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Abstract

Evaluating tabular generators remains a challenging problem, as the unique causal
structural prior of heterogeneous tabular data does not lend itself to intuitive human
inspection. Recent work has introduced structural fidelity as a tabular-specific
evaluation dimension to assess whether synthetic data complies with the causal
structures of real data. However, existing benchmarks often neglect the interplay
between structural fidelity and conventional evaluation dimensions, thus failing
to provide a holistic understanding of model performance. Moreover, they are
typically limited to toy datasets, as quantifying existing structural fidelity metrics
requires access to ground-truth causal structures, which is rarely available for
real-world datasets. In this paper, we propose a novel evaluation framework that
jointly considers structural fidelity and conventional evaluation dimensions. We
introduce a new evaluation metric, global utility, which enables the assessment of
structural fidelity even in the absence of ground-truth causal structures. In addition,
we present TabStruct, a comprehensive evaluation benchmark offering large-scale
quantitative analysis on 13 tabular generators from nine distinct categories, across
29 datasets. Our results demonstrate that global utility provides a task-independent,
domain-agnostic lens for tabular generator performance. We release the TabStruct
benchmark suite, including all datasets, evaluation pipelines, and raw results.

1 Introduction

Tabular data generation is a cornerstone of many real-world machine learning tasks [10} 29], ranging
from training data augmentation [[61} 23] to missing data imputation [98] [80]. These applications
underscore the importance of generative modelling, which necessitates an appropriate understanding
of the underlying data structure [50, 135, [9]. For instance, textual data conforms to the distributional
hypothesis, and thus the autoregressive models are a natural workhorse for the text generation
process [100, [77]. In contrast to the homogeneous modalities like text, tabular data can pose a
different structural prior due to its heterogeneity — the features within a dataset typically have varying
types and semantics, with feature sets that can differ across datasets [37, [80]. Recent work [41]] on
tabular foundation predictors has empirically demonstrated that the Structural Causal Model (SCM)
is an effective structural prior of tabular data. As such, it is important to investigate how effectively
existing generative models capture and leverage the causal structures of tabular data.

Prior work [40,[761125/89L159,147]] has attempted to assess tabular data generators by evaluating the syn-
thetic data they produce. However, the prevailing evaluation paradigms still exhibit three primary limi-
tations, which are summarised in Table[I} (i) Insufficient tabular-specific fidelity assessments. Current
benchmarks largely adopt evaluation dimensions from homogeneous data modalities, such as density
estimation [4], machine learning (ML) efficacy [94], and privacy preservation [53]]. While effective in
other modalities, they exhibit conceptual limitations when applied to tabular data — they do not explic-
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Figure 1: Illustrative example highlighting the importance of fidelity check for tabular data
structure. (D: A real-world physical system showing the gravitational forces acting on ball A.
The system is described by ball density (p), volume (V'), masses (ms & mg), distance (r), and
gravitational forces (F & Fgan). For simplicity, we assume both balls share identical density.
(2: We derive the ground-truth (GT) causal structure of the system based on Newton’s law of
universal gravitation. (3): We interpret the encoded physical laws of the system as the conditional
independence (CI) across variables. (4): We evaluate four generators by conventional metrics. (5): We
assess the structural fidelity by CI tests and the proposed global utility metric. We note that the
global structure reflects full conditional independence across all variables, while the local structure
includes only those directly relevant to a specific prediction task at hand (F},;). Results demonstrate
that conventional metrics are insufficient: for instance, while SMOTE is able to outperform other
generators on conventionally used dimensions (e.g., ML efficacy) — the generated synthetic data only
preserves local structure and violates most physical laws. For tabular data, where the truthfulness
and authenticity of synthetic data is hard to verify, global utility provides an effective mechanism for
evaluating the alignment of the synthetic data to the likely ground-truth causal structure.

itly assess the unique structural prior of tabular data. A notable example is that many generators (e.g.,
SMOTE) can produce synthetic data with similar density estimation as real data, yet still violate under-
lying causal structures — such as physical laws illustrated in Figure @). Although CauTabBench [89]
takes a step forward to assess the structural fidelity of synthetic data, it remains confined to toy SCM
datasets (i.e., synthetic datasets derived from random SCMs). Thus, CauTabBench offers limited
insight into generative modelling performance on real-world tabular data, where the ground-truth
SCMs are unavailable. (ii) Potential evaluation biases. Many benchmarks [40, [76] and model stud-
ies [94} 161, [98]] prioritise ML efficacy as the principal dimension for assessing generator performance.
For instance, in a classification setting, a generator is often considered effective if its synthetic data
allows downstream models to achieve high predictive accuracy. However, while useful, ML efficacy
can be highly sensitive to the choice of prediction task and target (Section[3.2.1)). The reliance on ML
efficacy can lead to biased conclusions: it tends to favour generators that are well-fitted for a specific
prediction target, while obscuring their capacity to capture the global data structure (Figure [1((9)).
(iii) Limited evaluation scope. Existing benchmarks mainly consider only a narrow range of datasets
and generative models (Table|[T)), which restricts their ability to provide a thorough and generalisable
comparison of model performance across the broader landscape of tabular generative modelling.
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Table 1: Evaluation scope comparison between TabStruct and prior tabular generative mod-
elling benchmarks. TabStruct presents a comprehensive evaluation framework for tabular generative
models, incorporating a wide range of evaluation dimensions, datasets, and generator categories.

