Moreover, note that by construction ∆t,w379

is independent of {⟨ww⊤,Ai⟩
}m
i=1

. Thus, it follows that {⟨ww⊤,Ai⟩
}m
i=1

is independent of380 {
⟨Ai,Pww⊤,⊥ (∆t,w)⟩

}m
i=1

. Moreover, the vector (⟨ww⊤,Ai⟩
)m
i=1

has i.i.d. entries with distribution381

N (0, 1). Thus, we have for all x > 0with probability at least 1− 2 exp
(
−x2/2

) (see [60, Proposition382

2.1.2]) that383

∣∣⟨ww⊤, (A∗A)
(
Pww⊤,⊥(∆t,w)

)
⟩
∣∣ = ∣∣ 1

m

m∑
i=1

⟨ww⊤,Ai⟩⟨Ai,Pww⊤,⊥(∆t,w)⟩
∣∣

≤ x

m

√√√√ m∑
i=1

⟨Ai,Pww⊤,⊥ (∆t,w)⟩2

=
x√
m

∥∥A (Pww⊤,⊥(∆t,w)
) ∥∥

2
. (19)

Then, by applying inequality (19) with x = C
√
d and by taking a union bound, it follows that with384

probability at least 1− ξ (over the whole probability space), we have for all w ∈ Nε and all t ∈ [T ]385

that386 ∣∣⟨ww⊤, (A∗A)
(
Pww⊤,⊥(∆t,w)

)
⟩
∣∣ ≤ C

√
d√

m

∥∥A (Pww⊤,⊥(∆t,w)
) ∥∥

2
,

where387

ξ ≤ 2T |Nε| exp
(
−C2d

)
≤ 62d exp

(
−C2d

)
= exp

(
2d log(6)− C2d

)
.

The claim follows from choosing C = 4.388

Recall that our goal was to derive an upper bound for the expression
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥.389

The following lemma provides such a bound for 1 ≤ t ≤ T . Here, T ∈ N is some fixed number of390

iterations, which will be specified later in the proof of our main result.391

Proposition 3.7. Let Nε be the ε-net from above with ε = 1/2 which we used to construct the virtual392

sequences (Ut,w)t=0,1,...,T . Assume that the conclusion of Lemma 3.6 holds. Moreover, assume that the linear393

measurement operator A has the Restricted Isometry Property of order 2r + 2 with constant δ = δ2r+2 ≤ 1.394

Then it holds that for all 0 ≤ t ≤ T ,395

∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t

) ∥∥ ≤

(
16

√
2rd

m
+ 2δ

)∥∥X⋆ −UtU
⊤
t

∥∥
+ 4

(
δ + 4

√
d

m

)
sup

w∈Nε

∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
.

As already mentioned, in previous literature, the quantity
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥ was con-396

trolled via an upper bound of supZ∈T2r

∥∥ (A∗A− I) (Z)
∥∥, where T2r is a set of all rank-2r matrices397

with bounded operator norm. This requires a uniform concentration bound for all matrices of rank398

at most 2rwith bounded spectral norm. As we have seen in Theorem 3.1, this argument necessarily399

leads to a multiplicative factor of
√
r2d/m.400

In contrast, Proposition 3.7 bounds
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥ by a sum of two terms. The first401

term can be controlled with sample complexity m ≳ rdκ2 since we also have δ ≲
√
rd/m, see402

Lemma 2.2. The second term is a uniform bound on the deviation of the “true” sequence from the403

“virtual” sequences. This term can be interpreted as a measure of how stable the sequence (Ut)t404

are under perturbation of the generalized entries (⟨Ai,ww⊤⟩)mi=1 of the symmetric measurement405

matrices.406
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Proof of Proposition 3.7. We use the shorthand notation407

∆t := X⋆ −UtU
⊤
t ,

∆t,w := X⋆ −Ut,wU⊤
t,w.

Since Nε is an ε-net of Sd−1 with ε = 1/2 we obtain that408 ∥∥(A∗A− I)(∆t)
∥∥ ≤ 2 sup

w∈Nε

|⟨ww⊤, (A∗A− I)(∆t)⟩|, (20)

(see, e.g. [60, Lemma 4.4.1]). Then, for every w ∈ Nε using the triangle inequality we obtain that409

|⟨ww⊤, (A∗A− I)(∆t)⟩| ≤|⟨ww⊤, (A∗A− I)(∆t,w)⟩|+ |⟨ww⊤, (A∗A− I)(∆t,w −∆t)⟩|
≤|⟨ww⊤, (A∗A− I)(∆t,w)⟩|+

∥∥(A∗A− I)(∆t,w −∆t)
∥∥

≤|⟨ww⊤, (A∗A− I)(∆t,w)⟩|+ δ
∥∥∆t −∆t,w

∥∥
F
. (21)

The last line is a consequence of the Restricted Isometry Property and Lemma 2.4, see inequality410

(8). To estimate the first summand further, we use the triangle inequality again, and we obtain that411

|⟨ww⊤, (A∗A− I)(∆t,w)⟩|
≤|⟨ww⊤, (A∗A− I)

(
Pww⊤,⊥(∆t,w)

)
⟩|+ |⟨ww⊤, (A∗A− I) (Pww⊤(∆t,w))⟩|

(a)
= |⟨ww⊤, (A∗A)

(
Pww⊤,⊥(∆t,w)

)
⟩|+

∣∣∣ (∥∥A (ww⊤) ∥∥2
2
− 1
)
⟨ww⊤,∆t,w⟩

∣∣∣
(b)

≤|⟨ww⊤, (A∗A)
(
Pww⊤,⊥(∆t,w)

)
⟩|+ δ|⟨ww⊤,∆t,w⟩|

≤|⟨ww⊤, (A∗A)
(
Pww⊤,⊥(∆t,w)

)
⟩|+ δ

∥∥∆t,w

∥∥.
Equation (a) follows from the definition of Pww⊤ and Pww⊤,⊥ and in inequality (b)we used the Re-412

stricted Isometry Property; see Definition 2.1. Thus, by combining the last estimatewith inequalities413

(20) and (21) and taking the supremum over all w ∈ Nε we obtain that414 ∥∥(A∗A− I)(∆t)
∥∥

≤2 sup
w∈Nε

|⟨ww⊤, (A∗A)
(
Pww⊤,⊥(∆t,w)

)
⟩|+ 2δ sup

w∈Nε

∥∥∆t −∆t,w

∥∥
F
+ 2δ sup

w∈Nε

∥∥∆t,w

∥∥
≤2 sup

w∈Nε

|⟨ww⊤, (A∗A)
(
Pww⊤,⊥(∆t,w)

)
⟩|+ 4δ sup

w∈Nε

∥∥∆t −∆t,w

∥∥
F
+ 2δ

∥∥∆t

∥∥. (22)

Since we assumed that the conclusion of Lemma 3.6 holds we obtain for the first summand that415

sup
w∈Nε

|⟨ww⊤, (A∗A)
(
Pww⊤,⊥ (∆t,w)

)
⟩| ≤ 4

√
d

m
sup

w∈Nε

∥∥A (Pww⊤,⊥(∆t,w)
) ∥∥

2

(a)

≤ 8

√
d

m
sup

w∈Nε

∥∥Pww⊤,⊥(∆t,w)
∥∥
F

≤ 8

√
d

m
sup

w∈Nε

∥∥∆t,w

∥∥
F

≤ 8

√
d

m

∥∥∆t

∥∥
F
+ 8

√
d

m
sup

w∈Nε

∥∥∆t −∆t,w

∥∥
F

(b)

≤ 8

√
2rd

m

∥∥∆t

∥∥+ 8

√
d

m
sup

w∈Nε

∥∥∆t −∆t,w

∥∥
F
.

Inequality (a) follows from the assumption that the operatorA has the Restricted Isometry Property416

of order 2r + 2 with an RIP-constant δ ≤ 1. To obtain inequality (b), we have used that the rank of417

∆t is at most 2r. Inserting the last estimate into (22), we obtain418 ∥∥ (A∗A− I) (∆t)
∥∥ ≤

(
16

√
2rd

m
+ 2δ

)∥∥∆t

∥∥+ 4

(
δ + 4

√
d

m

)
sup

w∈Nε

∥∥∆t −∆t,w

∥∥
F
.

Inserting the definition of ∆t and∆t,w yields the claim.419
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4. Proof of the main result420

4.1. Spectral Initialization421

We provide the following lemma to show that both the original sequence and the virtual sequences422

are close to the ground truthX⋆ at the spectral initialization. Moreover, this lemma guarantees that423 ∥∥U0U
⊤
0 −U0,wU⊤

0,w

∥∥
F
is sufficiently small. The proof of Lemma 4.1 is deferred to Appendix A.424

Lemma 4.1. There exists an absolute constant C > 0 such that the following holds:425

1. With probability at least 1− exp(−4d), ifm > C2κ2rd is satisfied, it holds that426 ∥∥X⋆ −U0U
⊤
0

∥∥ ≤ Cκσmin(X⋆)

√
rd

m
. (23)

2. With probability at least 1− exp(−2d), ifm > 4C2κ2rd is satisfied, it holds for everyw ∈ Nε that427 ∥∥X⋆ −U0,wU⊤
0,w

∥∥ ≤ 2Cκσmin(X⋆)

√
rd

m
. (24)

Consequently, ifm > 4C2κ2rd, with probability at least 1−2 exp(−2d), it holds for everyw ∈ Nε428

that429 ∥∥U0U
⊤
0 −U0,wU⊤

0,w

∥∥ ≤ 3Cκσmin(X⋆)

√
rd

m
. (25)

3. For any α ∈ (0, 1), assume m ≥
(
51C2 + C1

α2

)
κ2rd for an absolute constant C1 > 0. With430

probability at least 1− 4 exp(−d), for every w ∈ Nε,431

∥∥U0U
⊤
0 −U0,wU⊤

0,w

∥∥
F
≤

(
2α+ Cκ

√
rd

m

)(
2σmin(X⋆) + 3

√
2Cκ

√
rd

m
σmin(X⋆)

)
.(26)

4.2. Convergence Analysis432

4.2.1. Outline of proof strategy433

Before we explain our proof strategy, wewant to recall the following convergence lemmawhichwas434

proven in [10, Theorem 3.2] and [61]. It states that as soon as dist(Ut,U⋆) is small enough then435

dist(Ut,U⋆) converges to zero with linear rate. We state it in the version of the overview article [31,436

Theorem 4].437

Lemma 4.2. Assume that the measurement operator A satisfies the Restricted Isometry Property for all438

matrices of rank at most 6r with constant δ6r < 1/10. LetU0,U1,U2, . . . be a sequence of gradient descent439

iterates defined via equation (4). Assume that the step size satisfies µ ≤ c1∥∥X⋆

∥∥ and440

dist2 (UT ,U⋆) ≤
1

16
σmin(X⋆) (27)

for some iteration number T . Then it holds for all t ≥ T that441

dist2 (Ut,U⋆) ≤ (1− c2µσmin(X⋆))
t−T dist2(UT ,U⋆).

Here, c1, c2 > 0 are absolute numerical constants chosen small enough.442

Note that the condition δ6r < 1/10 holds with high probability if the sample size satisfies m ≳ rd.443

However, condition (27) cannot be guaranteed for the spectral initialization, i.e., for T = 0, when444

m ≍ rdκ2. For this reason, Lemma 4.2 is not directly applicable in our proof. To deal with this, we445

consider two different phases in our convergence analysis. Namely, we set446

T :=
⌈ 8

µσmin (X⋆)
log (16r)

⌉
.
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We will show that at the end of the first phase, which consists of the iterations t = 0, 1, . . . , T , con-447

dition (27) holds. The second phase starts at iteration T . For the second phase, we have established448

that condition (27) already holds we can directly apply Lemma 4.2 and we obtain linear conver-449

gence. Thus, our main focus in this section will be to analyze the first convergence phase.450

In the following, we will give an outline of the analysis of this first phase. As is typical in the451

analysis of non-convex optimization algorithms, we will control several quantities simultaneously452

in each iteration via an induction argument. The following list contains an overview of these.453

a) We will show that
∥∥UtU

⊤
t − Ut,wU⊤

t,w

∥∥
F

and
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

stay suffi-454

ciently small for each w ∈ Nε. Together with Proposition 3.7, this allows us to control455

the deviation term ∥ (I − A∗A)
(
X⋆ −UtU

⊤
t

)
∥.456

b) We will show that for each iteration t ∈ [T ] it holds that
∥∥X⋆ − UtU

⊤
t

∥∥ ≤ cσmin(X⋆) for457

some small constant c > 0. This ensures that the gradient descent iterates stay in the basin458

of attraction, in which we can establish linear convergence.459

c) We will establish that
∥∥V⊤

X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F
decays linearly in each iteration. Combined460

with the result from b) this will allow us to establish linear convergence of dist (Ut,U⋆).461

The remainder of this section is structured as follows. In Section 4.2.2 we will provide the techni-462

cal lemmas to control
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
and

∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
as described in a)463

above. In Section 4.2.3, we will provide the technical lemmas which allow us to control the quan-464

tities described above in b) and c). In Section 4.2.4, we will combine these ingredients to prove465

Proposition 4.10, which is our main result describing the convergence of the iterates (Ut)0≤t≤T in466

the first convergence phase.467

4.2.2. Lemmas for controlling the distance between the virtual sequences and the original468

sequence469

The goal of this section is to show that the virtual sequence iterates (Ut,w)t stay sufficiently close470

to the original sequence (Ut)t. This will be established via induction. In the following, we will471

state all key lemmas. To keep the presentation concise, we have moved the proofs, which may be of472

independent interest, to Section B.473

The first lemma in this section provides an a priori estimate. Its proof can be found in Section B.2.474

Lemma 4.3. For absolute constants c1, c2, c3 > 0 chosen small enough the following statement is true. Let475

w ∈ Nε and assume that476 ∥∥Ut

∥∥ ≤
√

2
∥∥X⋆

∥∥, (28)∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t

) ∥∥ ≤ c1σmin (X⋆) , (29)∥∥X⋆ −UtU
⊤
t

∥∥ ≤ σmin(X⋆), (30)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
≤ σmin (X⋆)

80
, (31)

and that the step size µ > 0 satisfies µ ≤ c2

κ
∥∥X⋆

∥∥ . In addition, assume that the conclusions of Lemma 3.6 hold477

and that478

max

{
δ; 8

√
rd

m

}
≤ c3

κ
, (32)

where δ = δ4r+1 denotes the Restricted Isometry Property of rank 4r + 1. Then it holds that479 ∥∥Ut+1U
⊤
t+1 −Ut+1,wU⊤

t+1,w

∥∥
F
≤
√√

2− 1

40
σmin(X⋆).

