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Abstract

Visually-rich document entity retrieval
(VDER), which extracts key information
(e.g. date, address, name) from document
images (e.g., invoice, receipt) has become an
increasingly important topic for NLP in the
industrial settings. As many of these document
images come from document types that are
highly specified to their industry, annotating
these documents usually requires extensive
amount of training and is often costly. The fact
that new document types come out at a constant
pace and that each of them have a unique set
of entity types leave us a challenging setting
where we have a large amount of documents
with unseen entity types that occur only a
couple of time. Such a setting requires models
to have the capability of learning entities in a
few-shot manner, while recent works in the
field can only handle few-shot learning in
the document level. We propose an N-way
K -shot setting for VDER that operates on the
entity level and a new dataset to tackle such a
problem. We formulate the problem as a meta
learning one and propose a few new algorithms
that helps the model to distinguish between
in-task-distribution (ITD) entities while being
aware of out-of-task-distribution (OTD) ones.
To the best of our knowledge, our work is the
first systematic study on the N-way K-shot
entity-level setting for VDER.

1 Introduction

Visually-rich document understanding (VrDU)
aims to analyze scanned documents composed of
structured and organized information. As a sub-
problem of VrDU, the goal of visually-rich docu-
ment entity retrieval (VDER) is to extract key in-
formation (e.g., date, shipping address, signatures)
from the document images such as invoices and
receipts with complementary multimodal informa-
tion. (Xu et al., 2020a; Garncarek et al., 2021; Lee
et al., 2022). One unique challenge when modeling
the document entity retrieval problem is the fact

that their entity space (i.e., the set of entity cate-
gories that we are going to extract) changes from
one document type to the other. However, as the
cost of labeling is expensive, we are left with a very
large amount of documents with little amount of
annotations to each of the new entity types (i.e., few
shots). Such a scenario makes it difficult to trans-
fer knowledge learned from different documents or
entity types without techniques that can deal with
few-shot entities. To deal with such scenario in
real-world VrDU systems, few-shot visually-rich
document entity retrieval (FVDER) has become a
crucial research topic.

Despite the importance of the FVDER, there
has been very limited amount of prior works in
this area. Most recent efforts have employed pre-
trained language model (Wang and Shang, 2022)
or prompt mechanism (Wang et al., 2022) to obtain
transferable knowledge from the source domain
and apply it to the target domain, where a small
number of document images are provided for fine-
tuning. However, the settings of few-shot learning,
which is often borrowed from other domains such
as image classification, may not fit well into the
problem of document entity extraction. For exam-
ple, in these prior works, models are operated in
the granularity of the document level rather than
entity level. In practice, entity occurrence varies
dramatically from one document to the other, and
the few-shot setting operated on document level
might end up with a lot of instances of a particular
entity type, which goes against the purpose of few-
shot learning. Another notable limitation is that
some of these prior works are not capable of work-
ing on unseen entities. Additionally, in these works,
there is no way to quantify the size of the entity
space and the occurrence of each entity type. We
summarized the differences between prior works
and ours in Table 1.

In this work, we formalize a novel task setting
for few-shot visually-rich document entity retrieval



Method Instance Granularity Unseen Entities?  Entity Space Size  Entity Occurrence
(Wang and Shang, 2022) document level yes unspecified unspecified
(Wang et al., 2022) document level no unspecified unspecified
Ours entity level yes N-way K-shot

Table 1: Comparison on Task Formulated and Application Scenarios.

from practical needs, which is operated on entity
level with unseen entities and on a N-way K-shot
specification. We aim at building a coherent set-
ting for FVDER tasks, which pays attention to ex-
tracting novel and rarely-present entity types from
documents. Upon the task setting, we also create a
systematic way for learning the knowledge that fast
adapts to entirely novel information or entity types.
The key properties of the proposed setting are two
folds, following the practical requirements: 1), We
allow target entities to be scarcely scattered over
documents. The few-labelled documents should
be selected in a way such that they cooperatively
contains certain number of entity occurrences per
information type. 2), We split entity types into two
group such that one for training and the other is
used as novel entity types.

To tackle the proposed task setting, we propose
a meta-learning based framework. The key idea
is to employ the learning-to-learn mechanism for
two objectives: 1) making the learning experience
to be transferable from the base entity types to the
novel ones; and 2) quicker adaptation on novel
entity types by reducing the domain gap and task
gap between the pre-trained model and our novel
tasks through meta-learning. Comparing with the
general FSL (Finn et al., 2017; Snell et al., 2017;
Chen et al., 2021) and existing FVDER settings
(Wang and Shang, 2022; Wang et al., 2022), our
unique setting brings new challenges. Specifically,
the existence of noisy out-of-task information, as
part of the contextual information for in-task infor-
mation, cannot be shared by different documents
and tasks. Thus we also propose several techniques
to improve the existing meta-learning approaches
for this new task.

Our contributions are summarized as follows:

* We propose a novel entity-level few-shot
visually-rich document entity retrieval
(FVDER) formulation, where the number of
labelled entity occurrences for each entity
type is limited. To the best of our knowledge,
this is the first work in VDER focusing on the
entity retrieval for rare and novel entities.

* We present a new dataset for the meta-learning

on FVDER, namely FewVEX, consisting of
hundreds of testing FVDER tasks with novel
entity types and thousands of training tasks
with a held-out set of entity types.

* We propose a few algorithms under meta learn-
ing that work for FVDER. We address the
specific challenges in our FVDER task and
propose strategies to improve several pop-
ular gradient-based and metric-based meta-
learning baselines.