Benchmark Conventional dimensions Structural fidelity Data Generator
Density Estimation ~ Privacy Preservation ML Efficacy | SCM data  Real-world data | # Datasets ~Contamination-free | # Models # Categories

Hansen et al. {40 v X v X X 11 v 5 5
Synthcity [76 v 4 v X X 18 X 6 4
SynMeter [23 v v v X X 12 X 8 4
CauTabBench (89 4 X X v X 10 v 7 4
SynthEval {59 X v v X X 1 v 5 3
Karpar et al.[47 4 X v X X 2 v 6 4
TabStruct (Ours) v v v | v v | 29 v 13 9

In this paper, we aim to bridge these gaps by introducing a systematic and comprehensive evaluation
framework for existing tabular generative models, with a particular focus on the structural prior
of tabular data. Our proposed framework is characterised by five key concepts: (i) We explicitly
incorporate structural fidelity of synthetic data as a core evaluation dimension for tabular generative
models. Structural fidelity can directly reflect model capability in learning the structure of tabular
data, without biasing towards a specific prediction target. In addition, we retain the three conventional
evaluation dimensions (density estimation, privacy preservation, and ML efficacy) and investigate
their interplay with structural fidelity, offering customised guidance for selecting suitable generators
across diverse use cases. (ii) We evaluate structural fidelity on expert-validated SCM datasets. To
ensure alignment with ground-truth causal structures, we avoid using toy SCMs and instead select
SCM datasets with expert-validated causal structures. With ground-truth SCMs, we can derive
the conditional independence (CI) of features. We then quantify structural fidelity through the
difference in CI between real and synthetic data as shown in Figure (®) (iii) We further extend the
evaluation of structural fidelity to real-world datasets, where the ground-truth SCMs are unavailable.
To this end, we propose a novel evaluation metric, global utility, which treats each variable as a
prediction target and measures how well it can be predicted using other variables. Importantly, global
utility does not require ground-truth causal structures, thus enabling the evaluation of structural
fidelity in real-world scenarios. (iv) We conduct an extensive empirical study on the performance
of 13 tabular generators spanning nine categories on 29 datasets, resulting in a total of over
150,000 evaluations. The large evaluation scope can ensure holistic and robust benchmarking results.
(v) We introduce TabStruct, the benchmark suite developed for this work. TabStruct features a well-
structured system design and consistent APIs for building and evaluating various tabular generative
models. This open-source library aims to help the research community explore tabular generative
modelling within a standardised framework.

Across both SCM and real-world datasets, our primary finding is:

Structural fidelity, as quantified by the proposed global utility, should be a core dimension when
evaluating tabular generative models.

The benchmark results suggest the prevailing paradigm (i.e., optimising tabular generators primarily
for improved density estimation and ML efficacy) is insufficient. In contrast, global utility offers a
complementary perspective — tabular-specific fidelity assessments. Finally, we find that diffusion-
based generators can be considered as a reliable approach for tabular data generation, given their
consistent performance in capturing high-fidelity global data structures.

Our contributions can be summarised as follows:

+ Conceptual (Section[3): We propose a unified evaluation framework for tabular generators that
integrates structural fidelity with conventional dimensions, and introduce global utility, a novel
metric that measures structural fidelity without requiring access to ground-truth causal structures.

« Technical (Section [3): We release the TubStruct benchmark suitd] including datasets, generator
implementations, evaluation pipelines, and all raw results.

 Empirical (Section[d): We conduct a large-scale quantitative study of 13 tabular generators on 29
datasets. The results offer actionable insights into model performance and can inspire the design
of more effective tabular generators by attending to the unique structural prior of tabular data.

