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Abstract

Evaluating tabular generators remains a challenging problem, as the unique causal1

structural prior of heterogeneous tabular data does not lend itself to intuitive human2

inspection. Recent work has introduced structural fidelity as a tabular-specific3

evaluation dimension to assess whether synthetic data complies with the causal4

structures of real data. However, existing benchmarks often neglect the interplay5

between structural fidelity and conventional evaluation dimensions, thus failing6

to provide a holistic understanding of model performance. Moreover, they are7

typically limited to toy datasets, as quantifying existing structural fidelity metrics8

requires access to ground-truth causal structures, which is rarely available for9

real-world datasets. In this paper, we propose a novel evaluation framework that10

jointly considers structural fidelity and conventional evaluation dimensions. We11

introduce a new evaluation metric, global utility, which enables the assessment of12

structural fidelity even in the absence of ground-truth causal structures. In addition,13

we present TabStruct, a comprehensive evaluation benchmark offering large-scale14

quantitative analysis on 13 tabular generators from nine distinct categories, across15

29 datasets. Our results demonstrate that global utility provides a task-independent,16

domain-agnostic lens for tabular generator performance. We release the TabStruct17

benchmark suite, including all datasets, evaluation pipelines, and raw results.18

1 Introduction19

Tabular data generation is a cornerstone of many real-world machine learning tasks [10, 29], ranging20

from training data augmentation [61, 23] to missing data imputation [98, 80]. These applications21

underscore the importance of generative modelling, which necessitates an appropriate understanding22

of the underlying data structure [50, 35, 9]. For instance, textual data conforms to the distributional23

hypothesis, and thus the autoregressive models are a natural workhorse for the text generation24

process [100, 77]. In contrast to the homogeneous modalities like text, tabular data can pose a25

different structural prior due to its heterogeneity – the features within a dataset typically have varying26

types and semantics, with feature sets that can differ across datasets [37, 80]. Recent work [41] on27

tabular foundation predictors has empirically demonstrated that the Structural Causal Model (SCM)28

is an effective structural prior of tabular data. As such, it is important to investigate how effectively29

existing generative models capture and leverage the causal structures of tabular data.30

Prior work [40, 76, 25, 89, 59, 47] has attempted to assess tabular data generators by evaluating the syn-31

thetic data they produce. However, the prevailing evaluation paradigms still exhibit three primary limi-32

tations, which are summarised in Table 1: (i) Insufficient tabular-specific fidelity assessments. Current33

benchmarks largely adopt evaluation dimensions from homogeneous data modalities, such as density34

estimation [4], machine learning (ML) efficacy [94], and privacy preservation [53]. While effective in35

other modalities, they exhibit conceptual limitations when applied to tabular data – they do not explic-36
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Figure 1: Illustrative example highlighting the importance of fidelity check for tabular data
structure. 1 : A real-world physical system showing the gravitational forces acting on ball A.
The system is described by ball density (ρ), volume (V ), masses (mA & mB), distance (r), and
gravitational forces (Fball & FEarth). For simplicity, we assume both balls share identical density.
2 : We derive the ground-truth (GT) causal structure of the system based on Newton’s law of

universal gravitation. 3 : We interpret the encoded physical laws of the system as the conditional
independence (CI) across variables. 4 : We evaluate four generators by conventional metrics. 5 : We
assess the structural fidelity by CI tests and the proposed global utility metric. We note that the
global structure reflects full conditional independence across all variables, while the local structure
includes only those directly relevant to a specific prediction task at hand (Fball). Results demonstrate
that conventional metrics are insufficient: for instance, while SMOTE is able to outperform other
generators on conventionally used dimensions (e.g., ML efficacy) – the generated synthetic data only
preserves local structure and violates most physical laws. For tabular data, where the truthfulness
and authenticity of synthetic data is hard to verify, global utility provides an effective mechanism for
evaluating the alignment of the synthetic data to the likely ground-truth causal structure.

itly assess the unique structural prior of tabular data. A notable example is that many generators (e.g.,37

SMOTE) can produce synthetic data with similar density estimation as real data, yet still violate under-38

lying causal structures – such as physical laws illustrated in Figure 1( 3 ). Although CauTabBench [89]39

takes a step forward to assess the structural fidelity of synthetic data, it remains confined to toy SCM40

datasets (i.e., synthetic datasets derived from random SCMs). Thus, CauTabBench offers limited41

insight into generative modelling performance on real-world tabular data, where the ground-truth42

SCMs are unavailable. (ii) Potential evaluation biases. Many benchmarks [40, 76] and model stud-43

ies [94, 61, 98] prioritise ML efficacy as the principal dimension for assessing generator performance.44

For instance, in a classification setting, a generator is often considered effective if its synthetic data45

allows downstream models to achieve high predictive accuracy. However, while useful, ML efficacy46

can be highly sensitive to the choice of prediction task and target (Section 3.2.1). The reliance on ML47

efficacy can lead to biased conclusions: it tends to favour generators that are well-fitted for a specific48

prediction target, while obscuring their capacity to capture the global data structure (Figure 1( 5 )).49

(iii) Limited evaluation scope. Existing benchmarks mainly consider only a narrow range of datasets50

and generative models (Table 1), which restricts their ability to provide a thorough and generalisable51

comparison of model performance across the broader landscape of tabular generative modelling.52
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Table 1: Evaluation scope comparison between TabStruct and prior tabular generative mod-
elling benchmarks. TabStruct presents a comprehensive evaluation framework for tabular generative
models, incorporating a wide range of evaluation dimensions, datasets, and generator categories.

