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Abstract

Visually-rich document entity retrieval001
(VDER), which extracts key information002
(e.g. date, address, name) from document003
images (e.g., invoice, receipt) has become an004
increasingly important topic for NLP in the005
industrial settings. As many of these document006
images come from document types that are007
highly specified to their industry, annotating008
these documents usually requires extensive009
amount of training and is often costly. The fact010
that new document types come out at a constant011
pace and that each of them have a unique set012
of entity types leave us a challenging setting013
where we have a large amount of documents014
with unseen entity types that occur only a015
couple of time. Such a setting requires models016
to have the capability of learning entities in a017
few-shot manner, while recent works in the018
field can only handle few-shot learning in019
the document level. We propose an N -way020
K-shot setting for VDER that operates on the021
entity level and a new dataset to tackle such a022
problem. We formulate the problem as a meta023
learning one and propose a few new algorithms024
that helps the model to distinguish between025
in-task-distribution (ITD) entities while being026
aware of out-of-task-distribution (OTD) ones.027
To the best of our knowledge, our work is the028
first systematic study on the N -way K-shot029
entity-level setting for VDER.030

1 Introduction031

Visually-rich document understanding (VrDU)032

aims to analyze scanned documents composed of033

structured and organized information. As a sub-034

problem of VrDU, the goal of visually-rich docu-035

ment entity retrieval (VDER) is to extract key in-036

formation (e.g., date, shipping address, signatures)037

from the document images such as invoices and038

receipts with complementary multimodal informa-039

tion. (Xu et al., 2020a; Garncarek et al., 2021; Lee040

et al., 2022). One unique challenge when modeling041

the document entity retrieval problem is the fact042

that their entity space (i.e., the set of entity cate- 043

gories that we are going to extract) changes from 044

one document type to the other. However, as the 045

cost of labeling is expensive, we are left with a very 046

large amount of documents with little amount of 047

annotations to each of the new entity types (i.e., few 048

shots). Such a scenario makes it difficult to trans- 049

fer knowledge learned from different documents or 050

entity types without techniques that can deal with 051

few-shot entities. To deal with such scenario in 052

real-world VrDU systems, few-shot visually-rich 053

document entity retrieval (FVDER) has become a 054

crucial research topic. 055

Despite the importance of the FVDER, there 056

has been very limited amount of prior works in 057

this area. Most recent efforts have employed pre- 058

trained language model (Wang and Shang, 2022) 059

or prompt mechanism (Wang et al., 2022) to obtain 060

transferable knowledge from the source domain 061

and apply it to the target domain, where a small 062

number of document images are provided for fine- 063

tuning. However, the settings of few-shot learning, 064

which is often borrowed from other domains such 065

as image classification, may not fit well into the 066

problem of document entity extraction. For exam- 067

ple, in these prior works, models are operated in 068

the granularity of the document level rather than 069

entity level. In practice, entity occurrence varies 070

dramatically from one document to the other, and 071

the few-shot setting operated on document level 072

might end up with a lot of instances of a particular 073

entity type, which goes against the purpose of few- 074

shot learning. Another notable limitation is that 075

some of these prior works are not capable of work- 076

ing on unseen entities. Additionally, in these works, 077

there is no way to quantify the size of the entity 078

space and the occurrence of each entity type. We 079

summarized the differences between prior works 080

and ours in Table 1. 081

In this work, we formalize a novel task setting 082

for few-shot visually-rich document entity retrieval 083
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Method Instance Granularity Unseen Entities? Entity Space Size Entity Occurrence
(Wang and Shang, 2022) document level yes unspecified unspecified
(Wang et al., 2022) document level no unspecified unspecified
Ours entity level yes N-way K-shot

Table 1: Comparison on Task Formulated and Application Scenarios.

