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Abstract

Animals have a developed ability to explore that aids them in important tasks
such as locating food, exploring for shelter, and finding misplaced items. These
exploration skills necessarily track where they have been so that they can plan for
finding items with relative efficiency. Contemporary exploration algorithms often
learn a less efficient exploration strategy because they either condition only on
the current state or simply rely on making random open-loop exploratory moves.
In this work, we propose ηψ-Learning, a method to learn efficient exploratory
policies by conditioning on past episodic experience to make the next exploratory
move. Specifically, ηψ-Learning learns an exploration policy that maximizes the
entropy of the state visitation distribution of a single trajectory. Furthermore, we
demonstrate how variants of the predecessor representation and successor represen-
tations can be combined to predict the state visitation entropy. Our experiments
demonstrate the efficacy of ηψ-Learning to strategically explore the environment
and maximize the state coverage with limited samples.

1 Introduction

Animals and humans are very efficient at exploration compared to their data-hungry algorithms
counterparts [36, 28, 50, 51, 12, 14, 65, 52]. For instance, when misplacing an item, a person will
methodically search through the environment to locate the lost item. To efficiently explore, an
intelligent agent must consider past interactions to decide what to explore next and avoid re-visiting
previously encountered locations to find rewarding states as fast as possible. Consequently, the agent
needs to reason over potentially long interaction sequences, a space that grows exponentially with the
sequence length. Here, assuming that all the information the agent needs to act is contained in the
current state is impossible [43].

In this paper, we present ηψ-Learning, an algorithm to learn an exploration policy that methodically
searches through a task. This is accomplished by maximizing the entropy of the state visitation
distribution of a single finite-length trajectory. This focus on optimizing the state visitation distribution
of a single trajectory distinguishes our approach from prior work on exploration methods that
maximize the entropy of the state visitation distribution [23, 61, 31, 41, 18]. For example Hazan
et al. [23] focus on learning a Markovian policy—a decision-making strategy that is only conditioned
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Figure 1: Consider a 4× 4 gridworld for illustration. (a) The agent starts at the top left corner and
takes a few actions(red arrows show the trace), (b) an optimal trajectory that covers the grid (green
arrows) and can visit all the states without visiting any state twice, (c) a sub-optimal trajectory where
agent visits a previously observed state in the last step and not able to visit all the states with the
limited steps, (d) another sub-optimal trajectory where agent visits an observed state at an earlier step.

on the current state and does not consider which states have been explored before. A Markovian
policy constrains the agent in its ability to express different exploration policies and typically results
in randomizing at uncertain states to maximize the state entropy objective. While this will lead to
uniformly covering the state space in the limit, such behaviors are not favorable for real-world tasks
where the agent needs to maximize state coverage with limited number of interactions.

Figure 1 presents a didactic example to illustrate how an intelligent agent can learn to efficiently
explore a 4× 4 grid. In this example, the agent transitions between different grid cells by selecting
one of four actions: up, down, left, and right. To explore optimally, the agent would select actions
that maximize the entropy of the visited state distribution of the entire trajectory. Suppose the agent
started its trajectory in the top left corner of the grid (shown in Figure 1(a)) and has moved to the
right twice and made one downward step (indicated by red arrows). At this point, the agent has to
decide between one of the four actions to further explore the grid. For example, it could move left
and follow the green trajectory as outlined in Figure 1(b). This path would be optimal in this example
because every state is visited exactly once and not multiple times. However, the top action would
lead to a sub-optimal trajectory as the agent would visit the previous state. To mitigate sub-optimal
exploration, an intelligent agent must keep track of visited states to avoid revisiting states. Although
the right action will lead to a novel state in the next step, the overall behavior will be sub-optimal
as the agent will have to visit a state twice to explore the entire grid (depicted in Figures 1(c) and
1(d)). This further requires an agent to carefully plan and account for the states that would follow
after taking an action.

In this work, we propose ηψ-Learning, an algorithm to compute an exploration strategy that method-
ically explores within a single finite-length trajectory—as illustrated in Figure 1(b). ηψ-Learning
maintains two state representations: a predecessor representation [64, 2] to encode past state visitation
frequencies and a Successor Representation (SR) [13] to predict future state visitation frequencies.
The two representations are used to evaluate at every time step the decision that leads to covering all
states as uniformly as possible. Specifically, for every potential action the agent can take, the SR is
combined with the predecessor representation to predict the state visitation distribution for the current
trajectory. Then, the action that results in the highest entropy of this state visitation distribution
is selected for exploration. Furthermore, this exploration policy can be deterministic and does not
randomize to achieve its maximum state entropy objective.

To summarize, the contributions of this work are as follows: Firstly, we propose a mechanism
to combine successor [13] and predecessor [64] representations for maximizing the entropy of
the state visitation distribution of a finite-length trajectory. To the best of our knowledge, this is
the first work using the two representations to optimize the state visitation distribution and learn
an efficient exploration policy. Secondly, we introduce ηψ-Learning, a method that utilizes the
combination of two representations to learn deterministic and non-Markovian exploration policies for
the finite-sample regime. Thirdly, we discuss how ηψ-Learning optimizes the entropy-based objective
function for both finite and (uncountably) infinite action spaces. In Section 5 we demonstrate through
empirical experiments that ηψ-Learning achieves optimal coverage within a single finite-length
trajectory. Moreover, the visualizations presented in Section 5 demonstrate that ηψ-Learning learns
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an exploration policy that maneuvers through the state space to efficiently explore a task while
minimizing the number of times the same state is revisited.

2 Related Work

The domain of exploration in Reinforcement Learning (RL) focuses on discovering an agent’s
environment via intrinsic motivation to accelerate learning optimal policies. Many existing exploration
methods seek novelty by using prediction errors [45, 9, 54, 57] or pseudo-counts [58, 6, 39]. However,
such methods add an intrinsic reward signal to improve sample efficiency in a single task setting. They
do not explicitly learn a policy that is designed to efficiently explore a task. In contrast, we present a
method for explicitly learning an efficient exploration strategy by maximizing the entropy of a single
trajectory’s state visitation distribution. Efficient exploration algorithms can be used to improve
learning efficiency in application domains such as Meta RL [16, 70, 48, 37], Continual RL [27, 33],
and Unsupervised RL [30]. For example, in Meta RL an agent needs to first explore to identify
which of the previously observed tasks it is in before the agent can start exploiting rewards in the
current task. In this context, VariBAD [70] maintains a belief over which task the agent is in given
the observed interactions. While Zintgraf et al. argue that a Bayes-optimal policy implements an
efficient exploration strategy, we propose a method that explicitly learns an efficient exploration
policy, resulting in discovering rewarding states more efficiently than VariBAD (Section 5).

The core idea behind ηψ-Learning is the use of the predecessor and successor representations to
predict the state visitation distribution induced by a non-Markovian policy for a single finite-length
trajectory. Instead of using the successor representation for transfer, lifelong learning, or learning one
representation that solve a set of tasks [3, 69, 4, 8, 38, 56, 22, 5, 32, 34, 1, 62], we use the successor
representation to estimate the state visitation distribution and maximize its entropy. By using the
successor representation in this way, the ηψ-Learning does not rely on density models [23, 31], an
explicit transition model [61, 41], or non-parametric estimators such as k-NN [42]. In the following
sections we will discuss how ηψ-Learning learns a deterministic exploration policy and does not rely
on randomization techniques [42, 31] or mixing multiple policies to manipulate the state visitation
distribution [31, 23]. Moreover, Mutti et al. [44] provide a theoretical analysis proving that efficient
(zero regret) exploration is possible with a deterministic non-Markovian policy but computing such a
policy is NP-hard. In this context, ηψ-Learning is to our knowledge the first algorithm for computing
such an efficient exploration policy.

3 Maximum state entropy exploration

We formalize the exploration task as a Controlled Markov Process (CMP), a quadruple M =
⟨S,A, p, µ⟩ consisting of a (finite) state space S, a (finite) action space A, a transition function
p specifying transition probabilities with p(s, a, s′) = P(s′|s, a), and a start state distribution µ
specifying probability of starting a trajectory at state s with µ(s). A trajectory is a sequence
τ = (s1, a1, ..., ah−1, sh) of some length h that can be simulated in a CMP. A policy π specifies
a probability distribution or density function over the action space that is sampled when selecting
actions and simulating a trajectory in a CMP. This policy definition include deterministic policies: For
discrete action spaces a specific action is selected with probability one and for uncountably infinite
action spaces the policy models a delta-dirac density function. In algorithms such as Q-learning [11],
the policy is conditioned on the task state and specifies the probabilities of selecting a particular
action. However, as illustrated in Figure 1, the past trajectory (red arrows) determines which next
action leads to the best exploratory trajectory. Consequently, we consider policies that are functions
of trajectories rather than just states.