Under the assumption that this a priori estimate holds, the next lemma shows that the quantity480 ∥∥UtUt −Ut,wU⊤
t,w

∥∥
F
can be bounded from above by the quantity

∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
.481

The proof of this lemma has been deferred to Section B.3.482
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Lemma 4.4. Let w ∈ Nε and assume that483 ∥∥UtU
⊤
t −X⋆

∥∥ ≤ σmin (X⋆)

1600
, (33)

∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
≤

√
3
(√

2− 1
)
· σmin (X⋆)

40
. (34)

Then it holds that484 ∥∥V⊤
X⋆,⊥

(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆,⊥

∥∥
F
≤

3
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

5
. (35)

Moreover, it holds that485 ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
≤ 3
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
. (36)

The following key lemma allows us to control
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
iteratively. Its proof486

can be found in Section B.4.487

Lemma 4.5. For sufficiently small absolute constants c1, c2, c3, c4, c5, c6 > 0 the following statement holds.488

Let w ∈ Nε and assume that489 ∥∥V⊤
X⋆,⊥VUt

∥∥ ≤ c1, (37)
∥Ut∥ ≤

√
2∥X⋆∥, (38)∥∥UtU

⊤
t −X⋆

∥∥ ≤ c2σmin(X⋆), (39)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
≤ c3σmin (X⋆) . (40)

Moreover, assume that the step size satisfies µ ≤ c4

κ
∥∥X⋆

∥∥ . Furthermore, assume that the conclusion of Lemma490

3.6 holds and that491 ∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t

) ∥∥ ≤ c5σmin(X⋆), (41)

max

{
δ; 8

√
2rd

m

}
≤ c6

κ
, (42)

where δ = δ4r+2 denotes the Restricted Isometry Constant of rank 4r + 2. Then, it holds that492 ∥∥V⊤
X⋆

(
Ut+1U

⊤
t+1 −Ut+1,wU⊤

t+1,w

) ∥∥
F

≤
(
1− µσmin(X⋆)

16

)∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
+ µσmin(X⋆)

∥∥X⋆ −UtU
⊤
t

∥∥.
4.2.3. Lemmas controlling the distance between X⋆ andUtU

⊤
t493

In the following, let |||·||| denote any matrix norm, which satisfies the inequality494

|||XYZ||| ≤
∥∥X∥∥ |||Y|||

∥∥Z∥∥ (43)
for all matrices X, Y, and Z with dimensions such that the matrix product XYZ is well-defined.495

Note that all Schatten-p norms have this property. In particular, this includes the spectral norm
∥∥ ·∥∥496

and the Frobenius norm
∥∥ · ∥∥

F
.497

In the following, we are interested in establishing upper bounds for
∣∣∣∣∣∣X⋆ −UtU

⊤
t

∣∣∣∣∣∣, where either498

|||·||| =
∥∥ · ∥∥

F
or |||·||| =

∥∥ · ∥∥. Instead of estimating these quantities directly, we will instead derive499

upper bounds for the quantity500 ∣∣∣∣∣∣V⊤
X⋆

(
X⋆ −UtU

⊤
t

)∣∣∣∣∣∣ .
To be able to relate this quantity with

∣∣∣∣∣∣X⋆ −UtU
⊤
t

∣∣∣∣∣∣ one can then use the following lemma.501
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Lemma 4.6. Let |||·||| be a norm for which inequality (43) holds. Assume that502 ∥∥V⊤
X⋆,⊥VUt

∥∥ ≤ 1√
2
. (44)

Then the following inequalities hold:503 ∣∣∣∣∣∣V⊤
X⋆,⊥UtU

⊤
t VX⋆,⊥

∣∣∣∣∣∣ ≤ 2
∥∥V⊤

X⋆,⊥VUt

∥∥ ∣∣∣∣∣∣V⊤
X⋆

(
UtU

⊤
t −X⋆

)
VX⋆,⊥

∣∣∣∣∣∣ , (45)∣∣∣∣∣∣UtU
⊤
t −X⋆

∣∣∣∣∣∣ ≤ 2
(
1 +

∥∥V⊤
X⋆,⊥VUt

∥∥) ∣∣∣∣∣∣V⊤
X⋆

(
UtU

⊤
t −X⋆

)∣∣∣∣∣∣ . (46)

A comparable lemma was proven in [23] in a more general setting but with less explicit constants.504

For the sake of completeness, we included in Appendix C.1.505

The following lemma allows us to control the quantity
∣∣∣∣∣∣V⊤

X⋆

(
X⋆ −UtU

⊤
t

)∣∣∣∣∣∣ iteratively. We note506

that a similar lemma has already been proven in [23] in a more general setting with less explicit507

constants. For the sake of completeness, we again included a proof in Appendix C.2.508

Lemma 4.7. Let |||·||| be a norm which is submultiplicative in the sense of inequality (43). Assume that509 ∥∥V⊤
X⋆,⊥VUt

∥∥ ≤ 1

2
, (47)∥∥Ut

∥∥ ≤
√
2
∥∥X⋆

∥∥,∥∥X⋆ −UtU
⊤
t

∥∥ ≤ σmin(X⋆)

48
, (48)∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥ ≤ 1

48
σmin (X⋆) , (49)

and that the step size satisfies µ ≤ 1

1024κ
∥∥X⋆

∥∥ . Then it holds that510 ∣∣∣∣∣∣V⊤
X⋆

(
Ut+1U

⊤
t+1 −X⋆

)∣∣∣∣∣∣
≤
(
1− µ

8
σmin (X⋆)

) ∣∣∣∣∣∣V⊤
X⋆

(
X⋆ −UtU

⊤
t

)∣∣∣∣∣∣+ 5µ
∥∥X⋆

∥∥ ∣∣∣∣∣∣[(A∗A− I)
(
X⋆ −UtU

⊤
t

)]
VUt

∣∣∣∣∣∣ .
Given an upper bound for

∥∥X⋆ −UtU
⊤
t

∥∥
F
we can obtain an estimate for dist (Ut,U⋆) by using the511

following technical lemma.512

Lemma 4.8 (Lemma 5.4 in [10]). Let U,V ∈ Rd×r be two matrices and assume that rank(U) =513

min {r; d}. Then it holds that514

dist2 (U,V) ≤ 1

2(
√
2− 1)σ2

min(U)

∥∥UU⊤ −VV⊤∥∥2
F
,

where dist (U,V) is defined in (5).515

To check the prerequisite of the Davis-Kahan inequality (Lemma 2.6) in our proof, wewill also need516

the following auxiliary lemma, which provides us with an a priori bound for
∥∥X⋆−Ut+1U

⊤
t+1

∥∥. Its517

proof can be found in Appendix C.3.518

Lemma 4.9. There are absolute constants c1, c2, c3 > 0 such that the following holds. Assume that µ ≤519
c1∥∥X⋆

∥∥ and520

∥∥Ut

∥∥ ≤
√

2
∥∥X⋆

∥∥, (50)∥∥X⋆ −UtU
⊤
t

∥∥ ≤ c2σmin(X⋆), (51)∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t

) ∥∥ ≤ c3σmin (X⋆) . (52)

Then it holds that521 ∥∥X⋆ −Ut+1U
⊤
t+1

∥∥ ≤
(
1− 1√

2

)
σmin (X⋆) .
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4.2.4. Statement and proof of the main convergence lemma522

We now have all the ingredients in place to prove the main lemma in this section, which is stated523

below.524

Lemma 4.10. There are absolute constants c1, c2, c3, c4 > 0 chosen sufficiently small such that the following525

statement holds. Assume that the spectral initialization U0 satisfies526 ∥∥X⋆ −U0U
⊤
0

∥∥ ≤ c1σmin (X⋆) (53)
and that for every w ∈ Nε we have that527 ∥∥U0U

⊤
0 −U0,wU⊤

0,w

∥∥
F
≤ c2σmin (X⋆) . (54)

Moreover, we assume that the conclusion of Lemma 3.6 holds for528

T =
⌈ 8

µσmin (X⋆)
log (16r)

⌉
.

Furthermore, we assume that529

max

{
δ; 8

√
2rd

m

}
≤ c3

κ
, (55)

where δ = δ4r+2 denotes the Restricted Isometry Property of order 4r + 2. In addition, assume that µ ≤530
c4

κ
∥∥X⋆

∥∥ . Then for every iteration t with 0 ≤ t ≤ T it holds that531

dist2 (Ut,U⋆) ≤ r

(
1− µσmin(X⋆)

16

)2t ∥∥X⋆ −U0U
⊤
0

∥∥. (56)

In particular, we have that532

dist2 (UT ,U⋆) ≤
1

16
σmin(X⋆), (57)

whereU⋆ ∈ Rn×r denotes a matrix which satisfies U⋆U
⊤
⋆ = X⋆.533

Proof of Lemma 4.10. We prove by induction that for all iterations t with 0 ≤ t ≤ T the following534

inequalities hold:535 ∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F
≤
(
1− µ

16
σmin(X⋆)

)t ∥∥V⊤
X⋆

(
X⋆ −U0U

⊤
0

) ∥∥
F
, (58)∥∥V⊤

X⋆

(
X⋆ −UtU

⊤
t

) ∥∥ ≤c1σmin (X⋆) , (59)∥∥V⊤
X⋆,⊥VUt

∥∥ ≤
√
2c1, (60)∥∥X⋆ −UtU

⊤
t

∥∥ ≤3c1σmin (X⋆) , (61)
and, for every w ∈ Nε,536 ∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
≤c2σmin (X⋆) , (62)∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
≤3c2σmin(X⋆). (63)

The constants c1, c2 > 0 are the same as in assumptions (53) and (54) and are thus, in particular,537

independent of the iteration number t.538

First, we check that these inequalities hold for t = 0. Inequality (58) is immediate. Inequalities (59)539

and (61) follow from assumption (53). Inequalities (62) and (63) are due to assumption (54). It540

remains to establish inequality (60) for t = 0. Using the Davis-Kahan inequality (see Lemma 2.6)541

and assumption (53) it follows that542

∥∥V⊤
X⋆

VU0

∥∥ ≤
√
2
∥∥V⊤

X⋆

(
X⋆ −U0U

⊤
0

) ∥∥
σmin (X⋆)

≤
√
2c1.
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This shows that the above inequalities hold for t = 0.543

544

For the induction step, assume now that these inequalities hold for some t. First, we observe that545

it follows from the induction assumption (61) and Weyl’s inequalities that
∥∥Ut

∥∥ ≤
√
2
∥∥X⋆

∥∥ for546

c1 < 1/3. Moreover, note that since we assumed that the conclusion of Lemma 3.6 holds we obtain547

from Proposition 3.7 that548 ∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t

) ∥∥
≤

(
16

√
2rd

m
+ 2δ

)∥∥X⋆ −UtU
⊤
t

∥∥+ 4

(
δ + 4

√
d

m

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

(a)

≤ 4c3
κ

∥∥X⋆ −UtU
⊤
t

∥∥+ 6c3
κ

∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

(b)

≤ 10c3
κ

σmin (X⋆) , (64)

where inequality (a) follows fromassumption (55). Inequality (b) is due to the induction hypotheses549

(61) and (63) with c1 ≤ 1/3 and c2 ≤ 1/3. Next, we note that from Lemma 4.7 applied with550

|||·||| =
∥∥ · ∥∥

F
it follows that551 ∥∥V⊤

X⋆

(
Ut+1U

⊤
t+1 −X⋆

) ∥∥
F

≤
(
1− µ

8
σmin (X⋆)

)∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F
+ 5µ

∥∥X⋆

∥∥∥∥ [(A∗A− I)
(
X⋆ −UtU

⊤
t

)]
VUt

∥∥
F

(a)

≤
(
1− µ

8
σmin (X⋆)

)∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F
+ 5µδ

∥∥X⋆

∥∥∥∥X⋆ −UtU
⊤
t

∥∥
F

(b)

≤
(
1− µ

8
σmin (X⋆)

)∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F
+ 15µδ

∥∥X⋆

∥∥∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F

(c)

≤
(
1− µ

8
σmin (X⋆)

)∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F
+

15µc3
∥∥X⋆

∥∥
κ

∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F

(d)

≤
(
1− µ

16
σmin (X⋆)

)∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥
F
.

Inequality (a) follows from the Restricted Isometry Property combined with Lemma 2.4. Inequal-552

ity (b) is due to Lemma 4.6 and inequality (60). Inequality (c) follows from assumption (55) and553

inequality (d) is due to the fact we can choose c3 ≤ 1
240 . Thus, using the induction assumption, we554

see that inequality (58) holds for t+ 1.555

Next, our goal is to prove inequality (59) for t+1. For that, we note that it follows from Lemma 4.7556

with |||·||| =
∥∥ · ∥∥ that557 ∥∥V⊤

X⋆

(
Ut+1U

⊤
t+1 −X⋆

) ∥∥
≤
(
1− µ

8
σmin (X⋆)

)∥∥V⊤
X⋆

(
X⋆ −UtU

⊤
t

) ∥∥+ 5µ
∥∥X⋆

∥∥∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
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) ∥∥
(a)

≤
(
1− µ

8
σmin (X⋆)

)
c1σmin(X⋆) + 50c3µσ

2
min (X⋆)

(b)

≤c1σmin (X⋆) , (65)
where inequality (a) follows from the induction hypothesis (59) and inequality (64). Inequality (b)558

holds since we can choose c1 and c3 in such a way that c3 ≤ c1
400 . This proves inequality (59) for559

t+ 1.560

We observe that Lemma 4.9 yields the a-priori bound561 ∥∥X⋆ −Ut+1U
⊤
t+1

∥∥ ≤
(
1− 1√

2

)
σmin (X⋆) .
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Thus, we can apply the Davis-Kahan inequality (see Lemma 2.6) which together with inequality562

(65) yields that563 ∥∥V⊤
X⋆

VUt+1

∥∥ ≤
√
2
∥∥V⊤

X⋆

(
Ut+1U

⊤
t+1 −X⋆

) ∥∥
σmin (X⋆)

≤
√
2c1.

