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ABSTRACT

In-context reinforcement learning (ICRL) promises fast adaptation to unseen envi-
ronments without parameter updates, but current methods either cannot improve
beyond the training distribution or require near-optimal data, limiting practical
adoption. We introduce SPICE, a Bayesian ICRL method that learns a prior over
Q-values via deep ensemble and updates this prior at test-time using in-context in-
formation through Bayesian updates. To recover from poor priors resulting from
training on sub-optimal data, our online inference follows an Upper-Confidence
Bound rule that favours exploration and adaptation. In bandit settings, we prove
this principled exploration reaches regret-optimal behaviour even when pretrained
only on suboptimal trajectories. We validate these findings empirically across
bandit and control benchmarks. SPICE achieves near-optimal decisions on un-
seen tasks, substantially reduces regret compared to prior ICRL and meta-RL
approaches while rapidly adapting to unseen tasks and remaining robust under
distribution shift.

1 INTRODUCTION

Following the success of transformers with in-context learning abilities Vaswani et al. (2017), In-
Context Reinforcement Learning (ICRL) emerged as a promising paradigm Chen et al. (2021);
Zheng et al. (2022). ICRL aims to adapt a policy to new tasks using only a context of logged inter-
actions and no parameter updates. This approach is particularly attractive for practical deployment
in domains where training classic online RL is either risky or expensive, where abundant historical
logs are available, or where fast gradient-free adaptation is required. Examples include robotics,
autonomous driving or buildings energy management systems. ICRL improves upon classic offline
RL by amortising knowledge across tasks, as a single model is pre-trained on trajectories from many
environments and then used at test time with only a small history of interactions from the test task.
The model must make good decisions in new environments using this in-context dataset as the only
source of information Moeini et al. (2025).

Existing ICRL approaches suffer from three main limitations. First, behaviour-policy bias from
supervised training objectives: methods trained with Maximum Likelihood Estimation (MLE) on
actions inherit from the same distribution as the behaviour policy. When the behaviour policy is
suboptimal, the learned model performs poorly. Many ICRL methods fail to improve beyond the
pretraining data distribution and essentially perform imitation learning Dong et al.; Lee et al. (2023).
Second, existing methods lack uncertainty quantification and inference-time control. Successful
online adaptation requires epistemic uncertainty over action values to enable temporally coherent
exploration. Most ICRL methods expose logits but not actionable posteriors over Q-values, which
are needed for principled exploration like Upper Confidence Bound (UCB) or Thompson Sampling
(TS) Lakshminarayanan et al. (2017); Osband et al. (2016; 2018); Auer (2002); Russo et al. (2018).
Third, current algorithms have unrealistic data requirements that make them unusable in most real-
world deployments. Algorithm Distillation (AD) Laskin et al. (2022) requires learning traces from
trained RL algorithms, while Decision Pretrained Transformers (DPT) Lee et al. (2023) needs opti-
mal policy to label actions. Recent work has attempted to loosen these requirements, like Decision
Importance Transformers (DIT) Dong et al. and In-Context Exploration with Ensembles (ICEE) Dai
et al. (2024). However, these methods lack explicit measure of uncertainty and test-time controller
for exploration and efficient adaptation.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these limitations, we introduce SPICE (Shaping Policies In-Context with Ensemble
prior), a Bayesian ICRL algorithm that maintains a prior over Q-values using a deep ensemble and
updates this prior with state-weighted evidence from the context dataset. The resulting per-action
posteriors can be used greedily in offline settings or with a posterior-UCB rule for online exploration,
enabling test-time adaptation to unseen tasks without parameter updates. In bandit settings, we
show that the SPICE inference controller achieves the same optimal logarithmic regret rate as UCB
without assuming the model is trained on optimal data. We test our algorithm in bandit and dark
room environments to compare against prior work, demonstrating that our algorithm achieves near-
optimal decision making on unseen tasks while substantially reducing regret compared to prior ICRL
and meta-RL approaches. This work paves the way for real-world deployment of ICRL methods,
which should feature good uncertainty quantification and test-time adaptation to new tasks without
relying on unrealistic optimal control trajectories for training.

2 RELATED WORK

Meta-RL. Classical meta-reinforcement learning aims to learn to adapt across tasks with limited
experience. Representative methods include RL2 Duan et al. (2016), gradient-based meta-learning
such as MAML Finn et al. (2017); and probabilistic context–variable methods such as PEARL
Rakelly et al. (2019). These approaches typically require online interaction and task-aligned adap-
tation loops during deployment.

Sequence modelling for decision-making. Treating control as sequence modelling has proven
effective with seminal works such as Decision Transformer (DT) Chen et al. (2021) and Trajectory
Transformer models Janner et al. (2021). Scaling variants extend DT to many games and longer
horizons Lee et al. (2022); Correia & Alexandre (2023), while Online Decision Transformer (ODT)
blends offline pretraining with online fine-tuning via parameter updates Zheng et al. (2022). These
works paved the way for in context decision making.

In-context RL via supervised pretraining. Two influential ICRL methods are Algorithm Dis-
tillation (AD) Laskin et al. (2022), which distills the learning dynamics of a base RL algorithm
into a Transformer that improves in-context without gradients, and Decision-Pretrained Transformer
(DPT) Lee et al. (2023), which is trained to map a query state and in-context experience to opti-
mal actions and is theoretically connected to posterior sampling. Both rely on labels generated by
strong/optimal policies (or full learning traces) and therefore inherit behaviour-policy biases from
the data Moeini et al. (2025). DIT (Dong et al.) improves over behaviour cloning by reweighting a
supervised policy with in-context advantage estimates, but it remains a purely supervised objective:
it exposes no calibrated uncertainty, produces no per-action posterior, and lacks any inference-time
controller or regret guarantees. ICEE (Dai et al., 2024) induces exploration–exploitation behaviour
inside a Transformer at test time, yet it does so heuristically, without explicit Bayesian updates, cal-
ibrated posteriors, or theoretical analysis. By contrast, SPICE is the first ICRL method to (i) learn
an explicit value prior with uncertainty from suboptimal data, (ii) perform Bayesian context fusion
at test time to obtain per-action posteriors, and (iii) act with posterior-UCB, yielding principled
exploration and a provable O(logK) regret bound with only a constant warm-start term.

3 BAYESIAN IN-CONTEXT DECISION MAKING

In this section, we introduce the key components of our method. In Sec. 3.1, we present the model
architecture and key design choices for its training. In Sec. 3.2, we introduce our test-time controller,
which is further analysed theoretically in Sec. 4 and empirically in Sec. 5 and Sec. 6. The complete
method is summarised in Sec. 3.3.

