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ABSTRACT

Large language models are restricted to reason in the “language space”, where
they typically express the reasoning process with a chain-of-thoughts (CoT) to
solve a complex reasoning problem. However, we argue that language space may
not be the optimal reasoning space. For example, most word tokens are primarily
for textual coherence and not essential for reasoning, while some critical tokens
require complex planning and pose huge challenges to LLMs. To explore the
potential of LLM reasoning in an unrestricted latent space instead of using hu-
man language, we introduce a new paradigm COCONUT (Chain of Continuous
Thought). We utilize the last hidden state of the LLM as a representation of the
reasoning state (termed “continuous thought”). Rather than decoding this into a
word token, we feed it back to the LLM as the subsequent input embedding di-
rectly in the continuous space. Experiments show that COCONUT can effectively
augment the LLM on several reasoning tasks. It even outperforms CoT in certain
logical reasoning tasks that require substantial planning, despite generating fewer
tokens during inference. More interestingly, we observe an advanced reasoning
patterns emerging from latent reasoning: the continuous thought can encode mul-
tiple potential next reasoning steps, allowing the model to perform a breadth-first
search (BFS) to solve the problem, rather than prematurely committing to a single
deterministic path like CoT. These findings demonstrate the promise of latent rea-
soning and offer valuable insights for future research on latent reasoning methods.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning abilities, emerging from
extensive pretraining on human language (Dubey et al., 2024; Achiam et al., 2023). While the
next token prediction is an effective training objective, it imposes a fundamental constraint pn the
LLM as a reasoning machine: the reasoning process of LLMs must be generated in word tokens.
For example, a prevalent approach, known as chain-of-thought (CoT) reasoning (Wei et al., 2022),
involves prompting or training LLMs to generate solutions step-by-step using natural language.
However, this stands in stark contrast to human cognition. Neuroimaging studies have consistently
shown that the language network – a set of brain regions responsible for language comprehension
and production – remains largely inactive during various reasoning tasks (Amalric & Dehaene,
2019; Monti et al., 2012; 2007; 2009; Fedorenko et al., 2011). More evidence has indicated that
human language is optimized for communication rather than reasoning (Fedorenko et al., 2024).

A significant problem arises when LLMs are required to output language during reasoning: the “rea-
soning amount” behind each token varies greatly, yet current LLM architectures allocate nearly the
same computing budget for predicting every token. Most tokens in a reasoning chain are generated
solely for fluency, contributing little to the actual reasoning process. On the contrary, some critical
tokens require complex planning and pose huge challenges to LLMs. While previous work has at-
tempted to fix these problems by prompting LLMs to generate succinct reasoning chains (Madaan
& Yazdanbakhsh, 2022), or performing additional reasoning before generating some critical to-
kens (Zelikman et al., 2024), these solutions remain constrained within the language space and do
not solve the problems fundamentally. Ideally, LLMs should be allowed to reason freely in an un-
constrained latent space and only translate the outcomes into language once the reasoning process
is complete.
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Figure 1: A comparison of CoT and COCONUT. In CoT, the model generates the reasoning process
as a word token sequence (e.g., [xi, xi+1, ..., xi+j ] in the figure). COCONUT (Chain of Continuous
Thoughts) regards the last hidden state as a representation of reasoning state (termed “continuous
thought”), and directly uses it as the next input embedding. This allows the LLM to reason in an
unrestricted latent space instead of language space.
We aim to explore LLM reasoning in the latent space by introducing a novel paradigm, COCONUT
(Chain of Continuous Thought). It involves a simple modification to the traditional CoT process.
Instead of mapping between hidden states and language tokens using the language model head and
embedding layer, COCONUT directly feeds the last hidden state (a continuous thought) as the input
embedding for the next token (Figure 1). This modification frees the reasoning from language space,
and the architecture can be optimized end-to-end by gradient descent, as continuous thoughts are
fully differentiable. To enhance the training of these continuous thoughts, we employ a multi-stage
training strategy inspired by Deng et al. (2024), which effectively utilizes language reasoning chains
to guide the training process.

The experiments demonstrate that COCONUT successfully enhances the reasoning capabilities of
LLMs. Specifically, on math reasoning problems (GSM8k, Cobbe et al., 2021), using more contin-
uous thoughts is shown to be beneficial to reasoning accuracy, mirroring the effects of language rea-
soning chains. This indicates the potential to scale and solve increasingly challenging problems by
chaining more continuous thoughts. On logical reasoning problems including ProntoQA (Saparov &
He, 2022), and our newly proposed ProsQA (Section 4.1) which requires stronger planning ability,
COCONUT and some of its variants even surpasses language-based CoT methods, while generating
significantly fewer tokens during inference.