2 Problem Formulation

We present the novel entity-level few-shot visually-
rich document entity retrieval (FVDER) task.
Given a document image that consists of structured
contents (e.g., textual, visual and layout contents),
the goal is to tackle the localization and classifica-
tion of rare and novel entities from the given image.
We formalize such a task below.

2.1 Entity-level N-way K -shot Formulation

In VDER tasks, a document image is often pro-
cessed through Optical Character Recognition
(OCR) (Chaudhuri et al., 2017) to form a sequence
of tokens X = [x1,X2,...,xz], where L is the
sequence length and each token x; is composed
of multiple modalities x; = {xl(v),xl(p ),xl(b), .}
such as the token id (v), the 1d position (p) of
the token in the sequence, the bounding box (b)
representing the token’s relative 2d position, scale
in the image, and so on. The goal is to predict
Y = [y1,y2,...,yr], which assigns each token x;
a label y; to indicate either the token is one of enti-
ties in a set of predefined entity types or does not
belong to any entity (denoted as O class).

We propose the entity-level few-shot VDER that
focuses on the real-world scenario when some
types of entities rarely occur in documents. Here,
an entity occurrence is defined as a contiguous
subsequence of OCR-parsed tokens with the same
entity type as labels. Formally, an entity-level N-
way K -shot FVDER task 7 = {5, Q, £} consists
of a train (support) set S containing My documents,
a test (query) set () containing M, documents, and
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Figure 1: Proposed task setting and problem formulation. Here, N = 3 ways, K = 2 shots, and p = 2. Different
colors represent different entity types. The pie charts on the left indicates that the target classes in testing tasks are
not seen in training tasks. On the right, we show the inputs and labels of an example 3-way 2-shot task.

a class set £ containing IV target entity types

S = {(Xh }/1)7 SRR (XMsv YM&)}
Q:{Xf,X;,...,X]*VIq} (D
E={e1,ea...,en},

where X; = [x;1,Xj2, ..., Xj;1] is the sequence of
multimodal token features of document j, Y; =
[Yj1, Y52, ---» Yiz1] is the sequence of token labels of
document 7, and e, denotes the entity type c of 7.

The “N-way” means that .S and () do not contain
any other entity types unseen in £. Those out-of-
task entity types ¢/ ¢ &, although exist in these
documents, are treated as the background O class.

The “K-shot” specification means that, among
the M, documents in .S, the total number of occur-
rences of each entity type is restricted (i.e., entity-
level few shots). Considering the condition that
entity occurrence varies dramatically from one doc-
ument to the other, it is very uncommon that a
document contains every entity type in &£; it is also
not guaranteed a entity type occurs only one time in
an document. It is not the fact that different entity
types strictly have the same occurrences among a
few document. Thus, we adopt a soft K-shot set-
ting. For each entity type in £, the cumulative num-
ber of times it occurs among the M, support doc-
uments should be in the range between K ~ pK,
where p > 1 is the softening hyperparameter.

The goal of task 7T is to learn a task-specific
model for the class distribution over £ based on
the few labeled entity occurrences in S, in order to
achieve high performance on Q.

2.2 Meta-learning Formulation

Based on the above formulation for a single task,
we can further formulate our problem under the
meta-learning setting (Chen et al., 2021). We con-
sider a task distribution P(7") over FVDER tasks,
associated with a large pool of entity types C cor-
responding to the domain of P(7). For any task
Ti = {5:,Qi, Ei} ~ P(T), its target entity types
come from the class pool & C C. With this assump-
tion, our final goal turns out training a meta-learner
such that any task 7; ~ P(7T) can take advantage
of it and then obtain a better task-specific model.
Following (Finn et al., 2017; Snell et al., 2017;
Chen et al., 2021), a meta-learner for FVDER
can be learned by exploiting the experiences on
solving a set of meta-training tasks DI"",
{T1,T2...T+,, } over a set of base classes Cpyse C
C, where each training task is from the base classes
E; C Cpase- The experiences are given in the form
of the ground truth labels of query sets. That is, the
query sets of training tasks are treated as valida-

tion sets, Q; = {(X7, Y]*)}jwzqf for VT; € DI, .
Then, to evaluate the performance of the meta-
learner 6 on solving few-shot FVDER tasks that
focus on novel entity types Cpovet = C'\ Cpase, We
will individually train a set of meta-testing tasks
Dlest, = {T*,T5"...., T}, where each testing
task & C Cpover- The query sets of meta-testing
tasks are unlabelled, treated as the testing data.

3 Dataset

As far as we know, there is no existing benchmark
specifically designed for the Entity-level N-way



Datasets Meta Training (from Cyas.) Meta Testing (from C,,,c1) Range
Domains # Entity Types # Tasks Domains # Entity Types # Tasks  of N

FewVEX(S) CORD 18 3000 CORD 5 128 [1,5]

FewVEX(M) CORD+FUNSD 20 3000 CORD+FUNSD 6 256 [1, 6]

Table 2: Statistics of two variants of Few VEX. From each dataset, we can test different [N-way K -shot settings.

K -shot FVDER defined in Section 2. To support
future research on this problem, we construct a new
dataset, FewVEX.