Benchmark Conventional dimensions Structural fidelity Data Generator
Density Estimation Privacy Preservation ML Efficacy SCM data Real-world data # Datasets Contamination-free # Models # Categories

Hansen et al. [40] " % " % % 11 " 5 5
Synthcity [76] " " " % % 18 % 6 4
SynMeter [25] " " " % % 12 % 8 4
CauTabBench [89] " % % " % 10 " 7 4
SynthEval [59] % " " % % 1 " 5 3
Karpar et al.[47] " % " % % 2 " 6 4

TabStruct (Ours) " " " " " 29 " 13 9

In this paper, we aim to bridge these gaps by introducing a systematic and comprehensive evaluation53

framework for existing tabular generative models, with a particular focus on the structural prior54

of tabular data. Our proposed framework is characterised by five key concepts: (i) We explicitly55

incorporate structural fidelity of synthetic data as a core evaluation dimension for tabular generative56

models. Structural fidelity can directly reflect model capability in learning the structure of tabular57

data, without biasing towards a specific prediction target. In addition, we retain the three conventional58

evaluation dimensions (density estimation, privacy preservation, and ML efficacy) and investigate59

their interplay with structural fidelity, offering customised guidance for selecting suitable generators60

across diverse use cases. (ii) We evaluate structural fidelity on expert-validated SCM datasets. To61

ensure alignment with ground-truth causal structures, we avoid using toy SCMs and instead select62

SCM datasets with expert-validated causal structures. With ground-truth SCMs, we can derive63

the conditional independence (CI) of features. We then quantify structural fidelity through the64

difference in CI between real and synthetic data as shown in Figure 1( 5 ) (iii) We further extend the65

evaluation of structural fidelity to real-world datasets, where the ground-truth SCMs are unavailable.66

To this end, we propose a novel evaluation metric, global utility, which treats each variable as a67

prediction target and measures how well it can be predicted using other variables. Importantly, global68

utility does not require ground-truth causal structures, thus enabling the evaluation of structural69

fidelity in real-world scenarios. (iv) We conduct an extensive empirical study on the performance70

of 13 tabular generators spanning nine categories on 29 datasets, resulting in a total of over71

150,000 evaluations. The large evaluation scope can ensure holistic and robust benchmarking results.72

(v) We introduce TabStruct, the benchmark suite developed for this work. TabStruct features a well-73

structured system design and consistent APIs for building and evaluating various tabular generative74

models. This open-source library aims to help the research community explore tabular generative75

modelling within a standardised framework.76

Across both SCM and real-world datasets, our primary finding is:77

Structural fidelity, as quantified by the proposed global utility, should be a core dimension when78

evaluating tabular generative models.79

The benchmark results suggest the prevailing paradigm (i.e., optimising tabular generators primarily80

for improved density estimation and ML efficacy) is insufficient. In contrast, global utility offers a81

complementary perspective – tabular-specific fidelity assessments. Finally, we find that diffusion-82

based generators can be considered as a reliable approach for tabular data generation, given their83

consistent performance in capturing high-fidelity global data structures.84

Our contributions can be summarised as follows:85

• Conceptual (Section 3): We propose a unified evaluation framework for tabular generators that86

integrates structural fidelity with conventional dimensions, and introduce global utility, a novel87

metric that measures structural fidelity without requiring access to ground-truth causal structures.88

• Technical (Section 3): We release the TabStruct benchmark suite1, including datasets, generator89

implementations, evaluation pipelines, and all raw results.90

• Empirical (Section 4): We conduct a large-scale quantitative study of 13 tabular generators on 2991

datasets. The results offer actionable insights into model performance and can inspire the design92

of more effective tabular generators by attending to the unique structural prior of tabular data.93

1Code is available at https://anonymous.4open.science/r/TabStruct-E4E4.
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2 Related Work94

Tabular Generator Benchmarks. An extensive line of benchmarks [86, 40, 76, 25, 49, 82, 60]95

has been proposed for tabular data generation, conventionally established around three dimensions:96

density estimation, privacy preservation, and ML efficacy. Density estimation [40, 4, 80, 98] assesses97

the divergence between real and synthetic data distributions. However, it fails to capture inter-feature98

interactions and, as a result, cannot evaluate whether synthetic data preserves the causal structures99

present in the real data. ML efficacy [94, 76, 79, 87] evaluates the performance difference when100

real data is replaced with synthetic data in downstream tasks, which primarily focuses on p(y |101

x), thus inherently prioritising feature-target relationships over inter-feature interactions. Privacy102

preservation [25, 53, 42, 28], although essential in privacy-sensitive scenarios, is generally task-103

specific and usually does not necessitate high structural fidelity [20, 59, 67]. Recent efforts such as104

Synthcity [76] and SynMeter [25] have aimed to standardise the evaluation of tabular data generators105

by incorporating the three conventional dimensions. Nonetheless, they omit explicit assessment of106

tabular data structure. To the best of our knowledge, CauTabBench [89] is the only other benchmark to107

explicitly evaluate structural fidelity, but it is limited to toy SCM datasets, as existing metrics [16, 84]108

typically assume access to the ground-truth SCMs – a condition that is seldom satisfied and arguably109

infeasible for most real-world datasets [46, 34, 102]. We further provide a detailed summary of prior110

studies on tabular data generation in Appendix B. As shown in Table 1, despite the ongoing progress,111

existing benchmarks neither comprehensively cover all evaluation dimensions nor provide a broad112

evaluation scope across datasets and generators. To bridge these gaps, we introduce global utility,113

an SCM-free metric that quantifies how well a generator preserves the causal structure of real data.114

Our TabStruct benchmark provides a comprehensive evaluation framework for tabular generators.115

3 Methods116

3.1 Problem Setup117

Dataset and tabular generator. Let Dfull := {(x(i), y(i))}Ni=1 ∼ p(x, y) represent a labelled tabular118

dataset with x(i) ∈ RD. We refer to the d-th feature (i.e., a column/variable) as xd, and the d-th119

feature of the i-th sample (i.e., a cell) as x(i)
d . For notational simplicity, we define xD+1 := {y(i)}Ni=1,120

so that the full collection of variables, including both features and target, can be written as X :=121