The state visitation distribution of a trajectory τh = (s1, a1, ..., ah−1, sh) of length h can be formally
expressed in a probability vector by first encoding every state st as a one-hot bit vector eeest . Using
this one-hot encoding, the h-step state visitation probability vector of the trajectory τh can computed
by marginalizing across the time steps:

ξξξγ,τ =

h∑
t=1

γ(t)eeest , (1)
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where γ : N→ [0, 1] is the discount function (we denote the set of positive integers with N), such that∑h
t=1 γ(t) = 1. Using the normalization in the discount function is necessary as it ensures that ξξξγ,τ

is a probability vector. We note that this use of a discount function is distinct from using a discount
factor in common RL algorithms such as Q-learning but using a discount function is necessary as we
will elaborate in the following section.The expected state visitation distribution for a policy π can be
obtained by generating multiple trajectories using π and computing the average across them to get
the expected state visitation distribution, denoted by Eτ [ξξξγ,τ ].
An optimal exploration policy would achieve a similar visitation frequency for each state, as illustrated
in Figure 1(b) where the optimal trajectory traverses every state once within the first 15 steps. For
this trajectory the vector ξξξτ,γ would encode a uniform probability vector, given γ(t) = 1

h for any t.
In fact, an optimal exploration policy π∗ maximizes the entropy of this probability vector and solves
the optimization problem

π∗ ∈ argmax
π

H
(
Eτ

[
ξξξγ,τ

])
(2)

where the expectation is computed across trajectories that are simulated in a CMP and follow the
policy π.3 In the remainder of the paper, we will show how optimizing this objective leads to the
uniform sweeping behavior illustrated in Figure 1 and the agent learns to maximize the entropy of the
state visitation distribution in a single finite length trajectory. In the following section, we describe
how ηψ-Learning optimizes the objective in Equation 2.

4 ηψ-Learning

To learn an efficient exploration policy, we need to estimate the state visitation history and predict
the distribution over future states. Consider a trajectory τ = (s1, a1, ..., sT−1, aT−1, sT , ...ah−1, sh).
At an intermediary step T , we denote the T − 1-step prefix with τ:T−1 = (s1, a1, ..., sT−1) and
the suffix starting at step T with τT : = (sT , aT ..., ah−1, sh). Using this sub-trajectory notation, the
discounted state visitation distribution in Equation 1 can be written as

ξξξγ,τ =

T−1∑
t=1

γ(t)eeest +

h∑
t=T

γ(t)eeest . (3)

Assuming the scenario presented in Section 3, suppose the agent has followed the trajectory τ:T until
time step T . At this time step, the agent needs to decide which action aT leads to covering the state
space as uniformly as possible and maximizes the entropy of the state visitation distribution. The
expected state visitation distribution for a policy π can be expressed by conditioning on the trace τ:T
and a potential action aT ∈ A:

Eτ,π
[
ξξξγ,τ

∣∣∣τ:T , aT ] = Eτ,π

[
T−1∑
t=1

γ(t)eeest +

h∑
t=T

γ(t)eeest

∣∣∣τ:T , aT] (4)

=

T−1∑
t=1

γ(t)eeest︸ ︷︷ ︸
=ηηη(τ:T−1)

+EτT+1:,π

[
h∑
t=T

γ(t)eeest

∣∣∣∣∣τ:T , aT
]

︸ ︷︷ ︸
=ψψψπ(τ:T ,aT )

, (5)

where the vector ηηη(τ:T−1) is a variant of the predecessor representation [64, 2] and the vector
ψψψπ(τ:T , aT ) is a variant of the successor representation (SR) [13]. Splitting the expected state
visitation distribution into a vector ηηη and ψψψπ as outlined in Equation 5 is possible because we are
assuming a discount function γ as defined in Section 3. At time step T , the two representations can
be added together to estimate the expected state visitation probability vector. Simulating the proposed
algorithm is analogous to effectively drawing Monte-Carlo samples from the expectation at different
steps T to learn a SR and predict the expected visitation frequencies of ξξξγ,τ .

The predecessor representation vector ηηη(τ:T−1) can still be estimated incrementally similarly to
the eligibility trace in TD(λ) algorithm [59] (but with a different weighting scheme that uses the
discount function γ). While the definition of the vector ηηη(τ:T ) is similar to the definition of eligibility

3Here, we consider the Shannon entropy H(ppp) = −
∑

i pppi logpppi, where the summation ranges over the
entries of the probability vector ppp.
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traces [60, Chapter 12], we do not use the predecessor trace for multi-step TD updates to learn
more efficiently. Instead, the vector ηηη(τ:T−1) estimates the visitation frequencies of past states—the
predecessor states—to decide which states to explore next.

While the predecessor representation can be maintained using an update rule because the observed
states are known, predicting future state visitation frequencies is more challenging. A potential
solution is to exhaustively search through all possible sequences of trajectories starting from the
current state. This is computationally infeasible and requires a dynamics model of the environment.
Moreover, such a model is not always available, and learning them is prone to errors that compound
for longer horizons [49, 26]. To this end, we learn a variant of the successor representation (SR),
which predicts the expected frequencies of visiting future or successor states under a policy [13]. In
contrast to previous methods which learn successor representation (SR) conditioned on the current
state [13, 3], ηψ-Learning conditions the SR on the entire history of states, given by

ψψψπ(τ:T , aT ) = EτT+1:,π

[
h∑
t=T

γ(t)eeest

∣∣∣∣∣τ:T , aT
]
. (6)

Conditioning the SR on the trajectory τ:T is necessary because policy π is also conditioned on τ:T
and therefore the visitation frequencies of future states depend on τ:T . Moreover, the expectation
evaluates all possible trajectories after taking action aT at time T and following policy π afterward.
We discuss in Appendix C how the SR vectors are approximated using a recurrent neural network.

We saw in Equation 5 that the predecessor representation and successor representation can be
combined to predict the state visitation distribution for a policy π and a trajectory-prefix τ:T . ηψ-
Learning uses the estimated state visitation distribution to compute the entropy term in the objective
defined in Equation 2. Specifically, the utility function Qexpl approximates the entropy of the state
visitation distribution for an action aT at every time step. By defining

Qexpl(τ:T , aT ) = H (ηηη(τ:T−1) +ψψψπ(τ:T , aT )) , (7)

the action that leads to the highest state visitation entropy is assigned the highest utility value. Notably,
the proposed Q-function differs from prior methods using the SR, as we neither factorize the reward
function [3, 4, 8, 62] nor use the SR for learning a state abstraction [32]. Optimizing the exploration
Q-function stated in Equation 7 is challenging as it depends on the SR that itself depends on the
policy π which changes during learning. Furthermore, Guo et al. [18] show that the Shannon-entropy
based objective is difficult to directly optimize using gradient-based methods (due to the log term
inside an expectation) [31, 47, 18]. In contrast, we outline in the following paragraphs how the
entropy objective in Equation 7 can be directly optimized using either a Q-learning style method or
a method based on the Deterministic Policy Gradient [55] framework for finite and infinite action
spaces, respectively.

Finite action space framework Since the predecessor representation is fixed for a given trajectory
τ:T , optimizing the Q-function defined in Equation 7 boils down to predicting the optimal SR for a
given history τ:T . Similar to prior Successor Feature learning methods [3, 4, 33], we approximate the
SR with a parameterized and differentiable function ψψψθθθ and use a loss based on a one-step temporal
difference error. Given an approximation ψψψθθθ, the SR prediction target is obtained by the current state
embedding and SR of the optimal action at the next step:

yyy(τ:T+1, a
′
T+1) = eeesT + γ(T + 1)ψθψθψθ(τ:T+1, a

′
T+1), (8)

where τ:T+1 is obtained by adding action aT and the received next state sT+1 to the trajectory τ:T .
Analogous to Q-Learning, the optimal action at the next step is specified by

a′T+1 = argmax
a∈A

Qexpl(τ:T+1, a). (9)

Being greedy with respect to these entropy values to estimate the target leads to improving the policy
π which in turn finds the SR for the optimal policy. (Appendix A presents a convergence analysis of
this method in a dynamic programming setting.) Then, the function ψψψθθθ is optimized using gradient
descent on the loss function LSR, given by

LSR = ||ψψψθθθ(τ:T , aT )− yyy(τ:T+1, a
′
T+1)||2, (10)

where gradients are not propagated through the target yyy(τ:T+1, a
′
T+1). Finally, the optimal policy

selects actions greedily with respect to the Qexpl function. Algorithm 2 describes the training
procedure for the proposed variant for finite action spaces.
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Infinite action space framework Directly obtaining gradient estimates of objective defined in
Equation 2 is challenging because of the expectation term in the non-linear logarithmic term. Previous
approaches have used alternative optimization methods [31, 47] or resorted to a simpler noise-
contrastive objective function [18]. In contrast with prior algorithms, we derived an ηψ-Learning
variant for infinite action spaces that optimizes an actor-critic architecture using policy gradients to
maximise the maximum state entropy objective. The agent uses an actor-critic architecture where actor
and critic networks are conditioned on the history of visited states. The actor πµ(τ) is parameterized
with a parameter vector µ and is a deterministic map from a trajectory to an action. The critic predicts
the SR to estimate the utility function conditioned on a given trajectory and action. Similar to the
finite action space variant, the predecessor representation is fixed for a given trajectory and the
network has to predict SR ψψψθ(τ, a) for a given trajectory τ and action a. Here, the target value of SR
to update the critic is specified by the action obtained using the policy a′T+1 = πµ(τ:T+1), given by

yyy = eeesT + γ(T + 1)ψψψθ(τ:T+1, a
′
T+1). (11)

The critic is trained with the same loss function LSR as defined in Equation 10, where the gradients
are not propagated through the target. The actor is optimized to maximize the estimated utility
function (Equation 2). Since the actor is deterministic, policy gradients are computed using an
adaptation of the deterministic policy gradient theorem [55]. Because the actor network has no
dependency on predecessor trace (which depends on the observed states only), gradients for the actor
parameters are obtained by applying chain rule leading to the following gradient of Equation 7 (please
refer to Proposition 2 for more details on the derivation):

∇µJ(πµ) = Eτ∼ρ
[∑

i

zi∇µπµ(τ)∇aψψψi(τ, a)
∣∣
a=πµ(τ)

]
, (12)

where zi = − log[ηηη(τ:−1)i +ψψψ(τ, πµ(τ))i]− 1 is the multiplicative factor for state i, and depends
on the expected probability of visiting a state. The factor zi can take values between between -1 and
∞, with positive values of high magnitude for states with low visitation probability and negative
values for state with high probability of visitation. Thus, the factor zi scales the policy gradients
to maximize the entropy of the state visitation distribution. In Algorithm 3 we outline the training
procedure for the infinite action space framework.