We consider two source datasets: FUNSD
(Jaume et al., 2019) consists of images of forms
annotated by the bounding boxes of 3 types of
entities; CORD (Park et al., 2019) consists of
scanned receipts annotated by 6 superclasses which
are divided into 30 fine-grained subclasses. We
removed 7 entity types that occur in less than
max;(Ms; + M,;) images !. Finally, we collect
a set of 26 entity types and a set of 1199 unique
document images (D,i4) annotated by these entity
types, which will be used to construct FewVEX

(represented as Dyperq = {DIT,  DEE. ).

3.1 Entity Type Split

Suppose we have a pool of entity types C. To ensure
that testing tasks in DL, focus on novel classes
that are unseen in D', during meta-training, we
should split C into two separate sets C = Cpgse U
Crovels Chase N Cnover = 0 such that Cpy is used

for meta-training and C,,,,,¢; for meta-testing.

Proposed Datasets. Based on how we conduct
the split, we construct two variants of FewVEX:
FewVEX(S) focuses on single-domain receipt un-
derstanding, where Cpyse and Cy,pe; are split from
the 23 entity types in CORD. FewVEX(M) focuses
on a combination of receipt and form domains,
where Cpqse consists of 18 classes from CORD and
2 from FUNSD, while C,,,¢; contains the other 5
classes in CORD and 1 in FUNSD.

3.2 Single Task Generation

Each individual entity-level N-way K-shot
FVDER task 7 = {S,Q,&} in either D"

meta

or DI, can be generated through the follow-
ing steps. 1) Class sampling. The task’s tar-

get classes £ are generated by randomly sampling
N entity types from either Cpqqe (for the training
task) or Cope; (for the testing task). 2) Docu-
ment sampling. Given the N target classes, we
then collect document images that satisfies the

"For page limit, details are moved to Appendix B.

N-way, soft K-shot entity occurrences (as de-
fined in Section 2.1). To promote sampling effi-
ciency, we only look at a subset of original docu-
ments Dfmg = {Dg,,|Ve € £}, where Df ;=
{(X,Y)V(X,Y) € Dyrigife € Y} is a dataset
storing all the candidate documents that contain at
least one entity of type e. D, can be generated
in advance. Then, we design an Algorithm 1 (see
Appendix B) to sample (M, + M,) unique docu-
ments from D¢ . o such that the first //; documents
have K ~ pK shots per entity type (as S) and
the remaining M, ones have K, ~ pK, shots per
entity type (as (). 3) Annotation Conversion. A
task only focuses on its specific N rarely-present
entity types. The entities in the original annotated
documents, whose class do not belong to &, are
replaced with the background O class.

The task generation algorithm is summarized
in Algorithm 1 (in Appendix B). The statistics of

FedVEX is summarized in Table 2.

4 Approaches

To solve the proposed FVDER tasks, we employ
the meta-learning (i.e., learning-to-learn). Different
from the recent advancement based on pre-training
or prompts (Wang and Shang, 2022; Wang et al.,
2022), meta-learning helps to significantly promote
quick adaptation on novel few-shot entity types.
Figure 2 is an overview of our framework. It con-
sists of three components: the multimodal encod-
ing network (Section 4.1), the decoder for foken la-
belling (Section 4.3), and a meta-learner built upon
the encoder-decoder model, where we propose two
task-aware meta-learning methods (Section 4.4).

4.1 Multimodal Encoding

We consider an encoder network represented by
a parameterized function f;”c with parameters ¢.
The encoder aims to capture the cross-modal se-
mantic relationships between tokens in a document
image. To achieve this, we employ a BERT-like
Transformer (Devlin et al., 2018) with an additional
positional embedding layer for the 2d position of
each input token, through which the complex spa-

tial structure of the input document can be incorpo-
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Figure 2: An overview of our meta-learning framework. The framework is applicable to both the metric-based
method (aiming to learn ¢) and gradient-based method (aiming to learn {¢, ¢ }) .

rated and then interacted with the textual contents
via attention mechanisms. The embedding of token
[ in the document image j of task 7; is computed
ash;j = f;”c(xiﬂ|Xij). In practice, before meta-
training, we pre-train the multimodal Transformer
on the II'T-CDIP dataset (Harley et al., 2015). De-
tails can be found in Appendix C.1.

4.2 Task-dependent Embedding Space

Through the multimodal encoder, each task 7; is en-
coded to a task-dependent embedding space. As il-
lustrated in Figure 2, on the task-dependent embed-
ding space, there are all the token embeddings in
the task: H; = {h;;|l € [L],(X;,Y;) € S; UQ;}.

There are several properties on the task’s embed-
ding space: 1) First, in addition to in-task distri-
bution (ITD) entities from the target classes, these
exists a large portion (nearly 90% as observed in
our dataset FewVEX) of out-of-task distribution
(OTD) entities or background, which serve as the
context for target ITD entities but dominate the
task’s embedding space. 2) Second, the background
tokens follows a multi-mode distribution P™ that
consists of several unimodal distributions, each of
which represents an outlier entity type aside from
ITD. 3) Finally, it is not guaranteed that each uni-
modal component of PP is observable in the train
set S;—in many cases, an outlier OTD entity type
could occur in the query documents but is absent in
the support documents. To sum up, the background
distribution in our N-way K -shot FVDER tasks is
more complex and noisy, dominates the entire task,
and may vary between documents.

4.3 Token Labelling

On the basis of the task-dependent embedding
space, the token labelling or decoding process
can either leverage a parameterized decoder fgec
that acts as the classification head, or rely on non-
parametric methods, like nearest neighbors.