Interestingly, the removal of language space constraints has led to a novel reasoning pattern. By ma-
nipulating the COCONUT model to switch between latent reasoning and language reasoning, we are
able to unveil the latent reasoning process. Unlike language-based reasoning, continuous thoughts
in COCONUT can encode multiple potential next steps simultaneously, allowing for a reasoning pro-
cess akin to breadth-first search (BFS). While the model may not initially make the correct decision,
it can maintain all possible options within the continuous thoughts and progressively eliminate in-
correct paths through reasoning, guided by some implicit value functions. This advanced reasoning
mechanism surpasses traditional CoT approaches, even though the model is not explicitly trained
or instructed to operate in this manner, as seen in previous works (Yao et al., 2023; Hao et al.,
2023). We believe that these findings underscore the potential of latent reasoning and could provide
valuable insights for future research.

2 RELATED WORK

Chain-of-thought (CoT) reasoning. We use the term chain-of-thought broadly to refer to meth-
ods that generate an intermediate reasoning process in language before outputting the final answer.
This includes prompting LLMs (Wei et al., 2022; Khot et al., 2022; Zhou et al., 2022), or training
LLMs to generate reasoning chains, either with supervised fine-tuning (Yue et al., 2023; Yu et al.,
2023) or reinforcement learning (Wang et al., 2024; Havrilla et al., 2024; Shao et al., 2024; Yu et al.,
2024a). Madaan & Yazdanbakhsh (2022) classified the tokens in CoT into symbols, patterns, and
text, and proposed to guide the LLM to generate concise CoT based on analysis of their roles. Re-
cent theoretical analyses have demonstrated the usefulness of CoT from the perspective of model
expressivity (Feng et al., 2023; Merrill & Sabharwal, 2023; Li et al., 2024). By employing CoT, the
effective depth of the transformer increases because the generated outputs are looped back to the
input (Feng et al., 2023). These analyses, combined with the established effectiveness of CoT, mo-
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tivated our exploration of continuous thoughts, in contrast to other latent reasoning methods. While
CoT has proven effective for certain tasks, its autoregressive generation nature makes it challeng-
ing to mimic human reasoning on more complex problems (LeCun, 2022; Hao et al., 2023), which
typically require planning and search. There are works that equip LLMs with explicit tree search
algorithms (Xie et al., 2023; Yao et al., 2023; Hao et al., 2023), or train the LLM on search dynamics
and trajectories (Lehnert et al., 2024; Gandhi et al., 2024). In our analysis, we find that after remov-
ing the constraint of language space, a new reasoning pattern similar to BFS emerges, even though
the model is not explicitly trained in this way.

Latent reasoning of LLM. Previous works mostly define latent reasoning of LLM as the hidden
computing in transformers (Yang et al., 2024; Biran et al., 2024). Yang et al. (2024) constructed
a dataset of two-hop reasoning problems and discovered that it is possible to recover the interme-
diate variable from the hidden representation of LLMs. Biran et al. (2024) further proposed to
intervene the latent reasoning by “back-patching” the hidden representation. Another line of work
has discovered that, even if the model generates a CoT to reason, the model may actually utilize
a different latent reasoning process. This phenomenon is known as the unfaithfulness of CoT rea-
soning (Wang et al., 2022; Turpin et al., 2024). To enhance the latent reasoning of LLM, previous
research proposed to augment it with additional tokens. Goyal et al. (2023) pretrained model by
randomly inserting a learnable <pause> tokens to the corpus. This improves LLM’s performance
on a variety of tasks, especially when followed by supervised finetuning with <pause> tokens.
On the other hand, Pfau et al. (2024) further explored the usage of filler tokens, e.g., “...”, and
concluded that they work well for highly parallelizable problems. However, these methods do not
extend the expressivity of the LLM like CoT (Pfau et al., 2024); hence, they may not scale to more
general and complex reasoning problems. Recently, it has also been found that one can “internalize”
the chain of thought reasoning into latent reasoning with knowledge distillation (Deng et al., 2023)
or a special training curriculum which gradually shortens CoT (Deng et al., 2024). Yu et al. (2024b)
also proposed to distill a model that can reason latently from data generated with complex reasoning
algorithms. These training methods can be combined to our framework, and specifically, we find
that breaking down the learning of continuous thoughts into multiple stages, inspired by iCoT (Deng
et al., 2024), is very beneficial for the training.

