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ABSTRACT

Public research results on large-scale supervised finetuning of AI agents remain
relatively rare, since the collection of agent training data presents unique chal-
lenges. In this work, we argue that the bottleneck is not a lack of underlying data
sources, but that a large variety of data is fragmented across heterogeneous for-
mats, tools, and interfaces. To this end, we introduce the Agent Data Protocol
(ADP), a light-weight representation language that serves as an “interlingua” be-
tween agent datasets in diverse formats and unified agent training pipelines down-
stream. The design of ADP is expressive enough to capture a large variety of
tasks, including API/tool use, browsing, coding, software engineering, and gen-
eral agentic workflows, while remaining simple to parse and train on without en-
gineering at a per-dataset level. In experiments, we unified a broad collection of
13 existing agent training datasets into ADP format, and converted the standard-
ized ADP data into training-ready formats for multiple agent frameworks. We
performed supervised finetuning on the unified data, and demonstrated an average
performance gain of ∼20% over corresponding base models, and delivers state-
of-the-art or near-SOTA performance on standard coding, browsing, tool use, and
research benchmarks, without domain-specific tuning. All code and data are re-
leased publicly, in the hope that ADP could help lower the barrier to standardized,
scalable, and reproducible agent training.

1 INTRODUCTION

Agent Data ProtocolRaw Data

❖ AgentInstruct
❖ CodeActInstruct
❖ SWE-Gym
❖ Mind2Web
❖ ……

Action

➢ API Action
➢ Code Action
➢ Message Action

Observation

➢ Text Observation
➢ Web Observation

OpenHands SFT

SWE Agent SFT

AgentLab SFT

APIAction (
    function=goto, 
    kwargs={url: google.com}
)<!doctype html>

<html itemscope 
… <title> Google
 </title> … </html>

WebObservation (
    url=google.com, 
    html=<html>...,
    axtree=RootWebArena 
'Google', focused …
)CodeAction (

    language=python, 
    content=print("Hello World")
)

```python

print("Hello World")

```
TextObservation (
    content=Hello World,
    source=environment
)

goto(url=google.com)

Execution result: 
Hello World

MessageAction (
    content=How can I help you?
)

How can I help you?

Trajectory (
    id=example_id,
    content=[...]
)

Figure 1: Overview of the Agent Data Protocol (ADP). Raw data from diverse sources such as
AgentInstruct, CodeActInstruct, SWE-Gym, and Mind2Web are converted into a standardized ADP
format. ADP unifies data into Trajectory objects, which include two core components: Actions (API
action, code action, message action) and Observations (text observation, web observation). This
standardized representation enables seamless integration with various agent SFT pipelines. Example
transformations demonstrate how heterogeneous raw data is normalized for training agentic models.

Pre-training large language models (LLMs) benefits from abundant, readily available Internet-scale
data. In contrast, post-training presents a much harder challenge: high-quality task-specific data
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must be carefully curated. While creative strategies have emerged for collecting data in relatively
simple settings, such as single-turn user interactions like code generation (Nijkamp et al., 2023),
question answering (Rajpurkar et al., 2016), and sentiment analysis (Maas et al., 2011), many real-
world tasks are far more complex.

A particularly difficult case is agent applications, where models must take sequential actions and
interact with the world iteratively. Building datasets for such scenarios requires recording and struc-
turing trajectories of agent behavior, much more challenging than collecting static input-output pairs.

Despite these difficulties, a growing body of work has explored different approaches for creating
agent datasets. These efforts vary in methodology, from manual curation (Rawles et al., 2023; Xu
et al., 2024a), to synthetic data generation (Ou et al., 2024; Zheng et al., 2024a), to recorded agent
rollouts (Pan et al., 2025; Yang et al., 2025b). The resulting datasets span a wide range of tasks,
including web navigation (Deng et al., 2023; Lù et al., 2024), software development (Yang et al.,
2025b; Pan et al., 2025), visual interface control (Rawles et al., 2023; Kapoor et al., 2024), and
general tool use (Zeng et al., 2023; Liu et al., 2024a) (an overview of these datasets in § 2.1).