3.1 DEFINITION OF THE SEQUENCE MODEL

Consider a setting in which we draw tasks T ∼ T with state space S, action space A, horizon H ,
rewards rt ∈ R and discount γ ∈ [0, 1]. At test time, given a task T , the agent receives a multi-
episode in-context dataset C = {(st, at, rt, st+1)} collected from T and must select an action a for
a query state s without any parameter updates. The dataset C may be provided offline or collected

2
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through online rollouts during test time. Our approach focuses on discrete action spaces A, though
it extends naturally to continuous actions. 1

The trunk of our model is composed of a transformer architecture. Following prior work (Lee et al.,
2023), a causal GPT-2 transformer is used to encode sequences of transitions. Each transition is
embedded using a single linear layer ht = Linear

(
[ st, at, s

′
t, rt ]

)
∈ RD, where D is the hidden

size dimension. A sequence is processed as
([ sqry, 0, 0, 0 ]︸ ︷︷ ︸

query token

, [ s1, a1, s
′
1, r1 ], . . . , [ sH , aH , s′H , rH ]︸ ︷︷ ︸

context transitions

)

The query token is placed first and filled with dummy slots for (a, s′, r); the transformer then outputs
a hidden vector at each position. Two decoder heads are used:

• Policy head πθ(a | ·) = softmax(Linear(h)).
• Value ensemble head Qϕk

(a | ·), k = 1, . . . ,K, further described in the following.

Q-value ensemble Deep ensembles can be used as Bayesian neural networks, as they capture
the different modes of the Bayesian posterior (Fort et al., 2019; Wilson & Izmailov, 2020). The
epistemic uncertainty can be estimated from the model standard deviation of the models, or model
disagreement Lakshminarayanan et al. (2017). To account for model uncertainty, we model the
Q-value using a deep ensemble of K separate MLP fk. To ensure diversity in the ensemble, a
randomised prior (Osband et al., 2018) pk is added to each Q-value network in the form of a frozen
and randomly initialised MLP Qϕk

= fk + αpk,where α > 0 scales the prior. In addition, to
avoid model collapse, the loss is regularised using an anchor loss (Pearce et al., 2018), where ϕ(0)

represents the initial weights.

Lanchor =

K∑
k=1

∑
j

∥∥ϕk,j − ϕ
(0)
k,j

∥∥2
2
. (1)

The query hidden vector is concatenated with a given action a encoded as a one-hot vector and
passed to each Q-value head:

Qϕk
(a | s, C) = fk

(
[hqry; onehot(a)]

)
+ αpk

(
[hqry; onehot(a)]

)
, (2)

The ensemble mean and standard deviation are used as calibrated value prior for ICRL

Q̄(a) = 1
K

K∑
k=1

Qϕk
(a), σQ(a) =

√√√√ 1
K−1

K∑
k=1

(
Qϕk

(a)− Q̄(a)
)2
. (3)

Learning a policy with Advantage and Uncertainty Reweightings The policy head πθ is trained
to optimise a weighted cross-entropy loss:

Lπ = Eb

[
1

H

H∑
t=1

ωb

(
− log πθ(a

⋆
b

∣∣hb,t)
)]

, ωb = ωIS · ωadv · ωepi. (4)

given a training example xb (i.e. a context with horizon H) and a⋆b its action label. The multiplicative
weight ωb is the product of three weight factors described below.

(i) Propensity correction. Offline datasets reflect the action selection of the behaviour policy
πb(· | s), which induces a mismatch between the supervised training target and the uniform reference
action distribution. To remove this behaviour-policy bias and recover the target likelihood under a
uniform distribution πu(· | s), labeled samples can be re-weighted with an importance ratio (Dai
et al., 2024):

ωIS = clip

(
πu(a

⋆
b | s)

πb(a⋆b | s)
, 0, ciw

)
, πu(a | s) = 1

|A| . (5)

Intuitively, overrepresented actions under πb are downweighted, and rare but informative actions are
upweighted.

1For continuous action settings, one can replace the categorical policy head with a parametric density (e.g.,
Gaussian), concatenate raw action vectors instead of one-hot encodings in the value ensemble, and perform
posterior updates using kernel-weighted statistics in action space.

3
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(ii) Advantage weighting. Inspired by (Wang et al., 2018; Dai et al., 2024; Peng et al., 2019), we
upweight transitions whose estimated advantage is positive so that the trunk allocates more capacity
to reward-relevant behaviours, thereby improving learning from suboptimal data. The advantage is
estimated using the Q-value ensemble:

ωadv = clip
(
exp

(
A(s,a⋆

b )
τadv

)
, ε, cadv

)
, A(s, a) :=

(
1
K

∑
k

Qϕk
(s, a)

)
− 1

|A|

∑
a′

(
1
K

∑
k

Qϕk
(s, a′)

)
.

(6)

(iii) Epistemic weighting. Building on ensemble-based uncertainty estimation and randomised
priors (Lakshminarayanan et al., 2017; Osband et al., 2018; Pearce et al., 2018; Wilson & Izmailov,
2020), we emphasise samples with higher ensemble standard deviation, concentrating computation
on regions of epistemic uncertainty so that the model learns most from poorly covered areas and
provides a more informative posterior for exploration (σQ is from Eq. 3):

ωepi = clip(1 + λσ σQ(s, a
⋆
b), ε, cepi) , (7)

Learning a Q-value ensemble with TD(n) and Bayesian Shrinkage The Q-value ensemble is
trained using only the logged context tuples, combining TD(n) regression Sutton et al. (1998); Dayan
(1992) with Bayesian shrinkage Murphy (2007; 2012). For each context window of length H with
transitions {(st, at, rt, st+1)}Ht=1, the ensemble mean is Q̄(s, a) = 1

K

∑K
k=1 Qϕk

(s, a). A n-step
bootstrapped targets per time step t can be constructed as:

y
(n)
t =

n−1∑
i=0

γirt+i + γn 1[ t+n ≤ H ] max
a′

Q̄(st+n, a
′), (8)

where the next n observed rewards are summed along the logged trajectory. A bootstrap term is
added only if the context still contains a state st+n

2.

To learn the ensemble, the loss function is composed of two terms LQ = LTD + Lshrink.

LTD - TD(n) regression on taken actions. For each (st, at) the ensemble mean is regressed to
the TD(n) target:

LTD = E
[(
Q̄(st, at)− y

(n)
t

)2]
. (9)

Lshrink - Bayesian shrinkage to per-action posterior means. To improve statistical stability, per-
action predictions are shrunk toward conjugate posterior means computed from the same TD(n)
targets. For each action a we form counts and empirical TD(n) averages over the context:

ca =

H∑
t=1

1[at = a], ȳa =

∑
t: at=a y

(n)
t

max(1, ca)
.

With prior mean µ0, prior variance v0, and likelihood variance σ2, the per-action posterior mean is

mpost
a =

σ2

σ2 + cav0︸ ︷︷ ︸
wa

µ0 +
(
1− wa

)
ȳa, wa =

σ2

σ2 + cav0
. (10)

The following loss shrinks the per-action time-average of the ensemble toward mpost
a for actions

observed in the context is:

Lshrink =
1∑

a 1[ca > 0]

∑
a: ca>0

(
1
H

H∑
t=1

Q̄(st, a)︸ ︷︷ ︸
per-action average over context states

− mpost
a

)2

. (11)

2Bandits arise as the special case n=1 (and γ=0).

4
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Training Objective The full training loss L = Lπ + λQ LQ + λanchor Lanchor is optimised using
AdamW (Loshchilov & Hutter, 2019). We checkpoint the transformer and heads jointly, and option-
ally detach policy weights ωb during Lπ computation to prevent Q-network gradient interference.