3 COCONUT: CHAIN OF CONTINUOUS THOUGHTS

In this section, we introduce our new paradigm COCONUT (Chain of Continuous Thoughts) for
reasoning outside the language space. We begin by introducing the background and notations of
language models. For an input sequence x = (x1, ..., xT ), the standard large language model M
can be described as:

Ht = Transformer(Et + Pt)

M(xt+1 | x≤t) = softmax(Wht)

where Et = [e(x1), e(x2), ..., e(xt)] is the sequence of token embeddings up to position t; Pt =
[p(1), p(2), ..., p(t)] is the sequence of positional embeddings up to position t; Ht ∈ Rt×d is the
matrix of the last hidden states for all tokens up to position t; ht is the last hidden state of position t,
i.e., ht = Ht[t, :]; e(·) is the token embedding function; p(·) is the positional embedding function;
W is the parameter of the language model head.

Method Overview. In the proposed COCONUT method, the LLM switches between the “language
mode” and “latent mode” (Figure 1). In language mode, the model operates as a standard language
model, autoregressively generating the next token. In latent mode, it directly utilizes the last hidden
state as the next input embedding. This last hidden state represents the current reasoning state,
termed as a “continuous thought”.

Special tokens <bot> and <eot> are employed to mark the beginning and end of the la-
tent mode, respectively. As an example, we assume latent reasoning occurs between posi-
tions i and j, i.e., xi = <bot> and xj = <eot>. When the model is in the latent mode
(i < t < j), we use the last hidden state from the previous token to replace the input
embedding, i.e., Et = [e(x1), e(x2), ..., e(xi), hi, hi+1, ..., ht−1]. After the latent mode fin-
ishes, (t ≥ j), the input after position reverts to using the token embedding, i.e., Et =
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Figure 2: The training procedure of COCONUT. At each stage, we integrate c additional continuous
thought (c = 1 in this example), and remove one reasoning step in the training data. The cross-
entropy loss is then calculated on the remaining tokens after continuous thoughts.
[e(x1), e(x2), ..., e(xi), hi, hi+1, ..., hj−1, e(xj), ..., e(xt)]. It is noteworthy that M(xt+1 | x≤t)
is not defined when i < t < j, since the latent thought is not intended to be mapped back to lan-
guage space. However, softmax(Wht) can still be calculated for probing purposes (see Section 4).

Training Procedure. In this work, we focus on a problem-solving setting where the model receives
a question as input and is expected to generate an answer through a reasoning process. We leverage
language CoT data to supervise continuous thought by implementing a multi-stage training curricu-
lum inspired by Deng et al. (2024). As shown in Figure 2, in the initial stage, the model is trained
on regular CoT instances. In the subsequent stages, at the k-th stage, the first k reasoning steps in
the CoT are replaced with k × c continuous thoughts1, where c is a hyperparameter controlling the
number of latent thoughts replacing a single language reasoning step. Following Deng et al. (2024),
we also reset the optimizer state when training stages switch. We insert <bot> and <eot> tokens
to encapsulate the continuous thoughts.

During the training process, we mask the loss on questions and latent thoughts. It is important to
note that the objective does not encourage the continuous thought to compress the removed language
thought, but rather to facilitate the prediction of future reasoning. Therefore, it’s possible for the
LLM to learn a more effective representation compared to language reasoning steps.

Training Details. Our proposed continuous thoughts are fully differentiable, allowing backpropaga-
tion. We perform n+ 1 forward passes when n latent thoughts are scheduled in the current training
stage, computing a new latent thought with each pass and then conducting an additional forward
pass to obtain a loss on the remaining text sequence. While we can save any repetitive computing
by using KV cache, the sequential nature of the multiple forward passes poses challenges for paral-
lelism. Further optimizing the training efficiency of COCONUT remains an important direction for
future research.

Inference Process. The inference process for COCONUT is analogous to standard language model
decoding, except that in latent mode, we directly feed the last hidden state as the next input em-
bedding. A challenge lies in determining when to switch between latent and language modes. As
we focus on the problem-solving setting, we insert a <bot> token immediately following the ques-
tion tokens. For <eot>, we consider two potential strategies: a) train a binary classifier on latent
thoughts to enable the model to autonomously decide when to terminate the latent thoughts, or b)
always pad the latent thoughts to a constant length. We found that both approaches work compa-
rably well. Therefore, we use the second option in our experiment for simplicity, unless specified
otherwise.

4 EXPERIMENTS

In this section, we validate the feasibility of LLM reasoning in latent space through experiments on
three datasets. We mainly evaluate the accuracy by comparing the model-generated answers with
the ground truth. The number of newly generated tokens per question is also listed, as a measure of
reasoning efficiency.2

1If a reasoning chain is shorter than k steps, then all the language thoughts will be removed.
2One continuous thought is counted as one token since the computational cost is essentially the same.
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4.1 DATASETS

Math Reasoning. We use GSM8k (Cobbe et al., 2021) as the dataset for math reasoning. It consists
of grade school-level math problems. Compared to other datasets of our experiments, the problems
are more diverse and open-domain, closely resembling the real-world use cases. Through this task,
we explore the potential of latent reasoning in practical applications. To train the model, we use a
synthetic dataset generated by Deng et al. (2023).