However, despite the availability of such data, large-scale supervised fine-tuning (SFT) of agents
remains rare in academic research. A few notable projects, such as Zeng et al. (2023) and Mitra
et al. (2024), have demonstrated their potential, but remain exceptions rather than the norm. Why
has this not become standard practice? We argue that the issue is not a lack of data, but rather a lack
of standardization. Existing datasets are fragmented, with inconsistent formats and representations,
making it difficult to combine, share, and leverage them effectively, thus they remain underutilized.

To address this gap, we introduce the Agent Data Protocol (ADP), a standardized expressive repre-
sentation language for agent data. By converting heterogeneous datasets into ADP, it makes it simple
to generate large-scale and diverse data for a variety of downstream training pipelines (Figure 1).
Technically, ADP is implemented as Pydantic1 schemas that express actions and observations corre-
sponding to common agent use cases such as communicating, browsing, coding, and miscellaneous
tool calling, coupled with strict automated validation to maintain high data quality.

As a first step to demonstrate the practical utility of ADP, we implement converters from 13 pre-
existing datasets into ADP, and converters from ADP to 3 different agent architectures, demonstrat-
ing its generality. Based on this, we create and release the largest publicly available dataset for agent
training, consisting of 1.3M training trajectories, dubbed the ADP Dataset V1.

Our experiments show training agents using ADP leads to significant performance improvements
across diverse domains, including coding (SWE-Bench Verified), web browsing (WebArena), re-
search (GAIA), and agentic tool use (AgentBench), as shown in § 6. Notably, these results improve
by an average of 20% over base models, and are competitive with or superior to other state-of-the-art
results from similarly-sized models. We also identify significant benefits from cross-task transfer,
with training on the ADP data improving significantly over training on individual datasets. Be-
yond performance, ADP enables systematic cross-dataset analysis, revealing trends and areas for
improvement in publicly available data.

Finally, we release all code and datasets in open source to foster community adoption and encourage
contributions of new datasets. We believe ADP will unlock a new wave of progress in agentic model
fine-tuning by providing the standardization needed to make large-scale supervised agent training
practical and scalable.

2 RELATED WORK

The development of effective LLM-based agents critically depends on high-quality training data
that captures the complexity of multi-step reasoning, tool usage, and environmental interaction (Yao
et al., 2022b; Schick et al., 2023; Deng et al., 2023; Masterman et al., 2024). This section reviews
existing methods for agent data collection and the challenges that motivate ADP.

1https://pydantic.dev/
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2.1 AGENT DATA COLLECTION METHODS

Existing approaches span manual creation (human experts creating step-by-step demonstrations of
desired agent behaviors) (Nakano et al., 2021; Yao et al., 2022a), synthetic generation (leverages
existing LLMs to create agent trajectories through prompting or structured generation) (Luo et al.,
2023; Xu et al., 2024b), and recorded agent rollouts (captures trajectories from existing agent sys-
tems during task execution) (Wang et al., 2024a; Pan et al., 2025), etc, resulting in abundant agent
training data, a representative set of which listed in Table 1.

Table 1: Overview of Existing Agent Training Datasets. C=Coding, S=Software Engineering,
T=API/Tool Use, W=Web Browsing.

Dataset Variety Count Source Note
AgentInstruct (Zeng et al., 2023) C T W 1.9K synthetic Mixture of Browsing, Database, OS, etc.
Code-Feedback (Zheng et al., 2024a) C 66.4K manual Code generation with runtime feedback loops
CodeActInstruct (Wang et al., 2024b) C 7.1K synthetic Code generation and tool use with execution
Go-Browse(Gandhi & Neubig, 2025) W 9.5K rollout Structured exploration web rollouts
Mind2Web (Deng et al., 2023) W 1.0K manual Human web demos on real websites
Nebius SWE Trajectories
(Golubev et al., 2024)

S 13.4K rollout SWE-agent trajectories from Nebius relying
solely on open-weight models

NNetNav-live (Murty et al., 2024) W 5.0K rollout Retroactively labeled live web exploration
NNetNav-wa (Murty et al., 2024) W 4.2K rollout Retroactively labeled WebArena exploration
openhands-feedback
(All Hands AI, 2024)

C T W 0.2K rollout Recorded OpenHands agent trajectories with hu-
man feedback

Orca Agentinstruct (Mitra et al., 2024) T 1046.1K synthetic Large-scale synthetic tool-use instructions data
SWE-Gym (Pan et al., 2025) S 0.5K rollout Agent trajectories solving real GitHub repo tasks
SWE-smith (Yang et al., 2025b) S 5.0K synthetic Trajectories of agents on synthesized bug-fix tasks
Synatra (Ou et al., 2024) W 99.9K synthetic Synthetically created web demos of tutorials

We also group each dataset into a coarse task category.