This proves inequality (60) for t+ 1. Next, we apply Lemma 4.6 and (65) to obtain that564 ∥∥X⋆ −Ut+1U
⊤
t+1

∥∥ ≤ 2
(
1 +

∥∥V⊤
X⋆,⊥VUt+1

∥∥) ∥∥V⊤
X⋆

(
X⋆ −Ut+1U

⊤
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) ∥∥
≤ 3
∥∥V⊤

X⋆

(
X⋆ −Ut+1U

⊤
t+1

) ∥∥ ≤ 3c1σmin(X⋆),

which proves inequality (61) for t+ 1.565

Next, we can apply Lemma 4.5 since all assumptions are satisfied and it follows that566 ∥∥V⊤
X⋆

(
Ut+1U

⊤
t+1 −Ut+1,wU⊤
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16
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(b)

≤c2σmin (X⋆) . (66)
Inequality (a) is due to inequalities (61) and (62). Inequality (b) holds since we can choose that567

c1 ≤ c2
48 . This proves inequality (62).568

Next, we want to prove inequality (63) for t + 1. First, we apply Lemma 4.3 and we obtain for all569

w ∈ Nε the a-priori bound570 ∥∥Ut+1U
⊤
t+1 −Ut+1,wU⊤

t+1,w

∥∥
F
≤
√√

2− 1

40
· σmin (X⋆) .

This allows us to apply Lemma 4.4 and we obtain for all w ∈ Nε the sharper bound571 ∥∥Ut+1U
⊤
t+1 −Ut+1,wU⊤

t+1,w

∥∥
F
≤ 3
∥∥V⊤

X⋆

(
Ut+1U

⊤
t+1 −Ut+1,wU⊤

t+1,w

) ∥∥
F

(66)
≤ 3c2σmin (X⋆) ,

which shows inequality (63) for t+ 1. This completes the induction step.572

573

To complete the proof of Lemma 4.10 it remains to prove inequalities (56) and (57). For that, we574

first observe that575 ∥∥X⋆ −UtU
⊤
t

∥∥
F

(a)

≤3
∥∥V⊤

X⋆

(
X⋆ −UtU
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∥∥.
Inequality (a) follows from Lemma 4.6 with |||·||| =

∥∥ · ∥∥
F
which is applicable since we have shown576

by induction that (60) holds for 0 ≤ t ≤ T . Inequality (b) holds since we have proven (58) for all577

0 ≤ t ≤ T . Inequality (c) holds since X⋆ −UtU
⊤
t has rank at most 2r. Thus, we can apply Lemma578

4.8 and obtain that579
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where in the last inequality, we have used assumption (53). This proves inequality (56) since c1 ≤580 √
2−1
9 . Next, we note that for t = T , the above inequality yields that581

dist2 (UT ,U⋆)
(a)

≤ 9c21r(√
2− 1

) (1− µσmin(X⋆)

16

)2T

σmin(X⋆)
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≤ 9c21r(√
2− 1

) exp(−Tµσmin(X⋆)

8

)
σmin(X⋆)

(c)

≤ σmin(X⋆)

16
.

In inequality (a), we have used again assumption (53). Inequality (b) is due to the elementary582

inequality ln(1 + x) ≤ x for −1 < x and the assumption µ < c4

κ
∥∥X⋆

∥∥ for sufficiently small c4 > 0.583

Inequality (c) follows from T =
⌈

8
µσmin(X⋆)

log (16r)
⌉
(and from the fact that we can choose c1 ≤584

√√
2−1
3 ). This proves inequality (57). Thus, the proof of Lemma 4.10 is complete.585

4.3. Proof of Theorem 1.2586

Now we have all the ingredients in place to prove the main result of this paper, Theorem 1.2.587

Proof of Theorem 1.2. In the following c > 0 denotes a sufficiently small absolute constant. First,588

by Lemma 2.2 we know that due to our assumption m ≳ rdκ2, with probability 1 − exp(−d) the589

measurement operator A satisfies the Restricted Isometry Property of order 6r with a constant δ =590

δ6r ≤ c
κ , where c > 0 is a sufficiently small absolute constant.591

Set592

T :=

⌈
8

µσmin(X⋆)
log (16r)

⌉
.

Note that since r ≥ 1 and the assumption µ ≤ c1
σmin(X⋆)

for small c1 > 0, we have T ≥ 1. Let Nε be593

an ε-net of the unit sphere in Rd with ε = 1/2 such that |Nε| ≤ 6d. Now note that 2T ≤ 6d, where594

we have used the assumption µ ≥ 32
σmin(X⋆)6d

log (16r). Thus, it follows from Lemma 3.6 that with595

probability at least 1− 2 exp(−10d) it holds that596

|⟨ww⊤, (A∗A)
(
Pww⊤,⊥

(
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t,w
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√
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m

∥∥A (Pww⊤,⊥
(
X⋆ −Ut,wU⊤

t,w

)) ∥∥
2

for all w ∈ Nε and for all 0 ≤ t ≤ T . Next, we know from Lemma 4.1 and due to our assumption597

m ≳ rdκ2 that with probability at least 1− 5 exp(−d), the inequalities598 ∥∥X⋆ −U0U
⊤
0

∥∥ ≤ cσmin (X⋆) , (67)∥∥U0U
⊤
0 −U0,wU⊤

0,w

∥∥
F
≤ cσmin (X⋆)

hold for a sufficiently small constant c > 0. Thus, all the assumptions of Lemma 4.10 are fulfilled.599

It follows that600

dist2 (Ut,U⋆) ≤ r

(
1− µσmin(X⋆)

16

)2t ∥∥X⋆ −U0U
⊤
0

∥∥ (68)

for all 0 ≤ t ≤ T and601

dist (UT ,U⋆) ≤
σmin(X⋆)

16
. (69)

Due to inequality (69) and since δ6r < 1/10we can apply Lemma 4.2 which yields that for t ≥ T ,602

dist2 (Ut,U⋆) ≤ (1− cµσmin (X⋆))
t−T dist2 (UT ,U⋆) . (70)

Thus, by combining (67), (68), and (70) we obtain the conclusion of Theorem 1.2.603
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5. Discussions604

In this paper, we have shown that for symmetric matrix sensing, factorized gradient descent can605

recover the ground truthmatrix as soon as the number of samples satisfiesm ≳ rdκ2. This improves606

over previous results in the literature with a quadratic rank dependence. The key ingredient in our607

proof is a combination of a virtual sequence argument with an ε-net argument.608

Going forward, our work opens up a number of exciting research directions. In the following, we609

highlight a few of these.610

• Breaking the quadratic rank barrier in related non-convex matrix sensing problems: We expect611

that our novel proof technique will pave the way to break the quadratic rank barrier in the612

sample complexity in various related non-convex matrix sensing problems. This includes613

matrix sensing with an asymmetric ground truth matrix or overparameterizedmatrix sens-614

ing with small random initialization [22]. One might also examine whether our new proof615

technique can be used to remove the additional rank factor in the sample complexity in616

related algorithms such as scaled gradient descent [11] or GSMR [30].617

• Removing the condition number dependence in the sample complexity: Compared to the nuclear618

norm minimization approach, the sample complexity in Theorem 1.2 is still suboptimal619

since it depends quadratically on the condition number of the ground truth matrix X⋆.620

Indeed, all related results in the non-convex low-rank matrix recovery also have such a621

dependency on the condition number. It would be interesting to examine whether this622

dependence on the condition number is actually needed.623

• Beyond Gaussian measurement matrices: It would also be interesting to examine whether the624

argument in this paper can be adapted to scenarios where the measurement matrices are625

no longer Gaussian, e.g., the matrix completion problem. Since the proof presented in this626

paper heavily relies on the orthogonal invariance of the Gaussian distribution, new insights627

are likely required to handle scenarioswhere this property is no longer available. We believe628

that this is an exciting research direction.629
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A. Proof for the Spectral Initialization (Proof of Lemma 4.1)803

Proof of Lemma 4.1. (1) We write804

(A∗A) (X⋆)−X⋆ =
1

m

m∑
i=1

(⟨Ai,X⋆⟩Ai −X⋆) .

Let Ñε be any ε-net on Sd−1 with ε = 1
2 of size at most 6d. Then we have805 ∥∥ (A∗A) (X⋆)−X⋆

∥∥ ≤2 sup
x∈Ñε

1

m

m∑
i=1

x⊤ (⟨Ai,X⋆⟩Ai −X⋆)x

=2 sup
x∈Ñε

1

m

m∑
i=1

(
⟨Ai,X⋆⟩x⊤Aix− x⊤X⋆x

)
.

For each i ∈ [m], we have that E [⟨Ai,X⋆⟩x⊤Aix
]
= x⊤X⋆x. Moreover, the inner product ⟨Ai,X⋆⟩806

is a centeredGaussian randomvariablewith variance ∥X⋆∥2F and x⊤Aix is a centeredGaussian ran-807

domvariablewith variance 1. Thus, for each fixedx,∑m
i=1

(
⟨Ai,X⋆⟩x⊤Aix− x⊤X⋆x

) is a sumofm808

independent and centered sub-exponential random variables with subexponential norm bounded809

by K∥X⋆∥F , where K is an absolute constant (see [60, Lemma 2.7.7]). Therefore, by Bernstein’s810

inequality (see, for example, [60, Theorem 2.8.1]), it holds that811

P

(∣∣∣∣∣ 1m
m∑
i=1

(
⟨Ai,X⋆⟩x⊤Aix− x⊤X⋆x

)∣∣∣∣∣ ≥ t

)
≤ exp

(
−C ′ min

{
mt2

∥X⋆∥2F
,

mt

∥X⋆∥F

})
,

where C ′ > 0 is some absolute constant. Taking t = 1
8C∥X⋆∥F

(√
d
m + d

m

)
and a union bound812

over all points x on Ñε, we obtain813 ∥∥(A∗A)(X⋆)−X⋆

∥∥ ≤ 1

4
C∥X⋆∥F

(√
d

m
+

d

m

)
≤ 1

4
Cκσmin(X⋆)

√
r

(√
d

m
+

d

m

)
(71)
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with probability at least 1−exp(d log(6)−C ′C2d) ≥ 1−exp(−4d) for some sufficiently large constant814

C > 0.815

We assume that (71) holds and that m > C2κ2rd. Then Weyl’s inequalities imply that816

λr((A∗A)(X⋆)) >
1

2
σmin(X⋆), |λr+1((A∗A)(X⋆))| <

1

2
σmin(X⋆).

Since Λ̃r is a diagonal matrix with entries λ1((A∗A)(X⋆)), . . . , λr((A∗A)(X⋆)), it follows from the817

definition of U0 = ṼrΛ̃
1/2
r that U0U

⊤
0 is the best rank-r approximation of (A∗A)(X⋆). Conse-818

quently, we obtain that819 ∥∥X⋆ −U0U
⊤
0

∥∥ ≤
∥∥X⋆ − (A∗A)(X⋆)

∥∥+ ∥∥(A∗A)(X⋆)−U0U
⊤
0

∥∥
≤
∥∥X⋆ − (A∗A)(X⋆)

∥∥+ ∥∥(A∗A)(X⋆)−X⋆

∥∥ ≤ Cκσmin(X⋆)

√
rd

m
,

where in the second inequality, we used the Eckart-Young-Mirsky theorem.820

(2) Due to Lemma 3.5 we have821

(A∗
wAw − I)(X⋆) = (A∗A− I)(Pww⊤,⊥(X⋆))− ⟨A(ww⊤),A

(
Pww⊤,⊥(X⋆)

)
⟩ww⊤. (72)

It follows that822

∥(A∗
wAw − I)(X⋆)∥ ≤ ∥(A∗A− I)(Pww⊤,⊥(X⋆))∥+ |⟨A(ww⊤),A

(
Pww⊤,⊥(X⋆)

)
⟩|. (73)

For a fixedw ∈ Nε, we obtain with an analogous argument as for (71) that with probability at least823

1− exp(−4d),824

∥(A∗A− I)(Pww⊤,⊥(X⋆))∥ ≤ C
∥∥Pww⊤,⊥(X⋆)

∥∥
F

(√
d

m
+

d

m

)
≤ 1

4
Cκσmin(X⋆)

√
r

(√
d

m
+

d

m

)
.

The second term in (73) can be rewritten as825

⟨A(ww⊤),A
(
Pww⊤,⊥(X⋆)

)
⟩ = 1

m

m∑
i=1

⟨ww⊤,Ai⟩⟨Ai,Pww⊤,⊥(X⋆)⟩.

Here,∑m
i=1⟨ww⊤,Ai⟩⟨Ai,Pww⊤,⊥(X⋆)⟩ is a sum of m independent sub-exponential random vari-826

ables with mean zero due to the rotation invariance of the Gaussian measure. Moreover, each term827

has sub-exponential norm K
∥∥X⋆

∥∥
F
. Applying Bernstein’s inequality as in the proof of (71), we828

obtain that for each fixed w with probability at least 1− exp(−4d),829

⟨A(ww⊤),A
(
Pww⊤,⊥(X⋆)

)
⟩ ≤ 1

4
Cκσmin(X⋆)

√
r

(√
d

m
+

d

m

)
. (74)

Then, by taking a union bound over w ∈ Nε, it follows from (73) that with probability at least830

1− exp(−2d) that for all w ∈ Nε it holds that831 ∥∥(A∗
wAw − I)(X⋆)

∥∥ ≤ 1

2
Cκσmin(X⋆)

√
r

(√
d

m
+

d

m

)
. (75)

We now assume that (75) holds and that m > 4C2κ2rd. Then it follows from Weyl’s inequalities832

that833

λr((A∗
wAw)(X⋆)) >

1

2
σmin(X⋆), |λr+1((A∗

wAw)(X⋆))| <
1

2
σmin(X⋆).

It follows from the Eckart-Mirsky-Young theorem and the definition of U0,w that U0,wU⊤
0,w is the834

best rank-r approximation of (A∗
wAw)(X⋆). Therefore,835 ∥∥X⋆ −U0,wU⊤

0,w

∥∥ ≤
∥∥X⋆ − (A∗

wAw)(X⋆)
∥∥+ ∥∥(A∗

wAw)(X⋆)−U0,wU⊤
0,w

∥∥
≤ 2
∥∥X⋆ − (A∗

wAw)(X⋆)
∥∥ ≤ 2Cκσmin(X⋆)

√
rd

m
.
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This finishes the proof of inequality (24). Finally, (25) follows from (23) and (24) via the triangle836

inequality.837

(3) From (72), we have838

(A∗A) (X⋆)− (A∗
wAw) (X⋆) = (A∗A− I)(X⋆)− (A∗

wAw − I)(X⋆)

= ⟨ww⊤,X⋆⟩(A∗A− I)(ww⊤) + ⟨A(ww⊤),A(Pww⊤,⊥(X⋆))⟩ww⊤.