from practical needs, which is operated on entity084

level with unseen entities and on a N -way K-shot085

specification. We aim at building a coherent set-086

ting for FVDER tasks, which pays attention to ex-087

tracting novel and rarely-present entity types from088

documents. Upon the task setting, we also create a089

systematic way for learning the knowledge that fast090

adapts to entirely novel information or entity types.091

The key properties of the proposed setting are two092

folds, following the practical requirements: 1), We093

allow target entities to be scarcely scattered over094

documents. The few-labelled documents should095

be selected in a way such that they cooperatively096

contains certain number of entity occurrences per097

information type. 2), We split entity types into two098

group such that one for training and the other is099

used as novel entity types.100

To tackle the proposed task setting, we propose101

a meta-learning based framework. The key idea102

is to employ the learning-to-learn mechanism for103

two objectives: 1) making the learning experience104

to be transferable from the base entity types to the105

novel ones; and 2) quicker adaptation on novel106

entity types by reducing the domain gap and task107

gap between the pre-trained model and our novel108

tasks through meta-learning. Comparing with the109

general FSL (Finn et al., 2017; Snell et al., 2017;110

Chen et al., 2021) and existing FVDER settings111

(Wang and Shang, 2022; Wang et al., 2022), our112

unique setting brings new challenges. Specifically,113

the existence of noisy out-of-task information, as114

part of the contextual information for in-task infor-115

mation, cannot be shared by different documents116

and tasks. Thus we also propose several techniques117

to improve the existing meta-learning approaches118

for this new task.119

Our contributions are summarized as follows:120

• We propose a novel entity-level few-shot121

visually-rich document entity retrieval122

(FVDER) formulation, where the number of123

labelled entity occurrences for each entity124

type is limited. To the best of our knowledge,125

this is the first work in VDER focusing on the126

entity retrieval for rare and novel entities.127

• We present a new dataset for the meta-learning128

on FVDER, namely FewVEX, consisting of 129

hundreds of testing FVDER tasks with novel 130

entity types and thousands of training tasks 131

with a held-out set of entity types. 132

• We propose a few algorithms under meta learn- 133

ing that work for FVDER. We address the 134

specific challenges in our FVDER task and 135

propose strategies to improve several pop- 136

ular gradient-based and metric-based meta- 137

learning baselines. 138

2 Problem Formulation 139

We present the novel entity-level few-shot visually- 140

rich document entity retrieval (FVDER) task. 141

Given a document image that consists of structured 142

contents (e.g., textual, visual and layout contents), 143

the goal is to tackle the localization and classifica- 144

tion of rare and novel entities from the given image. 145

We formalize such a task below. 146

2.1 Entity-level N -way K-shot Formulation 147

In VDER tasks, a document image is often pro- 148

cessed through Optical Character Recognition 149

(OCR) (Chaudhuri et al., 2017) to form a sequence 150

of tokens X = [x1,x2, . . . ,xL], where L is the 151

sequence length and each token xl is composed 152

of multiple modalities xl = {x(v)
l ,x

(p)
l ,x

(b)
l , ...} 153

such as the token id (v), the 1d position (p) of 154

the token in the sequence, the bounding box (b) 155

representing the token’s relative 2d position, scale 156

in the image, and so on. The goal is to predict 157

Y = [y1, y2, . . . , yL], which assigns each token xl 158

a label yl to indicate either the token is one of enti- 159

ties in a set of predefined entity types or does not 160

belong to any entity (denoted as O class). 161

We propose the entity-level few-shot VDER that 162

focuses on the real-world scenario when some 163

types of entities rarely occur in documents. Here, 164

an entity occurrence is defined as a contiguous 165

subsequence of OCR-parsed tokens with the same 166

entity type as labels. Formally, an entity-level N - 167

way K-shot FVDER task T = {S,Q, E} consists 168

of a train (support) set S containingMs documents, 169

a test (query) set Q containing Mq documents, and 170
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Figure 1: Proposed task setting and problem formulation. Here, N = 3 ways, K = 2 shots, and ρ = 2. Different
colors represent different entity types. The pie charts on the left indicates that the target classes in testing tasks are
not seen in training tasks. On the right, we show the inputs and labels of an example 3-way 2-shot task.

a class set E containing N target entity types171

S = {(X1, Y1), . . . , (XMs , YMs)}
Q = {X∗

1 , X
∗
2 , . . . , X

∗
Mq

}
E = {e1, e2, . . . , eN},

(1)172

where Xj = [xj1,xj2, ...,xijl] is the sequence of173

multimodal token features of document j, Yj =174

[yj1, yj2, ..., yijl] is the sequence of token labels of175

document j, and ec denotes the entity type c of T .176

The “N -way” means that S andQ do not contain177

any other entity types unseen in E . Those out-of-178

task entity types e′ /∈ E , although exist in these179

documents, are treated as the background O class.180

The “K-shot” specification means that, among181

the Ms documents in S, the total number of occur-182

rences of each entity type is restricted (i.e., entity-183

level few shots). Considering the condition that184

entity occurrence varies dramatically from one doc-185

ument to the other, it is very uncommon that a186

document contains every entity type in E ; it is also187

not guaranteed a entity type occurs only one time in188

an document. It is not the fact that different entity189

types strictly have the same occurrences among a190

few document. Thus, we adopt a soft K-shot set-191

ting. For each entity type in E , the cumulative num-192

ber of times it occurs among the Ms support doc-193

uments should be in the range between K ∼ ρK,194

where ρ > 1 is the softening hyperparameter.195

The goal of task T is to learn a task-specific196

model for the class distribution over E based on197

the few labeled entity occurrences in S, in order to198

achieve high performance on Q.199

2.2 Meta-learning Formulation 200

Based on the above formulation for a single task, 201

we can further formulate our problem under the 202

meta-learning setting (Chen et al., 2021). We con- 203

sider a task distribution P (T ) over FVDER tasks, 204

associated with a large pool of entity types C cor- 205

responding to the domain of P (T ). For any task 206

Ti = {Si, Qi, Ei} ∼ P (T ), its target entity types 207

come from the class pool Ei ⊂ C. With this assump- 208

tion, our final goal turns out training a meta-learner 209

such that any task Ti ∼ P (T ) can take advantage 210

of it and then obtain a better task-specific model. 211

Following (Finn et al., 2017; Snell et al., 2017; 212

Chen et al., 2021), a meta-learner for FVDER 213

can be learned by exploiting the experiences on 214

solving a set of meta-training tasks Dtrn
meta = 215

{T1, T2...Tτtrn} over a set of base classes Cbase ⊂ 216

C, where each training task is from the base classes 217

Ei ⊂ Cbase. The experiences are given in the form 218

of the ground truth labels of query sets. That is, the 219

query sets of training tasks are treated as valida- 220

tion sets, Qi = {(X∗
j , Y

∗
j )}

Mqi

j=1 for ∀Ti ∈ Dtrn
meta. 221

Then, to evaluate the performance of the meta- 222

learner θ on solving few-shot FVDER tasks that 223

focus on novel entity types Cnovel = C \ Cbase, we 224

will individually train a set of meta-testing tasks 225

Dtest
meta = {T ∗

1 , T ∗
2 ..., T ∗

τtst}, where each testing 226

task E∗
i ⊂ Cnovel. The query sets of meta-testing 227

tasks are unlabelled, treated as the testing data. 228

3 Dataset 229

As far as we know, there is no existing benchmark 230

specifically designed for the Entity-level N -way 231
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Datasets Meta Training (from Cbase) Meta Testing (from Cnovel) Range

Domains # Entity Types # Tasks Domains # Entity Types # Tasks of N
FewVEX(S) CORD 18 3000 CORD 5 128 [1, 5]
FewVEX(M) CORD+FUNSD 20 3000 CORD+FUNSD 6 256 [1, 6]

Table 2: Statistics of two variants of FewVEX. From each dataset, we can test different N -way K-shot settings.