5 Experiments

To analyze and test if ηψ-Learning learns an efficient exploration policy, we evaluate the proposed
method on a set of discrete and continuous control tasks. In these experiments, we are recording a set
of different performance measures to access if the resulting exploration policies do in fact maximize
the entropy of the state visitation distribution and if most states are explored by ηψ-Learning. The
following results demonstrate that by maintaining a predecessor representation and conditioning
the SR on the simulated trajectory prefix, the ηψ-Learning agent learns a deterministic exploration
policy that minimizes the number of interactions needed to visit all states. In addition, we expand
our method to continuous control tasks and demonstrate how ηψ-Learning can efficiently explore in
complex domains with infinite action space. Our method is ideal for searching out rewards in difficult
sparse reward environments. We compare ηψ-Learning, which learns to explore an environment as
efficiently as possible, to recent meta-RL methods [70] that aim to learn how to optimally explore an
environment to infer the rewarding or goal state. Lastly, we show the applicability of ηψ-Learning on
standard RL tasks where the extrinsic rewards are sparse and present how the proposed method can
be combined with existing algorithms.

Environments: We experiment with different tasks with both finite and infinite action spaces. The
ChainMDP and RiverSwim [58] is a six-state chain where the transitions are deterministic or
stochastic, respectively. In these tasks a Markovian policy cannot cover the state space uniformly
because the agent has to pace back and forth along the chain, visiting the same state multiple times.
For the RiverSwim environment , a non-stationary policy, a policy that is a function of the time step,
cannot optimally cover all states because non-determinism in the transitions can place the agent into
different states at random. Furthermore, we include the 5× 5 grid world example used in Figure 1.
We also test ηψ-Learning on two harder exploration tasks—the TwoRooms and FourRooms domains,
which are challenging because it is not possible to obtain exact uniform visitation distribution due to
the wall structure. For continuous control tasks, we evaluate on Reacher and Pusher tasks, where the
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Figure 2: Comparison of ηψ-Learning and MaxEnt [23] on three metrics: Entropy (top row) of state
visitation distribution, State Coverage (middle row) representing the fraction of state space visited,
and Search Completion Time (bottom row) denoting steps taken to cover the state space.

agent has a robotic-arm with multiple joints. The task is to maximize the entropy over the locations
covered by the fingertip of the robotic-arm. Appendix F provides more details on the environments
and the hyper-parameters are reported in Appendix G.

Prior Methods: To our knowledge, existing work focusses on learning Markovian exploration
policies [43]. We use MaxEnt [23] as a baseline agent for our experiments because this method
optimizes a similar maximum entropy objective as ηψ-Learning—with the difference that MaxEnt
learns a Markovian policy and resorts to randomization to obtain a close to uniform state visitation
distribution. We have also compared with MEPOL [42] on continuous control tasks which leans
a Markovian policy and uses kNN-based estimators to compute the entropy. A comparison with
SMM [31] is skipped because the method optimizes a similar maximum entropy objective with a
Markovian policy and cannot express the same exploration behaviour as ηψ-Learning.

Evaluation Metrics: Entropy measures a method’s ability to have similar visitation frequency for
each state in the state space. This signifies the gap between the observed state visitation distribution
and the optimal distribution that maximizes the entropy term. The Entropy metric is computed
using the objective defined in Equation 2 over a single trajectory generated by the agent. A constant
discount factor of γ(t) = 1

h is used to obtain the state visitation distribution during evaluation. An
agent can maximize this measure without actually exploring all states of an environment—a desirable
property for RL where rewards may be sparse and hidden in complex to-reach states. We record
the state coverage metric which represents the fraction of states in the environment visited by the
agent at least once within a trajectory. Lastly, we want agents to explore the state space efficiently.
For example, an optimal agent can sweep through the gridworld presented in Figure 1 with a search
completion time of 15 steps ( Figure 1(b) shows an optimal trajectory). The search completion time
metric measures the steps taken to discover each state in the environment. All results report the mean
performance computed over 5 random seeds with 95% confidence intervals shading.

Quantitative Results: Figure 2 presents the results obtained for ηψ-Learning and MaxEnt [23].
Compared to MaxEnt, which learns a Markovian policy, ηψ-Learning achieves 20-50% higher
entropy. This indicates that the MaxEnt algorithm by learning a Markovian and stochastic policy
was randomizing at certain states which lead to sub-optimal behaviors. The performance gain was
more prominent in grid-based environments because the MaxEnt agent was visiting some states more
frequently than others, which are harder to explore efficiently. Furthermore, high entropy values
suggest that the agent visits states with similar frequency in the environment and does not get stuck at
a particular state. We attribute this behavior of ηψ-Learning to the proposed Q-function that picks
action to visit different states and maximize the objective.

7



(a)

𝜓(↑)𝜓(→)𝜓(↓)𝜓(←)η(𝑠, 𝑎)

𝑇
=
7

𝑇
=
14

(b)

Figure 3: (a) Heatmap of state visitation distribution by unrolling a trajectory using MaxEnt (left)
and ηψ-Learning (right) on TwoRooms and FourRooms environments. (b) Visualization of learned
SR of each action (denoted with ψ(.)) at time steps T = 7, 14 for a trajectory using ηψ-Learning on
5× 5 grid. (s, a) denotes the state (black) and action taken by the agent (direction of white arrow), ηηη
is the predecessor representation till time T (higher values have darker shade)

.

Figure 2 also shows that ηψ-Learning achieves optimal state coverage across environments exempli-
fying that ηψ-Learning while maximizing the entropic measure also learns to cover the state space
within a single trajectory. However, the baseline MaxEnt was not able to discover all the states in the
environment. MaxEnt was unable to visit all the states in ChainMDP and RiverSwim environments
with trajectory length of 20 and 50, respectively. Moreover, the state coverage of MaxEnt was around
50-60% on the harder TwoRooms and FourRooms tasks, where the agent has to navigate between
different rooms and is required to remember the order of visiting different rooms. These results reveal
that Markovian policy limits an agent’s ability to maximize the state coverage in a task. The proposed
method also outperformed the baseline on the search completion time metric across all environments.
Notably, on ChainMDP, the 5× 5 gridworld, and TwoRooms environments, ηψ-Learning converged
within 500 episodes. However, ηψ-Learning did not achieve optimal search exploration time on the
FourRooms environment as it missed a spot in a room and resorted to it later in the episode.

To further understand the gains offered by ηψ-Learning, we visualized the state visitation distributions
on a single trajectory (in Figure 3(a)). On the TwoRooms environment, ηψ-Learning had similar
density on the states in both the rooms, where the density is more around the center. This is because the
agent was sweeping across rooms alternatively. ηψ-Learning showed a better-visited state distribution
on the FourRooms environment with more distributed density across states. However, MaxEnt was
not visiting all states and also visited a few states more frequently than others, elucidating the lower
performance on entropy and state coverage. We further visualized the learned SR to see if ηψ-
Learning learns a SR for the optimal exploration policy through generalized policy improvement [3].
For this analysis, we sampled a trajectory on 5× 5 gridworld. Figure 3(b) reports the heatmaps of
the learned SR vector for each action at different steps in the trajectory. We observe that the SR
vector for each action has lower density on the states already observed in the trace. This exemplifies
that the learned SR captures the history of the visited states that further aids in taking actions to
maximize the entropy of state visitation distribution. We also study if MaxEnt can show similar gains
when trained with a recurrent policy (Appendix I.1) and compared the agents when evaluated across
multiple trajectories (Appendix I.2).

Continuous Control tasks: The efficacy of ηψ-Learning is further tested on environments with
infinite action space. Figure 4(a) reports the Entropy and State Coverage metric on Reacher and
Pusher environments, where ηψ-Learning outperformed the baseline MaxEnt on both metrics. The
gains are more significant on the Pusher environment which is a harder task because of multiple
hinges in the robotic-arm. The proposed method ηψ-Learning achieves close to 90% coverage in
both environments, whereas the MaxEnt had only close to 50% and 40% coverage on Reacher and
Pusher environments, respectively. In Figure 4(b), heatmaps of the state visitation density for a single
trajectory shows that ηψ-Learning has more uniformly distributed density compared to MaxEnt. The
Pusher environment has high density at the top-right corner of the grid denoting the time taken by the
agent to move the fingertip to other locations from the starting state. Notably, the proposed method
ηψ-Learning has lower density at the starting state and we believe that conditioning on the history of
states is guiding the agent to move the robotic-arm to other locations to maximize the entropy over the
state space. In Appendix I.5, a visualization of a rolled-out trajectory generated using ηψ-Learning is
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Figure 4: (a) Comparison of ηψ-Learning with Random policy, MaxEnt [43], and MEPOL [42] on
Reacher and Pusher tasks (b) Heatmaps of visitation distribution of MaxEnt (top) and ηψ-Learning
(bottom), (c) comparison with VariBAD [70] on State Coverage and Goal Search Time metrics.

presented showing that the agent learns to efficiently maneuver the fingertip of the robotic-arm to
different locations in the environment.