4.4 Proposed Meta Learners

We consider two main categories of the meta-
learning approaches: the gradient-based and the
metric-based meta-learning, on each of which we
propose our own methods. We specifically pay
attention to two properties when solving the entity-
level N-way K -shot FVDER tasks: 1) Few-shot
out-of-task distribution detection, which aims to
distinguish the ITD (i.e., the target N entity types)
against the OTD (i.e., background or any outlier
entity type). 2) Few-shot token labelling for in-
task distribution tokens, which assigns each ITD
token to one of the N in-task entity types.

4.4.1 Task-aware ContrastProtoNet

We first focus on metric-based meta-learning (Snell
et al., 2017; Oreshkin et al., 2018). The goal is to
learn a set of meta-parameters ¢ for the encoder
network, generally shared by each task 7; ~ P(T),
such that, on each task’s specific embedding space,
the distances between token points in both .S; and
@; are measured using some metrics, e.g., Eu-
clidean distances.

ProtoNet with or without Estimated OTD. One
of the most popular and effective metric-based

meta-learning methods is the Prototypical Network
(ProtoNet) (Snell et al., 2017). For each FVDER



task 7; = {S;, Qs, &}, the prototype for each en-
tity type e € &; can be computed as the mean
embedding of the tokens from S; belonging to that
entity type, that is, p; . = 1/|I™| 32 e e hiji,
where '™ is a collection of the token indices for
the type-e tokens in the support set. For the out-
of-task distribution (OTD), one may consider to
estimate its mean embedding as an extra O-type
prototype: ft; = 1/|I5{p| 32 ;e rern hiji-

A problem of the vanilla methods is that there
is no specific mechanism distinguishing the IND
entities against the OTD entities, which are weakly-
supervised and partially observed from a multi-
mode distribution PZ-OTD. The prototype 1, is a bi-
ased estimation of the mean of P?™ and the co-
variance of PP can be larger than any of the
ITD classes. In consequence, the task-specific
ITD classes may not be clearly distinguished from
the OTD classes on the task-dependent embedding
space and most of tokens will be misclassified.

Regarding the above challenges, we propose a
task-aware method that adopts two techniques to
boost the performance.

Meta Contrastive Loss. During meta-training,
we encourage the IV ITD entity types to be distin-
guished from each other as well as far away from
any unimodal component of OTD. To achieve this,
we adopt the idea from supervised contrastive learn-
ing (Khosla et al., 2020) to compute a meta con-
trastive loss (MCON) from each task, which will be
further used to compute meta-gradients for updat-
ing the meta-parameters ¢. Intuitively, our meta-
objective is that the query tokens from the ITD
type-e should be pushed away from any OTD to-
kens and other types of ITD tokens within the same
task, and should be pulled towards the prototype
H; . of support tokens and the other query tokens
belonging to the same entity type. Formally, let
13 = (DIl € (L (X5.Y7) € Quyly € &}
denote a collection of ITD validation tokens. The
meta contrastive loss computed from 7; is

—1
LN — E —_— g a;;1(ua
e JATGD A 311
(],l)EIHD ucA (j,l) (2)

exp(hileu)
ZveA(j,l) eXP(hisz )

a;ji(u) = log

For each anchor, i.e., the ITD validation token [
in document j, we let A* (4,1) = {him|(r,m) €
NG DL Y5 = Yim ) Ulttiele € &yl =

e} denote a collection of the positive embed-
dings/prototype for the anchor and let A(j,1) =
{hirm|(r,m) € T \ {(J,)}} U {1 e feee; con-
tain all the ITD/OTD embeddings and prototypes
(IALL = {(], l)’l c [L], (X], Y]) € SZ @] Ql}) in 7;

Unsupervised OTD Detector. During the test-
ing time for novel entity types, we adopt the non-
parametric token-level nearest neighbor classifier,
which assigns x;;; the same label as the support
token that is nearest in the task’s embedding space:

~nn
yijl - argmaxyirm where (r,m)

ergrhjhirm, ()
where If1' = {(r,m)lm € [L],(X,,Y,) € Si}.
The ITD or OTD entity tokens in (); should be
closer to the corresponding ITD or OTD tokens in
S; that belong to the same entity type. However,
since the embedding space dependent on the sup-
port set is not sufficiently rich, the network may be
blind to properties of the out-of-task distribution
P?P™ that turn out to be necessary for accurate en-
tity retrieval. To tackle this, we exploit an unsuper-
vised out-of-distribution detector (Ren et al., 2021)
operating on the task-dependent embedding space,
in assistance with the classifier. Specifically, we de-
fine an OTD detector: g;;; = 0if r(h;;;) > R;; oth-
erwise, fJ;j; = g);‘j‘-‘l, where R; is the task-dependent
uncertainty threshold and r(h;;;) is defined as the
OTD score of each token computed as its minimum
Mabhalanobis distance among the N ITD classes:
r(hij) = mineee, (hij — pio) ", (i — By 0)-
Here, Qe = > nerern (it — pe) T (hiji — i)
is the covariance matrix for entity type e computed
from the type-e tokens in the support set (IF™).
The higher OTD score indicates the more likely the
token belongs to the background.

4.4.2 Computation-efficient Gradient-based
Meta-learning with OTD Detection

For gradient-based meta learning, the goal is to
learn the meta-parameters § = {¢, v} globally
shared over the task distribution P(7), which can
be fast fine-tuned for any given individual task 7;.

