
A SIMPLE OPEN-LOOP BASELINE FOR REINFORCE-
MENT LEARNING LOCOMOTION TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In search of the simplest baseline capable of competing with Deep Reinforce-
ment Learning on locomotion tasks, we propose a biologically inspired model-free
open-loop strategy. Drawing upon prior knowledge and harnessing the elegance
of simple oscillators to generate periodic joint motions, it achieves respectable
performance in five different locomotion environments, with a number of tunable
parameters that is a tiny fraction of the thousands typically required by RL algo-
rithms. Unlike RL methods, which are prone to performance degradation when
exposed to sensor noise or failure, our open-loop oscillators exhibit remarkable
robustness due to their lack of reliance on sensors. Furthermore, we showcase
a successful transfer from simulation to reality using an elastic quadruped, all
without the need for randomization or reward engineering. Overall, the proposed
baseline and associated experiments highlight the existing limitations of DRL for
robotic applications, provide insights on how to address them, and encourage re-
flection on the costs of complexity and generality.

1 INTRODUCTION

The field of deep reinforcement learning (DRL) has witnessed remarkable strides in recent years,
pushing the boundaries of robotic control to new frontiers (Song et al., 2021; Hwangbo et al., 2019).
However, a dominant trend in the field is the steady escalation of algorithmic complexity. As a
result, the latest algorithms require a multitude of implementation details to achieve satisfactory
performance levels (Huang et al., 2022), leading to a concerning reproducibility crisis (Henderson
et al., 2018). Moreover, even state-of-the-art DRL models struggle with seemingly simple problems,
such as the Mountain Car environment (Colas et al., 2018) or the SWIMMER task (Franceschetti
et al., 2022; Huang et al., 2023).

Fortunately, several works have gone against the prevailing direction and tried to find simpler base-
lines, scalable alternatives for RL tasks (Rajeswaran et al., 2017; Salimans et al., 2017; Mania et al.,
2018). These efforts have not only raised questions about the evaluation and trends in RL (Agar-
wal et al., 2021), but also highlighted the need for simplicity in the field. In this paper, we carry
this torch further by introducing an extremely simple open-loop trajectory generator that operates
independently of sensor data.

While the exploration of policy structures in deep RL algorithms has remained relatively under-
explored, our research underscores its significance. We demonstrate that, by adopting the right
structural elements, even a minimal policy can achieve satisfactory performance levels1. The gen-
erality of RL algorithms is undeniable, but it comes at the price of specificity in task design, in the
form of complex reward engineering (Lee et al., 2020). We advocate leveraging prior knowledge to
reduce complexity, both in the algorithm and in the task formulation, when tackling specific prob-
lem categories such as locomotion tasks. In particular, we show that simple open-loop oscillators
can provide an effective and efficient solution for locomotion challenges. The proposed open-loop
approach not only reduces the computational load and reward engineering effort, but also facili-
tates the deployment of policies on real embedded systems, making it a valuable asset for practical
applications.

1See the 35 lines of code to solve SWIMMER in Fig. 6 of Appendix A.1

1

The open-loop strategy we present offers a profound advantage – its resilience in the face of the
inherent noise and unpredictability of sensory inputs (Goodwin et al., 2000; Ijspeert, 2008). Unlike
conventional reinforcement learning, which is notoriously brittle in the presence of sensor noise or
changes in the environment (Liu et al., 2023), our approach remains consistent in its performance.
We argue that this robustness is valuable for real-world applications, where perfect information and
unchanging conditions are elusive ideals.

Our intention is not to replace DRL algorithms, as the open-loop strategy has clear limitations and
cannot compete in complex locomotion scenarios. Rather, our goal is to highlight the existing limi-
tations of DRL, provide insights, and encourage reflection on the costs of complexity and generality.
This is achieved by studying one of the simplest model-free open-loop baseline.

1.1 CONTRIBUTIONS

In summary, the main contributions of our paper are:

• a simple open-loop baseline for learning locomotion that can handle sparse rewards and
high sensory noise and that requires very few parameters (on the order of tens, Section 2),

• showing the importance of prior knowledge and choosing the right policy structure (Sec-
tion 4.2),

• a study of the robustness of RL algorithms to noise and sensor failure (Section 4.3),
• showing successful simulation to reality transfer, without any randomization or reward

engineering, where deep RL algorithms fail (Section 4.4).

2 OPEN-LOOP OSCILLATORS FOR LOCOMOTION

We draw inspiration from nature and specifically from central pattern generators, as explored
by Righetti et al. (2006); Raffin et al. (2022); Bellegarda & Ijspeert (2022). Our approach lever-
ages nonlinear oscillators with phase-dependent frequencies to produce the desired motions for each
actuator. The equation of one oscillator is:

qdes
i (t) = ai · sin(θi(t) + φi) + bi

θ̇i(t) =

{
ωswing if sin(θi(t) + φi) > 0

ωstance otherwise
(1)

where qdes
i is the desired position for the i-th joint, ai, θi, φi and bi are the amplitude, phase, phase

shift and offset of oscillator i. ωswing and ωstance are the frequencies of oscillations in rad/s for the
swing and stance phases. To keep the search space small, we use the same frequencies ωswing and
ωstance for all actuators.