Comparison with Meta-RL: A question central to Meta-RL [16, 70, 37] is the ability to quickly
explore a task and find rewarding states in complex tasks where the rewards are sparse. In this
context, Zintgraf et al. [70] present the VariBAD method, which maintains a belief over different
tasks to infer the optimal policy—leading to efficient exploration behaviour that enables the agent
to discover rewarding states quickly. Similar to VariBAD, the predecessor representation ηηη in ηψ-
Learning keeps track of which states have been explored and which states are not explored. Figure 4(c)
compares the exploration behaviour of ηψ-Learning to VariBAD: In terms of the State Coverage and
Goal Search Time metric, ηψ-Learning outperforms VariBAD significantly because ηψ-Learning
is designed to optimize the entropy of the state visitation frequencies of a single trajectory instead
of performing Bayes-adaptive inference across a task space. We refer the reader to Appendix H for
more details on this experiment.
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Figure 5: Results on Sparse
Mountain Car environment.

ηψ-Learning in Sparse Reward Tasks: Sparse reward environ-
ments pose a challenge where an agent has to discover the reward
function by visiting different regions of the state space. Through
this experiment, we demonstrate how an agent can leverage ηψ-
Learning as an exploratory bonus and improve its efficiency in
such tasks. The experiment is conducted on Sparse Mountain-
Car environment where the agent receives a positive reward upon
reaching the goal position. This is hard because the agent needs to
plan to visit different positions in the environment. We have used
TD3 [17] as the baseline algorithm for this task. To compare with
leading exploration methods, we add TD3 combined with Count-
Based [6] and First-Occupancy based [40] to the baselines. It is
to be noted that we have used these methods as episodic bonuses
as described in [67]. We also propose a variant of TD3 equipped
with the proposed method and call it TD3-ηψ-Learning, where we
learn two critics to estimate the sum of extrinsic rewards and the
entropy of state visitation distribution (Equation 7). Appendix J
describes the experimental setup in more detail and Algorithm 4
provides the pseudocode of the proposed variant. The evaluation
is done across two metrics- Average Return and Average Episode
Length denoting the steps taken to reach the goal state. Figure 5
presents the results where the proposed method outperforms the
baseline algorithms and is sample-efficient at learning the task.
TD3 combined with First-Occupancy based intrinsic reward performed better than Count-Based
bonus but still takes twice number of steps as the proposed method to solve the task. This shows
that the proposed method can improve sample efficiency in standard RL tasks, especially with sparse

9



rewards. We leave scaling the proposed method with leading architectures [21, 25, 53] to more
challenging tasks for future research.

6 Discussion

To explore efficiently, an intelligent agent needs to consider past episodic experiences to decide on
the next exploratory action. We demonstrate how the predecessor representation—an encoding of
past state visitations—can be combined with the successor representation—a prediction of future
state visitations—to learn efficient exploration policies that maximize the state-visitation-distribution
entropy. Across a set of different environments, we illustrate how ηψ-Learning consistently reasons
across different trajectories to explore near optimally—a task that is NP-hard [43].

To the best of our knowledge, ηψ-Learning is the first algorithm that combines predecessor and
successor representations to estimate the state visitation distribution. Furthermore, ηψ-Learning learns
a non-Markovian policy and can therefore express exploration behavior not afforded by existing
methods [23, 31, 42, 18]. To further increase the applicability of ηψ-Learning, one interesting
direction of future research is to extend ηψ-Learning to POMDP environments where states are
either partially observable or complex such as images. This is challenging because the agent has
to learn an embedding of state observations that capture only the relevant components of the state
space to maximize the entropy. We believe a promising approach would be to leverage the idea of
Successor Measures (SM) [62, 63, 15] which have shown promising results when scaled to high-
dimensional inputs like images. Furthermore, the presented approach can be also used for designing
other algorithms that control the state visitation distribution. An application is goal-conditioned RL,
where the agents need to minimize the KL divergence between visitation distribution of policy and
goal-distribution [31, 47]. Another application is Safe RL [66] where agents receive a penalty upon
visiting unsafe states to avoid observing them.

We study reinforcement learning, which aims to enable autonomous agents to acquire search behaviors.
This study of developing exploration behaviors in reinforcement learning is guided by a fundamental
curiosity about the nature of autonomous learning; it has a number of potential practical applications
and broad implications. First, autonomous exploration for pre-training in general, can enable
autonomous agents to acquire useful skills with less human intervention and effort, potentially
improving the feasibility of learning-enabled robotic systems. Second, the practical applications that
we illustrate, such as applications to continuous environments, can accelerate reinforcement learning
in certain settings. Specific to our method, finite length entropy maximization may also in the future
offer a useful tool for search and rescue, by equipping agents with an objective that causes them to
explore a space systematically to locate lost items. However, these types of reinforcement learning
methods also have a number of uncertain broad implications: agents that explore the environment and
attempt to acquire open-ended skills may carry out unexpected or unwanted behaviors, and would
require suitable safety mechanisms of their own during training.
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A Convergence Analysis

To gain a deeper understanding why the ηψ-Learning converges to a maximum entropy policy, we
consider in this section a simplified dynamic programming variant in Algorithm 1. Note that the
ηψ-Learning estimates the SR for a finite CMP for a finite horizon length h. Consequently, the
trajectory-action conditioned SR ψπ(τ:T , a) and exploration policy π can be stored in an exponentially
large but finite look-up table. Furthermore, with every transition an additional state is appended
to the trajectory τ:T , meaning the agent cannot loop back to the same trajectory. Using these two
properties, we state a dynamic programming variant of ηψ-Learning in Algorithm 1 and then prove
its convergence to a policy that maximizes the entropy term H (ηηη(τ:T−1) +ψψψπ(τ:T , a)) at every time
step.

Algorithm 1 ηψ-Learning: Dynamic Programming Framework

1: for all τh, a do
2: ψψψπ(τ:h, a)← eeesh
3: end for
4: for t = h, ..., 2 do
5: for all τ:t, a do
6: π(τ:t)← argmaxaH (ηηη(τ:t−1) +ψψψπ(τ:t, a))
7: ψψψπ(τ:t−1, a)← eeest−1

+ γ(t)ψψψπ(τ:t, π(τ:t))
8: end for
9: end for

10: return π such that π(τ) = argmaxaH(ηηη(τ:−1) +ψψψ(τ, a)).

The convergence proof uses the following property of the predecessor trace ηηη and SR ψψψπ: Consider a
trajectory τ which selects action aT at time step T , then

ηηη(τ:T−1) +ψψψπ(τ:T , aT ) =

T−1∑
t=1

γ(t)eeest︸ ︷︷ ︸
=ηηη(τ:T−1)

+EτT+1:,π

[
h∑
t=T

γ(t)eeest

∣∣∣∣∣τ:T , aT
]

︸ ︷︷ ︸
=ψψψπ(τ:T ,aT )

(by Eq. 5)

=

T−1∑
t=1

γ(t)eeest + EτT+1:,π

[
γ(T )eeesT +

h∑
t=T+1

γ(t)eeest

∣∣∣∣∣τ:T , aT
]

(13)

=

T∑
t=1

γ(t)eeest + EτT+1:,π

[
h∑

t=T+1

γ(t)eeest

∣∣∣∣∣τ:T , aT
]

(14)

= ηηη(τ:T ) + EτT+1:,π [ψψψ
π(τ:T+1, π(τ:T+1))|τ:T , aT ] (15)

Using this identity, we can prove the convergence of Algorithm 1.
Proposition 1. The policy π∗ returned by Algorithm 1 is such that for every t-step trajectory τ:t
where t ≤ h,

π∗(τ:t) ∈ argmax
π

H(ηηη(τ:t−1) +ψψψπ(τ:t, π(τ:t))). (16)

Proof. The proof proceeds by induction on the length of an h-step trajectory, starting with a length
of h and iterating to a length of one.

Induction hypothesis: We define a sub-sequence optimal policy πt such that for every k-step
trajectory prefix τ:k and t ≤ k ≤ h,

πt ∈ argmax
π

H(ηηη(τ:k−1) +ψψψπ(τ:k, π(τ:k))). (17)

The exploration policy πt is the optimal after executing the first t steps of an h-step trajectory τ . The
goal is to prove that the induction hypothesis in line (17) holds for t = 1.