'Code is available at https://anonymous . 4open.science/r/TabStruct-E4E4!,
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2 Related Work

Tabular Generator Benchmarks. An extensive line of benchmarks [86) 40, 76, 125, 149, |82, |60]
has been proposed for tabular data generation, conventionally established around three dimensions:
density estimation, privacy preservation, and ML efficacy. Density estimation [40) |4} 80, 98] assesses
the divergence between real and synthetic data distributions. However, it fails to capture inter-feature
interactions and, as a result, cannot evaluate whether synthetic data preserves the causal structures
present in the real data. ML efficacy [94] [76 [79, 87] evaluates the performance difference when
real data is replaced with synthetic data in downstream tasks, which primarily focuses on p(y |
x), thus inherently prioritising feature-target relationships over inter-feature interactions. Privacy
preservation [25) 153 42, |28]], although essential in privacy-sensitive scenarios, is generally task-
specific and usually does not necessitate high structural fidelity [20, |59} 67]. Recent efforts such as
Synthcity [[76] and SynMeter [25] have aimed to standardise the evaluation of tabular data generators
by incorporating the three conventional dimensions. Nonetheless, they omit explicit assessment of
tabular data structure. To the best of our knowledge, CauTabBench [89] is the only other benchmark to
explicitly evaluate structural fidelity, but it is limited to toy SCM datasets, as existing metrics [[16, [84]]
typically assume access to the ground-truth SCMs — a condition that is seldom satisfied and arguably
infeasible for most real-world datasets [46\ |34} [102]. We further provide a detailed summary of prior
studies on tabular data generation in Appendix [B] As shown in Table[I] despite the ongoing progress,
existing benchmarks neither comprehensively cover all evaluation dimensions nor provide a broad
evaluation scope across datasets and generators. To bridge these gaps, we introduce global utility,
an SCM-free metric that quantifies how well a generator preserves the causal structure of real data.
Our TabStruct benchmark provides a comprehensive evaluation framework for tabular generators.

3 Methods

3.1 Problem Setup

Dataset and tabular generator. Let Dy == {(x(,y()}¥ | ~ p(x, y) represent a labelled tabular
dataset with x(©) € RP. We refer to the d-th feature (i.e., a column/variable) as 4, and the d-th
feature of the ¢-th sample (i.e., a cell) as IE;). For notational simplicity, we define € p4; = {y(i) W,
so that the full collection of variables, including both features and target, can be written as X' =
{x1,...,xp,Tps1}. We denote the training split of Dy, as the reference dataset (Dir), and test
data as Diey. A tabular generator is trained on Dy and aims to generate synthetic data Dy, ~ p(X,7)
close to p(x,y). We evaluate the quality of Dyer wrt. all the metrics, thus providing a benchmark
performance against which D;y, is compared. We refer to any dataset being assessed as “evaluation
dataset D”, thus, both D, and Dsy, may serve as evaluation datasets.

Structural causal models (SCM). Under the assumptions of causal sufficiency, the Markov property,
and faithfulness, an SCM is defined by the quadruple M = (X, G, F, ). G is the causal graph that

encodes the causal relationships among the variables. £ = {¢; }Jpjll denotes the exogenous noise,

and F = {f; }J’-jjll is the set of structural functions. Each variable x; is determined by a function
f; of its parents and its exogenous noise, that is, «; = f; (pa(x;), €;), where pa(z;) C X' \ {x,}
denotes the parent set of «; in the graph G.

3.2 Structural Fidelity

As an empirically effective structural prior for tabular data, SCM provides a formal framework for
the underlying generative processes of tabular data [41} |89]]. Therefore, we define the structural
fidelity of a tabular generator as the alignment between the SCMs in its synthetic data and the
ground-truth causal structures. Next, we introduce the quantifications of structural fidelity on SCM
(Section [3.2.1)) and real-world (Section [3.2.2) datasets. We further discuss the rationales behind using
causal structural prior for tabular data in Appendix D}

3.2.1 Conditional Independence Score: Quantifying Structural Fidelity with SCM

Motivation. We begin by quantifying structural fidelity under the assumption that the ground-truth
SCM is available. Following established benchmarks in causal discovery and inference [84} 46, |89],
we evaluate structural fidelity at the level of the Markov equivalence class. At this level, causal struc-
tures are represented as completed partially directed acyclic graphs (CPDAGs). The SCMs of D¢ and
Dyyy are equivalent if they entail the same set of conditional independence (CI) statements (see Fig-
ure @ & ) for an illustration). This implies that both SCMs serve as minimal I-MAPs [2] of the
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joint distribution factorisation p(X’) = Hfjll p(x; | pa(x;)), and no causal directions can be further
removed. Therefore, the CPDAG-level evaluation provides a lens to interpret the fidelity of the tabular
data. Further discussion on the rationale for CPDAG-level evaluation is provided in Appendix

CI scores at various granularities. Following prior work [84, [89]], the full set of CI statements
implied by the ground-truth SCM on D¢ is defined as

Catobal = {(@; L @i | Sjn) | Sjn S\ {zj i} } U{(; Law | Sin) | eSS} (D

where S5, and S}, are the d-separation and d-connection sets for (z;, xy), respectively. The
derivations of CI statements are fully programmatic 85, 24} [21]. More details are in Appendix [C}

For each CI statement, we assess whether it holds in the evaluation dataset D (i.e., Dyt or Dgy,) by
conducting a CI test at the significance level o = 0.01 via

1, if the CI statement is not rejected on D at level «,
0, otherwise.