K-shot FVDER defined in Section 2. To support232

future research on this problem, we construct a new233

dataset, FewVEX.234

We consider two source datasets: FUNSD235

(Jaume et al., 2019) consists of images of forms236

annotated by the bounding boxes of 3 types of237

entities; CORD (Park et al., 2019) consists of238

scanned receipts annotated by 6 superclasses which239

are divided into 30 fine-grained subclasses. We240

removed 7 entity types that occur in less than241

maxi(Msi +Mqi) images 1. Finally, we collect242

a set of 26 entity types and a set of 1199 unique243

document images (Dorig) annotated by these entity244

types, which will be used to construct FewVEX245

(represented as Dmeta = {Dtrn
meta,Dtst

meta}).246

3.1 Entity Type Split247

Suppose we have a pool of entity types C. To ensure248

that testing tasks in Dtst
meta focus on novel classes249

that are unseen in Dtrn
meta during meta-training, we250

should split C into two separate sets C = Cbase ∪251

Cnovel, Cbase ∩ Cnovel = ∅ such that Cbase is used252

for meta-training and Cnovel for meta-testing.253

Proposed Datasets. Based on how we conduct254

the split, we construct two variants of FewVEX:255

FewVEX(S) focuses on single-domain receipt un-256

derstanding, where Cbase and Cnovel are split from257

the 23 entity types in CORD. FewVEX(M) focuses258

on a combination of receipt and form domains,259

where Cbase consists of 18 classes from CORD and260

2 from FUNSD, while Cnovel contains the other 5261

classes in CORD and 1 in FUNSD.262

3.2 Single Task Generation263

Each individual entity-level N -way K-shot264

FVDER task T = {S,Q, E} in either Dtrn
meta265

or Dtst
meta can be generated through the follow-266

ing steps. 1) Class sampling. The task’s tar-267

get classes E are generated by randomly sampling268

N entity types from either Cbase (for the training269

task) or Cnovel (for the testing task). 2) Docu-270

ment sampling. Given the N target classes, we271

then collect document images that satisfies the272

1For page limit, details are moved to Appendix B.

N -way, soft K-shot entity occurrences (as de- 273

fined in Section 2.1). To promote sampling effi- 274

ciency, we only look at a subset of original docu- 275

ments DE
orig = {De

orig|∀e ∈ E}, where De
orig = 276

{(X,Y )|∀(X,Y ) ∈ Dorig if e ∈ Y } is a dataset 277

storing all the candidate documents that contain at 278

least one entity of type e. De
orig can be generated 279

in advance. Then, we design an Algorithm 1 (see 280

Appendix B) to sample (Ms +Mq) unique docu- 281

ments from DE
orig such that the first Ms documents 282

have K ∼ ρK shots per entity type (as S) and 283

the remaining Mq ones have Kq ∼ ρKq shots per 284

entity type (as Q). 3) Annotation Conversion. A 285

task only focuses on its specific N rarely-present 286

entity types. The entities in the original annotated 287

documents, whose class do not belong to E , are 288

replaced with the background O class. 289

The task generation algorithm is summarized 290

in Algorithm 1 (in Appendix B). The statistics of 291

FedVEX is summarized in Table 2. 292

4 Approaches 293

To solve the proposed FVDER tasks, we employ 294

the meta-learning (i.e., learning-to-learn). Different 295

from the recent advancement based on pre-training 296

or prompts (Wang and Shang, 2022; Wang et al., 297

2022), meta-learning helps to significantly promote 298

quick adaptation on novel few-shot entity types. 299

Figure 2 is an overview of our framework. It con- 300

sists of three components: the multimodal encod- 301

ing network (Section 4.1), the decoder for token la- 302

belling (Section 4.3), and a meta-learner built upon 303

the encoder-decoder model, where we propose two 304

task-aware meta-learning methods (Section 4.4). 305

4.1 Multimodal Encoding 306

We consider an encoder network represented by 307

a parameterized function fencϕ with parameters ϕ. 308

The encoder aims to capture the cross-modal se- 309

mantic relationships between tokens in a document 310

image. To achieve this, we employ a BERT-like 311

Transformer (Devlin et al., 2018) with an additional 312

positional embedding layer for the 2d position of 313

each input token, through which the complex spa- 314

tial structure of the input document can be incorpo- 315
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Figure 2: An overview of our meta-learning framework. The framework is applicable to both the metric-based
method (aiming to learn ϕ) and gradient-based method (aiming to learn {ϕ, ψ}) .