Base case: The base case for t = h holds trivially, because SR does not have a dependency on
the policy π for an h-step trajectory. Therefore the policy π can output any action for a trajectory
sequence of length h:

max
π

H(ηηη(τ:h−1) +ψψψπ(τ:h, π(τ:h))) = H(ηηη(τ:h−1) + γ(h)eeesh). (18)

15



Induction Step: Suppose the induction hypothesis in line (17) holds for some t > 1 and πt is the
maximizer of

H(ηηη(τ:k−1) +ψψψπt(τ:k, πt(τ:k))) (19)
where t ≤ k ≤ h. For time step t− 1, we have that for some action a,

H(ηηη(τ:t−2) +ψψψπt(τ:t−1, a)) = H(ηηη(τ:t−2) + γ(t− 1)eeest−1
+ E [ψψψπt(τ:t, πt(τ:t)|st−1, a]) (20)

= H(ηηη(τ:t−1) + E [ψψψπt(τ:t, πt(τ:t))|st−1, a]) (21)
= H(E [ηηη(τ:t−1) +ψψψπt(τ:t, πt(τ:t))|st−1, a]). (22)

We note that the term inside the expectation is already maximized by πt (by induction hypothesis). If
we now set πt−1 to be equal to πt for every t-step or longer trajectory and set

πt−1(τ:t−1) = argmax
a

H(ηηη(τ:t−2) +ψψψπt(τ:t−1, a)), (23)

then for t− 1 ≤ k ≤ h
πt−1 ∈ argmax

π
H(ηηη(τ:k−1) +ψψψπ(τ:k, π(τ:k))). (24)

This completes the proof.

B ηψ-Learning- Policy Gradient

Application of Q-Learning based approaches to continuous action space is not easy because finding
the greedy action at any time step can be slow to be practical with large, unconstrained function
approximators and nontrivial action spaces. In this work, we take a similar approach to deterministic
policy gradient [55] to learn exploratory policies. The objective remains the same which is to
maximize the entropy of state visitation distribution. However, it is challenging to estimate the
gradient where the objective is based on the entropy term. Previous works have either used alternate
optimization [47, 31] or similar objective functions [18]. The challenge is because of the expectation
inside the logarithm in Equation 2. [31, 47] addressed this intractability by first estimating the visited
state distribution and then using this estimate to optimize the entropy-based objective. Unfortunately,
such alternating approaches are often are prone to instability and slow convergence [18]. In this work,
we take an alternative direction and learn a network to directly estimate the visited state distribution.
The combination of predecessor trace ηηη and successor representation ψψψπ can be leveraged to estimate
the state visitation distribution which is obtained using:

ηηη(τ:T−1) +ψψψπ(τ:T , aT ) =

T−1∑
t=1

γ(t)eeest︸ ︷︷ ︸
=ηηη(τ:T−1)

+EτT+1:,π

[
h∑
t=T

γ(t)eeest

∣∣∣∣∣τ:T , aT
]

︸ ︷︷ ︸
=ψψψπ(τ:T ,aT )

(by Eq. 5)

(25)

The SR vector can be learned with gradient based optimization and provides the estimate of state
visitation distribution for a given policy π and trajectory. The policy can utilize this estimate to learn
optimal behaviors for efficient exploration in the environment.

To learn optimal behaviors for continuous action spaces, ηψ-Learning uses an actor-critic architecture
comprising of a deterministic actor πµ(τ) that provides the action and a critic to estimate the utility
function. Here, both the actor and critic networks are non-Markovian and depend on the entire
history of visited states. The goal of the critic network is to approximate the Q-function for a given
trajectory τ and a given action a ∈ A. For a given trajectory τ:T , critic computes this by combining
the predecessor representation and the SR vector. The predecessor representation is fixed for a given
history, implying that the critic only needs to approximate the SR ψψψθ(τ, a). To summarize, the critic
estimates the Q-function as shown below:

Qθ,expl(τ:T , aT ) = H (ηηη(τ:T−1) +ψψψθ(τ:T , aT )) , (26)

To update the critic network, we update the SR approximator network using temporal-difference error.
The target for the SR is obtained using the action coming from the current policy a′T+1 = πµ(τ:T+1),
and is given by

yyy = eeesT + γ(T + 1)ψψψθ(τ:T+1, a
′
T+1). (27)
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The SR network is updated with gradient-based learning to optimize the Mean-Squared Error between
the predicted SR and the target, and the loss function LSR is given by

LSR = ||ψψψθθθ(τ:T , aT )− yyy(τ:T+1, a
′
T+1).||2 (by Eq. 10)

Given an estimate of the SR for the current policy, we need a mechanism to update the actor network
to maximize the objective. Deterministic policy gradient algorithm [55] provided a way of learning
optimal policies with a deterministic actor. In this work, we formulate the gradient for the actor
parameters using similar mechanism with the goal to maximize the entropy-based utility function.
Proposition 2 presents a derivation of the gradients for the actor network parameters obtained by
applying the chain rule on the Shannon-entropy based Q-function.
Proposition 2. Assuming the CMP satisfies [55, conditions A.1] (all functions are continuous and
differentiable across all parameters) and for a µ-parameterized policy function πµ the gradient with
respect to µ of the maximum entropy objective

J(πµ) = Eτ∼ρ[H(ηηη(τ:−1) +ψψψ(τ, πµ(τ))]

is
∇µJ(πµ) = Eτ∼ρ

[∑
i

zi∇µπµ(τ)∇aψψψi(τ, a)
∣∣
a=πµ(τ)

]
.

where zi = − log[ηηη(τ:−1)i + ψψψ(τ, πµ(τ))i] − 1, H is the Shannon-Entropy function over the
representation vectors, and the expectation over trajectories is computed with respect to some
trajectory visitation distribution ρ.

Proof. We begin by rewriting the Shannon Entropy here for a T -step trajectory as

H(ηηη(τ:T−1) +ψψψ(τ:T , aT )) = −
∑
i

(ηηη(τ:T−1)i +ψψψ(τ:T , aT )i) log((ηηη(τ:T−1)i +ψψψ(τ:T , aT )i),

(28)

where aT = πµ(τ:T ).

To simplify the notations, we will use ηηηi = ηηη(τ:T−1)i and ψψψi = ψψψ(τ:T , aT )i to represent the ith term
of the predecessor and successor representation vectors. Now taking the gradient with respect to the
actor parameters µ gives:

∇µH(ηηηi +ψψψi) = −∇µ
∑
i

(ηηηi +ψψψi) log(ηηηi +ψψψi) (29)

= −
∑
i

[∇µ(ηηηi +ψψψi) log(ηηηi +ψψψi)] (30)

= −
∑
i

[log(ηηηi +ψψψi)∇µ(ηηηi +ψψψi) + (ηηηi +ψψψi)∇µ log(ηηηi +ψψψi)] (31)

= −
∑
i

[log(ηηηi +ψψψi)∇µψψψi +∇µψψψi (32)

= −
∑
i

[log(ηηηi +ψψψi) + 1]∇µψψψi (33)

Now, using the chain rule on the ith feature in SR, we obtain
∇µψψψi = ∇µπµ(τ:T )∇aψψψ(τ:T , a)i|a=πµ(τ:T ) (34)

By substitution

∇µH(ηηηi +ψψψi) = −
∑
i

[log(ηηηi +ψψψi) + 1]∇µπµ(τ:T )∇aψψψ(τ:T , a)i|a=πµ(τ:T ). (35)

Therefore, the gradient of the overall objective is
∇µJ(πµ) = Eτ∼ρ[∇µH(ηηη(τ:−1) +ψψψ(τ, πµ(τ))] (36)

= −Eτ∼ρ

[∑
i

[log(ηηηi +ψψψi) + 1]∇µπµ(τ:T )∇aψψψ(τ:T , a)i|a=πµ(τ:T )

]
. (37)

This completes the proof.
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Algorithm 2 ηψ-Learning: Finite Action Space Framework

1: Initialize SR network with parameters θ and the replay buffer B = {}
2: Denote the predecessor feature with ηηη, discount function with γ, and episode length with h
3: while Training do
4: Collect τexp = {s1, a1, .., sh} using current policy πθ and add it to replay buffer B=B ∪ τexp
5: for each training step do
6: Sample batch of τ = (s1, ..al−1, sl) ∼ B of sequence length l ∈ {2, .., h}
7: Compute a′= argmaxa∈AH(ηηη(τ) +ψψψθ(τ, a))
8: Compute target yyy = eeesl−1

+ γ(l)ψψψθ(τ, a
′)

9: Update SR network by performing gradient step on ||yyy - ψψψθ(τ:l−1, al−1)||22
10: end for
11: end while

In Proposition 2, we derive the gradient of the actor parameters for the maximum state entropy
exploration objective. Taking inspiration from algorithms [35, 17, 19] that extend Deterministic
Policy Gradient (DPG) to make the optimization process stable when scaling to larger state and action
space, we base our implementation to be similar to the TD3 [17] algorithm. In Appendix C, we
outline the learning procedure to learn using the policy gradient derived in Proposition 2. Furthermore,
we also discuss how the proposed algorithm handles continuous state spaces.

C Neural Network Architecture and Implementation

An implementation of the ηψ-Learning algorithm together with instructions for reproducing the
experiments presented in this paper can be found at https://github.com/arnavkj1995/Eta_
Psi_Learning.

ηψ-Learning approximates the SR with a parameterized function ψψψθθθ to learn an exploration policy
and predict the state visitation distribution. Because the SR is conditioned on a trajectory τ of variable
length, we implement the function ψψψθθθ with a Recurrent Neural Network (RNN) architecture, as
outlined in Figure 6. In this architecture, the states in a trajectory τ:T are first fed through a encoder
network (E) comprising of Multi-Layer Perceptron (MLP) layers. Subsequently, the output of the
Multi-Layer Perceptron (MLP) is fed through an Recurrent Neural Network (RNN) (denoted with
F) architecture to compress the state sequence into one real-valued feature vector. Since, RNN are
known to suffer from vanishing gradients [7], we implement the RNN with a Gated Recurrent Unit
(GRU) [10]. Leveraging recurrent networks to learn the SR has been explored previously in [4, 8].
Finally, the recurrent state obtained from the RNN is concatenated with the representation of the
current state and is passed through the the decoder (D) with MLP layers to predict an SR vector for a
given action. In the following paragraphs, we elaborate on how the proposed architecture was used to
train the agent for finite and infinite action spaces.