{x1, . . . ,xD,xD+1}. We denote the training split of Dfull as the reference dataset (Dref), and test122

data as Dtest. A tabular generator is trained on Dref and aims to generate synthetic data Dsyn ∼ p(x̃, ỹ)123

close to p(x, y). We evaluate the quality of Dref wrt. all the metrics, thus providing a benchmark124

performance against which Dsyn is compared. We refer to any dataset being assessed as “evaluation125

dataset D”, thus, both Dref and Dsyn may serve as evaluation datasets.126

Structural causal models (SCM). Under the assumptions of causal sufficiency, the Markov property,127

and faithfulness, an SCM is defined by the quadruple M := ⟨X ,G,F , E⟩. G is the causal graph that128

encodes the causal relationships among the variables. E := {ϵj}D+1
j=1 denotes the exogenous noise,129

and F := {fj}D+1
j=1 is the set of structural functions. Each variable xj is determined by a function130

fj of its parents and its exogenous noise, that is, xj = fj (pa(xj), ϵj), where pa(xj) ⊆ X \ {xj}131

denotes the parent set of xj in the graph G.132

3.2 Structural Fidelity133

As an empirically effective structural prior for tabular data, SCM provides a formal framework for134

the underlying generative processes of tabular data [41, 89]. Therefore, we define the structural135

fidelity of a tabular generator as the alignment between the SCMs in its synthetic data and the136

ground-truth causal structures. Next, we introduce the quantifications of structural fidelity on SCM137

(Section 3.2.1) and real-world (Section 3.2.2) datasets. We further discuss the rationales behind using138

causal structural prior for tabular data in Appendix D.139

3.2.1 Conditional Independence Score: Quantifying Structural Fidelity with SCM140

Motivation. We begin by quantifying structural fidelity under the assumption that the ground-truth141

SCM is available. Following established benchmarks in causal discovery and inference [84, 46, 89],142

we evaluate structural fidelity at the level of the Markov equivalence class. At this level, causal struc-143

tures are represented as completed partially directed acyclic graphs (CPDAGs). The SCMs of Dref and144

Dsyn are equivalent if they entail the same set of conditional independence (CI) statements (see Fig-145

ure 1( 2 & 3 ) for an illustration). This implies that both SCMs serve as minimal I-MAPs [2] of the146
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joint distribution factorisation p(X ) =
∏D+1

j=1 p(xj | pa (xj)), and no causal directions can be further147

removed. Therefore, the CPDAG-level evaluation provides a lens to interpret the fidelity of the tabular148

data. Further discussion on the rationale for CPDAG-level evaluation is provided in Appendix D.149

CI scores at various granularities. Following prior work [84, 89], the full set of CI statements150

implied by the ground-truth SCM on Dref is defined as151

Cglobal :=
{
(xj ⊥⊥ xk | Sj,k) | Sj,k⊆X \ {xj ,xk}

}
∪
{
(xj ̸⊥⊥ xk | Ŝj,k) | Ŝj,k⊊Sj,k

}
(1)

where Sj,k and Ŝj,k are the d-separation and d-connection sets for (xj ,xk), respectively. The152

derivations of CI statements are fully programmatic [85, 24, 21]. More details are in Appendix C.153

For each CI statement, we assess whether it holds in the evaluation dataset D (i.e., Dref or Dsyn) by154

conducting a CI test at the significance level α = 0.01 via155

Îα(xj ,xk | Sj,k, Ŝj,k;D) =

{
1, if the CI statement is not rejected on D at level α,
0, otherwise.

(2)

To quantify structural fidelity at varying levels of granularity, we define the CI score for any subset of156

CI statements C ⊆ Cglobal as:157

CI (C,D) =
1

|C|
∑
C
1

[
Îα(xj ,xk | Sj,k, Ŝj,k;D) = 1

]
(3)

where CI (C,D) ∈ [0, 1] measures the fidelity of selected CI statements in D, and 1(·) denotes the158

indicator function. A higher CI score indicates that the evaluation dataset more closely aligns with159

the structure of the ground-truth SCM. Implementation details for the CI scores are in Appendix C.160

Local structure vs. Global structure. We assess structural fidelity at two levels of granularity: local161

and global. For local structural fidelity, we define the local CI score, CI (Clocal,D), by considering162

only the CI statements that directly involve the prediction target y of a given dataset and predictive163

task. Specifically, we compute the local CI score using Equation (3) with Clocal =
{
(xj ⊥⊥ xD+1 |164

Sj,D+1) | j ∈ [D]
}
∪
{
(xj ̸⊥⊥ xD+1 | Ŝj,D+1) | j ∈ [D]

}
(see Figure 1( 3 ) for an illustration). Clocal165

highlights which features are uninformative for predicting y when conditioned on the corresponding166

d-separation sets. Therefore, matching the local CI set indicates which features should be ignored167

when learning p(y | x). A higher local CI score suggests the generator faithfully captures the local168

structure around the target, implying the potentially high utility of D for downstream predictive169

tasks. We empirically observe a strong correlation between the local CI score and the predictive170

performance on y (Section 4.2).171

For global structural fidelity, we define the global CI score as the CI score computed over the full set172

of CI statements, that is, CI (Cglobal,D). Global CI provides a comprehensive assessment of the entire173

causal structure encoded in the dataset, mitigating potential bias towards any particular variable.174

3.2.2 Global Utility: SCM-free Metric for Global Structural Fidelity175

Motivation. The CI scores introduced in Section 3.2.1 require access to a ground-truth SCM to176

enumerate the CI statements Cglobal. However, for real-world datasets, such an SCM is typically177

unavailable or even non-identifiable, thereby precluding direct evaluation of structural fidelity. To178

address this limitation, we propose global utility as an SCM-free proxy for global CI.179

Utility per variable. Given an evaluation dataset D, we treat each variable xj ∈ X as a prediction180

target. An ensemble of multiple downstream predictors is trained to predict xj using the remaining181

variables X \ {xj} as inputs, following a standard supervised learning setup. The predictive perfor-182

mance on Dtest is denoted as Perfj(D), measured using balanced accuracy for categorical variables183

and root mean square error (RMSE) for numerical variables. We define the utility of variable xj as184

the relative performance achieved on evaluation data compared to reference data:185

Utilityj
(
D
)
:=

Perfj
(
Dref

)−1
Perfj

(
D
)
, if xj is categorical,

Perfj
(
D
)−1

Perfj
(
Dref

)
, if xj is numerical.