To(@j @ | Sjges Sjse; D) = { 2
To quantify structural fidelity at varying levels of granularity, we define the CI score for any subset of
CI statements C C Cgobal aS:

1 - .
cre.r) = o > 1| Za(@s @i | ik Si0:D) = 1] 3)
C

where CI (C, D) € [0, 1] measures the fidelity of selected CI statements in D, and 1(-) denotes the
indicator function. A higher CI score indicates that the evaluation dataset more closely aligns with
the structure of the ground-truth SCM. Implementation details for the CI scores are in Appendix

Local structure vs. Global structure. We assess structural fidelity at two levels of granularity: local
and global. For local structural fidelity, we define the local CI score, CI (Cjocar, D), by considering
only the CI statements that directly involve the prediction target y of a given dataset and predictive
task. Specifically, we compute the local CI score using Equation with Cipeal = {(:cj L axpiq]

Sip+1) | j € [D}U{(x; L @pi1 | Sjpi1) | j € [D]} (see Figure () for an illustration). Ciocal
highlights which features are uninformative for predicting ¥ when conditioned on the corresponding
d-separation sets. Therefore, matching the local CI set indicates which features should be ignored
when learning p(y | x). A higher local CI score suggests the generator faithfully captures the local
structure around the target, implying the potentially high utility of D for downstream predictive
tasks. We empirically observe a strong correlation between the local CI score and the predictive
performance on y (Section[d.2)).

For global structural fidelity, we define the global CI score as the CI score computed over the full set
of CI statements, that is, CI (Cgiobal, D). Global CI provides a comprehensive assessment of the entire
causal structure encoded in the dataset, mitigating potential bias towards any particular variable.

3.2.2 Global Utility: SCM-free Metric for Global Structural Fidelity

Motivation. The CI scores introduced in Section [3.2.1] require access to a ground-truth SCM to
enumerate the CI statements Cgiopa. However, for real-world datasets, such an SCM is typically
unavailable or even non-identifiable, thereby precluding direct evaluation of structural fidelity. To
address this limitation, we propose global utility as an SCM-free proxy for global CI.

Utility per variable. Given an evaluation dataset D, we treat each variable x; € X as a prediction
target. An ensemble of multiple downstream predictors is trained to predict x; using the remaining
variables X \ {«;} as inputs, following a standard supervised learning setup. The predictive perfor-
mance on Dy is denoted as Perf; (D), measured using balanced accuracy for categorical variables
and root mean square error (RMSE) for numerical variables. We define the utility of variable x; as
the relative performance achieved on evaluation data compared to reference data:

Perf; (D) ' Perf; (D), ifx; is categorical,
Utility,; (D) := @
Perf; (D)~ 'Perf; (Dyr), if @; is numerical.

Utility offers a unified perspective for interpreting downstream performance across mixed variable
types: Utility; > 1 indicates that downstream predictors trained on D perform on par with or better
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than those trained on Dyr for predicting « ;, whereas Utility; < 1 implies a loss in predictive power.
To mitigate the potential bias from a specific downstream predictor, we ensemble nine different
predictors with AutoGluon [27]]. Full technical details are in Appendix [C]

Global utility. The theoretical (Section [3.2.1) and empirical (Section .2)) analysis showcases
a strong correlation between the local CI score (CI (Ciocal, P)) and the predictive performance
of y (Utility,  ,(D)). Therefore, we hypothesise that aggregating the utility across all fea-
tures can approximate the global CI score (CI (Cglobal,D)), and we define the global utility as:

Global Utility(D) = ﬁ Zf:ll Utility; (D). Global utility is grounded in the observation that a
high-fidelity generator should enable accurate conditional prediction of each variable from the others —
an idea closely tied to the Markov blanket in SCMs [32} 33]]. Our experiments reveal a strong correla-
tion between global CI and global utility (Section[4.2), supporting that global utility serves as an effec-

tive and practical metric for evaluating global structural fidelity in the absence of ground-truth SCMs.

ML efficacy and local utility. The utility of the prediction target, Utility , , , (D), commonly referred
to as local utility, aligns with the standard metric for assessing ML efficacy of tabular data generators.
However, both theoretically (Section[3.2.T)) and empirically (Section4.2)), we demonstrate that local
utility can be biased, and even fail to reflect the model’s ability to capture the full causal structure. In
contrast, our proposed global utility mitigates this limitation by treating each feature fairly, thereby
enabling a more robust and comprehensive evaluation of structural fidelity.