Finite Action Space Variant For the finite action space variant, the decoder outputs a SR vector
for each action a ∈ A. This is similar to the prior method that learns Successor Features (SF) for
discrete action spaces [33, 3]. Algorithm 2 describes the learning procedure for training ηψ-Learning
to get exploratory policies.

Infinite Action Space Variant For infinite action space variant, the hidden state from the recurrent
network is passed through a deterministic actor network which comprises of MLP layers. The policy
network (actor) is conditioned on the hidden states because in ηψ-Learning the policy is a function of
trajectories and not individual states. The hidden state from the recurrent network is concatenated
with the action to predict the SR vector. The estimated SR vector is used to calculate the visitation
distribution over one-hot embeddings of states and these SR predictions are then used to computed
to loss objective for optimization. For the Reacher and Pusher tasks, we manually sub-select which
dimensions of the state space are one-hot encoded. In these cases, ηψ-Learning learns an exploration
policy that maximizes the entropy of visitation distribution across these sub-selected dimensions
only. This approach to sub-selecting state dimensions is similar to prior work on maximum state
entropy exploration [23, 43]. In this work, the agent is trained using similar techniques as the
TD3 agent [17]. The agent keeps a single encoder and recurrent network to encode the history of
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Algorithm 3 ηψ-Learning: Infinite Action Space Framework

1: Initialize SR network with parameters θ1, θ2, policy parameters µ and the replay buffer B = {}
2: Set target parameters equal to the main parameters: θtarg,1 = θ1, θtarg,2 = θ2, and µtarg ← µ
3: Denote the predecessor feature with ηηη, discount function with γ, and episode length with h
4: while Training do
5: Collect τexp = {s1, a1, .., sh} using target policy πµtarg

and add to replay buffer B=B ∪ τexp
6: for each training step j do
7: Sample batch of τ = (s1, ..al−1, sl) ∼ B of sequence length l ∈ {2, .., h}
8: Compute target actions a′ = clip(πµtarg

(τ:l) + clip(ϵ,−c, c), aLow, aHigh), ϵ ∼ N (0, 1)
9: Compute i=argmink∈{1,2} H(ηηη(τ:l−1) + ψψψθk(τ:l−1, a

′))
10: Compute target yyy=eeesl + γ(l) ψψψθi(τ:l−1, a

′)
11: Update the SR networks by performing gradient steps on

||yyy - ψψψθi(τ:l−1, al−1)||22, i = 1, 2
12: if j % policy_update == 0 then
13: Perform update step for policy by computing gradients using∑

i zi ∇a ψψψθ1(τ:l, a) |a=π(τ:l) ∇µ πµ(τ:l),
where zi = − log(ηηη(τ:l)i - ψψψθ1(τ:l, πµ(τ:l))i) + 1

14: Update target networks with
θtarg,i← ρθtarg,i + (1− ρ)θi, i = 1, 2
µtarg ← ρµtarg + (1− ρ)µ

15: end if
16: end for
17: end while

observed states. The encoded states are passed through two decoder networks to predict the SR
vectors, which are used to represent the two critic networks. The target for SR is computed using
the vector that leads to a smaller value of the two utility functions. There is a single actor network
that specifies the action from the hidden state. In addition, ηψ-Learning-maintains a target network
for all the components—encoder, recurrent, critics, and actor networks. Furthermore, similar to the
TD3 algorithm, a clipped noise is added to each dimension of the action from the target network.
Moreover, we also use delayed actor updates where the actor network is updated less frequently than
the SR networks. Lastly, the gradients from the actor are not passed through the encoder and the
recurrent networks. The procedure for training this variant is provided in Algorithm 3.
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Figure 6: Network architecture to learn the SR. The states are firstly passed through an encoder (E),
followed by feeding the encoded states through a RNN (GRU in our case) (F). This compresses
the history of visited states, and the obtained hidden state is concatenated with the encoded state to
predict the SR vector for an action using a decoder network (D).
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D Limitations

In this work, we developed an algorithm to learn exploratory policies at convergence that can explore
the state space efficiently within a finite-length trajectory. Such policies can benefit generalization in
different applications like Meta-RL and episodic exploration. Maximum state entropy exploration
is a potential direction for learning such policies. However, prior works are not very efficient as
they either learn a Markovian policy, optimize for the state coverage over multiple long trajectories,
or learn a mixture of stochastic policies. Due to these shortcomings, they are not widely used
for solving tasks in RL. To address these concerns, we introduce ηψ-Learningand demonstrate
that the proposed algorithm can learn to efficiently explore the state space within a finite length
trajectory. ηψ-Learning achieves this by combining predecessor and successor representation to
estimate the state-visitation distribution and utilizing this to optimize the entropy-based objective.
[43] theoretically showed that learning such policies that achieve zero-regret is NP-Hard and we
develop a practical algorithm to solve such tasks. We hope that the proposed method bridges the gap
of leveraging policies learned using maximum state entropy exploration for more complex tasks in
RL. As with any new approach, there are certain limitations:

• Scaling to high-dimensional inputs: Learning to explore more complex tasks with high-
dimensional input spaces would require using a better representation learning method and
a mechanism to estimate successor and predecessor representations. For representation
learning, existing methods that use auxiliary losses, inverse/forward dynamics, or random
network-based features can be used. The more challenging task is learning the SR and
future works can explore leveraging methods like Successor Measures [62] or ProtoVal-
ueNetworks [15].

• Environments with changing dynamics: The learned SR depends on the environment dynam-
ics and the policy, and we learn SR for a fixed environment in this work. However, many
real-world tasks require exploration in an environment with changing dynamics (procedural
environments [24, 67]). A potential direction is learning universal successor representation
approximators [8] where the successor representations are conditioned on a context that
defines the environment and we leave this for future research.

• Architectural priors for estimating SRs: The successor representations use an RNN which is
known to suffer from vanishing gradient problems. Many real-world tasks require agents
to retain information over multiple timesteps. Future research can explore having better
architectural priors like Transformers or S4 that have better memory and are known to work
well on complex tasks.

• Estimating predecessor representation: In this work, we computed the predecessor repre-
sentation as the summation of the prior state representations. However, recent methods like
Expected Eligibility Traces [64] show better sample efficiency and we leave leveraging such
methods for future research.

• Computing entropy instead of state visitation distribution: While predicting future state
visitations may seem harder than needed for entropy prediction, it is important to note that
optimal decision depends on which states are visited multiple time steps into the future. It
is possible that there exist more efficient algorithms for predicting this entropy, but to our
knowledge such algorithms do not appear in the published literature, and ηψ-Learning is the
first of this kind. Another challenge with estimating entropy is that the estimator needs to
adapt to the changing policy during training. In the proposed algorithm, this is mitigated
as both the entropy and policy directly depend on the estimated SR vector requiring no
additional updates to estimate entropy given the policy. However, future work would involve
discovering other more efficient methods for estimating the entropy induced by the future
state visitations.

• Comparison to Forward-Backward Representation [63]: The Forward-Backward represen-
tations [62, 63] capture similar state visitation statistics as the predecessor and successor
representation used by ηψ-Learning. Mathematically, the forward-backward (FB) rep-
resentation factorizes the Q-function in an RL setting in a very different way than the
ηψ-Learning algorithm. The FB method also focuses on a reward-maximization setting
instead of exploration and are only conditioned on states whereas the ηψ-Learning algorithm
conditions these representations on trajectories. During training, the focus of FB learning is
on representation learning using an offline dataset where it is assumed that the agent does
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not have to explore the environment. The learned FB representations are then used to solve
multiple different tasks using the same representations, assuming that reward parameteriza-
tion is known. However, the ηψ-Learning algorithm learns exploratory policies that could
be used to initially explore an unknown task to determine this reward parameterization. We
believe that the ηψ-Learning algorithm complements the FB method and integrating the two
systems into a cohesive RL agent is an interesting avenue for future research.
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Figure 7: Illustration of the values of the entropy with different value of α hyperparameter in the
proposed γ-function for the trajectories introduced in Figure 1.

In this work, we have used a time-dependent γ-function. Using the gridworld example described
in Figure 1, we now present how the choice of γ-function affects the entropy term in the objective.
Suppose there are three trajectories followed by the given trace τ:T , where we denote the i-th trajectory
with τ (i). Here, Figure 1(b) shows an optimal trajectory (τ (1)) which combined with the trace covers
each cell of the grid with 15 steps. Figure 1(c) presents a suboptimal trajectory (τ (2)) where the agent
takes the right action from the current state and visits a previously observed state in the last step.
Figure 1(d) shows another sub-optimal trajectory (τ (3)) which takes the right action in the current
state but visits the new state twice because it goes to the top right corner of the grid.