This formulation is both simple and fast to compute; in fact, since we do not integrate any feedback
term, all the desired positions can be computed in advance. The phase shift φi plays the role of the
coupling term found in previous work: joints that share the same phase shift oscillate synchronously.
However, compared to previous studies, the phase shift is not pre-defined but learned.

Optimizing the parameters of the oscillators is achieved using black-box optimization (BBO), specif-
ically the CMA-ES algorithm (Hansen et al., 2003; Hansen, 2009) implemented within the Optuna li-
brary (Akiba et al., 2019). This choice stems from its performance in our initial studies and its ability
to escape local minima. In addition, because BBO uses only episodic returns rather than immediate
rewards, it makes the baseline robust to sparse or delayed rewards. Finally, a proportional-derivative
(PD) controller converts the desired joint positions generated by the oscillators into desired torques.

3 RELATED WORK

The quest for simpler RL baselines. Despite the prevailing trend towards increasing complexity,
some research has been dedicated to developing simple yet effective baselines for solving robotic
tasks using RL. In this vein, Rajeswaran et al. (2017) proposed the use of policies with simple

2

parametrization, such as linear or radial basis functions (RBF), and highlighted the brittleness of RL
agents. Concurrently, Salimans et al. (2017) explored the use of evolution strategies as an alterna-
tive to RL, exploiting their fast runtime to scale up the search process. More recently, Mania et al.
(2018) introduced Augmented Random Search (ARS), a straightforward population-based algorithm
that trains linear policies. Building upon these efforts, we seek to further simplify the solution by
proposing open-loop oscillators to generate desired joint trajectories independently of the robot’s
state. Our goal is to provide the simplest model-free method capable of achieving respectable per-
formance on standard locomotion tasks.

Biology inspired locomotion. Biological studies have extensively investigated the role of oscilla-
tors as fundamental components of locomotion (Delcomyn, 1980; Cohen & Wallén, 1980; Ijspeert,
2008), including the identification of central pattern generators (CPGs) – neural networks capable
of generating synchronized patterns of activity, without relying on rhythmic input from sensory
feedback – in animals such as lampreys (Ijspeert, 2008). Inspired by these findings, researchers
have incorporated oscillators into robotic control for locomotion (Crespi & Ijspeert, 2008; Iscen
et al., 2013), and recent works have combined learning approaches with CPGs in task space for
quadruped locomotion (Kohl & Stone, 2004; Tan et al., 2018; Iscen et al., 2018; Yang et al., 2022;
Bellegarda & Ijspeert, 2022; Raffin et al., 2022). However, surprisingly and to the best of our knowl-
edge, no previous studies have explored the use of open-loop oscillators in reinforcement learning
locomotion benchmarks, possibly due to the belief that open-loop control is insufficient for stable
locomotion (Iscen et al., 2018). Our work aims to address this gap by evaluating simple open-loop
oscillators in RL locomotion tasks and on a real hardware, directly in joint space, eliminating the
need for inverse kinematics and pre-defined gaits.

4 RESULTS

We assess the effectiveness of our method through experiments on locomotion tasks across diverse
environments, including simulated tasks and transfer to a real elastic quadruped.

Our goal is to address three key questions:

• How do simple open-loop oscillators fare against deep reinforcement learning methods in
terms of performance, runtime and parameter efficiency?

• How resilient are RL policies to sensor noise, failures and external perturbations when
compared to the open-loop baseline?

• How do learned policies transfer to a real robot when training without randomization or
reward engineering?

By examining these questions, we seek to provide a comprehensive understanding of the strengths
and limitations of our proposed approach and shed light on the potential benefits of leveraging prior
knowledge in robotic control.

4.1 IMPLEMENTATION DETAILS

For the RL baselines, we utilize JAX implementations from Stable-Baselines3 (Bradbury et al.,
2018; Raffin et al., 2021a) and the RL Zoo (Raffin, 2020) training framework. The search space
used to optimize the parameters of the oscillators is shown in Table 3 of Appendix A.2.

4.2 RESULTS ON THE MUJOCO LOCOMOTION TASKS

We assess the efficacy of our method on the MuJoCo v4 locomotion tasks (ANT, HALFCHEE-
TAH, HOPPER, WALKER2D, SWIMMER) included in the Gymnasium v0.29.1 library (Towers et al.,
2023). We compare our approach against three established deep RL algorithms: Proximal Policy
Optimization (PPO), Deep Deterministic Policy Gradients (DDPG), and Soft Actor-Critic (SAC). To
ensure a fair comparison, we adopt the hyperparameter settings from the original papers, except for
the swimmer task, where we fine-tuned the discount factor (γ = 0.9999) according to Franceschetti
et al. (2022). Additionally, we also benchmark Augmented Random Search (ARS) which is a popu-
lation based algorithm that uses linear policies. Our choice of baselines includes one representative