Logical Reasoning. Logical reasoning involves the proper application of known conditions to prove
or disprove a conclusion using logical rules. This requires the model to choose from multiple pos-
sible reasoning paths, where the correct decision often relies on exploration and planning ahead.
This serves as a simplified simulation of more advanced reasoning tasks, such as automated theo-
rem proving (Chen et al., 2023; DeepMind, 2024). We use 5-hop ProntoQA (Saparov & He, 2022)
questions, with fictional concept names. For each problem, an tree-structured ontology is randomly
generated and described in natural language as a set of known conditions. The model is asked to
judge whether a given statement is correct based on these conditions.

We found that the generation process of ProntoQA was overly simplified, especially since the size
of distracting branches in the ontology is always small, reducing the need for complex planning. To
fix that, we apply a new dataset construction pipeline using randomly generated DAGs to structure
the known conditions. The resulting dataset requires the model to perform substantial planning and
searching over the graph to find the correct reasoning chain. We refer to this new dataset as the
ProsQA (Proof with Search Question-Answering). A visualized example is shown in Figure 6.
More details of datasets can be found in Appendix A.

4.2 EXPERIMENTAL SETUP

We pre-trained GPT-2 (Radford et al., 2019) as the base model for all experiments. The learning
rate is set to 1 × 10−4 while the effective batch size is 128. Following Deng et al. (2024), we also
reset the optimizer when training stages switch.

Math Reasoning. By default, we use 2 latent thoughts (i.e., c = 2) for each reasoning step. we
analyze the correlation between performance and c in Section 4.4. The model goes through 3 stages
besides the initial stage. Then, we will have an additional stage, where we still use 3× c continuous
thoughts as in the last stage, but remove all the remaining language reasoning chain. This handles
the long-tail distribution of reasoning chains longer than 3 steps. We train the model for 6 epochs in
the initial stage, and 3 epochs in each remaining stage.

Logical Reasoning. We use one continuous thought for every reasoning step (i.e., c = 1). The
model goes through 6 training stages in addition to the initial stage, because the maximum number
of reasoning steps is 6 in these two datasets, and the model fully reasons with continuous thoughts
to solve the problems in the last stage. We train the model for 5 epochs per stage.

For all datasets, after the standard schedule, the model stays in the final training stage, until the 50th
epoch. We select the checkpoint based on the accuracy on the validation set. For inference, we
manually set the number of continuous thoughts to be consistent with their final training stage. We
use greedy decoding for all experiments.

4.3 BASELINES AND ABLATIONS

We consider the following baselines: (1) CoT: We use the complete reasoning chains to train the
language model with supervised finetuning, and during inference, the model generates a reasoning
chain before outputting an answer. (2) No-CoT: The LLM is trained to directly generate the answer
without using a reasoning chain. (3) iCoT (Deng et al., 2024): The model is trained with language
reasoning chains and follows a carefully designed schedule that “internalizes” CoT. As the train-
ing goes on, tokens at the beginning of the reasoning chain are gradually removed until only the
answer remains. During inference, the model directly predicts the answer. (4) Pause token (Goyal
et al., 2023): The model is trained using only the question and answer, without a reasoning chain.
However, different from No-CoT, special <pause> tokens are inserted between the question and
answer, which are believed to provide the model with additional computational capacity to derive
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Method
GSM8k ProntoQA ProsQA

Acc. (%) # Tokens Acc. (%) # Tokens Acc. (%) # Tokens

CoT 42.9 ±0.2 25.0 98.8 ±0.8 92.5 77.5 ±1.9 49.4

No-CoT 16.5 ±0.5 2.2 93.8 ±0.7 3.0 76.7 ±1.0 8.2
iCoT 30.0∗ 2.2 99.8 ±0.3 3.0 98.2 ±0.3 8.2

Pause Token 16.4 ±1.8 2.2 77.7 ±21.0 3.0 75.9 ±0.7 8.2

COCONUT (Ours) 34.1 ±1.5 8.2 99.8 ±0.2 9.0 97.0 ±0.3 14.2
- w/o curriculum 14.4 ±0.8 8.2 52.4 ±0.4 9.0 76.1 ±0.2 14.2

- w/o thought 21.6 ±0.5 2.3 99.9 ±0.1 3.0 95.5 ±1.1 8.2
- pause as thought 24.1 ±0.7 2.2 100.0 ±0.1 3.0 96.6 ±0.8 8.2

Table 1: Results on three datasets. Higher accuracy indicates stronger reasoning ability, while gen-
erating fewer tokens indicates better efficiency. ∗The result of iCoT is from Deng et al. (2024).

the answer. For a fair comparison, the number of <pause> tokens is set the same as continuous
thoughts in COCONUT.