For the intermediate step T , we define the discount factor for the predecessor representation for the
trace as γ(t) = αT−t

Z , where α is a scalar between (0, 1], and Z = ΣTt=0α
T−t + Σht=Tα

t−T is the
normalization factor. The γ-function for the successor representation is denoted using γ(t) = αt−T

Z .
The proposed γ-function for both the representations is similar to discounting used in standard RL
literature [13, 59]. Upon comparing the entropy for given trajectories with α = 0.9, 1.0, we observe
in Figure 7 that τ (1) being the optimal trajectory attains higher entropy when compared with τ (2)

and τ (3). The other sub-optimal trajectories τ (2) and τ (3) achieve same entropy when α is set to
1.0. However, for α = 0.9, the discount function γ emphasizes which states are visited earlier
in the trajectory and assigns the lowest score to the trajectory τ (3) because this trajectory revisits
states earlier in the sequence than the other options τ (2) and τ (1). This example illustrates how the
γ-function can be used to trade off near-term vs. long-term exploration behavior. Depending on the
α setting, the agent can be encouraged to avoid re-visiting states either only in the short-term or the
long-term, similar to how discounting encourages maximizing short-term over long-term rewards in
algorithms like Q-learning.

F Environments

For finite action space variant, we experimented with ChainMDP, RiverSwim, 5 × 5 Grid-world,
TwoRooms and FourRooms environments, which have finite action and state space, respectively. For
infinite action space variant, we experiment with Reacher and Pusher environments where we want
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Figure 8: (a) RiverSwim [58], (b) TwoRooms, and (c) FourRooms environments, respectively. The
yellow block denote the initial state of the agent in each episode. The brick red regions represent the
walls in the environment. When taking an action that collides with the walls, the chosen action does
not change the state of the agent.T=0 T=5 T=10 T=15 T=20 T=25 T=30 T=35 T=40
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Figure 9: (a) Reacher and (b) Pusher environments for experiments with infinite action space.

the agent to move its fingertip to different locations in the environment. The environments used in
this work are further described below:

ChainMDP: ChainMDP is an environment where the agent can take only move in two directions—
left or right. In this work, we experiment with both deterministic and stochastic version of ChainMDP
environments. The stochastic ChainMDP is similar to RiverSwim environment [58] (Figure 8(a)).

GridWorld: In the Gridworld environment (shown in Figure 1), the agent can take 4 actions to
move in any of the 4 directions. In this work, we experiment with the gridworld of dimensions 5× 5.
The agent always start in the top left corner of the grid. For the gridworld, there are multiple possible
optimal trajectories, and the number of such trajectories increases explonentially with size of grid.

TwoRooms: The proposed TwoRooms environment is a gridworld with some walls. As shown in
Figure 8(b), the agent starts at the center of wall between the two rooms and has to first navigate
in one of the rooms, visit the starting state and then move to the other room. This makes the task
challenging as the agents requires to track the trace because when the agents reaches initial state after
exploring one room, the information of which room was visited should aid in going to the other room.

FourRooms: The FourRooms environment (depicted in Figure 8(c)) has four rooms connected
which are connected by open shots between the walls. This task is even more challenging as the
agents while navigating need to first explore the current room followed by efficiently going across
different rooms.

Reacher: The Reacher environment (shown in Figure 9(a)) is a continuous control environment
having a two-jointed robotic arm with continuous state and action spaces. The action space denotes
the torques applied to the hinges. The state denotes the position, angles and angular velocities of the
arms. The agent is tasked to maximize the entropy over the position of the fingertip.
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Pusher: The Pusher environment (shown in Figure 9(b)) is a continuous control environment
having a multiple-jointed robotic arm with continuous state and action spaces. The action space
denotes the torques applied to the hinges. The state denotes the position, angles and angular velocities
of the arms/hinges. Similar to the Reacher environment, the agent is tasked to maximize the entropy
over the position of the fingertip. However, this task is harder to solve because having multiple joints
leads to a larger action and state space making it a more challenging control problem.

For training and evaluation, we have used different parameters specific to each of the environment.
For training, the parameters are the length of an episode and the number of episodes used for training.
The number of environment steps can be obtained by multiplying these 2 parameters. For evaluation
of an agent, we use different episode length for the three metrics defined to measure the performance
of agents in section 5.

Name ChainMDP RiverSwim Gridworld TwoRooms FourRooms

Training Parameters

Length of trajectory from environment 20 50 50 100 200
Number of episodes 1000 1000 1000 1000 2500

Evaluation Parameters

Horizon h for Entropy metric 20 50 50 100 200
Horizon h for State Coverage metric 20 50 50 100 200
Horizon h to measure Episode Length 100 500 200 1000 1000

Table 1: Defines the parameters of the environments with discrete actions during training and
evaluation, respectively.

Name Reacher Pusher

Training Parameters

Length of trajectory from environment 100 200
Number of episodes 1000 1000

Evaluation Parameters

Horizon h for Entropy metric 100 200
Horizon h for State Coverage metric 100 200

Table 2: Defines the parameters of the environments with continuous actions during training and
evaluation, respectively.

G Hyper Parameters

In this section, we describe the hyperparameters used for training the proposed method ηψ-Learning.
Table 3 and Table 4 presents the list of hyperparameters for the discrete and continuous control
environments, respectively. All models were trained on a single NVIDIA V100 GPU with 32 GB
memory. The implementation of the proposed method was done using the RLHive [46] library.

H Meta-RL

In this work, we demonstrated how ηψ-Learning can learn optimal policies that can maximize the
entropy of state visitation distribution. Such policies are useful for many subareas of RL where during
evaluation the task is to adapt to new reward functions with minimal interactions with the environment.
A challenging subproblem in such tasks is to infer the reward function. This is especially harder
when the reward is sparse. Some recent works have explored adding exploratory behaviors for initial
interactions with the environment to allow agent to infer the reward function. VariBAD [70] algorithm
learns optimal policies that can explore during evaluation to speed up adaptation for Meta-RL tasks.
VariBAD maintains a belief over the state space to explore in the environment and upon discovering
the reward function adapts to the To illustrate the exploratory capabilities of ηψ-Learning, we compare
with VariBAD as baseline in this section.
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Name Value
Batch Size 32
Sequence Length 10 / 20 / 50 / 50 / 100
α for γ-function 0.95
Encoder layers 1
Encoder output dimensions 64 / 64 / 128 / 128 / 256
Encoder activation LeakyReLU [68]
Hidden state of GRU 64 / 64 / 128 / 128 / 256
Hidden layer dimension for SR decoder 32 / 32 / 64 / 64 / 128
Decoder activation None
Optimizer Adam [29]
Learning rate 3e-4
Capacity of replay buffer 200000

Table 3: Hyper parameters used for training ηψ-Learning. When parameters are separated by /./././.,
it means the corresponding hyperparameters for ChainMDP, RiverSwim, Gridworld, TwoRooms
and FourRooms environments, respectively. When tuning the agent for a task, we recommend
searching over α ∈ {0.9, 0.95, 0.98, 0.99}, and hidden state dimension of GRU and encoder output
dimensions in {64, 128, 256, 512}. For the replay buffer, we have used the replay buffer implemented
in DreamerV2 [20], which for an episode samples a chunk of a given length.

Name Value
Batch Size 256
Sequence Length 100
α for γ-function 0.95
Encoder layers 2
Encoder output dimensions 256
Encoder activation LeakyReLU [68]
Hidden state of GRU 256
Hidden layer dimension for SR decoder 256
Decoder activation None
Optimizer Adam [29]
Learning rate 3e-4
Capacity of replay buffer 200000
Polyak constant 0.005
Grad Clip 5.0
Action noise 0.1
Target noise 0.2

Table 4: Hyper parameters used for training ηψ-Learning on continuous state space environments.
When tuning the agent for a task, we recommend searching over α ∈ {0.9, 0.95, 0.98, 0.99}, and
hidden state dimension of GRU and encoder output dimensions in {64, 128, 256, 512}. For the replay
buffer, we have used the replay buffer implemented in DreamerV2 [20], which for an episode samples
a chunk of a given length.

The implementation of VariBAD provided by the authors is used to conduct this experiment. The
baseline was trained for 10 million environment steps on the 5×5 gridworld using the setup described
in the paper. Two metrics are employed to compare the agents:

• State Coverage computes the fraction of the state space covered by the agent.

• Goal Search Time computes the environment steps taken to locate the sparse reward goal
state. This evaluates the ability of the agent at quickly finding the reward which is essential
for swift adaptation to novel tasks.

The two metrics evaluate the agents on average time taken to find the reward function and the average
search completion time for covering the grid. The VariBAD [70] algorithm considered sparse reward
task where a random location is sampled after each episode as the goal state and is assigned a high
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reward. To compute the Goal Search Time metric, we sample a goal state randomly and record the
steps taken to locate the target state. For evaluation, the metric is averaged over 16 sampled goal state
for each seed. Figure 4(c) presents the comparison of VariBAD and ηψ-Learning on both metrics
across 5 seeds. The proposed method ηψ-Learning achieves outperforms VariBAD on both metrics
while only being trained for 100K environment steps. This demonstrate the efficacy of ηψ-Learning
at exploring in environment that involves inferring the reward function during evaluation. We believe
ηψ-Learning can be combined with a adaptation policy, where the proposed method can explore to
find the reward and the adaptation policy is trained to adapt quickly to the reward function, and we
leave this for future work.

I Ablation Studies

In this section, we present ablations studies to understand the gains of the proposed method ηψ-
Learning.

I.1 MaxEnt with a recurrent network

Figure 10: Comparison of the baseline MaxEnt when trained with a recurrent network.