rated and then interacted with the textual contents316

via attention mechanisms. The embedding of token317

l in the document image j of task Ti is computed318

as hijl = fencϕ (xijl|Xij). In practice, before meta-319

training, we pre-train the multimodal Transformer320

on the IIT-CDIP dataset (Harley et al., 2015). De-321

tails can be found in Appendix C.1.322

4.2 Task-dependent Embedding Space323

Through the multimodal encoder, each task Ti is en-324

coded to a task-dependent embedding space. As il-325

lustrated in Figure 2, on the task-dependent embed-326

ding space, there are all the token embeddings in327

the task: Hi = {hijl|l ∈ [L], (Xj , Yj) ∈ Si ∪Qi}.328

There are several properties on the task’s embed-329

ding space: 1) First, in addition to in-task distri-330

bution (ITD) entities from the target classes, these331

exists a large portion (nearly 90% as observed in332

our dataset FewVEX) of out-of-task distribution333

(OTD) entities or background, which serve as the334

context for target ITD entities but dominate the335

task’s embedding space. 2) Second, the background336

tokens follows a multi-mode distribution P OTD
i that337

consists of several unimodal distributions, each of338

which represents an outlier entity type aside from339

ITD. 3) Finally, it is not guaranteed that each uni-340

modal component of P OTD
i is observable in the train341

set Si–in many cases, an outlier OTD entity type342

could occur in the query documents but is absent in343

the support documents. To sum up, the background344

distribution in our N -way K-shot FVDER tasks is345

more complex and noisy, dominates the entire task,346

and may vary between documents.347

4.3 Token Labelling 348

On the basis of the task-dependent embedding 349

space, the token labelling or decoding process 350

can either leverage a parameterized decoder fdecψ 351

that acts as the classification head, or rely on non- 352

parametric methods, like nearest neighbors. 353

4.4 Proposed Meta Learners 354

We consider two main categories of the meta- 355

learning approaches: the gradient-based and the 356

metric-based meta-learning, on each of which we 357

propose our own methods. We specifically pay 358

attention to two properties when solving the entity- 359

level N -way K-shot FVDER tasks: 1) Few-shot 360

out-of-task distribution detection, which aims to 361

distinguish the ITD (i.e., the target N entity types) 362

against the OTD (i.e., background or any outlier 363

entity type). 2) Few-shot token labelling for in- 364

task distribution tokens, which assigns each ITD 365

token to one of the N in-task entity types. 366

4.4.1 Task-aware ContrastProtoNet 367

We first focus on metric-based meta-learning (Snell 368

et al., 2017; Oreshkin et al., 2018). The goal is to 369

learn a set of meta-parameters ϕ for the encoder 370

network, generally shared by each task Ti ∼ P (T ), 371

such that, on each task’s specific embedding space, 372

the distances between token points in both Si and 373

Qi are measured using some metrics, e.g., Eu- 374

clidean distances. 375

ProtoNet with or without Estimated OTD. One 376

of the most popular and effective metric-based 377

meta-learning methods is the Prototypical Network 378

(ProtoNet) (Snell et al., 2017). For each FVDER 379
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task Ti = {Si, Qi, Ei}, the prototype for each en-380

tity type e ∈ Ei can be computed as the mean381

embedding of the tokens from Si belonging to that382

entity type, that is, µi,e = 1/|Itrne |
∑

(j,l)∈Itrne
hijl,383

where Itrne is a collection of the token indices for384

the type-e tokens in the support set. For the out-385

of-task distribution (OTD), one may consider to386

estimate its mean embedding as an extra O-type387

prototype: µi = 1/|ItrnOTD |
∑

(j,l)∈ItrnOTD
hijl.388

A problem of the vanilla methods is that there389

is no specific mechanism distinguishing the IND390

entities against the OTD entities, which are weakly-391

supervised and partially observed from a multi-392

mode distribution P OTD
i . The prototype µi is a bi-393

ased estimation of the mean of P OTD
i and the co-394

variance of P OTD
i can be larger than any of the395

ITD classes. In consequence, the task-specific396

ITD classes may not be clearly distinguished from397

the OTD classes on the task-dependent embedding398

space and most of tokens will be misclassified.399

Regarding the above challenges, we propose a400

task-aware method that adopts two techniques to401

boost the performance.402

Meta Contrastive Loss. During meta-training,403

we encourage the N ITD entity types to be distin-404

guished from each other as well as far away from405

any unimodal component of OTD. To achieve this,406

we adopt the idea from supervised contrastive learn-407

ing (Khosla et al., 2020) to compute a meta con-408

trastive loss (MCON) from each task, which will be409

further used to compute meta-gradients for updat-410

ing the meta-parameters ϕ. Intuitively, our meta-411

objective is that the query tokens from the ITD412

type-e should be pushed away from any OTD to-413

kens and other types of ITD tokens within the same414

task, and should be pulled towards the prototype415

µi,e of support tokens and the other query tokens416

belonging to the same entity type. Formally, let417

IvalITD = {(j, l)|l ∈ [L], (X∗
j , Y

∗
j ) ∈ Qi, y

∗
ijl ∈ Ei}418

denote a collection of ITD validation tokens. The419

meta contrastive loss computed from Ti is420

LMCON
i =

∑
(j,l)∈IvalITD

−1

|A+(j, l)|
∑

u∈A+
(j,l)

aijl(u)

aijl(u) = log
exp(h⊤

ijlu)∑
v∈A(j,l) exp(h

⊤
ijlv)

.

(2)421

For each anchor, i.e., the ITD validation token l422

in document j, we let A
+
(j, l) = {hirm|(r,m) ∈423

IvalITD \ {(j, l)}, y∗ijl = y∗irm} ∪ {µi,e|e ∈ Ei, y∗ijl =424

e} denote a collection of the positive embed- 425

dings/prototype for the anchor and let A(j, l) = 426

{hirm|(r,m) ∈ IALL \ {(j, l)}} ∪ {µi,e}e∈Ei con- 427

tain all the ITD/OTD embeddings and prototypes 428

(IALL = {(j, l)|l ∈ [L], (Xj , Yj) ∈ Si ∪Qi}) in Ti. 429

Unsupervised OTD Detector. During the test- 430

ing time for novel entity types, we adopt the non- 431

parametric token-level nearest neighbor classifier, 432

which assigns xijl the same label as the support 433

token that is nearest in the task’s embedding space: 434

ŷnnijl = argmaxyirm where (r,m)∈ItrnALL
h⊤
ijlhirm, (3) 435

where ItrnALL = {(r,m)|m ∈ [L], (Xr, Yr) ∈ Si}. 436

The ITD or OTD entity tokens in Qi should be 437

closer to the corresponding ITD or OTD tokens in 438

Si that belong to the same entity type. However, 439

since the embedding space dependent on the sup- 440

port set is not sufficiently rich, the network may be 441

blind to properties of the out-of-task distribution 442

P OTD
i that turn out to be necessary for accurate en- 443

tity retrieval. To tackle this, we exploit an unsuper- 444

vised out-of-distribution detector (Ren et al., 2021) 445

operating on the task-dependent embedding space, 446

in assistance with the classifier. Specifically, we de- 447

fine an OTD detector: ŷijl = O if r(hijl) ≥ Ri; oth- 448

erwise, ŷijl = ŷnn
ijl, where Ri is the task-dependent 449

uncertainty threshold and r(hijl) is defined as the 450

OTD score of each token computed as its minimum 451

Mahalanobis distance among the N ITD classes: 452

r(hijl) = mine∈Ei(hijl−µi,e)
⊤Ω−1

i,e (hijl−µi,e). 453

Here, Ωi,e =
∑

(j,l)∈Itrne
(hijl−µi,e)