3.3 TabStruct Benchmark Suite

To address the limited evaluation scope of existing benchmarks, we propose TabStruct, a novel
benchmark suite that jointly considers structural fidelity alongside conventional evaluation dimensions,
and offers practical insights into real-world scenarios. Detailed descriptions are in Appendix [F]

SCM datasets. To reduce the gap between causal structures in SCM and real-world data, we select six
expert-validated SCM datasets from bnlearn [[78], containing 7-64 features. Full dataset descriptions
are provided in Appendix [E]

Real-world datasets. We observe that many existing generators achieve near-perfect performance on
commonly used benchmark datasets [|80, 198]], suggesting that these datasets offer limited discrimi-
native power. To address this, we select 14 classification datasets from the hard TabZilla suite [[26],
containing 846-98,050 samples and 6-145 features. We further select nine challenging regression
datasets, containing 345-22,784 samples and 6-82 features. Following prior work [61], we exclude
any datasets employed for meta-validation of TabPFN to prevent data contamination, as TabPFN is
used to compute utility scores. Full dataset descriptions are available in Appendix [E]

Benchmark generators. TabStruct includes 13 existing tabular data generation methods of nine
different categories: (i) a standard interpolation method SMOTE [[15]]; (ii) a structure learning method
Bayesian Network (BN) [[76]; (iii) two Variational Autoencoders (VAE) based methods TVAE [94]]
and GOGGLE [58]; (iv) a Generative Adversarial Networks (GAN) method CTGAN [94]; (v) a
normalising flow model Neural Spine Flows (NFLOW) [26]]; (vi) a tree-based method Adversarial
Random Forests (ARF) [92]; (vii) three diffusion models: TabDDPM [53]], TabSyn [98]], TabDiff [80];
(viii) two energy-based models: TabEBM [61] and NRGBoost [[12]]; and (ix) a Large Language Model
(LLM) based method GReaT [11]]. In addition, we include D¢, where the reference data is used
directly for evaluation. Full implementation details of benchmark generators are in Appendix [E|

4 Experiments

We evaluate 13 tabular generators on 29 datasets by focusing on four research questions, and we
further provide promising directions and practical guidance for developing tabular generative models
across various use cases in Appendix [G|

* Validity of Benchmark Framework (Q1): Can the proposed evaluation framework, including the
selected datasets and metrics, yield valid evaluation results regarding generator performance?

* Validity of Global Utility (Q2): Can global utility serve as an effective metric for structural fidelity
when ground-truth causal structures are unavailable?

* Structural Fidelity of Generators (Q3): Can existing tabular generators accurately capture the
underlying data structures across both SCM and real-world datasets?

* Practicability of Global Utility (Q4): Can global utility provide stable and computationally
feasible evaluation results for structural fidelity?
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Table 2: Benchmark results of 13 tabular generators on 29 datasets. We report the normalised
mean =+ std metric values across datasets. “N/A” denotes that a specific metric is not applicable.
We highlight the First, Second and Third best performances for each metric. For visualisation, we
abbreviate “conditional independence” as “CI”. The results show that the Top-3 methods in Global
CI and Global utility are largely consistent between SCM and real-world datasets. This alignment
suggests that the selected SCM datasets represent real-world causal structure, and global utility can
serve as an effective proxy for global CI to evaluate global structural fidelity.

Generator Density Estimation Privacy Preservation ML Efficacy Structural Fidelity

Shape Trend T a-precisiont [-recall T DCR T 4-Presence T | Local utility 7 | Local CIT Global CI T  Global utility T

SCM datasets
Dt | 1.00x000  1.00+000 1.00£000  1.00:000 | 0.00+000 0.00+000 | 0994001 | 0.89:010 1.00.40.00 0.99. 0,01
SMOTE 0.821000  0.85+006 0.60+0.17  0.831001 | 021000 0.010.01 0.921007 | 0.821012 0.3040.11 0.390.00
BN 0801000 0.7310.10 0.78+4010  0.324008 | 0654016 0.07+0.05 0411017 | 0231012 0.354020 0.491024
TVAE 0.59+0.10  0.59+0.14 0.65+0.14  0.361006 | 0.70+0.10 0.1310.11 0.78+013 | 0.501021 0.40-40.00 0.7040.11
GOGGLE | 0461016 0.5040.13 047102  0.36:000 | 0.55+0.13 0.3820.19 0.531006 | 0421027 0.141003 0.2410,08
CTGAN 0465014 0.50x0.16 0714013 0.341008 | 0.5240.11 0.19+0.15 0.8010.11 0.6110.08 0.08+0.04 0.2640.10
NFlow 0314015 0.2610.10 0311021 0.154000 | 0.73 20,16 0.511013 0.10+005 |  0.09+007 0.0940.07 0.1240,07
ARF 0.751014  0.71011 0.791000  0.36:000 | 0.50+0.13 0.09+0.07 0.571004 | 0.211000 0.3540.11 0.6840.11
TabDDPM | 0.62+041  0.60+0.12 0.64019  0.391000 | 0442019 0.141005 0.29:006 | 0.17x008 0.6910.08 0801005
TabSyn 0.5040.16 0.4810.17 0.594014  031eon | 0454014 0.324921 0.760.05 0.700.06 0.7040.04 0.76 10,06
TabDiff 0.69+0.11  0.62+0.15 0.754£000  0.361009 | 0.50+0.14 0.13 4003 0.80-£0.06 0.5840.14 0.57 40,15 0.75 4007
TabEBM 0.67+012  0.57+0.15 0.76 4004 0271009 | 0.55+£022 0.14£0.06 0.59+0.05 0.50+0.19 0.2610.11 0.30+0.08
NRGBoost | 0.65£010 0.50+0.15 0.611014  0.261007 | 0.5320.12 0.28£021 0.7510.01 0.64+0,05 0.11100s5 0.161002
GReaT 0621000 0.591007 062010 0382007 | 0521007 018005 0271000 | 01712000 0.164500s 0.251008
Real-world datasets