Computation-efficient Meta Optimization. Al-
though MAML (Finn et al., 2017) is the most
widely adopted approach, the fact that it needs to
differentiate through the fine-tuning optimization
process makes it a bad candidate for Transformer-
based encoder-decoder model, where we need to
save a large number of high-order gradients for
the encoder. Instead, we consider two alternatives



which require less computing resources and more
efficient. ANIL (Raghu et al., 2019) employs the
same bilevel optimization framework as MAML
but the encoder is not fine-tuned during the inner
loop. The features from the encoder are reused
in different tasks, to enable the rapid fine tuning
of the decoder. Reptile (Nichol et al., 2018) is a
first-order gradient based approach that avoids the
high-order meta-gradients. To further boost train-
ing efficiency, we exploit Federated Learning (Lin
et al., 2022) for meta-optimization of Transformer.

Task-aware Hierarchical Classification (HC).
A vanilla classifier can achieve high performance
in the label-sufficient VDER. However, it turns
out to be not robust in few-shot FVDER tasks be-
cause of the existence of the complicated out-of-
task entities—the models usually either get over-
confident on the NV IID entity types or fail to dis-
tinguish target entities from the OTD background.
For this reason, we incorporate OTD detection into
the decoder and propose a hierarchical classifier,
which has two classifiers 1) = {11, 12}: 1) binary
classifier f bil”, so that all ITD tokens are classified
against OTD ones, and 2) entity classifier f e’;t, SO
that ITD tokens are classified to one of the IV en-
tity types of the task. Specifically, suppose P?™
and P!™® denotes the OTD and ITD of the task 7;,
respectively. The probability that the token h;j; is
from OTD is denoted as P(y;;; = 0) = fe71t(hl),
which is used as the OTD score to weight the en-
tity prediction. The probability that the token is
the entity type-e is computed as P(y;j; = e|x;j; €
Pi) = (1= P(yij = 0)) £ (hijo)e.

5 Experiments

We experimented the methods implemented using
JAX on 16 TPUs. We use the Adam optimizer to
update the meta-parameters. For gradient based
methods, we use vanilla SGD for the inner-loop op-
timization and fix 15 SGD updates with a constant
learning rate of 0.015. Other hyperparameters are
available in the Appendix D.

We consider on two types of performance: Over-
all, which is the precision (P), recall (R) and micro
F1-score over meta-testing tasks; Task Specificity
(TS), which is the AUROC (Xiao et al., 2020) using
the negative OTD scores over meta-testing tasks.

5.1 Main Results

Table 3 compares different meta-learning methods.
Under the same N-way K -shot setting (columns),

the traditional meta-learning methods fail to bal-
ance the precision and recall performances: ANIL
and Reptile using vanilla decoders can achieve high
precision but tend to perform low recall; the vanilla
Prototypical Networks tend to be opposite: low
precision but high recall. In contrast, ANIL+HC,
Reptile+HC and ContrastProtoNet, which employ
several strategies to detect and alleviate the influ-
ence of out-of-task distributions, achieve better
precision-recall balance and thus can obtain high
F1 scores and high task specificity. In Figure 4 (in
Appendix F), we show ROC curves and visualiza-
tion of embedding space, comparing ANIL+HC
against ANIL, from 4-way 1-shot to 4-shot setting.
W we observe the increase of TS and the more ac-
curate boundary between background embeddings
and different entity types.

The reasons are as follows. (1) ANIL and Rep-
tile treat the dominant OTD instances as an extra
class as well. The problem turns out the imbal-
anced classification in meta-learning, one of the
challenges in FVDER tasks. By using an OTD de-
tector, ANIL+HC and Reptile+HC can faster adapt
to the task-specific boundary between OTD and
ITD. Overall, this potentially increase the recall
and task specificity score and the overall F1 score.
(2) For the vanilla metric-based methods, where
OTD instances are treated as one extra class, the
ITD testing instances tend to be close to I'TD class
centers so that we have high recall. However, OTD
instances dominate the task. It is possible that
some OTD testing instances are closer to ITD cen-
ters than the OTD class center (the average center
of multiple OTD classes) so that most of them are
misclassified as one of ITD classes, i.e., low preci-
sion. In opposite, ContrastProtoNet does not make
any assumption on the OTD distribution; instead,
we enforce OTD to be far away from ITD classes
and classify via token-level similarities while con-
sidering probabilistic uncertainty.

5.2 Class Structure Disentanglement

We examine the explanability and disentanglement
of the learned representations (generated by the
meta-parameters of encoder). Figure 3 shows tSNE
visualizations of the learned embedding space of
a selected task. Overall, by comparing Figure 3
to Table 3, the higher performance appears to be
consistent with more disentangled clusters. More-
over, from the first column containing IND (red)
tokens and OTD (blue) tokens, we observe that



4-way 1-shot 4-way 4-shot 5-way 2-shot
Methods Overall TS Overall TS Overall TS
P R F1 AUROC P R F1 AUROC P R F1 AUROC

ProtoNet 0.02 0.10 0.03 N/A 0.02 0.09 0.03 N/A 0.02 0.09 0.03 N/A
ProtoNet+EOD 0.13 047 0.21 N/A 0.11 058 0.23 N/A 0.11 035 0.17 N/A
ContrastProtoNet 0.54 043 0.47 0.59 0.61 0.59 0.60 0.89 0.49 041 0.44 0.62
Reptile 048 0.10 0.15 0.58 0.62 044 0.51 0.67 039 0.09 0.14 0.59
ANIL 039 0.19 0.25 0.56 054 044 0.50 0.87 035 0.13 0.19 0.61
Reptile+HC 0.35 0.13 0.20 0.63 0.63 065 0.64 0.98 034 0.12 0.18 0.65
ANIL+HC 040 0.58 0.50 0.95 047 059 0.51 0.98 038 0.56 0.46 0.92

Table 3: Performance on 4-way 1-shot, 4-way 4-shot, and 5-way 2-shot settings of FewVEX(S).