⊤(hijl−µi,e) 454

is the covariance matrix for entity type e computed 455

from the type-e tokens in the support set (Itrne ). 456

The higher OTD score indicates the more likely the 457

token belongs to the background. 458

4.4.2 Computation-efficient Gradient-based 459

Meta-learning with OTD Detection 460

For gradient-based meta learning, the goal is to 461

learn the meta-parameters θ = {ϕ, ψ} globally 462

shared over the task distribution P (T ), which can 463

be fast fine-tuned for any given individual task Ti. 464

Computation-efficient Meta Optimization. Al- 465

though MAML (Finn et al., 2017) is the most 466

widely adopted approach, the fact that it needs to 467

differentiate through the fine-tuning optimization 468

process makes it a bad candidate for Transformer- 469

based encoder-decoder model, where we need to 470

save a large number of high-order gradients for 471

the encoder. Instead, we consider two alternatives 472

6



which require less computing resources and more473

efficient. ANIL (Raghu et al., 2019) employs the474

same bilevel optimization framework as MAML475

but the encoder is not fine-tuned during the inner476

loop. The features from the encoder are reused477

in different tasks, to enable the rapid fine tuning478

of the decoder. Reptile (Nichol et al., 2018) is a479

first-order gradient based approach that avoids the480

high-order meta-gradients. To further boost train-481

ing efficiency, we exploit Federated Learning (Lin482

et al., 2022) for meta-optimization of Transformer.483

Task-aware Hierarchical Classification (HC).484

A vanilla classifier can achieve high performance485

in the label-sufficient VDER. However, it turns486

out to be not robust in few-shot FVDER tasks be-487

cause of the existence of the complicated out-of-488

task entities–the models usually either get over-489

confident on the N IID entity types or fail to dis-490

tinguish target entities from the OTD background.491

For this reason, we incorporate OTD detection into492

the decoder and propose a hierarchical classifier,493

which has two classifiers ψ = {ψ1, ψ2}: 1) binary494

classifier f binψ1
, so that all ITD tokens are classified495

against OTD ones, and 2) entity classifier fentψ2
, so496

that ITD tokens are classified to one of the N en-497

tity types of the task. Specifically, suppose P OTD
i498

and P ITD
i denotes the OTD and ITD of the task Ti,499

respectively. The probability that the token hijl is500

from OTD is denoted as P (yijl = O) = fentψ′
i1
(hl),501

which is used as the OTD score to weight the en-502

tity prediction. The probability that the token is503

the entity type-e is computed as P (yijl = e|xijl ∈504

P ITD
i ) = (1− P (yijl = O))fentψ′

i2
(hijl)e.505

5 Experiments506

We experimented the methods implemented using507

JAX on 16 TPUs. We use the Adam optimizer to508

update the meta-parameters. For gradient based509

methods, we use vanilla SGD for the inner-loop op-510

timization and fix 15 SGD updates with a constant511

learning rate of 0.015. Other hyperparameters are512

available in the Appendix D.513

We consider on two types of performance: Over-514

all, which is the precision (P), recall (R) and micro515

F1-score over meta-testing tasks; Task Specificity516

(TS), which is the AUROC (Xiao et al., 2020) using517

the negative OTD scores over meta-testing tasks.518

5.1 Main Results519

Table 3 compares different meta-learning methods.520

Under the same N -way K-shot setting (columns),521

the traditional meta-learning methods fail to bal- 522

ance the precision and recall performances: ANIL 523

and Reptile using vanilla decoders can achieve high 524

precision but tend to perform low recall; the vanilla 525

Prototypical Networks tend to be opposite: low 526

precision but high recall. In contrast, ANIL+HC, 527

Reptile+HC and ContrastProtoNet, which employ 528

several strategies to detect and alleviate the influ- 529

ence of out-of-task distributions, achieve better 530

precision-recall balance and thus can obtain high 531

F1 scores and high task specificity. In Figure 4 (in 532

Appendix F), we show ROC curves and visualiza- 533

tion of embedding space, comparing ANIL+HC 534

against ANIL, from 4-way 1-shot to 4-shot setting. 535

W we observe the increase of TS and the more ac- 536

curate boundary between background embeddings 537

and different entity types. 538

The reasons are as follows. (1) ANIL and Rep- 539

tile treat the dominant OTD instances as an extra 540

class as well. The problem turns out the imbal- 541

anced classification in meta-learning, one of the 542

challenges in FVDER tasks. By using an OTD de- 543

tector, ANIL+HC and Reptile+HC can faster adapt 544

to the task-specific boundary between OTD and 545

ITD. Overall, this potentially increase the recall 546

and task specificity score and the overall F1 score. 547

(2) For the vanilla metric-based methods, where 548

OTD instances are treated as one extra class, the 549

ITD testing instances tend to be close to ITD class 550

centers so that we have high recall. However, OTD 551

instances dominate the task. It is possible that 552

some OTD testing instances are closer to ITD cen- 553

ters than the OTD class center (the average center 554

of multiple OTD classes) so that most of them are 555

misclassified as one of ITD classes, i.e., low preci- 556

sion. In opposite, ContrastProtoNet does not make 557

any assumption on the OTD distribution; instead, 558

we enforce OTD to be far away from ITD classes 559

and classify via token-level similarities while con- 560

sidering probabilistic uncertainty. 561

5.2 Class Structure Disentanglement 562

We examine the explanability and disentanglement 563

of the learned representations (generated by the 564

meta-parameters of encoder). Figure 3 shows tSNE 565

visualizations of the learned embedding space of 566

a selected task. Overall, by comparing Figure 3 567

to Table 3, the higher performance appears to be 568

consistent with more disentangled clusters. More- 569

over, from the first column containing IND (red) 570

tokens and OTD (blue) tokens, we observe that 571
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Methods
4-way 1-shot 4-way 4-shot 5-way 2-shot

Overall TS Overall TS Overall TS

P R F1 AUROC P R F1 AUROC P R F1 AUROC
ProtoNet 0.02 0.10 0.03 N/A 0.02 0.09 0.03 N/A 0.02 0.09 0.03 N/A
ProtoNet+EOD 0.13 0.47 0.21 N/A 0.11 0.58 0.23 N/A 0.11 0.35 0.17 N/A
ContrastProtoNet 0.54 0.43 0.47 0.59 0.61 0.59 0.60 0.89 0.49 0.41 0.44 0.62
Reptile 0.48 0.10 0.15 0.58 0.62 0.44 0.51 0.67 0.39 0.09 0.14 0.59
ANIL 0.39 0.19 0.25 0.56 0.54 0.44 0.50 0.87 0.35 0.13 0.19 0.61
Reptile+HC 0.35 0.13 0.20 0.63 0.63 0.65 0.64 0.98 0.34 0.12 0.18 0.65
ANIL+HC 0.40 0.58 0.50 0.95 0.47 0.59 0.51 0.98 0.38 0.56 0.46 0.92

Table 3: Performance on 4-way 1-shot, 4-way 4-shot, and 5-way 2-shot settings of FewVEX(S).