3

example per algorithm category: PPO for on-policy, SAC for off-policy, ARS for population-based
methods and simple model-free baselines, and DDPG as a historical algorithm (many state-of-the-
art algorithms are based on it). We choose SAC (Haarnoja et al., 2019) because it performs well in
continuous control tasks (Huang et al., 2023), and it shares many components (including the policy
structure) with its newer and more complex variants. SAC and its variants, such as TQC (Kuznetsov
et al., 2020), REDQ (Chen et al., 2021) or DroQ (Hiraoka et al., 2022) are also the ones used in
the robotics community (Raffin et al., 2022; Smith et al., 2023). We use standard reward functions
provided by Gymnasium, except for ARS where we remove the alive bonus to match the results
from the original paper.

The RL agents are trained during one million steps. To have quantitative results, we replicate each
experiment 10 times with distinct random seeds. We follow the recommendations by Agarwal et al.
(2021) and report performances profiles, probability of improvements in Fig. 1 and aggregated met-
rics with 95% confidence intervals in Fig. 2. We normalize the score over all environments using a
random policy for the minimum and the maximum performance of the open-loop oscillators.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Open Loop
SAC
PPO
DDPG
ARS

0.2 0.3 0.4 0.5 0.6 0.7
P(X > Y)

Open Loop
Open Loop
Open Loop
Open Loop

Algorithm X

 SAC
 PPO
 DDPG
 ARS

Algorithm Y

Figure 1: Performance profiles on the MuJoCo locomotion tasks (left) and probability of improve-
ments of the open-loop approach over baselines, with a 95% confidence interval.

0.6 1.2 1.8 2.4
Open Loop

SAC
PPO

DDPG
ARS

Median

0.6 1.2 1.8 2.4

IQM

Normalized Score

Figure 2: Metrics results on MuJoCo locomotion tasks using median and interquartile mean (IQM),
with a 95% confidence interval.

Performance. As seen in Figs. 1 and 2, the open-loop oscillators achieves respectable performance
across all five tasks, despite its minimalist design. In particular, it performs favorably against ARS
and DDPG, a simple baseline and a classic deep RL algorithm, and exhibits comparable perfor-
mance to PPO. Remarkably, this is accomplished with merely a dozen parameters, in contrast to the
thousands typically required by deep RL algorithms. Our results suggest that simple oscillators can
effectively compete with sophisticated RL methods for locomotion, and do so in an open-loop fash-
ion. It also shows the limits of the open-loop approach. The baseline does not reach the maximum
performance of SAC.

Runtime. Comparing the runtime of the different algorithms2, as presented in Table 1, underscores
the benefits of choosing simplicity over complexity. Notably, ARS requires only five minutes of CPU

2We display the runtime for HALFCHEETAH only, the computation time for the other tasks is similar.

4

Table 1: Runtime comparison to train a policy on HALFCHEETAH, one million steps using a single
environment, no parallelization.

SAC PPO DDPG ARS Open-Loop

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Runtime (in min.) 80 30 10 14 60 25 5 N/A 2 N/A

time to train on a single environment for one million steps, while open-loop oscillators are twice
as fast. This efficiency becomes particularly advantageous when deploying policies on embedded
systems with limited computing resources. Moreover, both methods can be easily scaled using
asynchronous parallelization to achieve satisfactory performance in a timely manner. In contrast,
more complex methods like SAC demand a GPU to achieve reasonable runtimes (15 times slower
than open-loop oscillators), even with the aid of JIT compilation3.

10
1

10
2

10
3

10
4

10
5

Number of Parameters (log)

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 S
co

re

Open Loop
SAC
PPO
DDPG
ARS

Figure 3: Parameter efficiency of the different algorithms. Results are presented with a 95% confi-
dence interval and score are normalized with respect to the open-loop baseline.

Parameter efficiency. As seen in Fig. 3, the open-loop oscillators really stand out for their simplic-
ity and performance with respect to the number of optimized parameters. On average, our approach
has 7x fewer parameters than ARS, 800x fewer than PPO and 27000x fewer than SAC. This compar-
ison highlights the importance of choosing an appropriate policy structure that delivers satisfactory
performance while minimizing complexity.

4.3 ROBUSTNESS TO SENSOR NOISE AND FAILURES

In this section, we assess the resilience of the trained agents from the previous section against sensor
noise, malfunctions and external perturbations (Dulac-Arnold et al., 2020; Seyde et al., 2021). To
study the impact of noisy sensors, we introduce Gaussian noise with varying intensities into one
sensor signal (specifically, the first index in the observation vector, the one that gives the position
of the end-effector). To investigate the robustness against sensor faults, we simulate two types of
sensor failures: Type I failure involves outputting zero values for one sensor, while Type II failure
generates a constant value with a larger magnitude (we set this value to five in our experiments).
Finally, we evaluate the robustness to external disturbances by applying perturbations with a force
of 5N in randomly chosen directions with a probability of 5% (around 50 impulses per episode).
By examining how the agents perform under these scenarios, we can evaluate their ability to adapt
to imperfect sensory input and react to disturbances. We study the effect of randomization by also

3The JAX implementation of SAC used in this study is four times faster than its PyTorch counterpart.