See Appendix A for the full algorithm and implementation details , and Appendix C.3 for an ablation
isolating the effect of the weighting terms in Eq. (4)–(7).

3.2 TEST-TIME BAYESIAN FUSION OF CONTEXT AND VALUE PRIOR

This section presents the key component of our algorithm: a test-time controller that combines
information from the ensemble prior and context, following a UCB principle for action selection.

At the query state s we form an action-wise posterior by combining the ensemble prior (Q̄, σQ) with
state-weighted statistics extracted from the context. Let wt(s) ∈ [0, 1] denote a kernel weight that
measures how similar context state st is to the query s. Instances of such kernels are uniform, cosine
or RBF kernels Cleveland & Devlin (1988); Watson (1964). For each action, the state-weighted
counts and targets are

ca(s) =
∑
t

wt(s)1[at = a], ỹa(s) =

∑
t wt(s)1[at = a] yt

max
(
1, ca(s)

) . (12)

The target yt can be chosen as immediate reward or an n-step bootstrapped return :

y
(n)
t =

n−1∑
i=0

γirt+i + γn max
a′

Q̄(st+n, a
′). (13)

Given Eq. 3, a choice of kernel, and the weighted evidence
(
ca(s), ỹa(s)

)
, SPICE composes a

conjugate-style posterior per action by precision additivity Murphy (2007; 2012):

prior: µpri
a = Q̄(a), vpri

a = max{σQ(a)
2, vmin}, likelihood variance: σ2, (14)

posterior: vpost
a =

(
1

vpri
a
+ ca(s)

σ2

)−1

, mpost
a = vpost

a

(
µpri
a

vpri
a

+ ca(s) ỹa(s)
σ2

)
. (15)

Based on this posterior distribution, we propose the following action selection:

• Online, the policy follows a posterior-UCB rule with exploration parameter βucb > 0 Auer
(2002), allowing exploration and adaptation to the task:

a⋆ = argmax
a

(
mpost

a + βucb

√
vpost
a

)
. (16)

• Offline, the policy act greedily: a⋆ = argmaxa m
post
a .

Hyperparameter choices are listed in Appendix A.5 and the pseudocode for Bayesian fusion appears
in Algorithm 1 (Appendix A.1).

3.3 SPICE: OVERALL ALGORITHM

We now introduce the full algorithm in Algo. 1. SPICE combines context and ensemble priors in
a Bayesian update, providing calibrated posteriors for UCB-based exploration. Unlike prior works
(Lee et al., 2023; Dai et al., 2024), this design enables coherent adaptation from suboptimal data
(see Fig. 1 for a pipeline overview).

4 REGRET BOUND OF THE SPICE ALGORITHM

A key component of SPICE is the use of a posterior-UCB rule at inference time that leverages both
ensemble prior and in-context data. Importantly, we show in this section that the resulting online
controller achieves optimal logarithmic regret despite being pretrained on sub-optimal data. Any
prior miscalibration from pretraining manifests only as a constant warm-start term without affecting
the asymptotic convergence rate. We establish this result formally in a bandit setting and provide in
the next sections empirical validation across bandit problems and extend to other MDPs.

5
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Figure 1: Training and Test-Time Inference. Red boxes highlight novel contributions. SPICE
pretrains on suboptimal data using a transformer with (1) a novel value ensemble that learns cali-
brated uncertainty while improving policy training via advantage/epistemic reweighting. Gradient-
free adaptation on new tasks: (2) frozen transformer processes query/context; (3) ensemble extracts
value priors; (4) kernel weighting computes context evidence; (5) Bayesian fusion yields per-action
posteriors; (6) action selection. SPICE learns explicit uncertainty from suboptimal data, enabling
both improved training and principled gradient-free exploration.

4.1 DEFINITIONS AND ASSUMPTIONS

Consider a stochastic A-armed bandit setting with unknown means {µa}Aa=1 ⊂ R. At each round
t ∈ 1, ...,K the algorithm chooses at and receives a reward rt = µat

+ εt, where (εt)t≥1 are
independent mean zero σ−sub-Gaussian noise variables. The best-arm mean is defined as µ⋆ =
max
a∈[A]

µa and the gap of arm a as ∆a = µ⋆ − µa.

Without loss of generality, we scale rewards so that means satisfy µa ∈ [0.1] for all a ∈ [A]. Hence
0 ≤ µ⋆ − µa ≤ 1 and the per-round regret is at most 1. Assuming that each reward distribution is
σ2-sub-Gaussian, a current assumption in bandit analysis(Whitehouse et al., 2023; Han et al., 2024),
one can derive the following tail bound for any arm a and round t ≥ 1 with na,t pulls and empirical
mean µ̂a,t for all ε > 0

Pr
(∣∣µ̂a,t − µa

∣∣ > ε
)
≤ 2 exp

(
− na,tε

2

2σ2

)
(17)

By setting ε = σ
√

2 log t
na,t

, one can show that with probability at least 1−O( 1
t2 )∣∣µ̂a,t − µa

∣∣ ≤ σ

√
2 log t

na,t
, (18)

i.e the deviation of the empirical mean from the true mean is bounded by σ
√

2 log t/na,t with high
probability (Hoeffding’s inequality; see (Hoeffding, 1963; Boucheron & Thomas, 2012)).
Definition 1 (SPICE posterior). Let the ensemble prior for arm a be Gaussian with mean µpri

a and
variance vpri

a > 0, estimated from the value ensemble at the query (see Section 3.2). The prior
pseudo-count is defined as

N pri
a :=

σ2

vpri
a

, =⇒ mpost
a,t =

N pri
a µpri

a + na,tµ̂a,t

N pri
a + na,t

, vpost
a,t =

σ2

N pri
a + na,t

(19)

where na,t and µ̂a,t are the number of pulls and the empirical mean of arm a up to round t (these
updates follow Normal-Normal conjugacy; see Murphy, 2007; 2012.) .
Definition 2 (SPICE inference). SPICE acts using a posterior-UCB rule at inference time

at ∈ argmax
a∈A

{
mpost

a,t−1 + βt

√
vpost
a,t−1

}
, βt =

√
2 log t (20)

The schedule βt =
√
2 log t mirrors the classical UCB1 analysis (Auer et al., 2002).

6
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4.2 INFERENCE-TIME REGRET BOUND

We now derive a regret bound for SPICE inference-time controller. The proof is given in Sec. B.
Theorem 1 (Regret-optimality with warm start). Under the assumption of σ2-sub-Gaussian reward
distributions, the SPICE inference controller satisfies

E
[ K∑

t=1

(µ⋆ − µat
)
]
≤

∑
a ̸=⋆

(32σ2 logK

∆a
+ 4N pri

a

∣∣µpri
a − µa

∣∣)+O(1). (21)

Thus the cumulative regret of SPICE has an optimal logarithm rate in K and any sub-optimal pre-
training results only in a constant warm-start term

∑
a ̸=⋆ 4N

pri
a

∣∣µpri
a − µa

∣∣ that does not scale with
K. The leading O(logK) term matches the classical UCB1 proof (Auer et al., 2002). The additive
warm-start term depends on the prior pseudo-count N pri

a = σ2/vpri
a , which behaves as prior data in

a Bayesian sense (Gelman et al., 1995).