Figure 3: Embedding space visualization for a
randomly-selected meta-testing task, comparing a)
vanilla ProtoNet and b) ContrastProtoNet methods, un-
der the 4-way 4-shot setting of FewVEX(S).

the blue points dominate the embedding space and572

comprises multiple clusters, which demonstrates573

the out-of-task distribution is multimodal, mak-574

ing it hard to identify in-task entities. Further,575

we try to understand the disentangled structure of576

classes from the clusters. We zoom into the 4 IND577

classes, which are represented by different colors578

in the right column in Figure 3, We observe that579

“menu (sub_uniprice)" (violet) is far away from580

the other three classes, while the other three classes581

are slightly entangled. Such class structure repre-582

sents the relationships between these entity types,583

which is explainable: the red and blue classes be-584

long to the same superclass sub_total; the green585

and red are both etc-related information.586

5.3 Multi-domain Few-shot VDER587

Table 4 reports the 4-way 2-shot results on the588

mixed-domain FewVEX(M), which combines re-589

ceipts with forms for few-shot learning. The re-590

sults slightly underperform those under the single-591

domain setting. A reason could be that the structure 592

of forms is different from that of receipts and it is 593

challenging to find the good meta-parameters for 594

both domains. Moreover, the number of classes in 595

the form domain is much smaller than that in the 596

receipt domain. Such imbalanced class combina- 597

tion would push the meta-parameters to adapt to 598

the relative prominent domain. 599

Methods P R F1 AUROC

ProtoNet 0.02 0.10 0.03 N/A
ProtoNet+EOD 0.18 0.46 0.26 N/A
ContrastProtoNet 0.54 0.46 0.50 0.85
Reptile 0.45 0.17 0.25 0.57
ANIL 0.39 0.19 0.26 0.56
Reptile+HC 0.42 0.23 0.30 0.88
ANIL+HC 0.44 0.56 0.49 0.97

Table 4: Performance on 4-way 2-shot FewVEX(M).

6 Conclusions 600

In this paper, we studied the multimodal few-shot 601

learning problem of VDER. We started by propos- 602

ing a new formulation of the FVDER problem to 603

be an entity-level, N -way K-shot learning under 604

the framework of meta learning as well as a new 605

dataset, which is designed to reflect the practi- 606

cal problems. We exploited a wide range of ap- 607

proaches, including metrics based and gradient 608

based meta learning methods, along with a few 609

new techniques we came up with for this new set- 610

ting. The proposed methods achieves major im- 611

provements over the baselines for FVDER. We 612

believed our approaches can be further improved 613

in the following directions: 1) A better algorithm 614

that distinguishes between the OTD and ITD that 615

goes between the proposed ones. and 2) A formula- 616

tion that considers the correlations between entity 617

instance within each meta learning tasks. 618
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Limitations619

There exists a few limitations to this work. Firstly,620

the derived dataset is based on the current open621

source ones for document understanding, which622

are small in their size and has very limited amount623

of classes. A dedicated dataset that is built specif-624

ically for the purpose of studying few-shot learn-625

ing for document entity retrieval is needed. Sec-626

ondly, the scope of our current studies is limited to627

non-overlapping entities. The performance of the628

models under nested and entities with overlapping629

ground truth is yet to be examined.630

Ethics Statements631

The dataset created in this paper was derived from632

public datasets (i.e., FUNSD, CORD) which are633

publicly available for academic research. No data634

collection was made during the process of mak-635

ing this work. The FUNSD and CORD datasets636

themselves are a collection of receipts and forms637

collected and released by a third party paper which638

has been widely used in the field of visually rich639

document entity retrieval research and is not ex-640

pected to contain any ethnics issues to the best of641

our knowledge.642
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A Related Work820