Dret | 100000 100000 1002000 1.002000 | 0.00000 0.00+000 | 096006 | N/A N/A 0.9910.01
SMOTE 0.61+013  0.871005 08Ls011 0.771001 | 0.194000 0.0240.02 0.91 40,07 N/A N/A 0414004
BN 0.6610.11  0.7210.09 0864000  0.30:1004 | 0484016 0.07 1008 0.38+0.16 N/A N/A 0.44 105
TVAE 045502 0.5040.14 0.551020  0.184004 | 0681015 0.2940.15 0.70+0.06 N/A N/A 0.5310.13
GOGGLE | 0414015 0474014 0574016 0264007 | 0.5040.11 0.3550.18 0.46.10.04 N/A N/A 0.214006
CTGAN 0294018  0.5340.14 0.664021  0.11400s5 | 0.514013 0.30£0.24 0.70+0.06 N/A N/A 0.131006
NFlow 0.3840.19 0.2840.16 0524015 0.074004 | 0.641014 0421005 0.10+0.06 N/A N/A 0.1410.12
ARF 0.611011  0.584012 0.831010 0211004 | 0484014 0.0510.04 0.5410.07 N/A N/A 0.5610.12
TabDDPM | 0.4310.16 0.4910.8 0.544020  0.261009 | 0.4240.19 0.27 £0.18 0.27 10,06 N/A N/A 0.7240.08
TabSyn 0.441014  0.511016 0.621018 0244008 | 0.514012 0.24.10.14 0.76.0,08 N/A N/A 0.73410.07
TabDiff 0.541015  0.5240.6 0.69+012 0224007 | 0.5740.15 0.20£0.13 0.78.£0.03 N/A N/A 0.73 1007
TabEBM 0.594015  0.651008 0.791004 030010 | 0.5810.16 0.1440.03 0.6310.11 N/A N/A 0.3540.11
NRGBoost | 0.541012 0.4940.13 0.621016 0204007 | 0.514015 0224013 0.74 1005 N/A N/A 0.1640.05
GReaT 0471010 0491013 0571014 0264008 | 0.5250.11 0271015 0.2340.07 N/A N/A 0.2040,06

Experimental setup. For each dataset of N samples, we first split it into train and test sets (80%
train and 20% test). We further split the train set into a training split (D;er) and a validation split (90%
training and 10% validation). We repeat the splitting 10 times, summing up to 10 runs per dataset. All
benchmark generators are trained on D,¢, and each generator produces a synthetic dataset with Nye¢
samples. We tune the parameterised generators using Optuna [3]] to minimise their average validation
loss across 10 repeated runs. Each generator is given at most two hours to complete a single repeat.
The reported results are averaged by default over 10 repeats. We aggregate results across all SCM
or real-world datasets because the findings are consistent across classification and regression tasks.
Specifically, we use the average distance to the minimum (ADTM) metric via affine renormalisation
between the top-performing and worse-performing models [37} 163,41, 161} 44]. We further provide
the detailed configurations (Appendix [E) and raw results (Appendix [H).

4.1 Validity of Benchmark Framework (Q1)

The benchmark metrics effectively evaluate data quality. Table 2] demonstrates that all metrics
effectively distinguish between high- and low-quality data. Specifically, except for privacy-related
metrics, the reference data (D;.¢) consistently achieves the highest scores. This is expected, as Dyt s
the ground truth and should score highly on metrics of density estimation, ML efficacy, and structural
fidelity. In contrast, privacy metrics reward greater differences from the ground truth to indicate
stronger privacy preservation. Since D, is identical to the ground truth, it naturally scores poorly for
privacy. These results show that the selected metrics provide appropriate evaluations for data quality.
Therefore, we consider the evaluation results to be valid and meaningful for analysis.

The benchmark datasets present a genuine challenge for existing generators. As detailed
in Section[3.3] we select challenging, contamination-free real-world datasets, ensuring that they are
non-trivial for existing tabular data generators. Table|2|illustrates that, unlike prior studies [80, 98| 61]],
no generator can easily match D, on our benchmark datasets. This confirms that the selected datasets
offer a more informative and realistic assessment of generator capabilities.