We also evaluate some variants of our method: (1) w/o curriculum: Instead of the multi-stage train-
ing, we directly use the data from the last stage which only includes questions and answers to train
COCONUT. The model uses continuous thoughts to solve the whole problem. (2) w/o thought:
We keep the multi-stage training which removes initial reasoning steps gradually, but don’t use any
continuous latent thought. While this is similar to iCoT in the high-level idea, the exact training
schedule is set to be consistent with COCONUT, instead of iCoT. This ensures a more strict compar-
ison. (3) Pause as thought: We use special <pause> tokens to replace the continuous thought, and
apply the same multi-stage training scheme as COCONUT.

4.4 RESULTS AND DISCUSSION

We show the overall results on all datasets in Table 1. Continuous thoughts effectively enhance LLM
reasoning, as shown by the consistent improvement over no-CoT. It even shows better performance
than CoT on ProsQA. We describe several key conclusions from the experiments as follows.

0 1 2
# Thoughts per step
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Figure 3: Accuracy on GSM8k
with different number of continu-
ous thoughts.

“Chaining” continuous thoughts enhances reasoning. In
conventional CoT, the output token serves as the next input,
which is believed to increase the effective depth of LLMs
and enhance their expressiveness (Feng et al., 2023). We ex-
plore whether latent space reasoning retains this property, as
it would suggest that this method could scale to solve increas-
ingly complex problems by chaining multiple latent thoughts.

In our experiments with GSM8k, we found that COCONUT
outperformed other architectures trained with similar strate-
gies, particularly surpassing the latest baseline, iCoT (Deng
et al., 2024). The performance is significantly better than CO-
CONUT (pause as thought) which also enables more computa-
tion in the LLMs. While Pfau et al. (2024) empirically shows
that filler tokens, such as the special <pause> tokens, can
benefit highly parallelizable problems, our results show that COCONUT architecture is more effec-
tive for general problems, e.g., math word problems, where a reasoning step often heavily depends
on previous steps. Additionally, we experimented with adjusting the hyperparameter c, which con-
trols the number of latent thoughts corresponding to one language reasoning step. As we increased
c from 0 to 1 to 2, the model’s performance steadily improved (Figure 3). These results strongly
suggest that a chaining effect similar to CoT can be observed in the latent space.

In two other synthetic tasks, we found that the varients of COCONUT (w/o thoughts or pause
as thought), and iCoT also achieve impressive accuracy. This indicates that in these tasks, the
model’s computational capacity may not the bottleneck. In contrast, GSM8k, being an open-domain
question-answering task, likely involves more complex contextual understanding and modeling,
placing higher demands on computational capability.

Latent Reasoning Excels Language Reasoning in Planning. Some complex reasoning tasks re-
quire the model to “look ahead” to assess whether a particular step is the right choice. Among the
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datasets used in our experiments, GSM8k consists of grade-school-level math word problems, al-
lowing for intuitive judgment of the next reasoning step; ProntoQA has distracting branches of small
sizes, which makes it relatively easy to determine the next step too. In contrast, ProsQA is based on
a randomly generated DAG structure, posing a significant challenge to the model’s planning abil-
ities. Reasoning in language space cannot effectively solve the problem. As shown in the table,
CoT doesn’t show significant improvement over No-CoT. On the contrary, COCONUT, some of its
variants and iCoT significantly improve the reasoning on ProsQA. This suggests an advantage in
using latent space over language tokens for tasks requiring extensive planning. We conduct in-depth
analysis of the latent reasoning process in Section 5.

The LLM still needs guidance to learn continuous thoughts. In the ideal case, the model should
learn the most effective continuous thoughts automatically through gradient descent on questions
and answers (i.e., COCONUT w/o curriculum). However, from the experimental results, we found
the models trained this way do not perform any better than no-CoT.

Figure 4: A case study where we decode the con-
tinuous thought into language tokens

With the multi-stage curriculum which decom-
poses the training into easier objectives, CO-
CONUT is able to achieve top performance
across various tasks. The multi-stage train-
ing also integrates well with pause tokens
(COCONUT- pause as thought). Despite us-
ing the same architecture and similar multi-
stage training objectives, we observed a small
gap between the performance of iCoT and CO-
CONUT (w/o thoughts). The finer-grained re-
moval schedule (token by token) and a few
other tricks in iCoT may ease the training pro-
cess. We leave combining iCoT and COCONUT
as a future work. While the multi-stage train-
ing used for COCONUT has proven effective,
further research is definitely needed to develop
better and more general strategies for learning
reasoning in latent space, especially without the
supervision from language reasoning chains.