IND v.s. OOD IND Entity Types

b).

o

Figure 3: Embedding space visualization for a
randomly-selected meta-testing task, comparing a)
vanilla ProtoNet and b) ContrastProtoNet methods, un-
der the 4-way 4-shot setting of Few VEX(S).

the blue points dominate the embedding space and
comprises multiple clusters, which demonstrates
the out-of-task distribution is multimodal, mak-
ing it hard to identify in-task entities. Further,
we try to understand the disentangled structure of
classes from the clusters. We zoom into the 4 IND
classes, which are represented by different colors
in the right column in Figure 3, We observe that
“menu (sub_uniprice)" (violet) is far away from
the other three classes, while the other three classes
are slightly entangled. Such class structure repre-
sents the relationships between these entity types,
which is explainable: the red and blue classes be-
long to the same superclass sub_total; the green
and red are both etc-related information.

5.3 Multi-domain Few-shot VDER

Table 4 reports the 4-way 2-shot results on the
mixed-domain FewVEX(M), which combines re-
ceipts with forms for few-shot learning. The re-
sults slightly underperform those under the single-

domain setting. A reason could be that the structure
of forms is different from that of receipts and it is
challenging to find the good meta-parameters for
both domains. Moreover, the number of classes in
the form domain is much smaller than that in the
receipt domain. Such imbalanced class combina-
tion would push the meta-parameters to adapt to
the relative prominent domain.

Methods P R F1  AUROC
ProtoNet 0.02 0.10 0.03 N/A
ProtoNet+EOD 0.18 046 0.26 N/A
ContrastProtoNet 054 046 0.50 0.85
Reptile 045 0.17 0.25 0.57
ANIL 039 0.19 0.26 0.56
Reptile+HC 042 023 0.30 0.88
ANIL+HC 044 056 0.49 0.97

Table 4: Performance on 4-way 2-shot Few VEX(M).

6 Conclusions

In this paper, we studied the multimodal few-shot
learning problem of VDER. We started by propos-
ing a new formulation of the FVDER problem to
be an entity-level, N-way K-shot learning under
the framework of meta learning as well as a new
dataset, which is designed to reflect the practi-
cal problems. We exploited a wide range of ap-
proaches, including metrics based and gradient
based meta learning methods, along with a few
new techniques we came up with for this new set-
ting. The proposed methods achieves major im-
provements over the baselines for FVDER. We
believed our approaches can be further improved
in the following directions: 1) A better algorithm
that distinguishes between the OTD and ITD that
goes between the proposed ones. and 2) A formula-
tion that considers the correlations between entity
instance within each meta learning tasks.



Limitations

There exists a few limitations to this work. Firstly,
the derived dataset is based on the current open
source ones for document understanding, which
are small in their size and has very limited amount
of classes. A dedicated dataset that is built specif-
ically for the purpose of studying few-shot learn-
ing for document entity retrieval is needed. Sec-
ondly, the scope of our current studies is limited to
non-overlapping entities. The performance of the
models under nested and entities with overlapping
ground truth is yet to be examined.

Ethics Statements

The dataset created in this paper was derived from
public datasets (i.e., FUNSD, CORD) which are
publicly available for academic research. No data
collection was made during the process of mak-
ing this work. The FUNSD and CORD datasets
themselves are a collection of receipts and forms
collected and released by a third party paper which
has been widely used in the field of visually rich
document entity retrieval research and is not ex-
pected to contain any ethnics issues to the best of
our knowledge.
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A Related Work

Visually-rich Document Entity Retrieval
(VDER). Deep neural networks—RNNs, CNNs
and Graph Neural Networks (GNNs) have been
extensively adopted to solve VDER (Yang et al.,
2017; Liu et al., 2019). Most recently, motivated
by the advancement of Transformers, researchers
have started pre-training models to integrate visual
and layout information with the text embeddings
(Gu et al., 2022; Xu et al., 2020b,a; Biten et al.,
2022; Garncarek et al., 2021; Lee et al., 2022),
and then fine-tune the models on VDER tasks in
a label-sufficient supervised manner (Xu et al.,
2020a; Garncarek et al., 2021; Lee et al., 2022).
Different from these lines of work, we tackle the
challenging few-shot VDER task without sufficient
annotation for rare and novel entity types.

Few-shot Document Entity Retrieval. This has
not been a lot of efforts on few-shot VDER. Most
recently, researchers have explored multimodal pre-
training method (Wang et al., 2021b) that will be
fine-tuned on a small number of fully-labelled doc-
ument. The most recent work have employ the
prompt method (Wang and Shang, 2022). Before
fine-tuning on a single few-shot task, its model al-
ready sees the same entity types in a label-sufficient
source domain. In contrast, we address the limi-
tation of the task settings of these methods, i.e.,
incapability for novel and rare entity types, and
propose a novel task setting.