This theorem yields the following corollaries highlighting the impact of the prior quality on the
regret bound.
Corollary 1 (Bound of well-calibrated priors). If the ensemble prior is perfectly calibrated, then
µpri
a = µa for all arms a and the warm-start term vanishes. SPICE then reduces to classical UCB

E[RK ] ≤
∑
a̸=⋆

32σ2 logK

∆2
a

+O(1). (22)

Corollary 2 (Bound on weak priors). If the ensemble prior has infinite variance, vpri
a → ∞ and

therefore N pri
A → 0. The warm-start term vanishes and SPICE reduces to classical UCB Eq. 22.

The regret bound shows that SPICE inherits the optimal O(logK) rate of UCB while adding a
constant warm-start cost from pretraining. The posterior mean in Eq. 19 is a convex combination
of the empirical and prior means and the variance is shrinking at least as fast as O(1/na,t). Early
decisions are influenced by the prior, but as na,t grows, the bias term vanishes and learning relies
entirely on observed rewards. A miscalibrated confident prior increases the warm-start constant
but does not affect asymptotics, a well-calibrated prior eliminates the warm-start entirely and an
uninformative prior (vpri

a → ∞) reduces SPICE to classical UCB. In practice, this means that SPICE
can exploit structure from suboptimal pretraining when it is useful, while remaining safe in the long
run, as its regret matches UCB regardless of the prior quality.

5 LEARNING IN BANDITS

(a) Offline: suboptimality vs. con-
text size h. Lower is better.

(b) Online: cumulative regret
(zoomed). Lower is better.

(c) Online: cumulative regret (full
scale).

Figure 2: Bandit performance evaluation. (a) Offline selection quality. (b) Online cumulative
regret (zoomed view). (c) Online cumulative regret (full scale). Shaded regions are ±SEM over
N=200 test environments.

We test our algorithm using the DPT evaluation protocol (Lee et al., 2023). Each task is a stochastic
A-armed bandit with Gaussian rewards. Unless noted, A=5 and horizon H=500. Further details
are given in Appendix C and Appensix A.5.

7
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(a) Online: cumulative return over H=100 steps
(higher is better).

(b) Online: cumulative regret (lower is better).

Figure 4: Darkroom (MDP) results. Models are pretrained on uniformly collected, weak-last
labeled trajectories and evaluated online on N=100 held-out tasks for H=100 steps. Shaded regions
denote ±SEM across tasks.

Results are presented in Fig. 2 and Fig. 3. Offline, SPICE and TS achieve the lowest suboptimality
across h, while LCB is competitive early but remains above TS/SPICE. DPT is flat and far from
optimal in this weak-data regime. Online, SPICE attains the lowest cumulative regret among learned
methods and tracks the classical UCB closely (Fig. 2b and Fig. 2c). Under increasing reward noise,
SPICE, TS, UCB, and Emp degrade smoothly with small absolute changes, whereas DPT’s final
regret remains two orders of magnitude larger, indicating failure to adapt from weak logs (Fig. 3).

Figure 3: Robustness to reward noise. Final
regret at H=500 for different noise levels (σ ∈
{0.0, 0.3, 0.5}). Bars are ±SEM over N=200
test environments.

SPICE achieves logarithmic online regret from
suboptimal pretraining. Its posterior-UCB
controller inherits O(logH) regret, with any
prior miscalibration contributing only a con-
stant warm-start term; the empirical curves
match this prediction. Even with non-optimal
pretraining, Bayesian fusion quickly overrides
prior bias as evidence accrues, while DPT re-
mains tied to its supervised labels.

6 LEARNING
IN MARKOV DECISION PROCESSES

The Darkroom is a 10×10 gridworld with A=5
discrete actions and a sparse reward of 1 only
at the goal cell. We pretrain on 100,000 envi-
ronments using trajectories from a uniform be-
haviour policy and the “weak-last” label (the
last action in the context), which provides ex-
plicitly suboptimal supervision. Testing uses
N=100 held-out goals, horizon H=100, and identical evaluation for all methods. Further details
are given in Appendix C and Appensix A.5.

Under weak supervision, DPT = AD-BC, as DPT is trained by cross-entropy to predict a sin-
gle action label from the [query; context] sequence. With the “weak-last” dataset this label is
simply the last action taken by a uniform behaviour policy. Algorithm Distillation (AD) with a
behaviour-cloning teacher (AD-BC) optimises the same loss on the same targets, so both reduce
to contextual behaviour cloning on suboptimal labels. Lacking reward-aware targets or calibrated
uncertainty, the resulting policy remains bound to the behaviour and fails to adapt online, hence the
flat returns and near-linear regret.

In this environment, SPICE adapts quickly and achieves high return with a regret curve that flattens
after a short warm-up (Figs. 4a–4b). DPT, identical to AD-BC in this regime, exhibits near-linear re-
gret and essentially zero return. We include PPO as a single-task RL reference for sample-efficiency;
it improves but remains far below SPICE.

8
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7 DISCUSSION

SPICE addresses limitations of current ICRL methods using minimal changes to the sequence-
modelling recipe: a lightweight value ensemble is attached to a shared transformer and learns the
value prior at the query state; the transformer trunk is learned using a weighted loss to shape better
representations feeding into the value ensemble; at inference, the value ensemble prior is fused with
state-weighted statistics extracted from the provided context of the test task, resulting in per-action
posteriors that can be used greedily offline or with a posterior-UCB rule for principled exploration
online. SPICE is designed to learn a good-enough structural prior from the suboptimal data to
leverage knowledge such as reward sparsity and consistent action effects across different environ-
ments. The value ensemble provides calibrated uncertainty that behaves as if the prior contributed
a small number of virtual samples: it influences the posterior in the first few steps but is quickly
outweighted as more data from the test environment is collected. This equips SPICE with two ad-
vantages: a strong warm start from weak data and principles posterior-UCB exploration, enabling
rapid adaptation to new tasks and low regret in practice.

Theoretically, we show that SPICE achieves optimal O(logK) regret in stochastic bandits, with
any pretraining miscalibration contributing only to a constant warm-start term. We validate this
empirically, demonstrating that SPICE achieves logarithmic regret when trained on suboptimal data,
while sequence-only ICRL baselines achieve lower return and linear regret (Fig. 4). Similarly,
SPICE performs nearly optimal in offline selection on held-out tasks in weak data regimes, a setting
where classic ICRL perform extremely poorly (Fig. 2a).

Limitations and Future Work. SPICE uses kernel-weighted counts to extrapolated state proxim-
ity at inference. The kernel choice can be critical in highly non-stationary or partially observable
settings, where poorly chosen kernels can either over-fit or over-smooth context evidence. Addi-
tionally, the regret analysis assumes sub-Gaussian reward noise and focuses on the bandit regime;
extending the guarantees to MDPs with long horizons is an exciting research direction. Another
limitation is that SPICE assumes that the ensemble produces reasonably calibrated priors. If the
prior is systematically misspecified, the posterior fusion may inherit its bias. This can slow early
adaptation despite the regret guarantees.