Continuous thoughts are efficient represen-
tations of reasoning. Though the continuous
thoughts are not intended to be decoded to language tokens, we can still use it as an intuitive inter-
pretation of the latent reasoning. We show a case study in Figure 4 of a math word problem solved by
COCONUT (c = 1). The first continuous thought can be decoded into tokens like “180”, “ 180” (with
a space), and “9”. Note that, the reasoning trace for this problem should be 3×3×60 = 9×60 = 540,
or 3 × 3 × 60 = 3 × 180 = 540. The interpretations of the first thought happen to be the first in-
termediate variables in the calculation. Moreover, it encodes a distribution of different traces into
the continuous thoughts. As shown in Section 5.3, this feature enables a more advanced reasoning
pattern for planning-intense reasoning tasks.

5 UNDERSTANDING THE LATENT REASONING IN COCONUT

In this section, we present an analysis of the latent reasoning process with a variant of COCONUT.
By leveraging its ability to switch between language and continuous space reasoning, we are able to
control the model to interpolate between fully latent reasoning and fully language reasoning and test
their performance (Section 5.2). This also enables us to interpret the the latent reasoning process as
tree search (Section 5.3). Based on this perspective, we explain why latent reasoning can make the
decision easier for LLMs (Section 5.4).

5.1 EXPERIMENTAL SETUP

Methods. The design of COCONUT allows us to control the number of latent thoughts by manu-
ally setting the position of <eot> token during inference. When we enforce COCONUT to use k
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Figure 5: The accuracy of final answer (left) and reasoning process (right) of multiple varients of
COCONUT and baselines on ProsQA.

continuous thoughts, the model is expected to output the remaining reasoning chain in language,
starting from the k + 1 step. In our experiments, we test variants of COCONUT on ProsQA with
k ∈ {0, 1, 2, 3, 4, 5, 6}. Note that all these variants only differ in inference time while sharing the
same model weights. Besides, we report the performance of CoT and no-CoT as references.

To address the issue of forgetting earlier training stages, we modify the original multi-stage training
curriculum by always mixing data from other stages with a certain probability (p = 0.3). This
updated training curriculum yields similar performance and enables effective control over the switch
between latent and language reasoning.

Metrics. We apply two sets of evaluation metrics. One of them is based on the correctness of the
final answer, regardless of the reasoning process. It is the metric used in the main experimental
results above (Section 4.4). To enable fine-grained analysis, we define another metric on the rea-
soning process. Assuming we have a complete language reasoning chain which specifies a path in
the graph, we can classify it into (1) Correct Path: The output is one of the shortest paths to the
correct answer. (2) Longer Path: A valid path that correctly answers the question but is longer than
the shortest path. (3) Hallucination: The path includes nonexistent edges or is disconnected. (4)
Wrong Target: A valid path in the graph, but the destination node is not the one being asked. These
four categories naturally apply to the output from COCONUT (k = 0) and CoT, which generate the
full path. For COCONUT with k > 0 that outputs only partial paths in language (with the initial
steps in continuous reasoning), we classify the reasoning as a Correct Path if a valid explanation can
complete it. Also, we define Longer Path and Wrong Target for partial paths similarly. If no valid ex-
planation completes the path, it’s classified as hallucination. In no-CoT and COCONUT with larger
k, the model may only outputs the final answer without any partial path, it falls into (5) Correct
Label or (6) Incorrect Label. These six categories cover all cases without overlap.

5.2 INTERPOLATING BETWEEN LATENT AND LANGUAGE REASONING

Figure 5 shows a comparative analysis of different reasoning methods on ProsQA. As more rea-
soning is done with continuous thoughts (increasing k), both final answer accuracy (Figure 5, left)
and the rate of correct reasoning processes (“Correct Label” and “Correct Path” in Figure 5, right)
improve. Additionally, the rate of “Hallucination” and “Wrong Target” decrease, which typically
occur when the model makes a wrong move earlier. This also indicates the better planning ability
when more reasoning happens in the latent space.

A case study is shown in Figure 6, where CoT hallucinates an inexistent edge, COCONUT (k = 1)
leads to a wrong target, but COCONUT (k = 2) successfully solves the problem. In this example,
the model cannot accurately determine which edge to choose at the earlier step. However, as latent
reasoning can avoid making a hard choice upfront, the model can progressively eliminate incorrect
options in subsequent steps and achieves higher accuracy at the end of reasoning. We show more
evidence and details of this reasoning process in Section 5.3 and 5.4.
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Figure 6: A case study on ProsQA. The model trained with CoT hallucinates an edge (Every yumpus
is a rempus) after getting stuck in a dead end. COCONUT (k=1) outputs a path that ends with an
irrelevant node. COCONUT (k=2) solves the problem correctly.