Visually-rich Document Entity Retrieval821

(VDER). Deep neural networks–RNNs, CNNs822

and Graph Neural Networks (GNNs) have been823

extensively adopted to solve VDER (Yang et al.,824

2017; Liu et al., 2019). Most recently, motivated825

by the advancement of Transformers, researchers826

have started pre-training models to integrate visual827

and layout information with the text embeddings828

(Gu et al., 2022; Xu et al., 2020b,a; Biten et al.,829

2022; Garncarek et al., 2021; Lee et al., 2022),830

and then fine-tune the models on VDER tasks in831

a label-sufficient supervised manner (Xu et al.,832

2020a; Garncarek et al., 2021; Lee et al., 2022).833

Different from these lines of work, we tackle the834

challenging few-shot VDER task without sufficient835

annotation for rare and novel entity types.836

Few-shot Document Entity Retrieval. This has837

not been a lot of efforts on few-shot VDER. Most838

recently, researchers have explored multimodal pre-839

training method (Wang et al., 2021b) that will be840

fine-tuned on a small number of fully-labelled doc-841

ument. The most recent work have employ the842

prompt method (Wang and Shang, 2022). Before843

fine-tuning on a single few-shot task, its model al-844

ready sees the same entity types in a label-sufficient845

source domain. In contrast, we address the limi-846

tation of the task settings of these methods, i.e.,847

incapability for novel and rare entity types, and848

propose a novel task setting.849

Meta-learning for Few-shot Learning. Meta-850

learning approaches to few-shot learning problem851

mainly include gradient-based methods (Finn et al.,852

2017; Yoon et al., 2018; Rusu et al., 2019) and853

metric-based methods (Snell et al., 2017; Oreshkin854

et al., 2018; Koch et al., 2015; Vinyals et al., 2016).855

There are a variety of meta-learning approaches856

associated with different few-shot learning tasks in857

CV and NLP, such as the general few-shot image858

classification (Chen et al., 2021), few-shot object859

detection (Wu et al., 2020), few-shot sequence la-860

belling (Wang et al., 2021a), few-shot named entity861

recognition (Li et al., 2020). Different from these862

literature, this paper is the first work that explores863

the meta-learning formulation for few-shot VDER.864

B Dataset865

Since there is no dataset specifically designed for866

the FVDER task defined in Section 2, we construct867

a new dataset, FewVEX, to benchmark and evalu- 868

ate the meta-learning based FVDER. 869

B.1 Collection of Entity Types and Documents 870

First, we collect the entity types C associated with 871

the task distribution P (T ) and a set of document 872

images Dorig annotated by these entity types. 873

We consider two source datasets that are widely 874

used in normal large-scale document understanding 875

tasks such as entity recognition, parsing, and infor- 876

mation extraction. The first one is the Form Under- 877

standing in Noisy Scanned Documents (FUNDS) 878

dataset (Jaume et al., 2019) comprises 199 real, 879

fully annotated, scanned forms, with a total of three 880

types of entities (i.e., questions, answers, heads). 881

The second one is the Consolidated Receipt Dataset 882

for post-OCR parsing (CORD) dataset (Park et al., 883

2019). CORD consists of 1000 receipt images of 884

texts and contains 6 superclasses (menu, void menu, 885

subtotal, void total, total, and etc) which are divided 886

into 30 fine-grained subclasses. For different entity 887

types, the total numbers of entity occurrences over 888

the CORD images are highly imbalanced, ranging 889

from 1 occurrence of entity “void menu (nm)” to 890

997 occurrences of “menu (price)". 891

From the two datasets, we obtain a combined 892

source dataset denoted as Dorig, which contains 893

1199 unique document images with original anno- 894

tations on 33 classes. However, we observe that 895

some fine-grained classes in CORD occurs in less 896

thanmaxi(Msi+Mqi) images, the maximum num- 897

ber of documents within individual tasks. This 898

will result in a large amount of repetitive usage of 899

the same documents within one task and between 900

different tasks. Therefore, we further sort the 33 901

classes by the number of unique document images 902

where they occur and then discard three entity types 903

that occurs in low frequency. 904

To sum up, we finally have a total of |C| =30 905

entity types and |Dorig| = 1199 unique document 906

images annotated by these entity types. The pie 907

chart (on the left) in Figure 1 illustrates the number 908

of occurrences of the final entity types. 909

B.2 Collection of Training and Testing Tasks 910

Second, we create a meta-learning dataset Dmeta = 911

{Dtrn
meta,Dtst

meta}, consisting of a meta-training set 912

Dtrn
meta containing τtrn training tasks and a meta- 913

testing set Dtst
meta containing τtst testing tasks. Each 914

task instance follows the N-way K-shot FVDER 915

task setting. An overview of dataset construction 916

is in Figure 1. 917

11



B.2.1 Entity Type Split918

To ensure that testing tasks in Dtst
meta focus on novel919

classes that are unseen during meta-training Dtrn
meta,920

we should split the total entity types C into two921

separate sets C = Cbase∪Cnovel, Cbase∩Cnovel = ∅922

such that Cbase is used for meta-training and Cnovel923

for meta-testing.924

Specifically, we use a split ratio γ to control925

the number of novel classes and randomly choose926

γ|C| entity types from C as Cnovel. Then, Cbase =927

C \ Cnovel. Note that for the cases that some entity928

types occurs in less number of documents than the929

others, we set a threshold U and any entity type930

that occurs in less than U documents are forced to931

be one of the novel classes.932

B.2.2 Single N-way K-shot Task Generation933

Each individual task T = {S,Q, E} in either934

Dtrn
meta or Dtst

meta can be generated by the follow-935

ing steps (summarized in Algorithm 1).936

Class sampling. The target classes of task E is937

generated by randomly sampling N entity types938

from either Cbase (for the training task) or Cnovel939

(for the testing task).940

Document sampling. Given the N target classes,941

we then collect document images that satisfies the942

few-shot setting defined in Section 2.1. However,943

one problem of document sampling from the orig-944

inal corpus is the inefficiency. It is because, for945

each task, only a small number of documents that946

contain the corresponding classes can be the candi-947

date documents of the task. For example, if each948

document contains only a small number of entity949

types, the majority of documents would be rejected.950

To improve sampling efficiency, one strategy is to951

count entities in each document in advance and,952

for each entity type, all the candidate documents953

that contain this type are temporally stored in a new954

dataset. Then, we only look at the task-specific can-955

didate datasets DE
orig = {De

orig|∀e ∈ E}, where956

De
orig = {(X,Y )|∀(X,Y ) ∈ Dorig if e ∈ Y }.957

Specifically, we randomly sample Ms documents958

such that the total number of entity instances is959

satisfied–that is, K ∼ ρK shots per entity type.960

Likewise, we sample Mq documents for Q, such961

that there are Kq ∼ ρKq shots per entity type. We962

keep track a table to record the current count of963

occurrences of each type of entity types in the task.964

Label Conversion. In the few-shot setting, the965

majority region of an document does not follow966

the in-task distribution (ITD) of E . These regions’ 967

tokens are treated as either background or the other 968

types of entities from the out-of-task distribution 969

(OTD), whose original labels should be arbitrarily 970

converted into O label. In addition, we map the 971

original labels of ITD tokens to relative labels. For 972

example, if we use I/O schema, the relative labels 973

should range from label id 0 to label id (N − 1). 974

Algorithm 1 Single FVDER Task Generation
1: Require: N,K,Kq, ρ, Cbase, Cnovel, Dorig .
2: Randomly sample N entity types from either Cbase or
Cnovel and obtain E .

3: Initialize: S = ∅, Q = ∅
4: Initialize: DE

orig = {De
orig|∀e ∈ E} from Dorig .