It follows from Lemma 2.2 that there exists an absolute constant C1 > 0 such that for any α ∈ (0, 1)839

and m ≥ C1

α2 κ
2rd, with probability at least 1 − exp(−d), the measurement operator A satisfies the840

Restricted Isometry Property of order 6r with constant841

δ := δ6r ≤ α

κ
. (76)

Then for any V ∈ Rd×r with orthonormal columns and for all w ∈ Nε, when m ≥ C1

α2 κ
2rd, with842

probability at least 1− 2 exp(−d),843 ∥∥(A∗A−A∗
wAw)(X⋆)V

∥∥
F

≤|⟨ww⊤,X⋆⟩|
∥∥(A∗A− I)(ww⊤)V

∥∥
F
+ |⟨A(ww⊤),A(Pww⊤,⊥(X⋆))⟩|

∥∥ww⊤V
∥∥
F

(a)

≤ δ
∥∥X⋆

∥∥∥∥ww⊤∥∥
F
+ |⟨A(ww⊤),A(Pww⊤,⊥(X⋆))⟩|

(b)

≤ασmin(X⋆) +
1

2
Cκσmin(X⋆)

√
rd

m
. (77)

Here in (a) we use property (7) in Lemma 2.4 and the fact that ww⊤V is of rank 1, and in (b) we844

use (76) and, moreover, (74) with a union bound over w ∈ Nε.845

We now proceed under the assumption that the inequalities in parts (1) and (2) hold. We use the846

following notations for spectral initialization:847

(A∗A) (X⋆) = ṼΛ̃Ṽ⊤, U0 = ṼrΛ̃
1/2
r , (78)

(A∗
wAw) (X⋆) = ṼwΛ̃wṼ⊤

w, U0,w = Ṽr,wΛ̃1/2
r,w.

Denote848

Z1 := (A∗A)(X⋆), Z2 := (A∗
wAw)(X⋆),

and849

Z1,r := U0U
⊤
0 , Z2,r := U0,wU⊤

0,w.

Recall the definition of Ṽr and Ṽr,w in (78) and (17). We have850

∥Z1,r − Z2,r∥F = ∥U0U
⊤
0 −U0,wU⊤

0,w∥F
≤ ∥

(
U0U

⊤
0 −U0,wU⊤

0,w

)
Ṽr∥F + ∥

(
U0U

⊤
0 −U0,wU⊤

0,w

)
Ṽr,⊥∥F . (79)

For the first term in (79), we have851

∥
(
U0U

⊤
0 −U0,wU⊤

0,w

)
Ṽr∥F

=∥(Z1 − Z2,r)Ṽr∥F
≤∥(Z1 − Z2)Ṽr∥F + ∥(Z2 − Z2,r)Ṽr∥F
=∥(Z1 − Z2)Ṽr∥F + ∥(Ṽr,w,⊥Λr,w,⊥Ṽ

⊤
r,w,⊥)Ṽr∥F

≤∥(Z1 − Z2)Ṽr∥F + σr+1(Z2)∥Ṽ⊤
r,w,⊥Ṽr∥F

≤∥(Z1 − Z2)Ṽr∥F + Cκσmin(X⋆)

√
rd

m
∥Ṽ⊤

r,w,⊥Ṽr∥F , (80)

where in the last inequality we used Weyl’s inequality and (75), which implies852

σr+1(Z2) = |σr+1(Z2)− σr+1(X⋆)| ≤ ∥Z2 −X⋆∥ ≤ Cκσmin(X⋆)

√
rd

m
∥Ṽ⊤

r,w,⊥Ṽr∥F . (81)
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From (75) and (71), it follows that when m ≥ C2κ2rd,853

∥Z1 − Z2∥ ≤ 3C

2
κσmin(X⋆)

√
rd

m
. (82)

Similar to (81), using (75) and Weyl’s inequalities we obtain that854

|σr(Z1)− σmin(X⋆)| ≤ Cκσmin(X⋆)

√
rd

m
,

σr+1(Z1) ≤ Cκσmin(X⋆)

√
rd

m
.

Therefore, if m > 16C2κ2rd, the spectral gap between σr(Z1) and σr+1(Z2) can be bounded from855

below by856

σr(Z1)− σr+1(Z1) ≥

(
1− 2Cκ

√
rd

m

)
σmin(X⋆) ≥

1

2
σmin(X⋆). (83)

When m ≥ 51C2κ2rd, we have from (82) and (83),857

∥∥Z1 − Z2

∥∥ ≤ 3C

2
κ

√
rd

m
σmin(X⋆)

≤
(
1− 1√

2

)(
1− 2Cκ

√
rd

m

)
σmin(X⋆)

≤
(
1− 1√

2

)
(σr(Z1)− σr+1(Z1)).

Thus, the prerequisites of Lemma 2.6 (Davis-Kahan inequality) are satisfied. It follows that when858

m ≥ 51C2κ2rd,859

∥Ṽ⊤
r,w,⊥Ṽr∥F ≤ 2

√
2∥(Z1 − Z2)Ṽr∥F

σmin(X⋆)
. (84)

Hence, when m ≥
(
51C2 + C1

α2

)
κ2rd, we obtain from (80) and (77) that860

∥
(
U0U

⊤
0 −U0,wU⊤

0,w

)
Ṽr∥F ≤

(
1 + 2

√
2Cκ

√
rd

m

)∥∥(Z1 − Z2)Ṽr

∥∥
F

≤ 2
∥∥(Z1 − Z2)Ṽr

∥∥
F
≤

(
2α+ Cκ

√
rd

m

)
σmin(X⋆). (85)

For the second term in (79), we have when m ≥
(
51C2 + C1

α2

)
κ2rd,861

∥
(
U0U

⊤
0 −U0,wU⊤

0,w

)
Ṽr,⊥∥F

≤∥Ṽ⊤
r

(
U0U

⊤
0 −U0,wU⊤

0,w

)
Ṽr,⊥∥F + ∥Ṽ⊤

r,⊥
(
U0U

⊤
0 −U0,wU⊤

0,w

)
Ṽr,⊥∥F

≤∥Ṽ⊤
r

(
U0U

⊤
0 −U0,wU⊤

0,w

)
∥F + ∥Ṽ⊤

r,⊥U0,wU⊤
0,wṼr,⊥∥F

≤

(
2α+ Cκ

√
rd

m

)
σmin(X⋆) + ∥Ṽ⊤

r,⊥U0,wU⊤
0,wṼr,⊥∥F , (86)

where the last inequality is due to (85).862
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We now consider the second term in (86). Recall the definition of U0,w in (18). We have for m ≥863 (
51C2 + C1

α2

)
κ2rd,864

∥Ṽ⊤
r,⊥U0,wU⊤

0,wṼr,⊥∥F =
∥∥Ṽ⊤

r,⊥Ṽr,wΛr,wṼ⊤
r,wṼr,⊥

∥∥
F

≤
∥∥Ṽ⊤

r,⊥Ṽr,wΛr,w

∥∥∥∥Ṽ⊤
r,wṼr,⊥

∥∥
F

=
√∥∥Ṽ⊤

r,⊥Ṽr,wΛ2
r,wṼ⊤

r,wṼr,⊥
∥∥∥∥Ṽ⊤

r,wṼr,⊥
∥∥
F

=
√∥∥Ṽ⊤

r,⊥(U0,wU⊤
0,w)2Ṽr,⊥

∥∥∥∥Ṽ⊤
r,wṼr,⊥

∥∥
F

=
∥∥Ṽ⊤

r,⊥U0,wU⊤
0,w

∥∥∥∥Ṽ⊤
r,wṼr,⊥

∥∥
F

=
∥∥Ṽ⊤

r,⊥(U0,wU⊤
0,w −U0U

⊤
0 )
∥∥∥∥Ṽ⊤

r,wṼr,⊥
∥∥
F

≤
∥∥U0,wU⊤

0,w −U0U
⊤
0

∥∥∥∥Ṽ⊤
r,wṼr,⊥

∥∥
F

(a)

≤ 3Cκσmin(X⋆)

√
rd

m
· 2

√
2∥(Z1 − Z2)Ṽr∥F

σmin(X⋆)

(b)

≤ 6
√
2Cκ

(
α+

1

2
Cκ

√
rd

m

)√
rd

m
σmin(X⋆), (87)

where (a) is due to (25) and (84), and (b) is due to (77). Therefore from (86) and (87), we obtain865

for m ≥
(
51C2 + C1

α2

)
κ2rd,866

∥
(
U0U

⊤
0 −U0,wU⊤

0,w

)
Ṽr,⊥∥F (88)

≤

(
2α+ Cκ

√
rd

m

)
σmin(X⋆) + 6

√
2Cκ

(
α+

1

2
Cκ

√
rd

m

)√
rd

m
σmin(X⋆).

From (85), (88), and (79), we conclude that if m ≥
(
51C2 + C1

α2

)
κ2rd,867

∥∥U0U
⊤
0 −U0,wU⊤

0,w

∥∥
F
≤

(
2α+ Cκ

√
rd

m

)(
2σmin(X⋆) + 3

√
2Cκ

√
rd

m
σmin(X⋆)

)
.

This finishes the proof of (26).868

B. Proofs of lemmas concerning the distance between the virtual869

sequences and the original sequence870

B.1. Some auxiliary estimates871

In order to prove Lemma 4.3 and Lemma 4.5 we will need several auxiliary estimates. These are872

summarized in the following lemma.873

Lemma B.1. Assume that the measurement operator A has the Restricted Isometry Property with constant874

δ = δ4r+1 ≤ 1. Moreover, assume that the conclusion of Lemma 3.6 holds. Then, the following inequalities875

hold.876

1. ∥∥ [(A∗A−A∗
wAw)

(
X⋆ −UtU

⊤
t

)]
VUt,w

∥∥
F

≤

(
δ +

8
√
rd√
m

)∥∥X⋆ −UtU
⊤
t

∥∥+(δ + 4
√
2d√
m

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
, (89)

2. ∥∥ [(A∗
wAw − I)

(
Ut,wU⊤

t,w −UtU
⊤
t

)]
VUt,w

∥∥
F
≤ 2δ

∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
, (90)
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3. ∥∥ [(A∗A−A∗
wAw)

(
X⋆ −Ut,wU⊤

t,w

)]
VUt,w

∥∥
F
≤

(
δ + 8

√
rd

m

)∥∥X⋆ −Ut,wU⊤
t,w

∥∥,(91)
4. and877 ∥∥ (A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

) ∥∥ ≤
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥+(δ + 8

√
rd

m

)∥∥X⋆ −UtU
⊤
t

∥∥
+

(
2δ + 4

√
2d

m

)∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
. (92)

Proof of Lemma B.1. To prove inequality (89), we compute that878

(A∗
wAw)

(
X⋆ −UtU

⊤
t

)
=(A∗

wAw)
(
Pww⊤

(
X⋆ −UtU

⊤
t

))
+ (A∗

wAw)
(
Pww⊤,⊥

(
X⋆ −UtU

⊤
t

))
(a)
=(A∗A)

(
Pww⊤,⊥

(
X⋆ −UtU

⊤
t

))
+ Pww⊤

(
X⋆ −UtU

⊤
t

)
− ⟨A

(
ww⊤) ,A (Pww⊤,⊥

(
X⋆ −UtU

⊤
t

))
⟩ww⊤,

where in equation (a)we used Lemma 3.5. It follows that879

(A∗A−A∗
wAw)

(
X⋆ −UtU

⊤
t

)
=(A∗A− I)

(
Pww⊤

(
X⋆ −UtU

⊤
t

))
+ ⟨A(ww⊤),A

(
Pww⊤,⊥(X⋆ −UtU

⊤
t )
)
⟩ww⊤.

By using the triangle inequality, we obtain the estimate880 ∥∥ (A∗A−A∗
wAw)

(
X⋆ −UtU

⊤
t

)
VUt,w

∥∥
F

≤
∥∥ (A∗A− I)

(
Pww⊤

(
X⋆ −UtU

⊤
t

))
VUt,w

∥∥
F
+
∥∥⟨A(ww⊤),A

(
Pww⊤,⊥(X⋆ −UtU

⊤
t )
)
⟩ww⊤∥∥

F

(a)

≤ δ
∥∥Pww⊤

(
X⋆ −UtU

⊤
t

) ∥∥
F
+
∣∣⟨A(ww⊤),A

(
Pww⊤,⊥(X⋆ −UtU

⊤
t )
)
⟩
∣∣

(b)

≤δ
∥∥X⋆ −UtU

⊤
t

∥∥+ ∣∣⟨A(ww⊤),A
(
Pww⊤,⊥(X⋆ −Ut,wU⊤

t,w)
)
⟩
∣∣

+
∣∣⟨A(ww⊤),A

(
Pww⊤,⊥(UtU

⊤
t −Ut,wU⊤

t,w)
)
⟩
∣∣

(c)

≤δ
∥∥X⋆ −UtU

⊤
t

∥∥+ 4
√
d√
m

∥∥A (Pww⊤,⊥(X⋆ −Ut,wU⊤
t,w)

) ∥∥
2
+ δ
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F

(d)

≤δ
∥∥X⋆ −UtU

⊤
t

∥∥+ 4
√
2d√
m

∥∥Pww⊤,⊥(X⋆ −Ut,wU⊤
t,w)

∥∥
F
+ δ
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F

(e)

≤δ
∥∥X⋆ −UtU

⊤
t

∥∥+ 4
√
2d√
m

∥∥X⋆ −UtU
⊤
t

∥∥
F
+

(
δ +

4
√
2d√
m

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

(f)

≤

(
δ +

8
√
rd√
m

)∥∥X⋆ −UtU
⊤
t

∥∥+(δ + 4
√
2d√
m

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
.

Inequality (a) follows from the RIP-assumption combined with Lemma 2.4 and from the fact that881 ∥∥w∥∥
2
= 1. Inequality (b) is a consequence of the fact that Pww⊤ is a rank-one projection and of the882

triangle inequality. In inequality (c), we used that the conclusion of Lemma 3.6 holds and Lemma883

2.4. In inequality (d), we used the RIP of rank 2r+1. Inequality (e) is due to the fact thatPww⊤,⊥ is an884

orthogonal projection and due to the triangle inequality. In inequality (f), we used thatX⋆−UtU
⊤
t885

has rank at most 2r. This proves inequality (89).886

To prove inequality (90) we compute first that887

(A∗
wAw − I)

(
Ut,wU⊤

t,w −UtU
⊤
t

)
=(A∗A− I)

(
Pww⊤,⊥

(
Ut,wU⊤

t,w −UtU
⊤
t

))
− ⟨A(ww⊤),A

(
Pww⊤,⊥(Ut,wU⊤

t,w −UtU
⊤
t )
)
⟩ww⊤.
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It follows that888 ∥∥ [(A∗
wAw − I)

(
Ut,wU⊤

t,w −UtU
⊤
t

)]
VUt,w

∥∥
F

(a)

≤ δ
∥∥Pww⊤,⊥

(
Ut,wU⊤

t,w −UtU
⊤
t

) ∥∥
F
+
∣∣⟨A(ww⊤),A

(
Pww⊤,⊥(Ut,wU⊤

t,w −UtU
⊤
t )
)
⟩
∣∣

(b)

≤2δ
∥∥Pww⊤,⊥(Ut,wU⊤

t,w −UtU
⊤
t )
∥∥
F

≤2δ
∥∥Ut,wU⊤

t,w −UtU
⊤
t

∥∥
F
.