Meta-learning for Few-shot Learning. Meta-
learning approaches to few-shot learning problem
mainly include gradient-based methods (Finn et al.,
2017; Yoon et al., 2018; Rusu et al., 2019) and
metric-based methods (Snell et al., 2017; Oreshkin
et al., 2018; Koch et al., 2015; Vinyals et al., 2016).
There are a variety of meta-learning approaches
associated with different few-shot learning tasks in
CV and NLP, such as the general few-shot image
classification (Chen et al., 2021), few-shot object
detection (Wu et al., 2020), few-shot sequence la-
belling (Wang et al., 2021a), few-shot named entity
recognition (Li et al., 2020). Different from these
literature, this paper is the first work that explores
the meta-learning formulation for few-shot VDER.

B Dataset

Since there is no dataset specifically designed for
the FVDER task defined in Section 2, we construct
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a new dataset, FewVEX, to benchmark and evalu-
ate the meta-learning based FVDER.

B.1 Collection of Entity Types and Documents

First, we collect the entity types C associated with
the task distribution P(7") and a set of document
images D,;, annotated by these entity types.

We consider two source datasets that are widely
used in normal large-scale document understanding
tasks such as entity recognition, parsing, and infor-
mation extraction. The first one is the Form Under-
standing in Noisy Scanned Documents (FUNDS)
dataset (Jaume et al., 2019) comprises 199 real,
fully annotated, scanned forms, with a total of three
types of entities (i.e., questions, answers, heads).
The second one is the Consolidated Receipt Dataset
for post-OCR parsing (CORD) dataset (Park et al.,
2019). CORD consists of 1000 receipt images of
texts and contains 6 superclasses (menu, void menu,
subtotal, void total, total, and etc) which are divided
into 30 fine-grained subclasses. For different entity
types, the total numbers of entity occurrences over
the CORD images are highly imbalanced, ranging
from 1 occurrence of entity “void menu (nm)” to
997 occurrences of “menu (price)”.

From the two datasets, we obtain a combined
source dataset denoted as D,.;4, Which contains
1199 unique document images with original anno-
tations on 33 classes. However, we observe that
some fine-grained classes in CORD occurs in less
than max;(Mg;+ My;) images, the maximum num-
ber of documents within individual tasks. This
will result in a large amount of repetitive usage of
the same documents within one task and between
different tasks. Therefore, we further sort the 33
classes by the number of unique document images
where they occur and then discard three entity types
that occurs in low frequency.

To sum up, we finally have a total of |C| =30
entity types and |Doyig| = 1199 unique document
images annotated by these entity types. The pie
chart (on the left) in Figure 1 illustrates the number
of occurrences of the final entity types.

B.2 Collection of Training and Testing Tasks

Second, we create a meta-learning dataset Dy,eq =
{Dlrn, DIst, 1 consisting of a meta-training set
DI containing T, training tasks and a meta-
testing set D¢, containing 7, testing tasks. Each
task instance follows the N-way K-shot FVDER
task setting. An overview of dataset construction

is in Figure 1.



B.2.1 Entity Type Split
tst

To ensure that testing tasks in D;¢,,, focus on novel
classes that are unseen during meta-training D", |
we should split the total entity types C into two
separate sets C = Cpase UChovels Chase NCrovel = 0
such that Cpyse is used for meta-training and Cy,oqe;
for meta-testing.

Specifically, we use a split ratio v to control
the number of novel classes and randomly choose
v|C| entity types from C as Cpope;- Then, Cpase =
C \ Crovel- Note that for the cases that some entity
types occurs in less number of documents than the
others, we set a threshold U and any entity type
that occurs in less than U documents are forced to
be one of the novel classes.

B.2.2 Single N-way K-shot Task Generation

Each individual task 7 = {5,Q,&} in either
Dirn, or DI, can be generated by the follow-

meta meta
ing steps (summarized in Algorithm 1).

Class sampling. The target classes of task £ is
generated by randomly sampling N entity types
from either Cp,se (for the training task) or C,oper
(for the testing task).

Document sampling. Given the N target classes,
we then collect document images that satisfies the
few-shot setting defined in Section 2.1. However,
one problem of document sampling from the orig-
inal corpus is the inefficiency. It is because, for
each task, only a small number of documents that
contain the corresponding classes can be the candi-
date documents of the task. For example, if each
document contains only a small number of entity
types, the majority of documents would be rejected.
To improve sampling efficiency, one strategy is to
count entities in each document in advance and,
for each entity type, all the candidate documents
that contain this type are temporally stored in a new
dataset. Then, we only look at the task-specific can-

didate datasets Dfm = {D;,;,Ve € &}, where
ngg = {(X Y)‘V X7Y € Dorig ife € Y}

Specifically, we randomly sample M, documents
such that the total number of entity instances is
satisfied—that is, K ~ pK shots per entity type.
Likewise, we sample M, documents for (), such
that there are K, ~ pK, shots per entity type. We
keep track a table to record the current count of
occurrences of each type of entity types in the task.

Label Conversion. In the few-shot setting, the
majority region of an document does not follow
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the in-task distribution (ITD) of £. These regions’
tokens are treated as either background or the other
types of entities from the out-of-task distribution
(OTD), whose original labels should be arbitrarily
converted into O label. In addition, we map the
original labels of ITD tokens to relative labels. For
example, if we use I/O schema, the relative labels
should range from label id O to label id (N — 1).

Algorithm 1 Single FVDER Task Generation

I: Require: N, K, K, p, Cvase, Crnovels Dorig-

: Randomly sample N entity types from either Cpqse OF
Crnover and obtain &.

: Initialize: S =0,Q =0

: Initialize: DS,,, = {D%,.,|Ve € £} from Doyig.

: Initialize: N integers train_count[e] = 0 for Ve € £.

: Initialize: N integers test_count[e] = 0 for Ve € £.