8 CONCLUSION

We introduce SPICE, a Bayesian in-context reinforcement learning method that i) learns a value
ensemble prior from suboptimal data via TD(n) regression and Bayesian shrinkage, ii) performs
Bayesian context fusion at test time to obtain per-action posteriors and iii) acts with a posterior-
UCB controller, performing principled exploration. The design is simple: attach lightweight value
heads to a Transformer trunk and keep adaptation entirely gradient-free. SPICE addresses two per-
sistent challenges in ICRL: behaviour-policy bias during pretraining and the lack of calibrated value
uncertainty at inference. Theoretically, we show that the SPICE controller has optimal logarithmic
regret and any pretraining miscalibration contributes only to a constant warm-start term. Empirical
results show that SPICE achieves near-optimal offline decisions and online regret under distribution
shift on bandits and control tasks.

9 REPRODUCIBILITY STATEMENT

We provide the details needed to reproduce all results. Algorithmic steps and test-time inference are
given in Appendix A.1; model architecture, losses, and all hyperparameters are listed in Appendix
A; data generators, evaluation protocols, and an ablation study are specified in Appendix C, with
metrics, horizons, and noise levels matched to the DPT protocol Lee et al. (2023). Figures report
means ± s.e.m. over the stated number of tasks and seeds, and we fix random seeds for every
run. We use only standard benchmarks and public baselines; no external or proprietary data are
required. We will release code, configuration files, and checkpoints upon publication to facilitate
exact replication.
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APPENDIX

A IMPLEMENTATION AND EXPERIMENTAL DETAILS

A.1 SPICE ALGORITHM AND ARCHITECTURE

Algorithm 1 SPICE: Training and Test-Time Bayesian Fusion

0: Inputs: ensemble size K, prior scale α, horizon H , discount γ, TD(n) length n, kernel (ϕ, τ),
noise variance σ2, prior-variance floor vmin

0: Model: GPT-2 trunk; policy head πθ; value heads Qϕk
= fk + αpk with frozen priors pk

0: Training loop (contexts):
0: for batch {(st, at, rt, st+1)

H
t=1, a

⋆} do
0: Encode [query; context] with the transformer
0: Obtain logits πθ, ensemble values Qϕ1:K

; define Q̄, σQ

0: Compute weights ω = ωIS · ωadv · ωepi
0: Update policy with weighted cross-entropy Lπ

0: Update value heads with TD(n) regression + conjugate shrinkage + anchor regulariser
0: end for
0: Test-time decision (query state s with context C):
0: Run transformer to get prior (Q̄(a), σQ(a))
0: Form state-weighted evidence (ca(s), ỹa(s)) via kernel weights
0: Fuse prior and evidence by precision additivity to get posterior (mpost

a , vpost
a )

0: Select action a⋆ = argmaxa
(
mpost

a + βt

√
vpost
a

)
(UCB) or argmaxa m

post
a (greedy) =0

A.2 INTUITION AND DESIGN CHOICES

Our goal is to make the model act as if it had a task-specific Bayesian posterior over action values
at the query state.

• Learn a good prior from suboptimal data. Rather than requiring optimal labels or learn-
ing histories, we attach a lightweight ensemble of Q-heads to a DPT-style Transformer
trunk. We train this ensemble using TD(n) regression and Bayesian shrinkage to conjugate
per-action means computed from the offline dataset, resulting in a calibrated per-action
value prior (mean and variance).

• Why an ensemble? Diversity across heads (encouraged by randomised priors and an-
choring) captures epistemic uncertainty in areas where the training data provides limited
guidance. This uncertainty is needed to perform coherent exploration and for mitigating
the effect of suboptimal or incomplete training data.

• Why a Transformer trunk? The causal trunk provides a shared representation that condi-
tions on the entire in-task context (state, actions, rewards). This enables the value heads to
output prior estimates that are task-aware at the query state, while preserving the simplicity
and scalability of sequence modelling.

• Why train a policy head if we act with the posterior? We train a policy-head with a
propensity-advantage-epistemic weighted cross-entropy loss. Although we do not use this
head for control at test time, it corrects the behaviour-policy bias during representation
learning, allocated learning capacity to high-value and high-uncertainty examples and co-
trains the trunks so that the Q ensemble receives inputs that facilitate reliable value estima-
tion. Decoupling learning (policy supervision improves the trunk) from acting (posterior-
UCB uses value uncertainty) is key to achieve robustness from suboptimal training data.

• Inference time control. At test time we adapt by performing Bayesian context fusion: we
treat the transitions in the context dataset as local evidence about the value of each action
near the query state, weight them by similarity to the query (via a kernel) and combine
this evidence with the learned value prior. The results is a closed-form posterior mean
and variance for every action. This allows the agent to i) exploit the prior knowledge
when the context is scarce or empty when interacting with a new environment, ii) update
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flexibly as more task-specific evidence accumulates and iii) act either conservatively offline
(greedy with respect to the posterior mean) or optimistically online (using a UCB rule for
exploration). Thus, adaptation produces coherent exploration and strong offline choices
entirely through inference, without any gradient updates.

A.3 ADDITIONAL RELATED WORK

Uncertainty for exploration in deep RL. Bootstrapped DQN Osband et al. (2016) and ran-
domised prior functions Osband et al. (2018) introduce randomised value functions and explicit
priors for deep exploration. Deep ensembles provide strong, simple uncertainty estimates Laksh-
minarayanan et al. (2017), and “anchored” ensembles justify ensembling as approximate Bayesian
inference by regularising weights toward prior draws Pearce et al. (2018). SPICE adapts the ran-
domised prior principle to the ICRL setting with an ensemble of value heads and uses a Nor-
mal–Normal fusion at test time to produce posterior estimates that feed a UCB-style controller.

Our weighted pretraining objective is conceptually related to advantage-weighted policy learning.
AWR performs supervised policy updates with exponentiated advantage weights Peng et al. (2019);
AWAC extends this to offline-to-online settings Nair et al. (2020); IQL attains strong offline per-
formance with expectile (upper-value) regression and advantage-weighted cloning Kostrikov et al.
(2021). Propensity weighting and counterfactual risk minimisation (IPS/SNIPS/DR) provide a prin-
cipled basis for importance-weighted objectives under covariate shift Swaminathan & Joachims
(2015a;b); Jiang & Li (2016); Thomas & Brunskill (2016). These methods are single-task and
do not yield a test-time value posterior for across-task in-context adaptation, which is our focus

RL via supervised learning and return conditioning. Beyond DT, the broader
RL-via-supervised-learning literature includes return-conditioned supervised learning (RCSL)
and analyses of when it recovers optimal policies Brandfonbrener et al. (2022). Implicit Offline RL
via Supervised Learning Piche et al. (2022) unifies supervised formulations with implicit models
and connects to return-aware objectives. These works motivate our supervised components but do
not attach an explicit, calibrated posterior used for a principled controller at test time.

A.4 PRACTICAL GUIDANCE

• Ensemble size. A small K (e.g., 5–10) already gives reliable uncertainty due to trunk
sharing and randomised priors.

• Shrinkage. Moderate shrinkage stabilises training under weak supervision; too much
shrinkage can understate uncertainty.

• TD(n). Larger n reduces bootstrap bias but increases variance; we found mid-range n
helpful in sparse-reward MDPs.