5

No Noise or Failure σ = 0.25 σ = 0.5 Type I
Zero Value

Type II
Constant Value

External Perturbation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

S
co

re

Robustness to Sensor Noise and Failures

SAC

SAC NOISE

OPEN LOOP

PPO

ARS

DDPG

Figure 4: Robustness to sensor noise (with varying intensities), failures of Type I (all zeros) and II
(constant large value) and external disturbances. All results are presented with a 95% confidence
interval and score are normalized with respect to the open-loop baseline.

training SAC with a Gaussian noise with intensity σ = 0.2 on the first sensor (SAC NOISE in the
figure).

In absence of noise or failures, SAC excels over simple oscillators on most tasks, except for the
SWIMMER environment. However, as depicted in Fig. 4, SAC performance deteriorates rapidly
when exposed to noise or sensor malfunction. This is the case for the other RL algorithms, where
ARS and PPO are the most robust ones but still exhibit degraded performances. In contrast, open-
loop oscillators remain unaffected, except when exposed to external perturbations because they do
not rely on sensors. This highlights one of the primary advantages and limitations of open-loop
control.

As shown by the performance of SAC trained with noise on the first sensor (SAC NOISE), it is
possible to mitigate the impact of sensor noise. This result, together with the performance of the
open-loop controller, suggests that the first sensor is not essential for achieving good performance in
the MuJoCo locomotion tasks. SAC with randomization on the first sensor has learned to disregard
its input, while SAC without randomization exhibits a high sensitivity to the value of this uninfor-
mative sensor. This finding illustrates a vulnerability of DRL algorithms, which can be sensitive to
useless inputs.

4.4 SIMULATION TO REALITY TRANSFER ON AN ELASTIC QUADRUPED

Figure 5: Robotic quadruped with elastic actuators in simulation (left) and real hardware (right)

The open-loop approach offers a promising solution for locomotion control on real robots, owing
to its computational efficiency, resistance to sensor noise, and adequate performance. To assess

6

its potential for real-world applications, we investigate whether the results in simulation can be
transferred to a real quadruped robot equipped with serial elastic actuators4.

The experimental platform is a cat-sized quadruped robot with eight joints, similar to the ANT task
in MuJoCo, where motors are connected to the links via a linear torsional spring with constant
stiffness k ≈ 2.75Nm/rad. To conduct our evaluation, we utilize a simulation of the robot in
PyBullet (Coumans & Bai, 2016–2021), which includes a model of the elastic joints but excludes
motor dynamics. The task is to reach maximum forward speed: we define the reward as displacement
along the desired axis and limit each episode to five seconds of interaction. The agent receives the
current joint positions q and velocities q̇ as observation and commands desired joint positions qdes at
a rate of 60Hz.

In this evaluation, we compare the open-loop approach against the top-performing algorithm from
Section 4.2, namely SAC. Both algorithms are allotted a budget of one million steps for training.
Importantly, we do not apply any randomization or task-specific techniques during the training pro-
cess. Our goal is to understand the strengths and weaknesses of RL with respect to the open-loop
baseline in a simple simulation-to-reality setting. We evaluate the learned policy from simulation on
the real robot for ten episodes.

Table 2: Results of simulation-to-reality transfer for the elastic quadruped locomotion task. We
report mean speed and standard error over ten test episodes. SAC performs well in simulation, but
fails to transfer to the real world.

SAC Open-Loop

Sim Real Sim Real

Mean speed (m/s) 0.81 +/ 0.02 0.04 +/ 0.01 0.55 +/ 0.03 0.36 +/ 0.01

As shown in Table 2, SAC exhibits superior performance in simulation compared to the open-loop
oscillators (like in Section 4.2), with a mean speed of 0.81 m/s versus 0.55 m/s over ten runs.
However, upon closer examination, the policy learned by SAC outputs high-frequency commands
making it unlikely to transfer to the real robot – a common issue faced by RL algorithms (Raffin
et al., 2021b; Bellegarda & Ijspeert, 2022). When deployed on the real robot, the jerky motion
patterns translate into suboptimal performance (0.04 m/s), commands that can damage the motors,
and increased wear-and-tear.

In contrast, our open-loop oscillators, with fewer than 25 adjustable parameters, produce smooth out-
puts by design and demonstrate good performance on the real robot. The open-loop policy achieves
a mean speed of 0.36 m/s, the fastest walking gait recorded for this elastic quadruped (Lakatos
et al., 2018). While there is still a disparity between simulation and reality, the gap is significantly
narrower compared to the RL algorithm.