The comparison between CoT and COCONUT (k = 0) reveals another interesting fact: even when
COCONUT is forced to generate a complete reasoning chain, the accuracy of the answers is still
higher than CoT. The generated reasoning paths are also more accurate with less hallucination.
From this, we can infer that the training method of mixing different stages improves the model’s
ability to plan ahead. The training objective of CoT always concentrates on the generation of the
immediate next step, making the model “shortsighted”. In later stages of COCONUT training, the
first few steps are hidden, allowing the model to focus more on future steps. This is similar to the
findings by Gloeckle et al. (2024), where they propose multi-token prediction as a new pretraining
objective to improve the LLM’s ability to plan ahead.

5.3 DISCOVERING THE LATENT SEARCH TREE

Figure 7: The correlation between prediction
probability of concepts and their heights.

Given the intuition that continuous thoughts can en-
code multiple potential next steps, the latent reason-
ing can be interpreted as a search tree, rather than
merely a reasoning “chain”. Taking the case of Fig-
ure 6 as a concrete example, the first step could be
selecting one of the children of Alex, i.e., {lempus,
sterpus, zhorpus, grimpus}. We depict all possible
branches in the left part of Figure 8. Similarly, in the
second step, the frontier nodes will be the grandchil-
dren of Alex (Figure 8, right).

Unlike a standard BFS that explores all frontier
nodes uniformly, we show that the model learns to
prioritize promising nodes while pruning others. We
derive the model’s preference by examining the its
subsequent outputs in language. For instance, if we
force the model to switch back to the language space
after one latent thought (k = 1), it will predict the
next step in the form of “every [Concept A] is a
[Concept B]” as the next step. By measuring the
probability of being filled in the position of [Concept
A], we acquire a numeric value for each children of
the root node Alex (Figure 8, left). Similarly, when we set k = 2, we can get the prediction probabil-
ity of all the frontier nodes (The grandchildren of the root node Alex) in the second reasoning steps
(Figure 8, right).

The probability distribution can be viewed as the model’s implicit value function, estimating each
node’s potential to reach the target. As shown in the figure, “lempus”, “zhorpus”, “grimpus”, and
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Figure 8: An illustration of the latent search trees. The example is the same test case as in Figure 6.
The height of a node (denoted as h in the figure) is defined as the longest distance to any leaf nodes
in the graph. We show the probability of the first concept predicted by the model following latent
thoughts (e.g., “lempus” in the left figure). It is calculated as the multiplication of the probability
of all tokens within the concept conditioned on previous context (omitted in the figure for brevity).
This metric can be interpreted as an implicit value function estimated by the model, assessing the
potential of each node leading to the correct answer.
“sterpus” have a value of 0.33, 0.16, 0.32, and 0.01, respectively. This indicates that in the first
continuous thought, the model has mostly ruled out “sterpus” as an option but remains uncertain
about the correct choice among the other three. In the second thought, however, the model has
mostly ruled out other options but focused on “rorpus”.

5.4 WHY IS LATENT SPACE BETTER FOR PLANNING?

In this section, we aim to answer the question about why latent reasoning is better at planning,
based on the search tree perspective and value function defined above. Referring to our previous
example, a key distinction between “sterpus” and the other three options is that "sterpus" is a leaf
node (Figure 6). This makes it immediately apparent as an incorrect choice, as it cannot reach the
target node “bompus”. On the contrary, other nodes have more descendants to be explored, making
them harder to evaluate. We measure each node’s height (the shortest distance to any leaf nodes) as
a proxy for its remaining exploratory potential. Based on this case, a natural hypothesis is that the
lower a node is, the easier it is to accurately estimate its value. Indeed, here the model is mostly
uncertain between “grimpus” and “lempus”, both with a height of 2, which is higher than the other
candidates.

To test this hypothesis, we analyze the correlation between the prediction probability and node
height on the first and second latent steps across the test set. Figure 7 reveals a clear trend: the
model effectively differentiates between correct and incorrect nodes when their heights are low,
assigning a small value to incorrect nodes and a larger value to correct ones. However, as node
heights increase, their gap narrows, indicating it’s more challenging for the model to evaluate them
accurately.

This empirical observation supports the idea that postponing definite decisions with latent thoughts is
beneficial. As the latent search tree expands (through using more latent reasoning steps), the search
frontier is pushed closer to the leaf nodes. Figure 7 confirms this, showing a larger gap between
values of correct and incorrect nodes in the second step (lower figure) than in the first (upper figure).
Therefore, more latent reasoning steps reduce the decision-making difficulty, allowing LLMs to
make more accurate choices.