In inequalities (a) and (b)we used Lemma 2.4. This proves inequality (90).889

Next, we prove the third inequality. For that, we observe that using Lemma 3.5 it holds that890

(A∗A−A∗
wAw)

(
X⋆ −Ut,wU⊤

t,w

)
=(A∗A− I)

(
Pww⊤

(
X⋆ −Ut,wU⊤

t,w

))
+ ⟨A(ww⊤),A

(
Pww⊤,⊥(X⋆ −Ut,wU⊤

t,w)
)
⟩ww⊤.

Then it follows that891 ∥∥ (A∗A−A∗
wAw)

(
X⋆ −Ut,wU⊤

t,w

)
VUt,w

∥∥
F

≤
∥∥ (A∗A− I)

(
Pww⊤

(
X⋆ −Ut,wU⊤

t,w

))
VUt,w

∥∥
F
+ |⟨A(ww⊤),A

(
Pww⊤,⊥(X⋆ −Ut,wU⊤

t,w)
)
⟩|

(a)

≤ δ
∥∥X⋆ −Ut,wU⊤

t,w

∥∥+ 4

√
d

m

∥∥A (Pww⊤,⊥(X⋆ −Ut,wU⊤
t,w)

) ∥∥
2

(b)

≤δ
∥∥X⋆ −Ut,wU⊤

t,w

∥∥+ 4

√
2d

m

∥∥X⋆ −Ut,wU⊤
t,w

∥∥
F

≤

(
δ + 8

√
rd

m

)∥∥X⋆ −Ut,wU⊤
t,w

∥∥,
where inequality (a) holds due to Lemma 2.4, since Pww⊤,⊥ is a rank-one projection, and since we892

assumed that the conclusion of Lemma 3.6 holds. Inequality (b) is again due to Lemma 2.4 and since893

Pww⊤,⊥ is an orthogonal projection. This proves inequality (91).894

It remains to prove inequality (92). We note that it holds that895

(A∗
wAw − I)

(
X⋆ −Ut,wU⊤

t,w

)
=(A∗A− I)

(
Pww⊤,⊥

(
X⋆ −Ut,wU⊤

t,w

))
− ⟨A(ww⊤),A(Pww⊤,⊥

(
X⋆ −Ut,wU⊤

t,w

)
)⟩ww⊤,

where in the last line we applied Lemma 3.5. It follows from the triangle inequality that896 ∥∥ (A∗
wAw − I)

(
X⋆ −Ut,wU⊤

t,w

) ∥∥
≤
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥+ ∥∥ (A∗A− I)
(
Pww⊤

(
X⋆ −Ut,wU⊤

t,w

)) ∥∥
+
∥∥ (A∗A− I)

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥+ ∣∣⟨A (ww⊤) ,A (Pww⊤,⊥
(
X⋆ −Ut,wU⊤

t,w

))
⟩
∣∣

(a)

≤
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥+ δ
∥∥Pww⊤

(
X⋆ −Ut,wU⊤

t,w

) ∥∥
F
+ δ
∥∥Ut,wU⊤

t,w −UtU
⊤
t

∥∥
F

+ 4

√
2d

m

∥∥X⋆ −Ut,wU⊤
t,w

∥∥
F

≤
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥+ δ
∥∥X⋆ −UtU

⊤
t

∥∥
+ 2δ

∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
+ 4

√
2d

m

∥∥X⋆ −Ut,wU⊤
t,w

∥∥
F

≤
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥+(δ + 8

√
rd

m

)∥∥X⋆ −UtU
⊤
t

∥∥
+

(
2δ + 4

√
2d

m

)∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
.

In inequality (a) we applied Lemma 2.4 and that the conclusion of Lemma 3.6 holds. This proves897

inequality (92). Thus, the proof of Lemma B.1 is complete.898
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B.2. Proof of Lemma 4.3899

Proof of Lemma 4.3. We define the shorthand notation900

Mt := (A∗A)
(
X⋆ −UtU

⊤
t

)
,

Mt,w := (A∗
wAw)

(
X⋆ −Ut,wU⊤

t,w

)
.

It follows that901

Ut+1 = (Id+ µMt)Ut,

Ut+1,w = (Id+ µMt,w)Ut,w.

We compute that902

Ut+1U
⊤
t+1 −Ut,wUt+1,w =(Id+ µMt)UtU

⊤
t (Id+ µMt)− (Id+ µMt,w)Ut,wU⊤

t,w(Id+ µMt,w)

=UtU
⊤
t −Ut,wU⊤

t,w + µMt(UtU
⊤
t −Ut,wU⊤

t,w)︸ ︷︷ ︸
=:(i)

+ µ(Mt −Mt,w)Ut,wU⊤
t,w︸ ︷︷ ︸

=:(ii)

+ µ(UtU
⊤
t −Ut,wU⊤

t,w)Mt︸ ︷︷ ︸
=:(iii)

+ µUt,wU⊤
t,w (Mt −Mt,w)︸ ︷︷ ︸

=:(iv)

+ µ2
(
MtUtU

⊤
t Mt −Mt,wUt,wU⊤

t,wMt,w

)︸ ︷︷ ︸
=:(v)

.

We want to estimate the spectral norm of these terms individually. Before that, we note that903 ∥∥Mt

∥∥ (a)

≤
∥∥X⋆ −UtUt

∥∥+ ∥∥ (A∗A− I) (X⋆ −UtU
⊤
t )
∥∥

(b)

≤
∥∥X⋆ −UtU

⊤
t

∥∥+ c1σmin (X⋆) (93)
(c)

≤2σmin (X⋆) . (94)
Inequality (a) follows from the triangle inequality and inequality (b) follows from assumption (29).904

Inequality (c) is a consequence of assumption (30). Moreover, we note that905

Mt −Mt,w = (A∗A−A∗
wAw)

(
X⋆ −UtU

⊤
t

)
− (A∗

wAw)
(
UtU

⊤
t −Ut,wU⊤

t,w

)
.

It follows that906 ∥∥ (Mt −Mt,w)VUt,w

∥∥
F

≤
∥∥ [(A∗A−A∗

wAw)
(
X⋆ −UtU

⊤
t

)]
VUt,w

∥∥
F
+
∥∥ [(A∗

wAw − I)
(
UtU

⊤
t −Ut,wU⊤

t,w

)]
VUt,w

∥∥
F

+
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F

(a)

≤

(
δ +

8
√
rd√
m

)∥∥X⋆ −UtU
⊤
t

∥∥+(3δ + 4
√
2d√
m

+ 1

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

(b)

≤ 2c3
κ

∥∥X⋆ −UtU
⊤
t

∥∥+ (4c3
κ

+ 1

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
, (95)

where in inequality (a) we used inequalities (89) and (90) from Lemma B.1. Inequality (b) is due907

to assumption (32). Note that it also follows from these estimates that908 ∥∥Mt,wVUt,w

∥∥ ≤
∥∥Mt

∥∥+ ∥∥ (Mt −Mt,w)VUt,w

∥∥
F

(a)

≤ 2σmin(X⋆) +
2c3
κ

∥∥X⋆ −UtU
⊤
t

∥∥+ (4c3
κ

+ 1

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

(b)

≤ 3σmin(X⋆), (96)
where inequality (a) follows from (95). Inequality (b) is a consequence of the assumptions (30) and909

(31) (and by choosing the absolute constant c3 > 0 small enough).910

Now we are in a position to estimate the spectral norms of the terms (i)-(v).911
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* Estimating term (i): We compute that that912 ∥∥Mt(UtU
⊤
t −Ut,wU⊤

t,w)
∥∥
F
≤
∥∥Mt

∥∥∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

(93)
≤
(∥∥X⋆ −UtU

⊤
t

∥∥+ c1σmin(X⋆)
) ∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
.

* Estimating term (ii): We compute that913 ∥∥ (Mt −Mt,w)Ut,wU⊤
t,w

∥∥
F
≤
∥∥ (Mt −Mt,w)VUt,w

∥∥
F

∥∥Ut,wU⊤
t,w

∥∥
≤
∥∥ (Mt −Mt,w)VUt,w

∥∥
F

(∥∥UtU
⊤
t

∥∥+ ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥)
≤3
∥∥X⋆

∥∥∥∥ (Mt −Mt,w)VUt,w

∥∥
F
,

where in the last inequality we used assumptions (28) and (30).914

* Estimating term (iii): With the same argument as for term (i)we observe that915 ∥∥(UtU
⊤
t −Ut,wU⊤

t,w)Mt

∥∥
F
≤
(∥∥X⋆ −UtU

⊤
t

∥∥+ c1σmin (X⋆)
) ∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
.

* Estimating term (iv): With the same argument as for term (ii)we compute that916 ∥∥Ut,wU⊤
t,w (Mt −Mt,w)

∥∥
F
≤ 3
∥∥X⋆

∥∥∥∥ (Mt −Mt,w)VUt,w

∥∥
F
.

* Estimating term (v): First, we compute that917

MtUtU
⊤
t Mt −Mt,wUt,wU⊤

t,wMt,w =Mt

(
UtU

⊤
t −Ut,wU⊤

t,w

)
Mt + (Mt −Mt,w)Ut,wU⊤

t,wMt

+Mt,wUt,wU⊤
t,w (Mt −Mt,w) .

It follows that918 ∥∥MtUtU
⊤
t Mt −Mt,wUt,wU⊤

t,wMt,w

∥∥
F

≤
∥∥Mt

∥∥2∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
+
(∥∥Ut

∥∥2 + ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥)∥∥Mt

∥∥∥∥ (Mt −Mt,w)VUt,w

∥∥
F

+
∥∥Mt,wVUt,w

∥∥(∥∥Ut

∥∥2 + ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥)∥∥ (Mt −Mt,w)VUt,w

∥∥
F

(a)

≤
∥∥Mt

∥∥2∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 3
∥∥X⋆

∥∥∥∥Mt

∥∥∥∥ (Mt −Mt,w)VUt,w

∥∥
F

+ 3
∥∥X⋆

∥∥∥∥Mt,wVUt,w

∥∥∥∥ (Mt −Mt,w)VUt,w

∥∥
F

(b)

≤4σ2
min(X⋆)

∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 15σmin(X⋆)

∥∥X⋆

∥∥∥∥ (Mt −Mt,w)VUt,w

∥∥
F
.

For inequality (a) we used the assumptions (28) and (31). Inequality (b) is a consequence of in-919

equalities (94) and (96).920

* Conclusion: By summing up all terms we obtain that921 ∥∥Ut+1U
⊤
t+1 −Ut+1,wU⊤

t+1,w

∥∥
F

≤
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 2µ

(∥∥X⋆ −UtU
⊤
t

∥∥+ c1σmin(X⋆)
) ∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F

+ 6µ
∥∥X⋆

∥∥∥∥ (Mt −Mt,w)VUt,w

∥∥
F

+ µ2
(
4σ2

min(X⋆)
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 15σmin(X⋆)

∥∥X⋆

∥∥∥∥ (Mt −Mt,w)VUt,w

∥∥
F

)
(a)

≤
(
1 + 2µ

∥∥X⋆ −UtU
⊤
t

∥∥+ 2c1σmin(X⋆)
) ∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F

+ 12µσmin(X⋆)c3
∥∥X⋆ −UtU

⊤
t

∥∥+ 6µ
∥∥X⋆

∥∥(4c3
κ

+ 1

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

+ 4µ2σ2
min(X⋆)

∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 30c3µ

2σ2
min(X⋆)

∥∥X⋆ −UtU
⊤
t

∥∥
+ 60c3µ

2σ2
min(X⋆)

∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 15µ2σmin(X⋆)

∥∥X⋆

∥∥∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

=
(
1 + 2µ

∥∥X⋆ −UtU
⊤
t

∥∥+ (2c1 + 24c3)µσmin(X⋆) + 6µ
∥∥X⋆

∥∥+ 4µ2σ2
min(X⋆) + 60c3µ

2σ2
min(X⋆)

)
·
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
+
(
12c3µσmin(X⋆) + 30c3µ

2σ2
min(X⋆)

) ∥∥X⋆ −UtU
⊤
t

∥∥
(b)

≤
√√

2− 1

40
σmin(X⋆).
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Inequality (a) follows from inequality (95). Inequality (b) is due to assumptions (30), (31), and the922

assumption µ ≤ c2

κ
∥∥X⋆

∥∥ for a sufficiently small absolute constant c2 > 0. This completes the proof923

of Lemma 4.3.924

B.3. Proof of Lemma 4.4925

Proof of Lemma 4.4. Let R ∈ Rr×r be an orthogonal matrix. We compute that926

UtU
⊤
t −Ut,wU⊤

t,w = UtR (UtR)
⊤ −Ut,wUt,w = UtR (UtR−Ut,w)

⊤ − (Ut,w −UtR)U⊤
t,w.

It follows that927 ∥∥V⊤
X⋆,⊥

(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆,⊥

∥∥
F

≤
∥∥V⊤

X⋆,⊥UtR
∥∥∥∥UtR−Ut,w

∥∥
F
+
∥∥Ut,w −UtR

∥∥
F

∥∥U⊤
t,wVX⋆,⊥

∥∥
≤
(∥∥V⊤

X⋆,⊥UtR
∥∥+ ∥∥V⊤

X⋆,⊥Ut,w

∥∥) ∥∥UtR−Ut,w

∥∥
F

≤
(
2
∥∥V⊤

X⋆,⊥Ut

∥∥+ ∥∥UtR−Ut,w

∥∥) ∥∥UtR−Ut,w

∥∥
F

=
(
2
√∥∥V⊤

X⋆,⊥UtU⊤
t VX⋆,⊥

∥∥+ ∥∥UtR−Ut,w

∥∥)∥∥UtR−Ut,w

∥∥
F

=
(
2
√∥∥V⊤

X⋆,⊥(UtU⊤
t −X⋆)VX⋆,⊥

∥∥+ ∥∥UtR−Ut,w

∥∥)∥∥UtR−Ut,w

∥∥
F

(a)

≤
(

1

20

√
σmin(X⋆) +

∥∥UtR−Ut,w

∥∥
F

)∥∥UtR−Ut,w

∥∥
F
. (97)

In inequality (a)we used Assumption (33). By choosing the orthogonal matrixR as the minimizer928

of Procruste’s problem, i.e., such that
∥∥UtR−Ut,w

∥∥
F
is minimal, we obtain by Lemma 4.8 that929

∥∥UtR−Ut,w

∥∥
F
≤
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F√

2
(√

2− 1
)
σ2
min (Ut)

(a)

≤
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F√(√

2− 1
)

3
2σmin (X⋆)

(b)

≤
√

σmin(X⋆)

20
.