5: Initialize: N integers train_count[e] = 0 for ∀e ∈ E .
6: Initialize: N integers test_count[e] = 0 for ∀e ∈ E .
7: // Document sampling for S
8: while mine∈E train_count[e] < K do
9: Find the least frequent entity type in the current task,

i.e., ê = argmin e∈Etrain_count[e].
10: Sample a document (Xj , Yj) from Dê

orig

11: Add (Xj , Yj) to S
12: for e ∈ E do
13: Remove the selected document from candidate

dataset De
orig ←− De

orig \ {(X,Y )}
14: Update train_count[e] if Y contains entity type e.
15: if train_count[e] > ρK then
16: Mask (train_count[e]−ρK) instances of type-e

by setting token labels to -1
17: end if
18: end for
19: end while
20: // Document sampling for Q
21: while mine∈E test_count[e] < Kq do
22: Find the least frequent entity type in the current task,

i.e., ê = argmin e∈Etest_count[e].
23: Sample a document (Xj , Yj) from Dê

orig

24: Add (Xj , Yj) to Q
25: for e ∈ E do
26: Remove the selected document from candidate

dataset De
orig ←− De

orig \ {(X,Y )}
27: Update test_count[e] if Y contains entity type e.
28: if test_count[e] > ρKq then
29: Mask (test_count[e]− ρKq) instances of type-e

by setting token labels to -1
30: end if
31: end for
32: end while
33: Label conversion for ∀(Xj , Yj) ∈ S ∪Q.
34: return: T = {S,Q, E}

B.3 Dataset Variants 975

We fix the testing shot as Kq=4. We propose two 976

variants of meta-dataset, each of which pay at- 977

tention to different challenges in few-shot learn- 978

ing. The statistics is summarized in Table 2: 979

FewVEX(S) focuses on single-domain receipt un- 980

derstanding under N-way K-shot setting. The train- 981

ing and testing classes are both from CORD. The 982

goal is to learn domain-invariant meta-parameters. 983
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FewVEX(M) focuses on learning domain-agnostic984

meta-parameters from a combination of receipt and985

form understanding. Receipt and form documents986

may appear in the same task.987

C Experiment Details988

C.1 Multimodal Encoder989

We pre-train the multimodal Transformer on the990

IIT-CDIP dataset (Harley et al., 2015). It should991

be noting that this paper does not focus on the pre-992

training technique. In fact, our framework does993

not require a well pre-trained encoder, since the994

meta-learning will further meta-tune the pre-trained995

encoder to capture the domain knowledge of P (T ).996

Thus, we stop the pre-training until an 81.5% token997

classification accuracy.998

C.2 Training Parallelism999

Both meta-training and meta-testing were run in a1000

multi-process manner. We employ episodic train-1001

ing pipeline to learn the meta-parameters from1002

training tasks (i.e., episodes). At each meta-1003

training step, a total of τ episodes are trained and1004

then validated to obtain the meta-gradients used1005

for updating meta-parameters. Suppose B is the1006

total number of available TPU devices on each pro-1007

cess. Since the parameter size of the Transformer-1008

based encoder is large, we use B devices to train1009

each episode in parallel, that is, the documents1010

of one task are equally assigned to different de-1011

vices. A problem is that the prototypes, the nearest1012

neighbors of data points, or the adapted parameters1013

trained on the support set, are only computed on1014

each local device. For validation on the query set,1015

however, we should consider, the scope of the en-1016

tire task over different local devices. Therefore, we1017

employ federated learning techniques (Zinkevich1018

et al., 2010; Pillutla et al., 2019a,b) for a distributed1019

optimization, where we collect the locally trained1020

parameters or prototypes from the B devices of a1021

single episode and average their parameters.1022

D Hyperparameters1023

We summarize the hyperparameters for construct-1024

ing FewVEX in Table 5.1025

E Evaluation Metrics1026

We consider on two types of performance: Over-1027

all, which is the precision (P), recall (R) and mi-1028

cro F1-score over meta-testing tasks. We use the1029

Hyperparameters Value
ρ 3
γ 0.6
U 20
Kq 4

Table 5: Hyperparameters.

I/O tagging schema and the "seqeval" tool to com- 1030

pute the P/R/F1. Task Specificity (TS), which is 1031

the AUROC (Xiao et al., 2020) using the negative 1032

OTD scores over meta-testing tasks. To evaluate 1033

how well the learned meta-learners can distinguish 1034

in-task distribution (ITD) from the out-of-task dis- 1035

tribution (OTD), we propose to solve the out-of- 1036

distribution (OOD) detection as a subtask. OOD 1037

calculates a ITD score for each data point repre- 1038

senting how likely it belongs to the task-specific 1039

distribution. For measuring task specificity, we cal- 1040

culate AUROC (Xiao et al., 2020) using the ITD 1041

scores over all test episodes. A higher AUROC 1042

value indicate better TS performance, and a ran- 1043

dom guessing detector corresponds to an AUROC 1044

of 50%. We use the "sklearn.metrics" tool to com- 1045

pute the AUROC and plot ROC curves. 1046

F Visualization 1047

Vo visualize the TS, we plot the ROC curves of all 1048

the meta-testing tasks, where each curve represent 1049

one task. Another visualization for TS is to show 1050

how ITD and OOD are distinguished against each 1051

other. We randomly select a testing task and exploit 1052

tSNE (Van der Maaten and Hinton, 2008) to visual- 1053

ize the learned embeddings of all the tokens in the 1054

task, where ITD tokens are denoted as red points 1055

and OTD tokens are blue points. Finally, we use 1056

tSNE to visualize the learned embeddings of only 1057

the ITD token instances in the task, where different 1058

colors represent different entity types. 1059

More visualization results are reported in Figure 1060

4, Figure 5, Figure 6. 1061
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Figure 4: Visualization under 4-way 4-shot and 4-way 1-shot settings of FewVEX(S), for ANIL and ANIL+HC.

Figure 5: Visualization and ROC curves of different methods on the 4-way 4-shot setting of FewVEX(S).

Figure 6: Task-specific Class distribution of a training task and a testing task of 4-way 4-shot setting. The meta-
parameters trained using ContrastProtoNet on FewVEX(M). Solid points represent train (support) tokens, cross
points represent val/test (query) tokens, and the triangle points represent prototypes.
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