(4)

Utility offers a unified perspective for interpreting downstream performance across mixed variable186

types: Utilityj ≥ 1 indicates that downstream predictors trained on D perform on par with or better187
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than those trained on Dref for predicting xj , whereas Utilityj < 1 implies a loss in predictive power.188

To mitigate the potential bias from a specific downstream predictor, we ensemble nine different189

predictors with AutoGluon [27]. Full technical details are in Appendix C.190

Global utility. The theoretical (Section 3.2.1) and empirical (Section 4.2) analysis showcases191

a strong correlation between the local CI score (CI (Clocal,D)) and the predictive performance192

of y (UtilityD+1(D)). Therefore, we hypothesise that aggregating the utility across all fea-193

tures can approximate the global CI score (CI (Cglobal,D)), and we define the global utility as:194

Global Utility(D) := 1
D+1

∑D+1
j=1 Utilityj(D). Global utility is grounded in the observation that a195

high-fidelity generator should enable accurate conditional prediction of each variable from the others –196

an idea closely tied to the Markov blanket in SCMs [32, 33]. Our experiments reveal a strong correla-197

tion between global CI and global utility (Section 4.2), supporting that global utility serves as an effec-198

tive and practical metric for evaluating global structural fidelity in the absence of ground-truth SCMs.199

ML efficacy and local utility. The utility of the prediction target, UtilityD+1(D), commonly referred200

to as local utility, aligns with the standard metric for assessing ML efficacy of tabular data generators.201

However, both theoretically (Section 3.2.1) and empirically (Section 4.2), we demonstrate that local202

utility can be biased, and even fail to reflect the model’s ability to capture the full causal structure. In203

contrast, our proposed global utility mitigates this limitation by treating each feature fairly, thereby204

enabling a more robust and comprehensive evaluation of structural fidelity.205

3.3 TabStruct Benchmark Suite206

To address the limited evaluation scope of existing benchmarks, we propose TabStruct, a novel207

benchmark suite that jointly considers structural fidelity alongside conventional evaluation dimensions,208

and offers practical insights into real-world scenarios. Detailed descriptions are in Appendix F.209

SCM datasets. To reduce the gap between causal structures in SCM and real-world data, we select six210

expert-validated SCM datasets from bnlearn [78], containing 7-64 features. Full dataset descriptions211

are provided in Appendix E.212

Real-world datasets. We observe that many existing generators achieve near-perfect performance on213

commonly used benchmark datasets [80, 98], suggesting that these datasets offer limited discrimi-214

native power. To address this, we select 14 classification datasets from the hard TabZilla suite [26],215

containing 846-98,050 samples and 6-145 features. We further select nine challenging regression216

datasets, containing 345-22,784 samples and 6-82 features. Following prior work [61], we exclude217

any datasets employed for meta-validation of TabPFN to prevent data contamination, as TabPFN is218

used to compute utility scores. Full dataset descriptions are available in Appendix E.219

Benchmark generators. TabStruct includes 13 existing tabular data generation methods of nine220

different categories: (i) a standard interpolation method SMOTE [15]; (ii) a structure learning method221

Bayesian Network (BN) [76]; (iii) two Variational Autoencoders (VAE) based methods TVAE [94]222

and GOGGLE [58]; (iv) a Generative Adversarial Networks (GAN) method CTGAN [94]; (v) a223

normalising flow model Neural Spine Flows (NFLOW) [26]; (vi) a tree-based method Adversarial224

Random Forests (ARF) [92]; (vii) three diffusion models: TabDDPM [53], TabSyn [98], TabDiff [80];225

(viii) two energy-based models: TabEBM [61] and NRGBoost [12]; and (ix) a Large Language Model226

(LLM) based method GReaT [11]. In addition, we include Dref, where the reference data is used227

directly for evaluation. Full implementation details of benchmark generators are in Appendix E.228

4 Experiments229

We evaluate 13 tabular generators on 29 datasets by focusing on four research questions, and we230

further provide promising directions and practical guidance for developing tabular generative models231

across various use cases in Appendix G.232

• Validity of Benchmark Framework (Q1): Can the proposed evaluation framework, including the233

selected datasets and metrics, yield valid evaluation results regarding generator performance?234

• Validity of Global Utility (Q2): Can global utility serve as an effective metric for structural fidelity235

when ground-truth causal structures are unavailable?236

• Structural Fidelity of Generators (Q3): Can existing tabular generators accurately capture the237

underlying data structures across both SCM and real-world datasets?238

• Practicability of Global Utility (Q4): Can global utility provide stable and computationally239

feasible evaluation results for structural fidelity?240
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Table 2: Benchmark results of 13 tabular generators on 29 datasets. We report the normalised
mean ± std metric values across datasets. “N/A” denotes that a specific metric is not applicable.
We highlight the First, Second and Third best performances for each metric. For visualisation, we
abbreviate “conditional independence” as “CI”. The results show that the Top-3 methods in Global
CI and Global utility are largely consistent between SCM and real-world datasets. This alignment
suggests that the selected SCM datasets represent real-world causal structure, and global utility can
serve as an effective proxy for global CI to evaluate global structural fidelity.

Generator Density Estimation Privacy Preservation ML Efficacy Structural Fidelity
Shape ↑ Trend ↑ α-precision ↑ β-recall ↑ DCR ↑ δ-Presence ↑ Local utility ↑ Local CI ↑ Global CI ↑ Global utility ↑

SCM datasets
Dref 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 0.00±0.00 0.99±0.01 0.89±0.10 1.00±0.00 0.99±0.01