5 DISCUSSION

A simple open-loop model-free baseline. We propose a simple, open-loop model-free baseline that
achieves satisfactory performance on standard locomotion tasks without requiring complex models
or extensive computational resources. While it does not outperform RL algorithms in simulation,
this approach has several advantages for real-world applications, including fast computation, ease of
deployment on embedded systems, smooth control outputs, and robustness to sensor noise. These
features help narrow the simulation-to-reality gap and avoid common issues associated with deep
RL algorithms, such as jerky motion patterns (Raffin et al., 2021b) or converging to a bang-bang
controller (Seyde et al., 2021). Our approach is specifically tailored to address locomotion tasks,
yet its simplicity does not limit its versatility. It can successfully tackle a wide array of locomotion
challenges and transfer to a real robot, with just a few tunable parameters, while remaining model-
free.

The cost of generality. Deep RL algorithms for continuous control often strive for generality by
employing a versatile neural network architecture as the policy. However, this pursuit of generality

4The results can also be seen in the video in the supplementary material.

7

comes at a price of specificity in the task design. Indeed, the reward function and action space must
be carefully crafted to solve the locomotion task and avoid solutions that hack the simulator but do
not transfer to the real hardware. Our study and other recent work (Iscen et al., 2018; Bellegarda &
Ijspeert, 2022; Raffin et al., 2022) suggest incorporating domain knowledge into the policy design.
Even minimal knowledge like simple oscillators, reduces the search space and the need for complex
algorithms or reward design.

RL for more complex locomotion scenarios. The locomotion tasks presented in this paper may
seem relatively simple compared to the more complex challenges that RL has tackled (Miki et al.,
2022). However, the MuJoCo environments have served as a benchmark for the continuous control
algorithms used on robots and are still widely utilized in both online and offline RL. It is important
to note that even SAC, which performs well in simulation, can perform sub-optimally with simple
environments like the swimmer task (Franceschetti et al., 2022) or the elastic quadruped simulation-
to-reality transfer, and be sensitive to uninformative sensors. We believe that understanding the
failures and limitations by providing a simple open-loop model-free baseline is more valuable than
marginally improving performance by adding new tricks to an already complex algorithm (Patterson
et al., 2023).

Unexpected results. While the success of the open-loop oscillators in the SWIMMER environment is
anticipated, their effectiveness in the WALKER, HOPPER or elastic quadruped environments is more
unexpected, as one might assume that feedback control or inverse kinematics would be necessary to
balance the robots or to learn a meaningful open-loop policy. While it is true that previous studies
have shown that periodic control is at the heart of locomotion (Ijspeert, 2008), we argue that the
required periodic motion can be surprisingly simple. Mania et al. (2018) have shown that simple
linear policies can be used for locomotion tasks. The present work goes a step further by reducing
the number of parameters by a factor of ten and removing the state as an input.

Exploiting robot natural dynamics. Our open-loop baseline reveals an intriguing insight: a single
frequency per phase (swing or stance) can be employed across all joints for all considered tasks. This
observation resonates with recent research focused on exploiting the natural dynamics of robots, par-
ticularly using nonlinear modes that enable periodic motions with minimal actuation (Della Santina
et al., 2020; Albu-Schäffer & Della Santina, 2020; Albu-Schäffer & Sachtler, 2022). Our approach
could potentially identify periodic motions for locomotion while minimizing control effort, thus
harnessing the inherent dynamics of the hardware.

Limitations Naturally, open-loop control alone is not a complete solution for locomotion challenges.
Indeed, by design, open-loop control is vulnerable to disturbances and cannot recover from poten-
tial falls. In such cases, closing the loop with reinforcement learning becomes essential to adapt
to changing conditions, maintain stability or follow a desired goal. A hybrid approach that inte-
grates the strengths of feedforward (open-loop) and feedback (closed-loop) control offers a middle
ground, as seen in various engineering domains (Goodwin et al., 2000; Astrom & Murray, 2008;
Della Santina et al., 2017). By combining the speed and noise resilience of open-loop control with
the adaptability of closed-loop control, it enables reactive and goal-oriented locomotion. Prior stud-
ies have explored this combination (Iscen et al., 2018; Bellegarda & Ijspeert, 2022; Raffin et al.,
2022), but our research simplifies the feedforward formulation and eliminates the need for inverse
kinematics or predefined gaits.

Future work. While our approach generates desired joint positions using oscillators without relying
on the robot state, a PD controller is still required in simulation to convert these positions into torque
commands. We consider this requirement as part of the environment, since a position interface is
usually provided when considering real robotic applications. Furthermore, the generated torques
appear to be periodic, suggesting that the PD controller could be replaced by additional oscillators
(additional harmonic terms). While this possibility is worth exploring, we focus on simplicity in our
current work, using a minimal number of parameters, and defer this endeavor to future research.

REPRODUCIBILITY STATEMENT

We provide a minimal standalone code (35 lines of Python code) in the Appendix (Fig. 6) that
allows to solve the SWIMMER task using open-loop oscillators. The code to reproduce the main
experiments is provided in the supplementary material. The search space and details for optimizing
the oscillators parameters are given in Appendix A.2.

8

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19,
pp. 2623–2631, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362016.