4.2 Validity of Global Utility (Q2)

Global utility serves as an effective metric for global structural fidelity. Table [2]and Figure 2]
(left) demonstrate a strong monotonic correlation between global utility and global CI scores




274

294

1.0 -l
Local utility - 00901 0.49 0.14 0.26 2z Reference data)
'§ 081 TabDDPM abDiff]
Local CI-0.25 0.23 0.22 0.42 50X ENe0] 0.22 0.11 = % TabSyn
§06 + TVAE
Global CI-0.47 0.47 0.37 0.49 0 00.14 0. 22 0 84 _;00 . SMOTE
S bEBM
Global utility—0.590.51 0 26 0. 11. 20 EFdT 7 GogoLe %%GBON
‘ ‘ S NFlow
\)\\\‘3 ‘O‘A\C \)\\\\’d Zo 0.0 CTGA

o «@& 60.\%\0,@@ OC‘& \
0 § 3¢ v AR 00 02 04 06 08 10
IS . e
Normalised local utility 1

Figure 2: Left: Spearman’s rank correlation heatmap based on metric values on six SCM datasets.
Global utility correlates strongly with global CI, suggesting that global utility can effectively assess
global structural fidelity as an SCM-free proxy of global CI. Right: Mean normalised local utility vs.
mean normalised global utility on 23 real-world datasets. SMOTE prioritises local utility, whereas
TabDiff and TabSyn generally achieve a balanced preservation of both global and local data structures.

(rs = 0.84,p < 0.001). In addition, global CI exhibits weaker correlations with all other metrics,
showing conventional dimensions cannot sufficiently indicate structural fidelity. Appendix [G]further
shows that global utility more closely approximates the ranking induced by global CI than local
utility. In other words, generators that excel in capturing global structure also score highly in
global utility (e.g., TabSyn and TabDiff), while the ones that struggle to capture global structure
(e.g., NFlow and NRGBoost) perform poorly under global utility. Although global utility does not
theoretically guarantee causal alignment, we note that even state-of-the-art causal discovery methods
cannot theoretically ensure the inferred graphs align with the ground-truth SCMs [46]]. In contrast,
the empirical results validate the use of global utility for measuring global structural fidelity when
the ground-truth SCM is unavailable.

Local utility is not always the golden standard, due to its bias towards the local structure. We
further examine the correlation between local utility and local CI, which only considers the local
structure associated with the prediction target. As shown in Figure [2] (left), local utility exhibits a
strong correlation with local CI (rs = 0.78, p < 0.001), but a much weaker correlation with global
CI (rs = 0.14,p < 0.001). The results indicate that local utility may reward “myopic” generators
while missing the holistic data structure. This underscores the necessity of global utility for a more
comprehensive evaluation of structural fidelity in tabular generation.

4.3 Structural Fidelity of Generators (Q3)

Diffusion models generally capture the global structure well. As reported in Table[2]and Figure 2]
(right), diffusion-based models consistently achieve the highest scores in global structural fidelity:
the Top-3 methods are TabDDPM, TabSyn, and TabDiff across both SCM and real-world datasets.
We attribute their strong performance to the inherent capacity of diffusion models for learning
permutation-invariant conditional distributions of each feature. At the training stage, since Gaussian
noise is added independently to each feature, the diffusion network is optimised at every denoising
step to reconstruct each feature by conditioning on all others. Consequently, it learns the conditional
distribution for every feature p(x; | X \ {x,}) simultaneously. Moreover, unlike autoregressive
models, which generally rely on a fixed generation order, diffusion models impose no ordering
constraint. This results in efficient computation (Figure [3) and permutation-invariant conditional
distributions, a property that aligns naturally with the structure of tabular data. These theoretical
properties align with the conditional independence analysis in Section [3.2.1] thus confirming that
diffusion models are capable of capturing global structure.

Interpolation and energy-based methods tend to prioritise local structure over global structure.
Figure 2] (right) shows that the interpolation method (e.g., SMOTE) and energy-based models (e.g.,
TabEBM and NRGBoost) can effectively capture local structure, yet perform poorly when modelling
global structure. These two families of methods share a common trait in their generation process:
they generate new samples from class-specific reference data. For example, in classification tasks,
SMOTE interpolates between samples of the same class, and TabEBM samples from a class-specific
energy surface. As a result, the generated samples are inevitably biased towards local structure.

Structure learning methods struggle with tabular data generation. One surprising finding is that
BN and GOGGLE do not demonstrate strong performance in terms of structural fidelity, despite their
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Figure 3: Computation efficiency on 23 real-world datasets. Left: Median training time per 1,000
samples vs. mean normalised global utility. Middle: Median generation time per 1,000 samples vs.
mean normalised global utility. We exclude the outliers (TabEBM and GReaT) due to their long
generation time (over 30s). Full results are in Appendix |[H} Right: Median evaluation time. Because
global utility yields stable rankings across downstream predictors (Appendix [G)), computing global
utility can be highly efficient with only a small ensemble of predictors (i.e., Tiny-default).

inductive bias towards learning tabular data structures. This observation aligns with prior work [89],
which highlights that current causal discovery algorithms often struggle when the number of features
exceeds 10. In contrast, our benchmark datasets have features from 7 up to 145. Furthermore,
GOGGLE exhibits notable performance degradation when prior knowledge about the data structure is
missing [58]]. The results underscore the limitations of existing causal discovery methods in recovering
precise causal structures from real-world data, further justifying our evaluation at the CPDAG level.