SMOTE 0.82±0.09 0.85±0.06 0.60±0.17 0.83±0.01 0.21±0.09 0.01±0.01 0.92±0.07 0.82±0.12 0.30±0.11 0.39±0.09
BN 0.80±0.09 0.73±0.10 0.78±0.10 0.32±0.08 0.65±0.16 0.07±0.05 0.41±0.17 0.23±0.12 0.35±0.20 0.49±0.24
TVAE 0.59±0.10 0.59±0.14 0.65±0.14 0.36±0.06 0.70±0.10 0.13±0.11 0.78±0.13 0.50±0.21 0.40±0.09 0.70±0.11
GOGGLE 0.46±0.16 0.50±0.13 0.47±0.20 0.36±0.09 0.55±0.13 0.38±0.19 0.53±0.06 0.42±0.27 0.14±0.03 0.24±0.08
CTGAN 0.46±0.14 0.50±0.16 0.71±0.13 0.34±0.08 0.52±0.11 0.19±0.15 0.80±0.11 0.61±0.08 0.08±0.04 0.26±0.10
NFlow 0.31±0.15 0.26±0.10 0.31±0.21 0.15±0.09 0.73±0.16 0.51±0.13 0.10±0.05 0.09±0.07 0.09±0.07 0.12±0.07
ARF 0.75±0.14 0.71±0.11 0.79±0.09 0.36±0.09 0.50±0.13 0.09±0.07 0.57±0.04 0.21±0.09 0.35±0.11 0.68±0.11
TabDDPM 0.62±0.11 0.60±0.12 0.64±0.19 0.39±0.09 0.44±0.19 0.14±0.05 0.29±0.06 0.17±0.08 0.69±0.08 0.80±0.05
TabSyn 0.50±0.16 0.48±0.17 0.59±0.14 0.31±0.11 0.45±0.14 0.32±0.21 0.76±0.05 0.70±0.06 0.70±0.04 0.76±0.06
TabDiff 0.69±0.11 0.62±0.15 0.75±0.09 0.36±0.09 0.50±0.14 0.13±0.03 0.80±0.06 0.58±0.14 0.57±0.15 0.75±0.07
TabEBM 0.67±0.12 0.57±0.15 0.76±0.04 0.27±0.09 0.55±0.22 0.14±0.06 0.59±0.05 0.50±0.19 0.26±0.11 0.30±0.08
NRGBoost 0.65±0.10 0.50±0.15 0.61±0.14 0.26±0.07 0.53±0.12 0.28±0.21 0.75±0.01 0.64±0.05 0.11±0.05 0.16±0.02
GReaT 0.62±0.09 0.59±0.07 0.62±0.10 0.38±0.07 0.52±0.07 0.18±0.05 0.27±0.09 0.17±0.04 0.16±0.05 0.25±0.08

Real-world datasets
Dref 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 0.00±0.00 0.96±0.06 N/A N/A 0.99±0.01

SMOTE 0.61±0.13 0.87±0.05 0.81±0.11 0.77±0.01 0.19±0.09 0.02±0.02 0.91±0.07 N/A N/A 0.41±0.04
BN 0.66±0.11 0.72±0.09 0.86±0.09 0.30±0.04 0.48±0.16 0.07±0.08 0.38±0.16 N/A N/A 0.44±0.25
TVAE 0.45±0.20 0.50±0.14 0.55±0.20 0.18±0.04 0.68±0.18 0.29±0.18 0.70±0.06 N/A N/A 0.53±0.13
GOGGLE 0.41±0.15 0.47±0.14 0.57±0.16 0.26±0.07 0.50±0.11 0.35±0.18 0.46±0.04 N/A N/A 0.21±0.06
CTGAN 0.29±0.18 0.53±0.14 0.66±0.21 0.11±0.05 0.51±0.13 0.30±0.24 0.70±0.06 N/A N/A 0.13±0.06
NFlow 0.38±0.19 0.28±0.16 0.52±0.15 0.07±0.04 0.64±0.14 0.42±0.25 0.10±0.06 N/A N/A 0.14±0.12
ARF 0.61±0.11 0.58±0.12 0.83±0.10 0.21±0.04 0.48±0.14 0.05±0.04 0.54±0.07 N/A N/A 0.56±0.12
TabDDPM 0.43±0.16 0.49±0.18 0.54±0.22 0.26±0.09 0.42±0.19 0.27±0.18 0.27±0.06 N/A N/A 0.72±0.08
TabSyn 0.44±0.14 0.51±0.16 0.62±0.18 0.24±0.08 0.51±0.12 0.24±0.14 0.76±0.08 N/A N/A 0.73±0.07
TabDiff 0.54±0.15 0.52±0.16 0.69±0.12 0.22±0.07 0.57±0.15 0.20±0.13 0.78±0.03 N/A N/A 0.73±0.07
TabEBM 0.59±0.15 0.65±0.08 0.79±0.04 0.30±0.10 0.58±0.16 0.14±0.03 0.63±0.11 N/A N/A 0.35±0.11
NRGBoost 0.54±0.12 0.49±0.13 0.62±0.16 0.20±0.07 0.51±0.15 0.22±0.13 0.74±0.05 N/A N/A 0.16±0.05
GReaT 0.47±0.10 0.49±0.13 0.57±0.14 0.26±0.08 0.52±0.11 0.27±0.15 0.23±0.07 N/A N/A 0.20±0.06

Experimental setup. For each dataset of N samples, we first split it into train and test sets (80%241

train and 20% test). We further split the train set into a training split (Dref) and a validation split (90%242

training and 10% validation). We repeat the splitting 10 times, summing up to 10 runs per dataset. All243

benchmark generators are trained on Dref, and each generator produces a synthetic dataset with Nref244

samples. We tune the parameterised generators using Optuna [3] to minimise their average validation245

loss across 10 repeated runs. Each generator is given at most two hours to complete a single repeat.246

The reported results are averaged by default over 10 repeats. We aggregate results across all SCM247

or real-world datasets because the findings are consistent across classification and regression tasks.248

Specifically, we use the average distance to the minimum (ADTM) metric via affine renormalisation249

between the top-performing and worse-performing models [37, 63, 41, 61, 44]. We further provide250

the detailed configurations (Appendix E) and raw results (Appendix H).251

4.1 Validity of Benchmark Framework (Q1)252

The benchmark metrics effectively evaluate data quality. Table 2 demonstrates that all metrics253

effectively distinguish between high- and low-quality data. Specifically, except for privacy-related254

metrics, the reference data (Dref) consistently achieves the highest scores. This is expected, as Dref is255

the ground truth and should score highly on metrics of density estimation, ML efficacy, and structural256

fidelity. In contrast, privacy metrics reward greater differences from the ground truth to indicate257

stronger privacy preservation. Since Dref is identical to the ground truth, it naturally scores poorly for258

privacy. These results show that the selected metrics provide appropriate evaluations for data quality.259

Therefore, we consider the evaluation results to be valid and meaningful for analysis.260

The benchmark datasets present a genuine challenge for existing generators. As detailed261

in Section 3.3, we select challenging, contamination-free real-world datasets, ensuring that they are262

non-trivial for existing tabular data generators. Table 2 illustrates that, unlike prior studies [80, 98, 61],263

no generator can easily match Dref on our benchmark datasets. This confirms that the selected datasets264

offer a more informative and realistic assessment of generator capabilities.265

4.2 Validity of Global Utility (Q2)266

Global utility serves as an effective metric for global structural fidelity. Table 2 and Figure 2267

(left) demonstrate a strong monotonic correlation between global utility and global CI scores268
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Figure 2: Left: Spearman’s rank correlation heatmap based on metric values on six SCM datasets.
Global utility correlates strongly with global CI, suggesting that global utility can effectively assess
global structural fidelity as an SCM-free proxy of global CI. Right: Mean normalised local utility vs.
mean normalised global utility on 23 real-world datasets. SMOTE prioritises local utility, whereas
TabDiff and TabSyn generally achieve a balanced preservation of both global and local data structures.