We conduct an experiment with a modification to the baseline MaxEnt [23] where agent observed
the history of visited states. This is done to evaluate if the improvements are coming from having
a recurrent policy. To this end, the state-conditioned policy in MaxEnt is replaced with a recurrent
policy where the GRU [10] encodes the states observed in the trajectory. The parameters of the
recurrent policy is optimized using the loss function described in MaxEnt [23]. Figure 10 presents
the results of MaxEnt with a recurrent policy (named MaxEnt-GRU) where no gains are observed by
having a recurrent policy and the proposed objective function used to train ηψ-Learning is crucial for
learning optimal behaviors.
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Figure 11: Comparison of ηψ-Learning with baseline MaxEnt when metrics are computed using
multiple trajectories. MaxEnt-X denotes the evaluation with X trajectories.

I.2 Comparison across multiple trajectories

Contemporary methods on Maximum State Entropy Exploration [23, 42] were evaluated by averaging
the state visitation distribution over multiple trajectories. In this work, we demonstrate that ηψ-
Learning can achieve optimal behaviors over a single trajectory of finite length. In this study, we
also explore comparison of the baseline MaxEnt when evaluated over multiple trajectories. For
this evaluation, we sample a batch of trajectories and then average the state visitation distribution
of trajectories. The metrics are then computed using this averaged visited state distribution. In
Figure 11, we compare the Entropy and State Coverage over this averaged distribution. MaxEnt-X
denotes the metric of MaxEnt after sampling X trajectories during evaluation. The proposed method
ηψ-Learningwas evaluated using a single trajectory. We do not report metrics of ηψ-Learningacross
multiple trajectories as we observed that the gains do not vanish with an increasing number of
trajectories. The metrics for the MaxEnt algorithm improve with the increasing number of trajectories
used for evaluation. With 10 or more trajectories, the baseline achieves optimal State Coverage.
However, ηψ-Learning achieves full coverage with a single trajectory demonstrating the efficiency
of the exploration policies learned using the proposed method. The baseline MaxEnt show similar
behaviors by improving on the Entropy metric with more trajectories used for evaluation, whereas ηψ-
Learning still outperforms the baseline when evaluated using a single trajectory. This demonstrates
that the proposed method explores the state-space with near-equal state visitations to maximize the
entropy while having optimal state coverage in a single trajectory.

I.3 Effect of the α parameter

We also study the effect of the hyper-parameter α of the γ-function (discussed in Appendix E). We
note that α can be selected using the same method used to select the discount factor in the standard
RL. We conducted experiments with α={0.8,0.9,0.95,0.99} across three environments- RiverSwim,
TwoRooms, and FourRooms (Figure 12). On the RiverSwim environment, all methods converged
with similar values across all metrics. On the TwoRooms environments, agents with α={0.8, 0.99}
were not performing well across the three metrics. Moreover, the convergence was slower for agent
with α = 0.9 when compared with agent trained with α = 0.95. Our intuition behind this is that
when α is smaller, the memory of the visited states in predecessor representation (η) reduces leading
to a re-visitation of observed states. Whereas when α is large, then the agent does similarly discount
a future state at any point in the trajectory. Lastly, on the FourRooms environment, the results are
similar to the TwoRooms environment but with more pronounced differences in metrics for different
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Figure 12: Evaluation with different value of α hyperparameter in the proposed γ-function.

values of α. This is because FourRooms environment is harder to solve than TwoRooms environments.
Notably, the Search Completion Time metric diverges for all values of α ̸= 0.95, which shows that
α = 0.95 leads to optimal behavior for our task. For new tasks, we believe α can be tuned similarly
to the discount factor used in standard RL.

I.4 SR conditioned on state

In this section, we validate if conditioning on the history of visited states is important for learning
optimal SR vectors. We consider a variant of ηψ-Learning where the SR is only conditioned on the
current state. However, the objective proposed in Equation 7 which uses predecessor representation
to compute the entropy is used for learning. We conduct experiments on continuous control tasks
where we observe that conditioning on the entire trajectory sequence is important for learning optimal
SR vectors (Figure 13).

I.5 Visualization of trajectories

The maneuvers taken by the learned ηψ-Learning agent were also visualised. For the Reacher
environment, the agent was first covering the faraway states followed by covering the nearby states
to the central position. Similar behaviors were observed for the Pusher environment, where the
agent was moving the fingertip to different locations on the table top and tried visiting all reachable
locations on the table.

J Comparison on Sparse Mountain Car

In this work, we showed how the proposed method ηψ-Learning can learn policies to efficiently
explore in an environment. To present the applicability of the proposed method to other settings,
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Figure 13: Comparison with a proposed variant where the SR is conditioned on the state only denoted
as ηψ-Learning (State based SR). We see that conditioning on the entire trajectory is important for
learning SR vectors to optimize the objective.
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Figure 14: Rolled out trajectories using the learned ηψ-Learning agent on the Reacher (top row) and
Pusher (bottom row) environments at different time steps, respectively.

we conduct an experiment on tasks with sparse rewards. We consider the Sparse MountainCar
environment where the agent receives a positive reward after reaching the goal position after which
the episode terminates and the agent receives no reward in other states. We chose this environment
because the reward is sparse, and it is hard for the agent to discover the reward function as the agent
needs to plan to explore the top of the hill. For the baselines, we compare with a random agent,
TD3 [17], TD3 combined with count-based bonus [6] as an intrinsic reward (TD3-Count), and TD3
combined with first occupancy bonus [40] as an intrinsic reward (TD3-First).

We also propose a variant of our method to learn with extrinsic rewards. We modified the TD3
algorithm and call the proposed variant TD3-ηψ-Learning. In this variant, we propose to learn
2 critics- one to estimate the SR as mentioned in 4 (Qexpl), and the other to estimate the returns
obtained using extrinsic rewards (Qext). The critic based on extrinsic rewards Qext is conditioned
on the current state learned using the update rule defined in TD3 [17]. Notably, Qexpl and Qext are
conditioned on the trajectory of prior visited states and current state, respectively. To learn the actor,
the gradients are obtained using the overall Q-function which is defined as the linear sum of both
Q-values based on extrinsic rewards and entropy-based term: Q = Qext + βQexpl, where β denotes
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Algorithm 4 ηψ-Learning: TD3-ηψ-Learning

1: Initialize SR network with parameters θ1, θ2, Qext network with parameters for Q-function with
extrinsic rewards ϕ1, ϕ2, policy parameters µ and the replay buffer B = {}

2: Set target parameters equal to the main parameters: θtarg,1 = θ1, θtarg,2 = θ2, ϕtarg,1 = ϕ1,
ϕtarg,2 = ϕ2, and µtarg ← µ

3: Denote the predecessor feature with ηηη, discount function with γ, and episode length with h
4: while Training do
5: Collect τexp = {s1, a1, r1, .., sh} using πµtarg

and add it to replay buffer B=B ∪ τexp
6: for each training step j do
7: Sample batch of τ = (s1, .., al−1, rl−1, sl) ∼ B of sequence length l ∈ {2, .., h}
8: Compute target actions a′ = clip(πµtarg

(τ:l) + clip(ϵ,−c, c), aLow, aHigh), ϵ ∼ N (0, 1)
9: Compute i=argmink∈{1,2} H(ηηη(τ:l−1) + ψψψθk(τ:l−1, a

′))
10: Compute target for SR

yyyθ=eeesl + γ(l) ψψψθtarg,i
(τ:l−1, a

′)
11: Update the SR networks by performing gradient steps on

||yyyθ - ψψψθi(τ:l−1, al−1)||22, i = 1, 2
12: Compute target for Qext

yyyϕ=rl−1 + γext mink∈1,2Q
ext
ϕtarg,k

(sl, a
′)

13: Update the Qext networks by performing gradient steps on
||yyyθ - Qextϕi

(sl−1, al−1)||22, i = 1, 2
14: if j % policy_update == 0 then
15: Perform update step for policy by computing gradients using∑

i zi ∇a ψψψθ1(τ:l, a) |a=π(τ:l) ∇µ πµ(τ:l) +∇µQϕ1
(sl−1, πµ(τl−1)),

where zi = − log(ηηη(τ:l)i - ψψψθ1(τ:l, πµ(τ:l))i) + 1
16: Update target networks with

θtarg,i← ρθtarg,i + (1− ρ)θi, i = 1, 2
µtarg ← ρµtarg + (1− ρ)µ

17: end if
18: end for
19: end while

the trade-off between the two Q-functions. We have added a pseudo-code to describe the proposed
algorithm in Algorithm 4.

Figure 5 presents the results on the Sparse Mountain Car environment. We compare two metrics-
Return and Episode Length denoting the steps taken to reach the goal state across 5 seeds. The
Average Steps metric highlights if the agent learns to solve the task with minimal interactions. We
plot the mean and 95% confidence interval in shading. The proposed method outperforms TD3 and
variants with count-based and first occupancy based bonuses. Through our experiment on Sparse
MountainCar, we demonstrate that the proposed method can improve efficiency in standard RL tasks,
especially in sparse reward environments. We leave it for future work to leverage the proposed
extension in POMDP setting with more complex input spaces.

29


	Introduction
	Related Work
	Maximum state entropy exploration
	-Learning
	Experiments
	Discussion
	Convergence Analysis
	-Learning- Policy Gradient
	Neural Network Architecture and Implementation
	Limitations
	Discount Function
	Environments
	Hyper Parameters
	Meta-RL
	Ablation Studies
	MaxEnt with a recurrent network
	Comparison across multiple trajectories
	Effect of the  parameter
	SR conditioned on state
	Visualization of trajectories

	Comparison on Sparse Mountain Car