• Kernels. Uniform kernels are sufficient for bandits; RBF or cosine kernels help in MDPs
with structured state similarity.

• Exploration parameter. βucb tunes optimism; our theory motivates βt∝
√
log t, with a fixed

β working well in short-horizon evaluations.

A.5 IMPLEMENTATION DETAILS

A.5.1 BANDIT ALGORITHMS

We follow the baselines and evaluation protocol of Lee et al. (2023). We report offline suboptimality
and online cumulative regret, averaging over N tasks; for SPICE and DPT we additionally average
over three seeds.

Empirical Mean (Emp). Greedy selection by empirical means: â∈argmaxa µ̂a, where µ̂a is the
sample mean of rewards for arm a. Offline we restrict to arms observed at least once; online we
initialise with one pull per arm (standard good-practice).
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Upper Confidence Bound (UCB). Optimistic exploration using a Hoeffding bonus. At round t,
pick â ∈ argmaxa

(
µ̂a,t +

√
1/na,t

)
, with na,t pulls of arm a. UCB has logarithmic regret in

stochastic bandits.

Lower Confidence Bound (LCB). Pessimistic selection for offline pick-one evaluation: â ∈
argmaxa

(
µ̂a −

√
1/na

)
. This favours well-sampled actions and is a strong offline baseline when

datasets are expert-biased.

Thompson Sampling (TS) Bayesian sampling with Gaussian prior; we set prior mean 1/2 and
variance 1/12 to match µa∼Unif[0, 1] in the DPT setup, and use the correct noise variance at test
time.

DPT. Decision-Pretrained Transformer: a GPT-style model trained to predict the optimal action
given a query state and an in-context dataset. Offline, DPT acts greedily; online, it samples actions
from its policy (as in Lee et al. (2023)), which empirically yields UCB/TS-level exploration and
robustness to reward-noise shifts, but only when trained on optimal data.

SPICE. Uncertainty-aware ICRL with a value-ensemble prior and Bayesian test-time fusion. At
the query, SPICE forms a per-action posterior from (i) the ensemble prior mean/variance and (ii)
state-weighted context statistics, then acts either greedily (offline) or with a posterior-UCB rule
(online). The controller attains optimal O(logH) regret with any prior miscalibration entering only
as a constant warm-start term.

A.5.2 RL ALGORITHMS

We compare to the same meta-RL and sequence-model baselines used in Lee et al. (2023), and
deploy SPICE/DPT in the same in-context fashion.

Proximal Policy Optimisation (PPO). Single-task RL trained from scratch (no pretraining);
serves as an online-only point of reference for sample efficiency in our few-episode regimes. Hy-
perparameters follow common practice (SB3 defaults in our code) Schulman et al. (2017).

Algorithm Distillation (AD). A transformer trained via supervised learning on multi-episode
learning traces of an RL algorithm; at test time, AD conditions on recent history to act in-context
Laskin et al. (2022).

DPT. The same DPT model as described above but applied to MDPs: offline greedy; online sam-
pling from the predicted action distribution each step Lee et al. (2023).

SPICE. The same SPICE controller: posterior-mean (offline) and posterior-UCB (online) built
from an ensemble value prior and Bayesian context fusion at test time.

A.5.3 BANDIT PRETRAINING AND TESTING

Task generator and evaluation. Each task is a stochastic A-armed bandit with µa ∼ Unif[0, 1]
and rewards r ∼ N (µa, σ

2). Default: A=5, H=500, σ=0.3. We report offline suboptimality
µ⋆−µâ vs. context length h and online cumulative regret

∑H
t=1(µ

⋆−µat
), averaging across N=200

test environments; for SPICE/DPT we additionally average across 3 seeds and plot ±SEM bands.
For robustness we fix arm means and sweep σ ∈ {0.0, 0.3, 0.5}.

Pretraining. DPT: 100,000 training bandits; trunk nlayer=6, nemb=64, nhead=1, dropout 0,
AdamW (lr = 10−4), 300 epochs, shuffle, seeds {0, 1, 2}. SPICE: same trunk; K=7 Q-heads
with randomised priors and a small anchor penalty. We optimise a combined objective (policy
cross-entropy with propensity/advantage/epistemic weighting for trunk shaping, plus value loss with
TD(n) regression and shrinkage). Unless noted, we use uniform kernel weights for bandits at test
time.
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Controllers and deployment. Offline: given a fixed context, each method outputs a single arm;
SPICE uses argmaxa m

post
a . Online: methods interact for H steps from empty context; SPICE uses

argmaxa
(
mpost

a + β
√
vpost
a

)
. We match the DPT evaluation by using the same dataset generator,

the same number of environments, and identical horizon and noise settings Lee et al. (2023).

Why SPICE succeeds under weak supervision (intuition). The value ensemble provides a cal-
ibrated prior that behaves like a small virtual sample count for each arm. Bayesian fusion then
combines this prior with weighted empirical evidence, so the posterior rapidly concentrates as data
accrues, shrinking any pretraining bias. Our theory shows this yields O(logH) regret with only
a constant warm-start penalty from prior miscalibration; the curves in Fig. 2c–2b mirror this be-
haviour.

A.5.4 DARKROOM PRETRAINING AND TESTING

Environment and data. We use a continuous darkroom navigation task in which rewards are
smooth and peaked around a latent goal location. Each state is represented by a d-dimensional
feature vector (default d=10). Actions are discrete with cardinality A; dynamics are deterministic
given the current state and a one-hot action. For evaluation we generate N=100 held-out tasks of
horizon H=100 and form an in-context dataset per task consisting of tuples (st, at, rt, st+1)

H
t=1.

Unless stated otherwise, we use the “weak-last” split from our data generator (the same split is used
for all methods).

Pretraining. Both SPICE and DPT share the same GPT-style trunk (nlayer=6, nemb=64, nhead=1,
dropout 0), trained with AdamW at learning rate 10−4 for 50 epochs.3 DPT is trained with the
standard DPT objective on 100,000 darkroom tasks (shuffled mini-batches). SPICE attaches an en-
semble of K=7 value heads with randomised priors and trains them via TD(n) regression with n=5
and γ=0.95, plus conjugate shrinkage and a small anchor penalty (see Alg. 1). All hyperparameters
used by the test-time Bayesian fusion are fixed a priori: RBF kernel with scale τ=0.5, evidence
noise σ2=0.09, and prior-variance floor vmin=10−2.

Controllers at test time. For SPICE we evaluate posterior-UCB with three optimism levels, β ∈
{0.5, 1.0, 2.0}; the offline analogue uses the posterior mean (greedy). For DPT we use the greedy
controller that selects argmaxa of the policy logits at the query state. When averaging across seeds,
we first average per task across the three checkpoints and then aggregate across tasks; error bands
report ±SEM.

Evaluation protocol. We report two metrics: (i) Online return: (ii) Online cumulative regret:
starting from an empty context, a controller interacts for H steps; at each step we compare the
reward of the chosen action to the reward of the environment’s optimal action at the same state.
To ensure a fair comparison, for each held-out task we draw a single initial state s0 and use it for
all controllers and seeds before averaging. For each metric we average across the N=100 held-out
tasks. We average over three seeds. Shaded regions denote ±SEM across tasks.