(rs = 0.84, p < 0.001). In addition, global CI exhibits weaker correlations with all other metrics,269

showing conventional dimensions cannot sufficiently indicate structural fidelity. Appendix G further270

shows that global utility more closely approximates the ranking induced by global CI than local271

utility. In other words, generators that excel in capturing global structure also score highly in272

global utility (e.g., TabSyn and TabDiff), while the ones that struggle to capture global structure273

(e.g., NFlow and NRGBoost) perform poorly under global utility. Although global utility does not274

theoretically guarantee causal alignment, we note that even state-of-the-art causal discovery methods275

cannot theoretically ensure the inferred graphs align with the ground-truth SCMs [46]. In contrast,276

the empirical results validate the use of global utility for measuring global structural fidelity when277

the ground-truth SCM is unavailable.278

Local utility is not always the golden standard, due to its bias towards the local structure. We279

further examine the correlation between local utility and local CI, which only considers the local280

structure associated with the prediction target. As shown in Figure 2 (left), local utility exhibits a281

strong correlation with local CI (rs = 0.78, p < 0.001), but a much weaker correlation with global282

CI (rs = 0.14, p < 0.001). The results indicate that local utility may reward “myopic” generators283

while missing the holistic data structure. This underscores the necessity of global utility for a more284

comprehensive evaluation of structural fidelity in tabular generation.285

4.3 Structural Fidelity of Generators (Q3)286

Diffusion models generally capture the global structure well. As reported in Table 2 and Figure 2287

(right), diffusion-based models consistently achieve the highest scores in global structural fidelity:288

the Top-3 methods are TabDDPM, TabSyn, and TabDiff across both SCM and real-world datasets.289

We attribute their strong performance to the inherent capacity of diffusion models for learning290

permutation-invariant conditional distributions of each feature. At the training stage, since Gaussian291

noise is added independently to each feature, the diffusion network is optimised at every denoising292

step to reconstruct each feature by conditioning on all others. Consequently, it learns the conditional293

distribution for every feature p(xj | X \ {xj}) simultaneously. Moreover, unlike autoregressive294

models, which generally rely on a fixed generation order, diffusion models impose no ordering295

constraint. This results in efficient computation (Figure 3) and permutation-invariant conditional296

distributions, a property that aligns naturally with the structure of tabular data. These theoretical297

properties align with the conditional independence analysis in Section 3.2.1, thus confirming that298

diffusion models are capable of capturing global structure.299

Interpolation and energy-based methods tend to prioritise local structure over global structure.300

Figure 2 (right) shows that the interpolation method (e.g., SMOTE) and energy-based models (e.g.,301

TabEBM and NRGBoost) can effectively capture local structure, yet perform poorly when modelling302

global structure. These two families of methods share a common trait in their generation process:303

they generate new samples from class-specific reference data. For example, in classification tasks,304

SMOTE interpolates between samples of the same class, and TabEBM samples from a class-specific305

energy surface. As a result, the generated samples are inevitably biased towards local structure.306

Structure learning methods struggle with tabular data generation. One surprising finding is that307

BN and GOGGLE do not demonstrate strong performance in terms of structural fidelity, despite their308
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Figure 3: Computation efficiency on 23 real-world datasets. Left: Median training time per 1,000
samples vs. mean normalised global utility. Middle: Median generation time per 1,000 samples vs.
mean normalised global utility. We exclude the outliers (TabEBM and GReaT) due to their long
generation time (over 30s). Full results are in Appendix H. Right: Median evaluation time. Because
global utility yields stable rankings across downstream predictors (Appendix G), computing global
utility can be highly efficient with only a small ensemble of predictors (i.e., Tiny-default).

inductive bias towards learning tabular data structures. This observation aligns with prior work [89],309

which highlights that current causal discovery algorithms often struggle when the number of features310

exceeds 10. In contrast, our benchmark datasets have features from 7 up to 145. Furthermore,311

GOGGLE exhibits notable performance degradation when prior knowledge about the data structure is312

missing [58]. The results underscore the limitations of existing causal discovery methods in recovering313

precise causal structures from real-world data, further justifying our evaluation at the CPDAG level.314

Discussion on more models. We further provide a detailed performance analysis of the remaining315

generators, such as autoregressive models, in Appendix G.316

4.4 Practicability of Global Utility (Q4)317

Global utility is robust, stable, and efficient. To evaluate the robustness of global utility, we318

examine how generator rankings vary under different configurations of downstream models.319

Appendix G shows that global utility yields stable rankings across both nine tuned predictors320

(“Full-tuned”) and three untuned ones (“Tiny-default”). In contrast, local utility necessitates nine321

tuned predictors (“Full-tuned”) for reliable results. In practice, we are often interested in identifying322

the most promising model before fine-tuning it for optimal performance [63]. As such, global323

utility offers an efficient and informative evaluation. As illustrated in Figure 3 (right), global utility324

(“Tiny-default”) provides reliable rankings with a median runtime of just 0.64 seconds per 1,000325

samples, nearly half the time required by local utility (1.21 seconds with “Full-tuned”).326

Limitations and future work. While our proposed global utility is a robust and effective metric327

for assessing global structural fidelity, it is an empirical approximation of the likely SCMs behind328

the data at hand. This is in line with several open challenges in the field, specifically the lack of329

causal discovery methods that can reliably infer the governing SCMs of real-world tabular data with330

strong theoretical guarantees [46, 89, 34, 71]. Addressing this gap would require advances in causal331

modelling, which we leave for future work. More discussion on future work is in Appendix G.332