Alin Albu-Schäffer and Cosimo Della Santina. A review on nonlinear modes in conservative me-
chanical systems. Annual Reviews in Control, 50:49–71, 2020.

Alin Albu-Schäffer and Arne Sachtler. What can algebraic topology and differential geometry teach
us about intrinsic dynamics and global behavior of robots? In The International Symposium of
Robotics Research, pp. 468–484. Springer, 2022.

Karl Johan Astrom and Richard M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, USA, 2008. ISBN 0691135762.

G. Bellegarda and A. J. Ijspeert. CPG-RL: Learning central pattern generators for quadruped loco-
motion. IEEE Robotics and Automation Letters, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-
learning: Learning fast without a model. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=AY8zfZm0tDd.

Avis H Cohen and Peter Wallén. The neuronal correlate of locomotion in fish: “fictive swimming”
induced in an in vitro preparation of the lamprey spinal cord. Experimental brain research, 41(1):
11–18, 1980.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling exploration and ex-
ploitation in deep reinforcement learning algorithms. In International conference on machine
learning, pp. 1039–1048. PMLR, 2018.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

Alessandro Crespi and Auke Jan Ijspeert. Online optimization of swimming and crawling in an
amphibious snake robot. IEEE Transactions on Robotics, 24(1):75–87, 2008.

Fred Delcomyn. Neural basis of rhythmic behavior in animals. Science, 210(4469):492–498, 1980.

Cosimo Della Santina, Matteo Bianchi, Giorgio Grioli, Franco Angelini, Manuel Catalano, Manolo
Garabini, and Antonio Bicchi. Controlling soft robots: balancing feedback and feedforward ele-
ments. IEEE Robotics & Automation Magazine, 24(3):75–83, 2017.

Cosimo Della Santina, Dominic Lakatos, Antonio Bicchi, and Alin Albu-Schaeffer. Using nonlinear
normal modes for execution of efficient cyclic motions in articulated soft robots. In International
Symposium on Experimental Robotics, pp. 566–575. Springer, 2020.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learn-
ing. arXiv preprint arXiv:2003.11881, 2020.

Maël Franceschetti, Coline Lacoux, Ryan Ohouens, Antonin Raffin, and Olivier Sigaud. Making
reinforcement learning work on swimmer. arXiv preprint arXiv:2208.07587, 2022.

9

http://github.com/google/jax
http://github.com/google/jax
https://openreview.net/forum?id=AY8zfZm0tDd
http://pybullet.org

Graham C. Goodwin, Stefan F. Graebe, and Mario E. Salgado. Control System Design. Prentice
Hall PTR, USA, 1st edition, 2000. ISBN 0139586539.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning
to walk via deep reinforcement learning. Robotics: Science and Systems (RSS), 15:11, 2019.

Nikolaus Hansen. Benchmarking a bi-population cma-es on the bbob-2009 function testbed. In
Proceedings of the 11th annual conference companion on genetic and evolutionary computation
conference: late breaking papers, pp. 2389–2396, 2009.

Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
computation, 11(1):1–18, 2003.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsu-
ruoka. Dropout q-functions for doubly efficient reinforcement learning. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
xCVJMsPv3RT.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In ICLR
Blog Track, 2022. URL https://iclr-blog-track.github.io/2022/03/25/
ppo-implementation-details/.

Shengyi Huang, Quentin Gallouédec, Florian Felten, Antonin Raffin, Rousslan Fernand Julien
Dossa, Yanxiao Zhao, Ryan Sullivan, Viktor Makoviychuk, Denys Makoviichuk, Cyril
Roumégous, Jiayi Weng, Chufan Chen, Masudur Rahman, João G. M. Araújo, Guorui Quan,
Daniel Tan, Timo Klein, Rujikorn Charakorn, Mark Towers, Yann Berthelot, Kinal Mehta,
Dipam Chakraborty, Arjun KG, Valentin Charraut, Chang Ye, Zichen Liu, Lucas N. Alegre,
Jongwook Choi, and Brent Yi. openrlbenchmark, 2023. URL https://github.com/
openrlbenchmark/openrlbenchmark.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Auke Jan Ijspeert. Central pattern generators for locomotion control in animals and robots: A review.
Neural Networks, 21(4):642–653, 2008. ISSN 0893-6080. Robotics and Neuroscience.

Atil Iscen, Adrian Agogino, Vytas SunSpiral, and Kagan Tumer. Controlling tensegrity robots
through evolution. In Proceedings of the 15th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’13, pp. 1293–1300, New York, NY, USA, 2013. Association
for Computing Machinery. ISBN 9781450319638. doi: 10.1145/2463372.2463525. URL
https://doi.org/10.1145/2463372.2463525.

Atil Iscen, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent
Vanhoucke. Policies modulating trajectory generators. In Conference on Robot Learning, pp.
916–926. PMLR, 2018.

Nate Kohl and Peter Stone. Machine learning for fast quadrupedal locomotion. In AAAI, volume 4,
pp. 611–616, 2004.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556–5566. PMLR, 2020.