B PROOF OF THEOREM 1

Proof Overview. We analyse the posterior-UCB controller by (i) treating the ensemble prior at
the query as a Normal prior with mean µpri

a and variance vpri
a , resulting in a posterior with pseudo-

count N pri
a = σ2/vpri

a under Normal-Normal conjugacy (Murphy, 2007; 2012); (ii) showing that
the posterior mean is a convex combination of the empirical and prior means and the posterior
variance shrinks at least as O(1/na,t) (Lemma 1); and (iii) combining sub-Gaussian concentration
(Hoeffding-style) with a UCB schedule βt =

√
2 log t (Hoeffding, 1963; Auer et al., 2002) to upper-

bound pulls of suboptimal arms. This results in O(logK) regret plus a constant warm-start term
proportional to N pri

a |µpri
a −µa| (Lemma 2), recovering classical UCB when the prior is uninformative

or well calibrated.

3We train three seeds for each method; checkpoints are averaged only at evaluation time.
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For completeness, we re-state the theorem here: Under the assumption of σ2-sub-Gaussian reward
distributions, the SPICE inference controller satisfies

E
[ K∑

t=1

(µ⋆ − µat
)
]
≤

∑
a̸=⋆

(32σ2 logK

∆a
+ 4N pri

a

∣∣µpri
a − µa

∣∣)+O(1).

First, we consider the following lemmas
Lemma 1 (Bias-variance decomposition). With the posterior defined in Eq. 19, for all a, t it holds
that ∣∣∣mpost

a,t − µa

∣∣∣ ≤ ∣∣∣µ̂a,t − µa

∣∣∣+ N pri
a

N pri
a + na,t

∣∣∣µpri
a − µa

∣∣∣, vpost
a,t ≤ σ2

na,t
(23)

This lemma shows that the posterior mean forms a weighted average of the empirical and prior
means, with relative error decomposing into two components: a variance term

∣∣µ̂a,t − µa

∣∣ captur-

ing finite-sample noise in the empirical mean, and a bias term N pri
a

N pri
a +na,t

∣∣µpri
a − µa

∣∣ reflecting prior
miscalibration. As na,t → ∞, the bias term vanishes, eliminating prior miscalibration, while the
posterior variance shrinks at least as fast as the frequentist variance σ2

na,t
(see Eq. 23).

Proof. The posterior mean for arm a at round t from equation Eq. 19 can be rewritten as a convex
combination

mpost
a,t = αa,tµ̂a,t + (1− αa,t)µ

pri
a , αa,t =

na,t

N pri
a + na,t

Subtracting the true mean µa gives

mpost
a,t − µa = αa,t(µ̂a,t − µa) + (1− αa,t)(µ

pri
a − µa)

Taking absolute values and applying the triangle inequality gives∣∣∣mpost
a,t − µa

∣∣∣ ≤ αa,t

∣∣∣(µ̂a,t − µa)
∣∣∣+ (1− αa,t)

∣∣∣(µpri
a − µa)

∣∣∣
Since αa,t ≤ 1 we can drop the factor and since 1− αa,t =

N pri
a

N pri
a +na,t

, we obtain

∣∣∣mpost
a,t − µa

∣∣∣ ≤ ∣∣∣(µ̂a,t − µa)
∣∣∣+ N pri

a

N pri
a + na,t

∣∣∣(µpri
a − µa)

∣∣∣
Since N pri

a ≥ 0 we get

vpost
a,t =

σ2

N pri
a + na,t

≤ σ2

na,t
.

Lemma 2 (Posterior concentration). We fix a horizon K ≥ 2. Under the assumption of σ2-sub-
Gaussian reward distributions, the following inequality holds simultaneously for all arms a and all
rounds t ∈ {1, ...,K} with probability at least 1−O( 1

K )

µa ≤ mpost
a,t + βt

√
vpost
a,t +

N pri
a

N pri
a + na,t

∣∣∣µpri − µa

∣∣∣, βt =
√
2 log t

Note that this also yields a symmetric lower bound with the last two terms negated.

Proof. Using Eq. 18 and a union bound over all a and t ≤ K we obtain the following bound with
probability at least 1−O(1/K)

|µ̂a,t − µa| ≤ σ

√
2 log t

na,t
for all a and t ≤ K
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Since vpost
a,t = σ2

N pri
a +na,t

≤ σ2

na,t
we get

σ

√
2 log t

na,t
≤

√
2 log t

√
vpost
a,t = βt

√
vpost
a,t

and thus
|µ̂a,t − µa| ≤ βt

√
vpost
a,t .

Combining that with Lemma 1 gives∣∣∣mpost
a,t − µa

∣∣∣ ≤ βt

√
vpost
a,t +

N pri
a

N pri
a + na,t

∣∣∣µpri
a − µa

∣∣∣.
Expanding this absolute value bound into one-sided inequalities yields the result.

Using these lemmas, the proof of Theorem 1 follows.

Proof. Let Na(K) :=
∑K

t=1 1{at = a} be the pull count of arm a up to horizon K. We can
decompose the regret as E

[∑K
t=1(µ⋆ − µa,t)

]
=

∑
a ̸=⋆ ∆aE

[
Na(K)

]
. We derive an upper bound

for Na(K) for each suboptimal arm a.

Consider an horizon K ≥ 2, define the good event for each arm a ∈ [A] and step t ∈ {1, ...,K}

Ga,t :=
{∣∣µ̂a,t − µa

∣∣ ≤ σ
√

2 log t
na,t

}
Ga,t is the event that the empirical mean of arm a at time t lies within its confidence interval. We
define the event that concentration holds for all arms and times simultaneously

E :=

A⋂
a=1

K⋂
t=1

Ga,t.

The complement corresponds to the event that concentration fails for at least one (a, t)

Ec :=

A⋃
a=1

K⋃
t=1

Gc
a,t.

Using the union bound, we get

Pr(Ec) ≤
A∑

a=1

K∑
t=1

Pr(Gc
a,t) ≤

A∑
a=1

K∑
t=1

2

t2
≤ 2A

∞∑
t=1

1

t2
=

π2

3
A.

If we instead define Ga,t using an inflated radius σ
√

2 log(cAK2)
na,t

we similarly get Pr(Ec) ≤ O( 1
K ).

We decompose the regret as

E[RK ] = E[RK | E ] Pr(E)+E[RK | Ec] Pr(Ec) ≤ E[RK | E ] +K Pr(Ec) ≤ E[RK | E ] +O(1),

so it is sufficient to bound the regret on E .

Using Lemma 1, knowing that σ
√

2 log t/na,t ≤ βt

√
vpost
a,t and that |µ̂a,t − µa| ≤ σ

√
2 log t/na,t

for E , we get

µa ≤ mpost
a,t + βt

√
vpost
a,t +

N pri
a

N pri
a + na,t

|µpri
a − µa|, βt =

√
2 log t. (24)
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Suppose we pick a suboptimal arm a ̸= ⋆ at round t. Using Eq. 24 for a and ⋆ as well as the SPICE

selection rule mpost
a,t−1 + βt

√
vpost
a,t−1 ≥ mpost

⋆,t−1 + βt

√
vpost
⋆,t−1 we get

∆a ≤ 2βt

√
vpost
a,t−1 +

N pri
a

N pri
a + na,t

|µpri
a − µa|+

N pri
⋆

N pri
⋆ + n⋆,t

|µpri
⋆ − µ⋆|. (25)

First, we derive a threshold for the variance term in Eq. 25. Using βt =
√
2 log t, Lemma 1 and

Eq. 23) we obtain

2βt

√
vpost
a,t−1 ≤ 2

√
2 log t

σ
√
na,t−1

.