5 Conclusion333

We present TabStruct, a principled benchmark for tabular data generators along with both structural334

fidelity and conventional dimensions. To address the challenge of assessing structural fidelity in the335

absence of ground-truth SCMs, we introduce global utility – a novel, SCM-free metric that enables336

unbiased and holistic evaluation for tabular data structure.337

In our large-scale study of 13 generators across 29 datasets, we find that existing evaluation methods338

often favour models that capture local correlations while neglecting global structure. Our results339

show that diffusion models, due to their permutation-invariant generation process, offer valuable340

insights into the fundamental representation learning of tabular data. We further observe that the341

four evaluation dimensions are complementary, offering practical guidance for selecting suitable342

generators across diverse applications. TabStruct is an ongoing effort. As such, it will continue to343

evolve with additional datasets, generators, and evaluation metrics – both through our engagement344

and contributions from the community. We envision that the open-source nature of TabStruct will345

help drive progress in tabular generative modelling.346
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might suffice, or if the contribution is a specific model and empirical evaluation, it may694

be necessary to either make it possible for others to replicate the model with the same695

dataset, or provide access to the model. In general. releasing code and data is often696

one good way to accomplish this, but reproducibility can also be provided via detailed697

instructions for how to replicate the results, access to a hosted model (e.g., in the case698

of a large language model), releasing of a model checkpoint, or other means that are699

appropriate to the research performed.700

• While NeurIPS does not require releasing code, the conference does require all submis-701

sions to provide some reasonable avenue for reproducibility, which may depend on the702

nature of the contribution. For example703

(a) If the contribution is primarily a new algorithm, the paper should make it clear how704

to reproduce that algorithm.705

(b) If the contribution is primarily a new model architecture, the paper should describe706

the architecture clearly and fully.707

(c) If the contribution is a new model (e.g., a large language model), then there should708

either be a way to access this model for reproducing the results or a way to reproduce709

the model (e.g., with an open-source dataset or instructions for how to construct710

the dataset).711

(d) We recognize that reproducibility may be tricky in some cases, in which case712

authors are welcome to describe the particular way they provide for reproducibility.713

In the case of closed-source models, it may be that access to the model is limited in714

some way (e.g., to registered users), but it should be possible for other researchers715

to have some path to reproducing or verifying the results.716

5. Open access to data and code717

Question: Does the paper provide open access to the data and code, with sufficient instruc-718

tions to faithfully reproduce the main experimental results, as described in supplemental719

material?720
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Answer: [Yes]721

Justification: Refer to Appendix E. All datasets used in this paper are publicly available,722

and the implementations of benchmark generators are open-source. We also provide an723

open-source library https://anonymous.4open.science/r/TabStruct-E4E4.724

Guidelines:725

• The answer NA means that paper does not include experiments requiring code.726

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/727

public/guides/CodeSubmissionPolicy) for more details.728

• While we encourage the release of code and data, we understand that this might not be729

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not730

including code, unless this is central to the contribution (e.g., for a new open-source731

benchmark).732

• The instructions should contain the exact command and environment needed to run to733

reproduce the results. See the NeurIPS code and data submission guidelines (https:734

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.735

• The authors should provide instructions on data access and preparation, including how736

to access the raw data, preprocessed data, intermediate data, and generated data, etc.737

• The authors should provide scripts to reproduce all experimental results for the new738

proposed method and baselines. If only a subset of experiments are reproducible, they739

should state which ones are omitted from the script and why.740

• At submission time, to preserve anonymity, the authors should release anonymized741

versions (if applicable).742

• Providing as much information as possible in supplemental material (appended to the743

paper) is recommended, but including URLs to data and code is permitted.744

6. Experimental setting/details745

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-746

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the747

results?748

Answer: [Yes]749

Justification: Appendix E provides full descriptions of the experimental setup.750

Guidelines:751

• The answer NA means that the paper does not include experiments.752

• The experimental setting should be presented in the core of the paper to a level of detail753

that is necessary to appreciate the results and make sense of them.754

• The full details can be provided either with the code, in appendix, or as supplemental755

material.756

7. Experiment statistical significance757

Question: Does the paper report error bars suitably and correctly defined or other appropriate758

information about the statistical significance of the experiments?759

Answer: [Yes]760

Justification: Refer to Section 4, where we provide standard deviations for all tables. Figure 2761

(right) and Figure 3 contain error bars. In Figure 2 (left), we show statistical significance762

tests of the correlation between different metrics.763

Guidelines:764

• The answer NA means that the paper does not include experiments.765

• The authors should answer "Yes" if the results are accompanied by error bars, confi-766

dence intervals, or statistical significance tests, at least for the experiments that support767

the main claims of the paper.768

• The factors of variability that the error bars are capturing should be clearly stated (for769

example, train/test split, initialization, random drawing of some parameter, or overall770

run with given experimental conditions).771
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• The method for calculating the error bars should be explained (closed form formula,772

call to a library function, bootstrap, etc.)773

• The assumptions made should be given (e.g., Normally distributed errors).774

• It should be clear whether the error bar is the standard deviation or the standard error775

of the mean.776

• It is OK to report 1-sigma error bars, but one should state it. The authors should777

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis778

of Normality of errors is not verified.779

• For asymmetric distributions, the authors should be careful not to show in tables or780

figures symmetric error bars that would yield results that are out of range (e.g. negative781

error rates).782

• If error bars are reported in tables or plots, The authors should explain in the text how783

they were calculated and reference the corresponding figures or tables in the text.784

8. Experiments compute resources785

Question: For each experiment, does the paper provide sufficient information on the com-786

puter resources (type of compute workers, memory, time of execution) needed to reproduce787

the experiments?788

Answer: [Yes]789

Justification: Refer to Appendix E, where we provide full details on the computation790

resources used in the paper.791

Guidelines:792

• The answer NA means that the paper does not include experiments.793

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,794

or cloud provider, including relevant memory and storage.795

• The paper should provide the amount of compute required for each of the individual796

experimental runs as well as estimate the total compute.797

• The paper should disclose whether the full research project required more compute798

than the experiments reported in the paper (e.g., preliminary or failed experiments that799

didn’t make it into the paper).800

9. Code of ethics801

Question: Does the research conducted in the paper conform, in every respect, with the802