10

https://openreview.net/forum?id=xCVJMsPv3RT
https://openreview.net/forum?id=xCVJMsPv3RT
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://github.com/openrlbenchmark/openrlbenchmark
https://github.com/openrlbenchmark/openrlbenchmark
https://doi.org/10.1145/2463372.2463525

Dominic Lakatos, Kai Ploeger, Florian Loeffl, Daniel Seidel, Florian Schmidt, Thomas Gumpert,
Freia John, Torsten Bertram, and Alin Albu-Schäffer. Dynamic locomotion gaits of a compliantly
actuated quadruped with slip-like articulated legs embodied in the mechanical design. IEEE
Robotics and Automation Letters, 3(4):3908–3915, 2018.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Zuxin Liu, Zijian Guo, Zhepeng Cen, Huan Zhang, Jie Tan, Bo Li, and Ding Zhao. On the robustness
of safe reinforcement learning under observational perturbations. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=jbIYfq4Tr-.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, 2022.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in rein-
forcement learning. arXiv preprint arXiv:2304.01315, 2023.

Antonin Raffin. Rl baselines3 zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021a.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning.
In Conference on Robot Learning, 2021b.

Antonin Raffin, Daniel Seidel, Jens Kober, Alin Albu-Schäffer, João Silvério, and Freek Stulp.
Learning to exploit elastic actuators for quadruped locomotion. arXiv preprint arXiv:2209.07171,
2022.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, and Sham M Kakade. To-
wards generalization and simplicity in continuous control. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/9ddb9dd5d8aee9a76bf217a2a3c54833-Paper.pdf.

Ludovic Righetti, Jonas Buchli, and Auke Jan Ijspeert. Dynamic hebbian learning in adaptive fre-
quency oscillators. Physica D: Nonlinear Phenomena, 216(2):269–281, 2006.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
bernoulli policies. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=9BvDIW6_qxZ.

Laura Smith, Ilya Kostrikov, and Sergey Levine. Demonstrating a walk in the park: Learning to
walk in 20 minutes with model-free reinforcement learning. Robotics: Science and Systems (RSS)
Demo, 2(3):4, 2023.

Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. Autonomous drone racing
with deep reinforcement learning. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1205–1212. IEEE, 2021.

11

https://openreview.net/forum?id=jbIYfq4Tr-
https://openreview.net/forum?id=jbIYfq4Tr-
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ddb9dd5d8aee9a76bf217a2a3c54833-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ddb9dd5d8aee9a76bf217a2a3c54833-Paper.pdf
https://openreview.net/forum?id=9BvDIW6_qxZ
https://openreview.net/forum?id=9BvDIW6_qxZ

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, 2023. URL https://zenodo.org/record/8127025.

Yuxiang Yang, Tingnan Zhang, Erwin Coumans, Jie Tan, and Byron Boots. Fast and efficient lo-
comotion via learned gait transitions. In Conference on Robot Learning, pp. 773–783. PMLR,
2022.

A APPENDIX

A.1 STANDALONE CODE FOR THE SWIMMER TASK

import gymnasium as gym

import numpy as np

from gymnasium.envs.mujoco.mujoco_env import MujocoEnv

Env initialization

env = gym.make("Swimmer-v4", render_mode="human")

Wrap to have reward statistics

env = gym.wrappers.RecordEpisodeStatistics(env)

mujoco_env = env.unwrapped

n_joints = 2

assert isinstance(mujoco_env, MujocoEnv)

PD Controller gains

kp, kd = 10, 0.5

Reset the environment

t, _ = 0.0, env.reset(seed=0)

Oscillators parameters

omega = 2 * np.pi * 0.62 * np.ones(n_joints)

phase = 2 * np.pi * np.array([0.00, 0.95])

while True:

env.render()

Open-Loop Control using oscillators

desired_qpos = np.sin(omega * t + phase)

PD Control: convert to torque, desired qvel is zero

desired_torques = (

kp * (desired_qpos - mujoco_env.data.qpos[-n_joints:])

- kd * mujoco_env.data.qvel[-n_joints:]

)

desired_torques = np.clip(desired_torques, -1.0, 1.0) # clip to action bounds

_, reward, terminated, truncated, info = env.step(desired_torques)

t += mujoco_env.dt

if terminated or truncated:

print(f"Episode return: {float(info['episode']['r']):.2f}")

t, _ = 0.0, env.reset()

Figure 6: Minimal code to solve the SWIMMER environment using open-loop oscillators (high-
lighted in black). Code was tested with Gymnasium v0.29.1, MuJoCo v2.3.7 and Python 3.9.

12

https://zenodo.org/record/8127025

A.2 OPEN-LOOP OSCILLATORS SEARCH SPACE

Table 3: Search space for the oscillators parameters. We set φ0 = 0 by convention, use a step-
size dt = 0.001 for the integration of the oscillators equations and have a population size of 30 for
CMAES. U(−1, 1) means that the value is sampled from a uniform distribution between −1 and 1.
For the SWIMMER task, a constant amplitude and offset are used.