/I Document sampling for .S

: while min.eg train_count[e] < K do
Find the least frequent entity type in the current task,

i.e., € = argmin _ gtrain_count|e].

[\S}

10:  Sample a document (X, Y;) from DS,

11:  Add (X,,Y;)t0o S

12:  fore € £do

13: Remove the selected document from candidate
dataset Dg,.;; < Dorig \ {(X,Y)}

14: Update train_countle] if Y contains entity type e.

15: if train_countle] > pK then

16: Mask (train_count|e] — pK) instances of type-e
by setting token labels to -1

17: end if

18:  end for

19: end while

20: // Document sampling for Q)

21: while min.c¢ test_countle] < K do

22:  Find the least frequent entity type in the current task,
ie., é = argmin ,test_countle].

23:  Sample a document (X}, Y;) from D5,.;,

24:  Add (X;,Y;)t0Q

25: fore e &do

26: Remove the selected document from candidate
dataset Dg,.;y < Dgrig \ {(X,Y)}

27: Update test_count[e] if Y contains entity type e.

28: if test_countle] > pK, then

29: Mask (test_count[e] — pK,) instances of type-e
by setting token labels to -1

30: end if

31:  end for

32: end while

33: Label conversion for V(X,,Y;) € SUQ.

34: return: T = {5,Q, &}

B.3 Dataset Variants

We fix the testing shot as K ;=4. We propose two
variants of meta-dataset, each of which pay at-
tention to different challenges in few-shot learn-
ing. The statistics is summarized in Table 2:
FewVEX(S) focuses on single-domain receipt un-
derstanding under N-way K-shot setting. The train-
ing and testing classes are both from CORD. The
goal is to learn domain-invariant meta-parameters.



FewVEX(M) focuses on learning domain-agnostic
meta-parameters from a combination of receipt and
form understanding. Receipt and form documents
may appear in the same task.

C Experiment Details

Cl1

We pre-train the multimodal Transformer on the
IIT-CDIP dataset (Harley et al., 2015). It should
be noting that this paper does not focus on the pre-
training technique. In fact, our framework does
not require a well pre-trained encoder, since the
meta-learning will further meta-tune the pre-trained
encoder to capture the domain knowledge of P(7).
Thus, we stop the pre-training until an 81.5% token
classification accuracy.

Multimodal Encoder

C.2 Training Parallelism

Both meta-training and meta-testing were run in a
multi-process manner. We employ episodic train-
ing pipeline to learn the meta-parameters from
training tasks (i.e., episodes). At each meta-
training step, a total of 7 episodes are trained and
then validated to obtain the meta-gradients used
for updating meta-parameters. Suppose B is the
total number of available TPU devices on each pro-
cess. Since the parameter size of the Transformer-
based encoder is large, we use B devices to train
each episode in parallel, that is, the documents
of one task are equally assigned to different de-
vices. A problem is that the prototypes, the nearest
neighbors of data points, or the adapted parameters
trained on the support set, are only computed on
each local device. For validation on the query set,
however, we should consider, the scope of the en-
tire task over different local devices. Therefore, we
employ federated learning techniques (Zinkevich
et al., 2010; Pillutla et al., 2019a,b) for a distributed
optimization, where we collect the locally trained
parameters or prototypes from the B devices of a
single episode and average their parameters.

D Hyperparameters

We summarize the hyperparameters for construct-
ing FewVEX in Table 5.

E Evaluation Metrics

We consider on two types of performance: Over-
all, which is the precision (P), recall (R) and mi-
cro Fl-score over meta-testing tasks. We use the
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Hyperparameters Value
p 3
y 0.6
U 20
K, 4

Table 5: Hyperparameters.

I/0 tagging schema and the "seqeval" tool to com-
pute the P/R/F1. Task Specificity (TS), which is
the AUROC (Xiao et al., 2020) using the negative
OTD scores over meta-testing tasks. To evaluate
how well the learned meta-learners can distinguish
in-task distribution (ITD) from the out-of-task dis-
tribution (OTD), we propose to solve the out-of-
distribution (OOD) detection as a subtask. OOD
calculates a ITD score for each data point repre-
senting how likely it belongs to the task-specific
distribution. For measuring task specificity, we cal-
culate AUROC (Xiao et al., 2020) using the ITD
scores over all test episodes. A higher AUROC
value indicate better TS performance, and a ran-
dom guessing detector corresponds to an AUROC
of 50%. We use the "sklearn.metrics" tool to com-
pute the AUROC and plot ROC curves.

F Visualization

Vo visualize the TS, we plot the ROC curves of all
the meta-testing tasks, where each curve represent
one task. Another visualization for TS is to show
how ITD and OQOD are distinguished against each
other. We randomly select a testing task and exploit
tSNE (Van der Maaten and Hinton, 2008) to visual-
ize the learned embeddings of all the tokens in the
task, where ITD tokens are denoted as red points
and OTD tokens are blue points. Finally, we use
tSNE to visualize the learned embeddings of only
the ITD token instances in the task, where different
colors represent different entity types.

More visualization results are reported in Figure
4, Figure 5, Figure 6.
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(a) token embeddings of a training task (4 base classes) (b) token embeddings of a testing task (4 novel classes)

Figure 6: Task-specific Class distribution of a training task and a testing task of 4-way 4-shot setting. The meta-
parameters trained using ContrastProtoNet on Few VEX(M). Solid points represent train (support) tokens, cross
points represent val/test (query) tokens, and the triangle points represent prototypes.
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