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?803

Answer: [Yes]804

Justification: We carefully check the NeurIPS Code of Ethics, and we confirm that our work805

follows the Code in every respect.806

Guidelines:807

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.808

• If the authors answer No, they should explain the special circumstances that require a809

deviation from the Code of Ethics.810

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-811

eration due to laws or regulations in their jurisdiction).812

10. Broader impacts813

Question: Does the paper discuss both potential positive societal impacts and negative814

societal impacts of the work performed?815

Answer: [Yes]816

Justification: Refer to Appendix A, where we include the societal impacts of our work.817

Guidelines:818

• The answer NA means that there is no societal impact of the work performed.819

• If the authors answer NA or No, they should explain why their work has no societal820

impact or why the paper does not address societal impact.821
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• Examples of negative societal impacts include potential malicious or unintended uses822

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations823

(e.g., deployment of technologies that could make decisions that unfairly impact specific824

groups), privacy considerations, and security considerations.825

• The conference expects that many papers will be foundational research and not tied826

to particular applications, let alone deployments. However, if there is a direct path to827

any negative applications, the authors should point it out. For example, it is legitimate828

to point out that an improvement in the quality of generative models could be used to829

generate deepfakes for disinformation. On the other hand, it is not needed to point out830

that a generic algorithm for optimizing neural networks could enable people to train831

models that generate Deepfakes faster.832

• The authors should consider possible harms that could arise when the technology is833

being used as intended and functioning correctly, harms that could arise when the834

technology is being used as intended but gives incorrect results, and harms following835

from (intentional or unintentional) misuse of the technology.836

• If there are negative societal impacts, the authors could also discuss possible mitigation837

strategies (e.g., gated release of models, providing defenses in addition to attacks,838

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from839

feedback over time, improving the efficiency and accessibility of ML).840

11. Safeguards841

Question: Does the paper describe safeguards that have been put in place for responsible842

release of data or models that have a high risk for misuse (e.g., pretrained language models,843

image generators, or scraped datasets)?844

Answer: [NA]845

Justification: [NA]846

Guidelines:847

• The answer NA means that the paper poses no such risks.848

• Released models that have a high risk for misuse or dual-use should be released with849

necessary safeguards to allow for controlled use of the model, for example by requiring850

that users adhere to usage guidelines or restrictions to access the model or implementing851

safety filters.852

• Datasets that have been scraped from the Internet could pose safety risks. The authors853

should describe how they avoided releasing unsafe images.854

• We recognize that providing effective safeguards is challenging, and many papers do855

not require this, but we encourage authors to take this into account and make a best856

faith effort.857

12. Licenses for existing assets858

Question: Are the creators or original owners of assets (e.g., code, data, models), used in859

the paper, properly credited and are the license and terms of use explicitly mentioned and860

properly respected?861

Answer: [Yes]862

Justification: Refer to Appendix E, where we provide the open-source licenses followed by863

the creators or original owners of assets.864

Guidelines:865

• The answer NA means that the paper does not use existing assets.866

• The authors should cite the original paper that produced the code package or dataset.867

• The authors should state which version of the asset is used and, if possible, include a868

URL.869

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.870

• For scraped data from a particular source (e.g., website), the copyright and terms of871

service of that source should be provided.872
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• If assets are released, the license, copyright information, and terms of use in the873

package should be provided. For popular datasets, paperswithcode.com/datasets874

has curated licenses for some datasets. Their licensing guide can help determine the875

license of a dataset.876

• For existing datasets that are re-packaged, both the original license and the license of877

the derived asset (if it has changed) should be provided.878

• If this information is not available online, the authors are encouraged to reach out to879

the asset’s creators.880

13. New assets881

Question: Are new assets introduced in the paper well documented and is the documentation882

provided alongside the assets?883

Answer: [Yes]884

Justification: We provide the implementation of our proposed metric and benchmark as885

a python library attached to this submission. We will make it publicly available post-886

publication.887

Guidelines:888

• The answer NA means that the paper does not release new assets.889

• Researchers should communicate the details of the dataset/code/model as part of their890

submissions via structured templates. This includes details about training, license,891

limitations, etc.892

• The paper should discuss whether and how consent was obtained from people whose893

asset is used.894

• At submission time, remember to anonymize your assets (if applicable). You can either895

create an anonymized URL or include an anonymized zip file.896

14. Crowdsourcing and research with human subjects897

Question: For crowdsourcing experiments and research with human subjects, does the paper898

include the full text of instructions given to participants and screenshots, if applicable, as899

well as details about compensation (if any)?900

Answer: [NA]901

Justification: [NA]902

Guidelines:903

• The answer NA means that the paper does not involve crowdsourcing nor research with904

human subjects.905

• Including this information in the supplemental material is fine, but if the main contribu-906

tion of the paper involves human subjects, then as much detail as possible should be907

included in the main paper.908

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,909

or other labor should be paid at least the minimum wage in the country of the data910

collector.911

15. Institutional review board (IRB) approvals or equivalent for research with human912

subjects913

Question: Does the paper describe potential risks incurred by study participants, whether914

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)915

approvals (or an equivalent approval/review based on the requirements of your country or916

institution) were obtained?917

Answer: [No]918

Justification: [NA]919

Guidelines:920

• The answer NA means that the paper does not involve crowdsourcing nor research with921

human subjects.922
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• Depending on the country in which research is conducted, IRB approval (or equivalent)923

may be required for any human subjects research. If you obtained IRB approval, you924

should clearly state this in the paper.925

• We recognize that the procedures for this may vary significantly between institutions926

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the927

guidelines for their institution.928

• For initial submissions, do not include any information that would break anonymity (if929

applicable), such as the institution conducting the review.930

16. Declaration of LLM usage931

Question: Does the paper describe the usage of LLMs if it is an important, original, or932

non-standard component of the core methods in this research? Note that if the LLM is used933

only for writing, editing, or formatting purposes and does not impact the core methodology,934

scientific rigorousness, or originality of the research, declaration is not required.935

Answer: [NA]936

Justification: [NA]937

Guidelines:938

• The answer NA means that the core method development in this research does not939

involve LLMs as any important, original, or non-standard components.940

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)941

for what should or should not be described.942
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