Inequality (a) follows from Assumption (33) and Weyl’s inequalities for singular values. For in-930

equality (b) we used Assumption (34). Inequality (97) combined with this inequality chain yields931

that932 ∥∥V⊤
X⋆,⊥

(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆,⊥

∥∥
F
≤
√
σmin(X⋆)

10
·
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F√(√

2− 1
)
· 3
2σmin (X⋆)

≤
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F

5
. (98)

In order to proceed we note that933 ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
≤
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
+
∥∥V⊤

X⋆,⊥
(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆

∥∥
F

+
∥∥V⊤

X⋆,⊥
(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆,⊥

∥∥
F

≤2
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
+
∥∥V⊤

X⋆,⊥
(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆,⊥

∥∥
F

(a)

≤2
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
+

1

5

∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
.

In inequality (a)we have used inequality (98). By rearranging terms we obtain that934 ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
≤ 2

1− 1
5

∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

≤ 3
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
.

This shows inequality (36). Then (35) follows directly from inserting the above inequality into935

(98).936
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B.4. Proof of Lemma 4.5937

The key idea in the proof of Lemma 4.5 is to decompose V⊤
X⋆

(
Ut+1U

⊤
t+1 −Ut+1,wU⊤

t+1,w

) into a938

sum of the form939

V⊤
X⋆

(
Ut+1U

⊤
t+1 −Ut+1,wU⊤

t+1,w

)
=V⊤

X⋆

(
1 + µ

(
X⋆ −UtU

⊤
t −Ut,wU⊤

t,w

)) (
UtU

⊤
t −Ut,wU⊤

t,w

) (
1 + µ

(
X⋆ −UtU

⊤
t −Ut,wU⊤

t,w

))
+V⊤

X⋆
∆.

(99)
The first summand can be interpreted as a contraction mapping applied to the matrix940

UtU
⊤
t − Ut,wU⊤

t,w and thus can be expected to have a smaller Frobenius norm than941

∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

)
∥F . In contrast, the term ∆, which will be determined explicitly in the942

proof of Lemma 4.5, can be interpreted as an additive error term which, as we will show, has rela-943

tively small Frobenius norm.944

To deal with the first summand we need the following auxiliary lemma.945

LemmaB.2. Denote byλmax(A) the largest eigenvalue of a symmetricmatrixA and byλmin(A) the smallest946

eigenvalue of A. Assume that the assumptions of Lemma 4.5 are satisfied. Then it holds that947

λmin

(
Id+ µ

(
X⋆ −UtU

⊤
t −Ut,wU⊤

t,w

))
≥ 0, (100)

λmax

(
V⊤

X⋆

(
X⋆ −UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆

)
≤ −σmin (X⋆)

2
, (101)∥∥Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
∥∥ ≤ 1 +

µσmin(X⋆)

128
. (102)

Proof of Lemma B.2. Note that the assumptions µ ≤ c4

κ
∥∥X⋆

∥∥ , (38), and (40) together with Weyl’s948

inequalities imply949

λmin

(
Id+ µ

(
X⋆ −UtU

⊤
t −Ut,wU⊤

t,w

))
=λmin

(
Id+ µ

(
(X⋆ −UtU

⊤
t )−UtU

⊤
t +UtU

⊤
t −Ut,wU⊤

t,w

))
≥1− µ

∥∥X⋆ −UtU
⊤
t

∥∥− µ
∥∥UtU

⊤
t

∥∥− µ
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
≥0.

for sufficiently small c2, c3, c4 > 0. This shows inequality (100).950

We observe that951

λmax

(
V⊤

X⋆

(
X⋆ −UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆

)
(a)

≤λmax

(
−V⊤

X⋆
UtU

⊤
t VX⋆

)
+
∥∥X⋆ −UtU

⊤
t

∥∥+ ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
(b)

≤λmax

(
−V⊤

X⋆
UtU

⊤
t VX⋆

)
+ (c2 + c3)σmin (X⋆)

=− λmin

(
V⊤

X⋆
VUtV

⊤
Ut

UtU
⊤
t VUt

V⊤
Ut

VX⋆

)
+ (c2 + c3)σmin (X⋆)

≤− σmin

(
V⊤

X⋆
VUt

)2
λmin

(
UtU

⊤
t

)
+ (c2 + c3)σmin (X⋆)

(c)

≤ − σmin (X⋆)

2
.

Inequality (a) follows from Weyl’s inequalities. Inequality (b) follows from assumption (39) and952

(40). For inequality (c) we used assumptions (37), (39) for suffciently small c1, c2, c3, and Weyl’s953

inequalities. This proves inequality (101).954

To prove inequality (102), we first establish an upper bound for the largest eigenvalue of X⋆ −955

UtU
⊤
t − Ut,wU⊤

t,w. For that let x ∈ Rd be arbitrary. We use the orthogonal decomposition x =956
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x∥ + x⊥, where x∥ is the orthogonal projection of x onto the column span of X⋆. We compute that957

x⊤ (X⋆ −UtU
⊤
t −Ut,wU⊤

t,w

)
x

=x⊤
∥
(
X⋆ −UtU

⊤
t −Ut,wU⊤

t,w

)
x∥ − x⊤

⊥
(
UtU

⊤
t +Ut,wU⊤

t,w

)
x⊥ − 2x⊤

⊥
(
UtU

⊤
t +Ut,wU⊤

t,w

)
x∥

(101)
≤ − σmin (X⋆)

2

∥∥x∥
∥∥2
2
− 2x⊤

⊥
(
UtU

⊤
t +Ut,wU⊤

t,w

)
x∥. (103)

Next, we observe that958

−x⊤
⊥
(
UtU

⊤
t +Ut,wU⊤

t,w

)
x∥ ≤

∥∥V⊤
X⋆,⊥

(
UtU

⊤
t +Ut,wU⊤

t,w

)
VX⋆

∥∥∥∥x∥
∥∥
2

∥∥x⊥
∥∥
2

≤
(
2
∥∥V⊤

X⋆,⊥UtU
⊤
t VX⋆

∥∥+ ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥) ∥∥x∥
∥∥
2

∥∥x⊥
∥∥
2

=
(
2
∥∥V⊤

X⋆,⊥
(
UtU

⊤
t −X⋆

)
VX⋆

∥∥+ ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥) ∥∥x∥
∥∥
2

∥∥x⊥
∥∥
2

≤
(
2
∥∥X⋆ −UtU

⊤
t

∥∥+ ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥) ∥∥x∥
∥∥
2

∥∥x⊥
∥∥
2

≤
σmin(X⋆)

∥∥x∥
∥∥
2

∥∥x⊥
∥∥
2

16
.

In the last inequality we have used the assumptions (39) and (40) for sufficiently small c2, c3 > 0.959

Combining this estimate with (103) we obtain that960

x⊤ (X⋆ −UtU
⊤
t −Ut,wU⊤

t,w

)
x ≤ σmin (X⋆)

(∥∥x∥
∥∥
2

∥∥x⊥
∥∥
2

8
−
∥∥x∥

∥∥2
2

2

)

≤
σmin (X⋆)

∥∥x⊥
∥∥2
2

128
≤

σmin(X⋆)
∥∥x∥∥2

2

128
.

This implies that961

λmax

(
Id+ µ

(
X⋆ −UtU

⊤
t −Ut,wU⊤

t,w

))
≤ 1 +

µσmin(X⋆)

128
.

This inequality, together with inequality (100), yields inequality (102). Thus, the proof of Lemma962

B.2 is complete.963

With Lemma B.2 in place, we can show that the first term in the decomposition (99) indeed has a964

smaller Frobenius norm than the termV⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

).965

Lemma B.3. Assume that the assumptions of Lemma 4.5 are satisfied. Then, it holds that966 ∥∥V⊤
X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
) (

UtU
⊤
t −Ut,wU⊤

t,w

) (
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
) ∥∥

F

≤
(
1− µσmin(X⋆)

8

)∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
.

Proof of Lemma B.3. We first compute that967 ∥∥V⊤
X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)(

UtU
⊤
t −Ut,wU⊤

t,w

)(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)∥∥

F

≤
∥∥V⊤

X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)(

UtU
⊤
t −Ut,wU⊤

t,w

)∥∥
F

∥∥Id+ µ(X⋆ −UtU
⊤
t −Ut,wU⊤

t,w)
∥∥

≤
(
1 +

µσmin(X⋆)

128

)∥∥V⊤
X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)(

UtU
⊤
t −Ut,wU⊤

t,w

)∥∥
F
, (104)

where in the last line we used inequality (102) from Lemma B.2. In order to proceed, we consider968

the decomposition969

V⊤
X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
) (

UtU
⊤
t −Ut,wU⊤

t,w

)
V⊤

X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)
VX⋆

V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

)︸ ︷︷ ︸
=:N1

− µV⊤
X⋆

(UtU
⊤
t +Ut,wU⊤

t,w)VX⋆,⊥V
⊤
X⋆,⊥

(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆

V⊤
X⋆︸ ︷︷ ︸

=:N2

− µV⊤
X⋆

(UtU
⊤
t +Ut,wU⊤

t,w)VX⋆,⊥V
⊤
X⋆,⊥

(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆,⊥V

⊤
X⋆,⊥︸ ︷︷ ︸

=:N3

.
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We estimate the Frobenius norm of the three terms individually. For the first term we obtain that970 ∥∥N1

∥∥
F
≤
∥∥V⊤

X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)
VX⋆

∥∥∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

=
∥∥Id+ µV⊤

X⋆
(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)VX⋆

∥∥∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

(a)

≤
(
1 + µλmax

(
V⊤

X⋆
(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)VX⋆

)) ∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

(b)

≤
(
1− µσmin(X⋆)

2

)∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
,

where in inequality (a) we have used (100) and in (b) we have used inequality (101) from Lemma971

B.2. The Frobenius norm of the term N2 can be estimated by972 ∥∥N2

∥∥
F
≤
∥∥V⊤

X⋆
(UtU

⊤
t +Ut,wU⊤

t,w)VX⋆,⊥
∥∥∥∥V⊤

X⋆,⊥
(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆

∥∥
F

=
(∥∥V⊤

X⋆,⊥
[
2
(
UtU

⊤
t −X⋆

)
+
(
Ut,wU⊤

t,w −UtU
⊤
t

)] ∥∥) ∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

≤
(
2
∥∥V⊤

X⋆,⊥(UtU
⊤
t −X⋆)

∥∥+ ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥) ∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

≤
(
2c2σmin(X⋆) +

∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

) ∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

≤ (2c2 + c3)σmin(X⋆)
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
,

where we have used Assumptions (39) and (40). With similar arguments, we can estimate the973

Frobenius norm of the term N3 by974 ∥∥N3

∥∥
F
≤ (2c2 + c3)σmin(X⋆)

∥∥V⊤
X⋆,⊥

(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆,⊥

∥∥
F
.

By using Lemma 4.4 we obtain that975

∥∥V⊤
X⋆,⊥

(
UtU

⊤
t −Ut,wU⊤

t,w

)
VX⋆,⊥

∥∥
F
≤

3
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

5
.

It follows that976

∥∥N3

∥∥
F
≤

3 (2c2 + c3)σmin(X⋆)
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F

5
.

By summing up our estimates for
∥∥N1

∥∥
F
,
∥∥N2

∥∥
F
, and

∥∥N3

∥∥
F
and choosing the constants c1, c2 > 0977

small enough we obtain that978 ∥∥V⊤
X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
) (

UtU
⊤
t −Ut,wU⊤

t,w

) ∥∥
F

≤
(
1− µσmin(X⋆)

4

)∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
.

Inserting this estimate into (104) yields that979 ∥∥V⊤
X⋆

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)(

UtU
⊤
t −Ut,wU⊤

t,w

)(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)∥∥

F

≤
(
1 +

µσmin(X⋆)

128

)(
1− µσmin(X⋆)

4

)∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

)∥∥
F

≤
(
1− µσmin(X⋆)

8

)∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

)∥∥
F
,

where in the last line, we used our assumption on the step sizeµ. This completes the proof of Lemma980

B.3.981

With the auxiliary estimates in Lemma B.3 we can give a proof of Lemma 4.5.982
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Proof of Lemma 4.5. First, we compute that983

Ut+1U
⊤
t+1 =

(
Id+ µ

[
(A∗A)

(
X⋆ −UtU

⊤
t

)])
UtU

⊤
t

(
Id+ µ

[
(A∗A)

(
X⋆ −UtU

⊤
t

)])
=
(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)
UtU

⊤
t

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)

+ µUt,wU⊤
t,wUtU

⊤
t + µUtU

⊤
t Ut,wU⊤

t,w

+ µ2Ut,wU⊤
t,wUtU

⊤
t

(
X⋆ −UtU

⊤
t

)
+ µ2

(
X⋆ −UtU

⊤
t

)
UtU

⊤
t Ut,wU⊤

t,w

− µ2Ut,wU⊤
t,wUtU

⊤
t Ut,wU⊤

t,w

+ µ
[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
UtU

⊤
t

(
Id+ µX⋆ − µUtU

⊤
t

)
+ µ

(
Id+ µX⋆ − µUtU

⊤
t

)
UtU

⊤
t

[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
+ µ2

[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
UtU

⊤
t

[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
.

Analogously, we can compute that984

Ut+1,wU⊤
t+1,w

=
(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)
Ut,wU⊤

t,w

(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)

+ µUt,wU⊤
t,wUtU

⊤
t + µUtU

⊤
t Ut,wU⊤

t,w

+ µ2UtU
⊤
t Ut,wU⊤

t,w

(
X⋆ −Ut,wU⊤

t,w

)
+ µ2

(
X⋆ −Ut,wU⊤

t,w

)
Ut,wU⊤

t,wUtU
⊤
t

− µ2UtU
⊤
t Ut,wU⊤

t,wUtU
⊤
t

+ µ
[
(A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

)]
Ut,wU⊤

t,w

(
Id+ µX⋆ − µUt,wU⊤

t,w

)
+ µ

(
Id+ µX⋆ − µUt,wU⊤

t,w

)
Ut,wU⊤

t,w

[
(A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

)]
+ µ2

[
(A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

)]
Ut,wU⊤

t,w

[
(A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

)]
.