6 CONCLUSION

In this paper, we presented COCONUT, a novel paradigm for reasoning in continuous latent space,
aimed to address the inherent inefficiencies associated with traditional language-based reasoning in
large language models. Through extensive experimentation on various datasets, we demonstrated
that COCONUT significantly enhances LLM reasoning capabilities. Notably, our detailed analysis
highlighted how an unconstrained latent space allows the model to develop an effective reasoning
pattern similar to BFS. We anticipate that our findings will inspire further research into latent rea-
soning methods, contributing to the development of more intelligent machine reasoning system.
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# Nodes # Edges Len of Shortest Path # Shortest Paths

23.0 36.0 3.8 1.6

Table 2: Statistics of the graph structure in ProsQA.

Dataset Training Validation Test

GSM8k 385,620 500 1319
ProntoQA 9,000 200 800

ProsQA 17,886 300 500

Table 3: Statistics of the datasets.

A DATASETS

A.1 CONSTRUCTION OF PROSQA

To construct the dataset, we need to define a set of entities, which are typical names like “Alex”,
“Jack”, etc. We also define a set of concepts, which are fictional words like “lorpus”, “rorpus”, etc.,
following Saparov & He (2022).

The desired problem form is “Is [Entity] a [Concept A] or [Concept B]?”. Assume the correct answer
is [Concept A], we will need to construct a graph, so that we can find a path between [Entity] and
[Concept A], and make sure [Entity] and [Concept B] are not connected.

The overall idea to build the DAG is to gradually add more nodes. Every time a new node comes
in, we randomly add edges from existing nodes to the new node. We first sample the in-degree
following a Poisson distribution with a mean equal to 1.5, then sample the parents for this node. In
this process, we need to make sure that any entity or concept cannot be the ancestor of both [Concept
A] and [Concept B], in order to make a valid binary choice problem. Besides, we want to keep the
family of [Concept A] and [Concept B] of similar sizes, otherwise the model may learn shortcuts.

Therefore, we implement a graph construction pipeline as follows: First, we initialize two nodes
with labels 1 and 2. Then, for each new node, there is a probability p (p = 0.35) that it can only
accept edges from nodes with label 1; and another probability p (p = 0.35) that it can only accept
edges from nodes with label 2; otherwise the node can accepts edges from any nodes. After sampling
the incoming edges for the node, it will be assigned a label: 1 if all the parent nodes have label 1; 2
if all the parent nodes have label 2; 3 if there are both parent nodes with label 1 and 2; 0 if there are
no parent nodes or all parent nodes are labeled 0.

All nodes without parents will be assigned an entity name, while others are given a concept names.
These form the known conditions. To get the question, we use the first node as the [Entity], a node
labeled with 1 as [Concept A], a node labeled with 2 as [Concept B]. The construction will ensure
there is always a path from [Entity] to [Concept A] but not [Concept B]. We will find the [Concept A]
and [Concept B] that makes the reasoning chain relatively long. Note that after rendering the graph
into natural language, we will permute the position of [Concept A] and [Concept B] randomly.
Given the symmetry of label 1 and 2, there is no risk for shortcut in the position of choice.

The statistics of the resulting dataset is listed in Table 2.

A.2 STATISTICS

We show the size of all datasets in Table 3.

B PARALLELISM OF LATENT TREE SEARCH

Figure 9 presents an analysis of the parallelism in the model’s latent reasoning across the first and
second thoughts. For the first thoughts (left panel), the cumulative values of the top-1, top-2, and top-
3 candidate nodes are computed and plotted against their respective percentiles across the test set.
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Figure 9: Analysis of parallelism in latent tree search. The left plot depicts the cumulative value
of the top-1, top-2, and top-3 candidate nodes for the first thoughts, calculated across test cases and
ranked by percentile. The significant gaps between the lines reflect the model’s ability to explore
alternative latent thoughts in parallel. The right plot shows the corresponding analysis for the second
thoughts, where the gaps between lines are narrower, indicating reduced parallelism and increased
certainty in reasoning as the search tree develops. This shift highlights the model’s transition toward
more focused exploration in later stages.

The noticeable gaps between the three lines indicate that the model maintains significant diversity
in its reasoning paths at this stage, suggesting a broad exploration of alternative possibilities. In
contrast, the second thoughts (right panel) show a narrowing of these gaps. This trend suggests
that the model transitions from parallel exploration to more focused reasoning in the second latent
reasoning step, likely as it gains more certainty about the most promising paths.
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