Using a similar technique as in the classical UCB1 proof Auer et al. (2002) we make the variance
term smaller than half the gap ∆a/2

2
√
2 log t

σ
√
na,t−1

≤ ∆a

2
⇒ na,t−1 ≥ 32σ2 log t

∆2
a

As t ≤ K we can replace log t with the worst-case logK to ensure that the condition holds for all
rounds up to horizon K. The variance threshold is therefore

n†
a :=

⌈
32σ2 logK

∆2
a

⌉
.

Once arm a has been pulled at least n†
a times, the variance term 2βt

√
vpost
a,t−1 in Eq. 25 is guaranteed

to be at most ∆a/2 for every t ≤ K.

Second, we derive a threshold for the prior bias terms. To force the prior bias term below ∆a/4 we
define δa := |µpri

a − µa| and solve

N pri
a

N pri
a + na,t

δa ≤ ∆a

4
⇒ na,t−1 ≥ 4N pri

a δa
∆a

−N pri
a ≤ 4N pri

a δa
∆a

.

Thus after about

npri
a :=

⌈
4N pri

a δa
∆a

⌉
pulls of arm a its prior bias term is guaranteed to be below ∆a/4. The same argument applies to the
optimal arm ⋆: its prior bias terms decreases as n⋆,t grows and since ⋆ is selected frequently, only a
constant number of pulls ins needed before its prior bias term is below ∆A/4.

By combining the bias and variance thresholds, we can derive the following bound for Na(K) under
the event E for some constant Ca (independent of K)

E[Na(K)1E ] ≤ n†
a + npri

a + Ca ≤ 32σ2 logK

∆2
a

+
4N pri

a δa
∆a

+ Ca.

By multiplying by ∆a and summing over all arms a ̸= ⋆ we obtain

E[RK1E ] ≤
∑
a̸=⋆

32σ2 logK

∆2
a

+
∑
a ̸=⋆

4N pri
a δa +O(1).

To conclude, we collect all bounded terms and include the contribution of the event Ec into an O(1)
term to obtain

E
[ K∑

t=1

(µ⋆ − µa,t)
]
≤

∑
a ̸=⋆

32σ2 logK

∆2
a

+
∑
a ̸=⋆

4N pri
a |µpri

a − µa|+O(1).
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 BANDIT SETTING

Setup and data. Each task is a stochastic A-armed bandit with i.i.d. arm means µa ∼ Unif[0, 1]
and Gaussian rewards r ∼ N (µa, σ

2). Unless noted, A=5, horizon H=500, and the default test
noise is σ=0.3. We evaluate on N=200 held-out environments; for robustness we fix the means and
sweep σ ∈ {0.0, 0.3, 0.5} at test time. For SPICE/DPT we report the mean over 3 seeds. Offline we
measure suboptimality µ⋆−µâ as a function of context length h; online we report cumulative regret∑H

t=1(µ
⋆ − µat).

C.2 ABLATION: QUALITY OF TRAINING DATA

Setup. Each task is a stochastic A-armed bandit with i.i.d. arm means µa ∼ Unif[0, 1] and rewards
r ∼ N (µa, σ

2). We use A=20, horizon H=500, and default test noise σ=0.3. We evaluate on
N=200 held-out environments.

Data generation (weakmix80). Following the DPT protocol, contexts are collected by a be-
haviour policy that mixes broad exploration with concentrated exploitation on one arm. Concretely,
for each environment we form a per-arm distribution

p = (1− ω)Dirichlet(1) + ω δi⋆ ,

where δi⋆ is a point mass on a single arm i⋆ (chosen uniformly at random for this experiment), and
we fix the mix strength to ω=0.5. At each context step an action is drawn from p. Supervision is
weak: the training label is generated in mix mode with probability q=0.8 using the true optimal
arm, and with probability 1− q by sampling an arm from p. We denote this setting by weakmix80.
We generate 100k training tasks and 200 evaluation tasks with the above roll-in and labels.

Models and deployment. DPT and SPICE share the same transformer trunk (6 layers, 64 hidden
units, single head, no dropout). For this ablation we pretrain both for 100 epochs on the weakmix80
dataset with A=20. Offline, all methods select a single arm from a fixed context. Online, they inter-
act for H steps starting from an empty context; SPICE acts with a posterior-UCB controller, DPT
samples from its predicted action distribution, and classical bandits (Emp, UCB, TS) use standard
update rules.

Results.

• Offline . DPT is competitive offline under weakmix80 (80% optimal labels), but still con-
verges more slowly than TS/SPICE as h grows (Fig. 5a).

• Online . SPICE attains the lowest regret among learned methods and closely tracks UCB,
while TS is slightly worse and Emp is clearly worse (Fig. 5b). In contrast, DPT exhibits
near-linear growth in regret: it improves little with additional interaction despite 80% opti-
mal labels.

• Robustness to reward-noise shift. SPICE, TS, UCB and Emp degrade smoothly as σ
increases, with small absolute changes. DPT’s final regret remains orders of magnitude
larger is and essentially insensitive to σ, indicating failure to adapt from weak training data
(Fig. 5c).
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(a) Offline suboptimality vs. context size h. (b) Online cumulative regret.

(c) Robustness: final regret at H=500 vs. σ.

Figure 5: 20-arm weak supervision (weakmix80). Shaded regions/bars are ± s.e.m. over N=200
environments; SPICE/DPT averaged over 3 seeds.

C.3 ABLATION: WEIGHT TERMS IN TRAINING OBJECTIVE

Figure 6: Online Darkroom ablation on weighting terms. We compare DPT against SPICE trained
with no weights in the pretraining objective (both averaged over 3 seeds).

In this ablation, we studied the effect of the weighting terms in the SPICE objective (importance, ad-
vantage, epistemic). The results show that removing these terms degrades performance, highlighting
their role in shaping better representations under weak data and reducing online regret.

D USE OF LLMS.

ChatGPT was employed as a general-purpose assistant for enhancing writing clarity, conciseness,
and tone, and providing technical coding support for plotting utilities and minor debugging tasks.
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All outputs were verified by the authors, who retain full responsibility for research conception,
algorithmic contributions, implementation, experimental findings, and manuscript writing.

E ETHICS STATEMENT.

All authors have read and adhere to the ICLR Code of Ethics. This work does not involve human
subjects, personally identifiable data, or sensitive attributes. We evaluate solely on synthetic bandit
and control benchmarks and do not deploy in safety-critical settings. We discuss limitations (kernel
choice, sub-Gaussian noise assumption, misspecified priors) and avoid claims beyond our experi-
mental scope (Section 7). Our method could, in principle, be applied to high-stakes domains; we
therefore emphasise the need for rigorous safety evaluation and domain-appropriate oversight before
any real-world use.
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