Thus, we obtain that985

Ut+1U
⊤
t+1 −Ut+1,wU⊤

t+1,w

=M1 + µ2M2 + µ2M3 + µ2M4 + µ2M4 + µM5 + µM6 + µ2M7, (105)
where986

M1 :=
(
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
) (

UtU
⊤
t −Ut,wU⊤

t,w

) (
Id+ µ(X⋆ −UtU

⊤
t −Ut,wU⊤

t,w)
)

M2 :=Ut,wU⊤
t,wUtU

⊤
t

(
X⋆ −UtU

⊤
t

)
−UtU

⊤
t Ut,wU⊤

t,w

(
X⋆ −Ut,wU⊤

t,w

)
,

M3 :=
(
X⋆ −UtU

⊤
t

)
UtU

⊤
t Ut,wU⊤

t,w −
(
X⋆ −Ut,wU⊤

t,w

)
Ut,wU⊤

t,wUtU
⊤
t ,

M4 :=UtU
⊤
t Ut,wU⊤

t,wUtU
⊤
t −Ut,wU⊤

t,wUtU
⊤
t Ut,wU⊤

t,w,

M5 :=
[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
UtU

⊤
t

(
Id+ µX⋆ − µUtU

⊤
t

)
−
[
(A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

)]
Ut,wU⊤

t,w

(
Id+ µX⋆ − µUt,wU⊤

t,w

)
,

M6 :=
(
Id+ µX⋆ − µUtU

⊤
t

)
UtU

⊤
t

[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
−
(
Id+ µX⋆ − µUt,wU⊤

t,w

)
Ut,wU⊤

t,w

[
(A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

)]
,

M7 :=
[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
UtU

⊤
t

[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
−
[
(A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

)]
Ut,wU⊤

t,w

[
(A∗

wAw − I)
(
X⋆ −Ut,wU⊤

t,w

)]
.

Recall that Lemma B.3 shows that987 ∥∥V⊤
X⋆

M1

∥∥
F
≤
(
1− µσmin(X⋆)

8

)∥∥V⊤
X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
.

To complete the proof, we need to derive upper bounds for
∥∥Mi

∥∥
F
, where i = 2, 3, . . . , 7.988

989

Estimating
∥∥M2

∥∥
F
: We compute that990

M2 =Ut,wU⊤
t,wUtU

⊤
t

(
X⋆ −UtU

⊤
t

)
−UtU

⊤
t Ut,wU⊤

t,w

(
X⋆ −Ut,wU⊤

t,w

)
=
(
Ut,wU⊤

t,w −UtU
⊤
t

)
UtU

⊤
t

(
X⋆ −UtU

⊤
t

)
+UtU

⊤
t

(
UtU

⊤
t −Ut,wU⊤

t,w

) (
X⋆ −UtU

⊤
t

)
+UtU

⊤
t Ut,wU⊤

t,w

(
Ut,wU⊤

t,w −UtU
⊤
t

)
.
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Thus, we obtain that991 ∥∥M2

∥∥
F

≤2
∥∥Ut,wU⊤

t,w −UtU
⊤
t

∥∥
F

∥∥UtU
⊤
t

∥∥∥∥X⋆ −UtU
⊤
t

∥∥+ ∥∥UtU
⊤
t

∥∥∥∥Ut,wU⊤
t,w

∥∥∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F

≤2
∥∥Ut,wU⊤

t,w −UtU
⊤
t

∥∥
F

∥∥UtU
⊤
t

∥∥∥∥X⋆ −UtU
⊤
t

∥∥
+
∥∥UtU

⊤
t

∥∥ (∥∥UtU
⊤
t

∥∥+ ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥) ∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F

≤5
∥∥X⋆

∥∥2∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
.

In the last inequality we used assumptions (38), (39), and (40) for sufficiently small c2, c3 > 0.992

993

Estimating
∥∥M3

∥∥
F
: Since M3 = M⊤

2 it follows that994 ∥∥M3

∥∥
F
≤ 5∥X⋆∥2

∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
.

Estimating
∥∥M4

∥∥
F
: We compute that995

M4 =
(
UtU

⊤
t −Ut,wU⊤

t,w

)
Ut,wU⊤

t,wUtU
⊤
t +Ut,wU⊤

t,w

(
Ut,wU⊤

t,w −UtU
⊤
t

)
UtU

⊤
t

+Ut,wU⊤
t,wUtU

⊤
t

(
UtU

⊤
t − Ut,wU⊤

t,w

)
.

Again, using the assumptions (38) and (40), and the triangle inequality we obtain that996 ∥∥M4

∥∥
F
≤ 20

∥∥X⋆

∥∥2∥∥UtU
⊤
t − Ut,wU⊤

t,w

∥∥
F
.

Estimating
∥∥M5

∥∥
F
: We compute997

M5 =
[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)] (
UtU

⊤
t −Ut,wU⊤

t,w

) (
Id+ µX⋆ − µUtU

⊤
t

)︸ ︷︷ ︸
=:O1

+ µ
[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]
Ut,wU⊤

t,w

(
Ut,wU⊤

t,w −UtU
⊤
t

)︸ ︷︷ ︸
=:O2

+
[
(A∗A−A∗

wAw)
(
X⋆ −UtU

⊤
t

)]
Ut,wU⊤

t,w

(
Id+ µX⋆ − µUt,wU⊤

t,w

)︸ ︷︷ ︸
=:O3

+
[
(A∗

wAw − I)
(
Ut,wU⊤

t,w −UtU
⊤
t

)]
Ut,wU⊤

t,w

(
Id+ µX⋆ − µUt,wU⊤

t,w

)︸ ︷︷ ︸
=:O4

.

We estimate the Frobenius norm of these summands individually. For the first termwe observe that998 ∥∥O1

∥∥
F
≤
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

(
1 + µ

∥∥X⋆

∥∥+ µ
∥∥Ut,wU⊤

t,w

∥∥)
(a)

≤2
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

(b)

≤2c5σmin(X⋆)
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
,

where in inequality (a) we have used assumptions (38), (40), and the assumption on the step size999

µ. In inequality (b)we have used assumption (41).1000

Using again assumptions (38), (40), and (41) we obtain that1001 ∥∥O2

∥∥
F
≤3c5σmin(X⋆)

∥∥X⋆

∥∥∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
.

For the term
∥∥O3

∥∥
F
we obtain that1002 ∥∥O3

∥∥
F
≤
∥∥ [(A∗A−A∗

wAw)
(
X⋆ −UtU

⊤
t

)]
VUt,w

∥∥
F

∥∥Ut,wU⊤
t,w

∥∥ (1 + µ
∥∥X⋆

∥∥+ µ
∥∥Ut,wU⊤

t,w

∥∥)
≤
∥∥ [(A∗A−A∗

wAw)
(
X⋆ −UtU

⊤
t

)]
VUt,w

∥∥
F

(∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥+ ∥∥UtU
⊤
t

∥∥)(
1 + µ

∥∥X⋆

∥∥+ µ
∥∥Ut,wU⊤

t,w −UtU
⊤
t

∥∥+ µ
∥∥UtU

⊤
t

∥∥)
(a)

≤4
∥∥ [(A∗A−A∗

wAw)
(
X⋆ −UtU

⊤
t

)]
VUt,w

∥∥
F

∥∥X⋆

∥∥
(b)

≤4

(
δ +

8
√
rd√
m

)∥∥X⋆ −UtU
⊤
t

∥∥∥∥X⋆

∥∥+ 4

(
δ +

8
√
2d√
m

)∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F

∥∥X⋆

∥∥.
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Inequality (a) follows from the assumptions (38) and (40), and the assumption on the step size µ.1003

In inequality (b)we used the estimate (89) from Lemma B.1.1004

For the term
∥∥O4

∥∥
F
we obtain that1005 ∥∥O4

∥∥
F
≤
∥∥ (A∗

wAw − I)
(
Ut,wU⊤

t,w −UtU
⊤
t

)
VUt,w

∥∥
F

(∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥+ ∥∥UtU
⊤
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∥∥)
·
(
1 + µ

∥∥X⋆ −UtU
⊤
t

∥∥+ µ
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥)
(a)

≤3
∥∥X⋆

∥∥∥∥ [(A∗
wAw − I)

(
Ut,wU⊤

t,w −UtU
⊤
t

)]
VUt,w

∥∥
F

(b)

≤6δ
∥∥X⋆

∥∥∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
.

Inequality (a) follows from assumptions (39) and (40), and the assumption on the step size µ. In-1006

equality (b) is due to inequality (90) in Lemma B.1. By summing up all terms we obtain that1007 ∥∥M5

∥∥
F
≤
∥∥O1

∥∥
F
+ µ

∥∥O2

∥∥
F
+
∥∥O3

∥∥
F
+
∥∥O4

∥∥
F

≤2c5σmin(X⋆)
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 3µc5σmin(X⋆)

∥∥X⋆

∥∥∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F

+ 4

(
δ +

8
√
rd√
m

)∥∥X⋆

∥∥∥∥X⋆ −UtU
⊤
t

∥∥+ 4

(
δ +

4
√
2d√
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)∥∥X⋆

∥∥∥∥UtU
⊤
t −Ut,wU⊤

t,w
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F
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∥∥∥∥Ut,wU⊤
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⊤
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∥∥
F

=

[
((2 + 3µ) c5 + 6κδ)σmin(X⋆) + 4

(
δ +

4
√
2d√
m

)∥∥X⋆

∥∥]∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥
F
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(
δ +

8
√
rd√
m

)∥∥X⋆

∥∥∥∥X⋆ −UtU
⊤
t

∥∥
(a)

≤ (((2 + 3µ) c5 + 6c6)σmin(X⋆) + 8c6σmin(X⋆))
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 8c6σmin(X⋆)

∥∥X⋆ −UtU
⊤
t

∥∥
(b)

≤ σmin(X⋆)

100
·
∥∥UtU

⊤
t −Ut,wU⊤

t,w

∥∥
F
+ 8c6σmin(X⋆)

∥∥X⋆ −UtU
⊤
t

∥∥
(c)

≤ 3σmin(X⋆)

100
·
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
+ 8c6σmin(X⋆)

∥∥X⋆ −UtU
⊤
t

∥∥,
where in inequality (a) we used the assumption (42). Inequality (b) follows from choosing the1008

constants c5 and c6 small enough. To obtain inequality (c)we applied Lemma 4.4.1009

1010

Estimating
∥∥M6

∥∥
F
:1011

Since M6 = M⊤
5 we obtain that1012 ∥∥M6

∥∥
F
≤ 3σmin(X⋆)

100
·
∥∥V⊤

X⋆

(
UtU

⊤
t −Ut,wU⊤

t,w

) ∥∥
F
+ 8c6σmin(X⋆)

∥∥X⋆ −UtU
⊤
t

∥∥.
Estimating

∥∥M7

∥∥
F
: To deal with the termM7 we first compute that1013

M7 =
[
(A∗A− I)

(
X⋆ −UtU

⊤
t

)] (
UtU

⊤
t −Ut,wU⊤

t,w

) [
(A∗A− I)

(
X⋆ −UtU

⊤
t

)]︸ ︷︷ ︸
=:L1

+
[
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(
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t,w −UtU
⊤
t

)]
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[
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(
X⋆ −UtU

⊤
t

)]︸ ︷︷ ︸
=:L2

+
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t,w

)]
Ut,wU⊤

t,w

[
(A∗A− I)

(
Ut,wU⊤
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⊤
t

)]︸ ︷︷ ︸
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+
[
(A∗A−A∗

wAw)
(
X⋆ −Ut,wU⊤

t,w
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t,w

)]︸ ︷︷ ︸
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+
[
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(
X⋆ −Ut,wU⊤

t,w

)]
Ut,wU⊤

t,w

[
(A∗A−A∗
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(
X⋆ −Ut,wU⊤

t,w

)]︸ ︷︷ ︸
=:L5

.
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We estimate the Frobenius norm of the summands individually. For
∥∥L1

∥∥
F
we obtain that1014 ∥∥L1

∥∥
F
≤
∥∥ (A∗A− I)

(
X⋆ −UtU

⊤
t

) ∥∥∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F

∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t

) ∥∥
≤ c25σmin(X⋆)

2
∥∥Ut,wU⊤

t,w −UtU
⊤
t

∥∥
F
,

where we have used assumption (41). Next, we note that1015 ∥∥L2

∥∥
F
≤
∥∥ (A∗A− I)

(
Ut,wU⊤

t,w −UtU
⊤
t

)
VUt,w

∥∥
F

(∥∥UtU
⊤
t

∥∥+ ∥∥UtU
⊤
t −Ut,wU⊤

t,w

∥∥)
·
∥∥ (A∗A− I)
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X⋆ −UtU

⊤
t

) ∥∥
(a)

≤3c5σmin (X⋆)
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⊤
t

)
VUt,w

∥∥
F

(b)

≤3c5δσmin(X⋆)
∥∥X⋆

∥∥∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F

(c)

≤3c5c6σ
2
min(X⋆)

∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
.

Inequality (a) follows from assumptions (38), (40), and (41). Inequality (b) is due to Lemma 2.41016

and inequality (c) is due to assumption (42). In order to estimate
∥∥L3

∥∥
F
we note that1017 ∥∥L3

∥∥
F

(∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t
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(
UtU

⊤
t −Ut,wU⊤
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∥∥
F

)
·
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⊤
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∥∥
F
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t
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∥∥
F

(a)

≤
(
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⊤
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t,w
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F

) (
2
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⊤
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∥∥
F

(b)
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F
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≤3c6 (c5 + δc3)σ
2
min (X⋆)

∥∥Ut,wU⊤
t,w −UtU

⊤
t

∥∥
F
.