Discussion on more models. We further provide a detailed performance analysis of the remaining
generators, such as autoregressive models, in Appendix [G]

4.4 Practicability of Global Utility (Q4)

Global utility is robust, stable, and efficient. To evaluate the robustness of global utility, we
examine how generator rankings vary under different configurations of downstream models.
Appendix |G| shows that global utility yields stable rankings across both nine tuned predictors
(“Full-tuned”) and three untuned ones (“Tiny-default”). In contrast, local utility necessitates nine
tuned predictors (‘“Full-tuned”) for reliable results. In practice, we are often interested in identifying
the most promising model before fine-tuning it for optimal performance [63]. As such, global
utility offers an efficient and informative evaluation. As illustrated in Figure 3] (right), global utility
(“Tiny-default”) provides reliable rankings with a median runtime of just 0.64 seconds per 1,000
samples, nearly half the time required by local utility (1.21 seconds with “Full-tuned”).

Limitations and future work. While our proposed global utility is a robust and effective metric
for assessing global structural fidelity, it is an empirical approximation of the likely SCMs behind
the data at hand. This is in line with several open challenges in the field, specifically the lack of
causal discovery methods that can reliably infer the governing SCMs of real-world tabular data with
strong theoretical guarantees [46, |89, 34} [71]. Addressing this gap would require advances in causal
modelling, which we leave for future work. More discussion on future work is in Appendix [G}

5 Conclusion

We present TabStruct, a principled benchmark for tabular data generators along with both structural
fidelity and conventional dimensions. To address the challenge of assessing structural fidelity in the
absence of ground-truth SCMs, we introduce global utility — a novel, SCM-free metric that enables
unbiased and holistic evaluation for tabular data structure.

In our large-scale study of 13 generators across 29 datasets, we find that existing evaluation methods
often favour models that capture local correlations while neglecting global structure. Our results
show that diffusion models, due to their permutation-invariant generation process, offer valuable
insights into the fundamental representation learning of tabular data. We further observe that the
four evaluation dimensions are complementary, offering practical guidance for selecting suitable
generators across diverse applications. TabStruct is an ongoing effort. As such, it will continue to
evolve with additional datasets, generators, and evaluation metrics — both through our engagement
and contributions from the community. We envision that the open-source nature of TabStruct will
help drive progress in tabular generative modelling.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Section [I]details our research objectives and highlights our contributions.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Presented in Section Hl

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Section [3|presents the theoretical results of our proposed metric.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Refer to Appendix [E| where we provide full details on reproducing the results
in the paper. We provide an open-source library of the proposed benchmark.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Refer to Appendix [E] All datasets used in this paper are publicly available,
and the implementations of benchmark generators are open-source. We also provide an
open-source library https://anonymous.4open.science/r/TabStruct-E4E4.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Appendix [E|provides full descriptions of the experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Refer to Section[d where we provide standard deviations for all tables. Figure[2]
(right) and Figure 3] contain error bars. In Figure 2] (left), we show statistical significance
tests of the correlation between different metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Refer to Appendix [E] where we provide full details on the computation
resources used in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We carefully check the NeurIPS Code of Ethics, and we confirm that our work
follows the Code in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Refer to Appendix[A] where we include the societal impacts of our work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Refer to Appendix [El where we provide the open-source licenses followed by
the creators or original owners of assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the implementation of our proposed metric and benchmark as
a python library attached to this submission. We will make it publicly available post-
publication.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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923 * Depending on the country in which research is conducted, IRB approval (or equivalent)

924 may be required for any human subjects research. If you obtained IRB approval, you
925 should clearly state this in the paper.

926 * We recognize that the procedures for this may vary significantly between institutions
927 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
928 guidelines for their institution.

929 * For initial submissions, do not include any information that would break anonymity (if
930 applicable), such as the institution conducting the review.

931 16. Declaration of LLLM usage

932 Question: Does the paper describe the usage of LLMs if it is an important, original, or
933 non-standard component of the core methods in this research? Note that if the LLM is used
934 only for writing, editing, or formatting purposes and does not impact the core methodology,
935 scientific rigorousness, or originality of the research, declaration is not required.

936 Answer: [NA]

937 Justification: [NA]

938 Guidelines:

939 * The answer NA means that the core method development in this research does not
940 involve LLMs as any important, original, or non-standard components.

941 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
942 for what should or should not be described.
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