Amplitude ai Offset bi Phase Shift φi Frequencies ωswing/stance

Ant-v4 U(−1, 1) U(−1, 1) 2π · U(0, 1) 2π · U(0.4, 2)
HalfCheetah-v4 U(−2, 2) U(−1, 1) 2π · U(0, 1) 2π · U(0.4, 5)
Hopper-v4 U(−1, 1) 0.0 2π · U(0, 1) 2π · U(0.4, 5)
Swimmer-v4 1.0 0.0 2π · U(0, 1) 2π · U(0.4, 2)
Walker2d-v4 U(−1, 1) U(−1, 1) 2π · U(0, 1) 2π · U(0.4, 6)
Quadruped U(−1, 1) U(−1, 1) 2π · U(0, 1) 2π · U(0.4, 2)

Table 4: Proportional (kp) and derivative (kd) gains of the PD controller for each environment.

kp kd

Ant-v4 1.0 0.05
HalfCheetah-v4 1.0 0.05
Hopper-v4 10.0 0.5
Swimmer-v4 7.0 0.7
Walker2d-v4 10.0 0.5

A.3 ABLATION STUDY

In this section, we examine the impact of design choices of Eq. (1) on performance. In particular,
we investigate the influence of having phase-dependent frequencies (we set ωswing = ωstance = ω)
and the importance of having phase shifts φi between oscillators (we set φi = 0). The results are
shown in Figs. 7 and 8 and table 5.

The equations of the different variants of Eq. (1) are:

qdes
i (t) = ai · sin(ω · t+ φi) + bi No ωswing

qdes
i (t) = ai · sin(θi(t)) + bi No φi

qdes
i (t) = ai · sin(ω · t) + bi No φi No ωswing

(2)

where θi(t) is the same as in Eq. (1).

For the HALFCHEETAH, SWIMMER and ANT tasks, having a single frequency ω is sufficient, while
it is critical to have phase-dependent frequencies for the HOPPER environment. The phase shifts φi

are needed when all joints cannot be synchronous (as in the SWIMMER task). For the quadruped,
these phase shifts φi represent the gait and encode symmetries between the legs.

13

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00
F

ra
ct

io
n

of
ru

ns
w

it
h

sc
or

e
>
τ

Open-Loop Full

No ωswing

No ϕi
No ωswing No ϕi

Figure 7: Performance profiles on the MuJoCo locomotion tasks using different variants of the open-
loop approach, with a 95% confidence interval.

0.7 0.8 0.9

Open-Loop Full
No ωswing

No ϕi
No ωswing No ϕi

Median

0.7 0.8 0.9

IQM

Normalized Score

Figure 8: Metrics results on MuJoCo locomotion tasks for the different variants using median and
interquartile mean (IQM), with a 95% confidence interval.

Table 5: Results on MuJoCo locomotion tasks (mean and standard error are displayed) with differ-
ent variant of the approach.

Open-Loop

No φi No ωswing No φi No ωswing Full

Ant-v4 1167 +/- 3 1173 +/- 3 1239 +/- 8 1235 +/- 6
HalfCheetah-v4 2221 +/- 27 2245 +/- 30 2532 +/- 42 2400 +/- 31
Hopper-v4 929 +/- 9 785 +/- 28 986 +/- 7 1241 +/- 30
Swimmer-v4 -119 +/- 8 -82 +/- 6 356 +/- 0 356 +/- 0
Walker2d-v4 1484 +/- 36 1482 +/- 34 1140 +/- 32 1508 +/- 27

A.4 RAW RESULTS ON MUJOCO

14

Table 6: Results on MuJoCo locomotion tasks (mean and standard error are displayed).

Environments SAC PPO DDPG ARS Open-Loop

1 x budget 3 x budget

Ant-v4 4514 +/- 352 796 +/- 116 265 +/- 210 1241 +/- 25 1235 +/- 6 2130 +/- 120
HalfCheetah-v4 10538 +/- 286 1770 +/- 254 11267 +/- 317 2195 +/- 272 2400 +/- 31 4003 +/- 100
Hopper-v4 4039 +/- 118 1817 +/- 312 1240 +/- 124 2538 +/- 253 1241 +/- 30 2056 +/- 121
Swimmer-v4 240 +/- 39 334 +/- 18 25 +/- 4 267 +/- 31 356 +/- 0 357 +/- 1
Walker-v4 3192 +/- 184 1817 +/- 312 563 +/- 64 444 +/- 10 1508 +/- 261 2500 +/- 461

15

	Introduction
	Contributions

	Open-Loop Oscillators for Locomotion
	Related Work
	Results
	Implementation Details
	Results on the MuJoCo locomotion tasks
	Robustness to sensor noise and failures
	Simulation to Reality Transfer on an Elastic Quadruped

	Discussion
	Appendix
	Standalone Code for the Swimmer Task
	Open-Loop Oscillators search space
	Ablation Study
	Raw results on MuJoCo