In inequality (a) we used the assumptions (38), (40), (41), and Lemma 2.4. Inequality (b) follows1018

from assumption (40) and since the constant c3 > 0 is chosen small enough. Inequality (c) is due1019

to assumption (42).1020

Next, we can estimate
∥∥L4

∥∥
F
by1021 ∥∥L4

∥∥
F
≤
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F
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(
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F
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F

(c)
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(
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√
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√
rd

m

)
σmin(X⋆)
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∥∥) .
In inequality (a)we used assumptions (38), (40), and (41) as well as Lemma 2.4. Inequality (b) uses1022

assumption (40). Inequality (c) follows from inequality (91) in Lemma B.1. Inequality (d) is due to1023

assumption (42).1024

The norm
∥∥L5

∥∥
F
can be estimated by1025 ∥∥L5

∥∥
F
≤
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(106)
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In inequality (a)weused the triangle inequality and the assumptions (38), (40). In order to proceed,1026

we note first that1027
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where in inequality (a) we used Lemma B.1. Inequality (b) follows from the assumptions (42).1028

Inequality (c) is due to assumption (39), (40), and (41). Moreover, it holds that1029
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Inequality (a) follows from inequality (91) in Lemma B.1. Inequality (b) is due to assumption (42).1030

Inserting the last two inequality chains into inequality (106) we obtain that1031
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By summing up all terms
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∥∥
F
for i = 1, . . . , 5 it follows that1032
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where the last inequality holds since the absolute constants c3, c5, c6 > 0 are chosen small enough.1033
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Using the decomposition (105), the triangle inequality, combined with our estimates for1034 ∥∥V⊤
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where inequality (a) is due to Lemma 4.4 and the assumption on the step size µ. Inequality (b) is1036

obtained by choosing c4 < 1/2, and the last inequality is obtained by choosing c6 < 1
32 .1037

C. Proof of the lemmas controlling the distance betweenX⋆ and1038

UtU
⊤
t (Lemma 4.6, Lemma 4.7, and Lemma 4.9)1039

C.1. Proof of Lemma 4.61040

Proof of Lemma 4.6. We first note that1041
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Using the submultiplicativity property of the |||·|||-norm it follows that1042 ∣∣∣∣∣∣V⊤
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Recall that1043
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where in the last inequality, we used assumption (44). It follows that1044 ∣∣∣∣∣∣V⊤
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This proves inequality (45). To prove inequality (46) we note that1045 ∣∣∣∣∣∣UtU
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where in the last inequality we used (45). This completes the proof of Lemma 4.6.1046
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C.2. Proof of Lemma 4.71047

Proof of Lemma 4.7. We define the shorthand notation1048
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We estimate the spectral norm of these terms individually.1052
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Inequality (a) is due to the submultiplicativity of the |||·|||-norm. In inequality (b) and equality (c)1054

we used the assumptions
∥∥Ut
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1024κ
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∥∥ . In inequality (d) we used assump-1055

tion (47). Inequality (e) follows from assumption (48), which, due to Weyl’s inequality, implies1056
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* Estimating term (II): We note that1058 ∣∣∣∣∣∣V⊤
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In inequality (a) we used the submultiplicativity of the |||·|||-norm. Inequality (b) follows from1059
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* Estimating term (III): We first note that1063
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where (a) follows from the triangle inequality and (b) follows from Lemma 4.6. Moreover, we have1064
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Inequality (a) follows from assumptions (48) and (49). Thus, we obtain for term (III) that1066
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* Conclusion: By adding up all terms, we obtain that1070 ∣∣∣∣∣∣V⊤
X⋆

(
X⋆ −Ut+1U

⊤
t+1

)∣∣∣∣∣∣ ≤ |||(I)|||+ µ |||(II)|||+ |||(III)|||

≤
(
1− µσmin(X⋆)

8

) ∣∣∣∣∣∣V⊤
X⋆

(
X⋆ −UtU

⊤
t

)∣∣∣∣∣∣+ 5µ
∥∥X⋆

∥∥ |||EtVUt
||| .

This completes the proof.1071
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C.3. Proof of Lemma 4.91072

Proof of Lemma 4.9. Analogously, as in the proof of Lemma 4.7 we define the shorthand notation1073
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)︸ ︷︷ ︸
=:Et

.

We note that1074 ∥∥Mt

∥∥ ≤
∥∥X⋆ −UtU

⊤
t

∥∥+ ∥∥ (A∗A− I)
(
X⋆ −UtU

⊤
t

) ∥∥ ≤ (c2 + c3)σmin(X⋆).

With an analogous computation as in the proof of Lemma 4.7, it follows that1075

X⋆ −Ut+1U
⊤
t+1 =

(
Id− µUtU

⊤
t

) (
X⋆ −UtU

⊤
t

) (
Id− µUtU

⊤
t

)
− µ2UtU

⊤
t

(
X⋆ −UtU

⊤
t

)
UtU

⊤
t

− µEtUtU
⊤
t − µUtU

⊤
t Et − µ2MtUtU

⊤
t Mt.

When c1 ≤ 1/2, we have
∥∥Id − µUtU

⊤
t

∥∥ ≤ 1 by assumption (50). It follows from the assumptions1076

µ ≤ c1∥∥X⋆

∥∥ , (51), and (52) that for sufficiently small c1, c2, c3 > 01077 ∥∥X⋆ −Ut+1U
⊤
t+1

∥∥ ≤
∥∥Id− µUtU

⊤
t

∥∥∥∥X⋆ −UtU
⊤
t

∥∥∥∥Id− µUtU
⊤
t

∥∥+ µ2
∥∥Ut

∥∥4∥∥X⋆ −UtU
⊤
t

∥∥
+ 2µ

∥∥Et

∥∥∥∥Ut

∥∥2 + µ2
∥∥Mt

∥∥2∥∥Ut

∥∥2
≤
∥∥X⋆ −UtU

⊤
t

∥∥+ 4µ2c2
∥∥X⋆

∥∥2σmin (X⋆) + 4µc3
∥∥X⋆

∥∥σmin(X⋆)

+ 2(c2 + c3)
2µ2
∥∥X⋆

∥∥σ2
min(X⋆)

≤
(
c2 + 4c21c2 + 4c1c3 + 2(c2 + c3)

2c21
)
σmin(X⋆)

≤
(
1− 1√

2

)
σmin(X⋆).

This completes the proof.1078

D. Proofs regarding the Restricted Isometry Property and its1079

consequences1080

D.1. Proof of Lemma 2.21081

As already mentioned in Section 2.1, there exist similar versions of Lemma 2.1 in the literature1082

(see, e.g., [50]), which, however, do not specify the dependence of the number of samplesm on the1083

constant δ > 0. It would be possible to trace the steps of the ε-net argument in [50] andwork out the1084

δ-dependence explicitly. However, this would lead to an extra log(1/δ)-factor, which is unnecessary.1085

The reason is that as δ is decreased, a covering with smaller balls is required, leading to a larger ε-1086

net. This observation suggests a proof strategy based on generic chaining. Indeed, we will use the1087

following general theorem from [62], which is proven via the generic chaining technique. To state1088

it, we define the diameter of a set of matrices B with respect to some norm |||·||| as1089

d|||·|||(B) := sup
B∈B

|||B||| .

Moreover, we will also need Talagrand’s functional γ2 (B, |||·|||) [63], where for a precise definition,1090

we refer to [62].1091

Theorem D.1 (Theorem 3.1 in [62]). Let B be a set of matrices, and ξ be a random Gaussian vector, i.e.,1092

ξ has i.i.d. entries with distribution N (0, 1). Set1093

E := γ2(B,
∥∥ · ∥∥) (γ2 (B,∥∥ · ∥∥)+ d∥·∥F

(B)
)
+ d∥·∥F

(B)d∥·∥(B),
V := d∥·∥(B)

(
γ2
(
B,
∥∥ · ∥∥)+ d∥·∥F

(B)
)
, U := d2∥·∥(B).

Then, for any t > 0,1094

P
(
sup
B∈B

∣∣∣∥∥Bξ
∥∥2
2
− E

∥∥Bξ
∥∥2
2

∣∣∣ > c1E + t

)
≤ 2 exp

(
−c2 min

{
t2

V 2
,
t

U

})
,

where c1, c2 > 0 denote absolute constants.1095
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With this result in place, we can give a proof of Lemma 2.2. This proof strategy has been used in1096

[62, Section A.3].1097

Proof of Lemma 2.2. Since A is a linear operator we can write A(X) = VXξ, where ξ is a Gaussian1098

random vector with independent entries of length m
(
d+1
2

) and1099

VX :=
1√
m


vec(X)⊤

vec(X)⊤

. . .
vec(X)⊤


is an m × (m

(
d+1
2

)
) block-diagonal matrix. Here, vec(X) ∈ R(

d+1
2 ) is a vector indexed by {(i, j) ∈1100

[d]× [d] : i ≤ j} such that1101

vec(X)(i, j) =

{√
2Xij i ̸= j

Xii i = j.

Let1102

Dr := {X ∈ Sd :
∥∥X∥∥

F
= 1, rank(X) ≤ r}.

Then it follows from the identity A(X) = VXξ that1103

δr := sup
X∈Dr

∣∣∣∥∥A (X)
∥∥2
2
−
∥∥X∥∥2

F

∣∣∣ = sup
X∈Dr

∣∣∣∥∥Vxξ
∥∥2
2
− E

∥∥Vxξ
∥∥2
2

∣∣∣ .
Denote B := {VX : X ∈ Dr}. We now estimate the parameters in Theorem D.1. Note that it follows1104

directly from the definition of vec(X) that
∥∥vec(X)

∥∥
2
=
∥∥X∥∥

F
= 1 and hence

∥∥VX

∥∥
F
=
∥∥X∥∥

F
for1105

all X ∈ Sd. Thus, we have dF (B) = 1 since ∥VX∥F =
∥∥X∥∥

F
for all X ∈ Dr. On the other hand, for1106

X ∈ Dr,1107

mVXVT
X = Idm,

which implies that1108 ∥∥VX

∥∥ =
1√
m

∥∥vec(X)
∥∥
2
=

1√
m

∥∥X∥∥
F

(109)

and d∥·∥(B) = 1√
m
. From [50, Lemma 3.1], it follows that the covering number for d× d symmetric1109

matrices with Frobenius norm 1 and rank at most r satisfies1110

N (Dr,
∥∥ · ∥∥

F
, ε) ≤ (1 + 6/ε)

(2d+1)r
. (110)

Using Dudley’s integral estimate (see, e.g., [63]), combined with (109) and (110), we obtain that1111

γ2
(
B,
∥∥ · ∥∥) = γ2

(
Dr,

∥∥ · ∥∥
F

)
≤ C

1√
m

∫ 1

0

√
log(N (Dr, ∥ · ∥F , u))du ≤ C ′

√
dr

m
.

With the notations in Theorem D.1, we have1112

E = C ′
√

dr

m

(
C ′
√

dr

m
+ 1

)
+

1√
m
, V =

1√
m

(
C ′
√

dr

m
+ 1

)
, U =

1

m
.

Therefore, applying Theorem D.1, we have δr ≤ δ with probability at least 1− εwhen

m ≥ Cδ−2(rd+ log(2ε−1)).

Here, C > 0 denotes some universal constant. This completes the proof of Lemma 2.2.1113
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D.2. Proof of Lemma 2.41114

Proof of Lemma 2.4. We will establish first that for all symmetric matrices Z1,Z2 ∈ Rd×d with rank1115

rank(Z1) = r and rank(Z1) = r′ it holds that1116

|⟨(I − A∗A) (Z1),Z2⟩| ≤ δr+r′
∥∥Z1

∥∥
F

∥∥Z2

∥∥
F
. (111)

Let us remark that in the case of ⟨Z1,Z2⟩ = 0, this inequality has been proven in [50, Lemma 3.3].1117

The following proof of this slightly more general statement is analogous.1118

To prove inequality (111) we assume without loss of generality that
∥∥Z1

∥∥
F
=
∥∥Z2

∥∥
F
= 1. We note1119

first that from the parallelogram identity, it follows that1120

⟨A (Z1) ,A (Z2)⟩ =
1

4

∥∥A (Z1 + Z2)
∥∥2
2
− 1

4

∥∥A (Z1 − Z2)
∥∥2
2

≤1 + δr+r′

4

∥∥Z1 + Z2

∥∥2
F
− 1− δr+r′

4

∥∥Z1 − Z2

∥∥2
F

=
δr+r′

2

(∥∥Z1

∥∥2
F
+
∥∥Z2

∥∥2
F

)
+ ⟨Z1,Z2⟩.

By rearranging terms and using the assumption
∥∥Z1

∥∥
F
=
∥∥Z2

∥∥
F
= 1we obtain that1121

⟨(A∗A− I)(Z1),Z2⟩ = ⟨A (Z1) ,A (Z2)⟩ − ⟨Z1,Z2⟩ ≤ δr+r′ .

Since the reverse bound1122

⟨(A∗A− I)(Z1),Z2⟩ ≥ −δr+r′

can be shown analogously, inequality (111) follows.1123

Next, we prove inequality (7). For that, we note that there exists amatrixM ∈ Rd×r′ with
∥∥M∥∥

F
= 11124

such that1125 ∥∥ (I − A∗A) (Z)V
∥∥
F
= ⟨[(I − A∗A) (Z)]V,M⟩ = ⟨[(I − A∗A) (Z)] ,VM⊤⟩

= ⟨(I − A∗A) (Z),
1

2
VM⊤ +

1

2
MV⊤⟩.

holds. Using inequality (111) we obtain that1126 ∥∥ (I − A∗A) (Z)V
∥∥
F
≤ δr+2r′

∥∥Z∥∥
F

∥∥1
2
VM⊤ +

1

2
MV⊤∥∥

F
≤ δr+2r′

∥∥Z∥∥
F

∥∥V∥∥∥∥M∥∥
F
= δr+2r′

∥∥Z∥∥
F
.

This proves inequality (7).1127

Inequality (8) is a direct consequence of (7). Indeed, let v ∈ Rd with
∥∥v∥∥

2
= 1 be an eigenvector1128

of (I − A∗A) (Z) corresponding to the largest eigenvalue in absolute value. It then follows from1129

inequality (7) that1130 ∥∥ (I − A∗A) (Z)
∥∥ =

∥∥ [(I − A∗A) (Z)]v
∥∥
2
≤ δr+2

∥∥Z∥∥
F
.

It remains to prove inequality (10). Note that using the fact ⟨ww⊤,Pww⊤,⊥(Z) = 0⟩, we have1131

|⟨A(ww⊤),A
(
Pww⊤,⊥(Z)

)
⟩| = |⟨(A∗A) (ww⊤),Pww⊤,⊥(Z))⟩|
= |⟨(I − A∗A)

(
ww⊤) ,Pww⊤,⊥(Z)⟩|

(a)

≤ δ(r+1)+1

∥∥ww⊤∥∥
F

∥∥Pww⊤,⊥(Z)
∥∥
F

≤ δr+2

∥∥Z∥∥
F
,

where in inequality (a)we used (111). This completes the proof of Lemma 2.4.1132
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