• Coding: generally includes fundamental programming tasks, such as command line code genera-
tion, algorithm implementation, code completion, code translation, and code repair, etc.

• Software Engineering: often consists of repository-level software engineering tasks, such as bug
fixing, feature implementation, code refactoring, and dependency management, etc.

• API/Tool Use: usually requires agents to use external APIs/tools effectively to solve tasks. Com-
mon tools include file manipulation, database queries, and customized APIs, etc.

• Web Browsing: commonly encompasses tasks including web navigation, online shopping, and
social media interactions, etc, requiring agents to understand GUIs.

2.2 CHALLENGES AND LIMITATIONS

Despite abundant existing agent training datasets, several fundamental challenges prevent effective
large-scale utilization of these resources:

• Complexity of Data Curation: Creation of high-quality agent training data requires significant
resources and expertise (Paullada et al., 2021; Bhardwaj et al., 2024; Zha et al., 2025). Manual
curation is expensive and requires domain knowledge; synthetic generation faces challenges in
verifying data quality; recorded agent rollouts are fundamentally constrained by the capabilities
of existing baseline agents, limiting the diversity and complexity of trajectories. Each approach
requires significant time and investment. While recent efforts have scaled trajectory collection
(Song et al., 2024; Mitra et al., 2024), the fundamental challenge of balancing quality, diversity,
and scale across different curation approaches remains.

• Heterogeneity of Dataset Format: Existing agent training datasets each employ its own represen-
tation format, action spaces, and observation structures (Ning et al., 2025; Luo et al., 2025). For
example, some web datasets use HTML while some use accessibility tree structures (de Chezelles
et al., 2025). Existing efforts have noted and begun addressing data standardization (Zhang et al.,
2024; Chen et al., 2024; Mohammadi et al., 2025; Xi et al., 2025; Zhang et al., 2025), but they
mostly focused on proposing task-specific or agent-specific unification rather than community-
wide standardization of data representation, limiting plug-and-play with other datasets or agents,
where significant engineering effort is still required to utilize multiple datasets together, hindering
integration across different data sources.

3
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• Difficulty of Analysis and Comparison: The diverse structures of existing datasets also makes it
difficult to perform systematic comparisons or quantitative analysis across different data sources
(Putrama & Martinek, 2024), limiting researchers’ ability to understand the relative usefulness,
coverage, and quality of different datasets, hindering data-driven selection or improvements.

3 THE AGENT DATA PROTOCOL

To overcome these challenges and limitations, and to make good use of existing data resources, we
propose the Agent Data Protocol (ADP). ADP establishes a unified schema that bridges the gap
between existing heterogeneous agent training datasets and large-scale supervised agent fine-tuning.

3.1 DESIGN PRINCIPLES

We design ADP around the following core principles:

• Simplicity: ADP maintains a simple and intuitive structure. This directly addresses the complexity
of data curation challenge by providing a straightforward framework that eliminates the need
for specialized per-dataset engineering, making large-scale agent data utilization accessible to
researchers without extensive adaptation effort.

• Standardization: ADP is designed to provide a unified representation that unifies existing agent
training datasets of various different formats to a standardized format, addressing the challenge of
heterogeneous dataset formats.

• Expressiveness: ADP is designed to ensure that complex agentic trajectories could be accurately
expressed with no loss of critical information. This directly addresses the difficulty of analysis and
comparison challenge because ADP is expressive enough to cover the broad variety of existing
agent datasets across different domains, enabling researchers to put these diverse datasets under
the same conditions and context.

By addressing the fundamental challenges in utilization agent data, ADP aims to push the progress
in agent training, making large-scale agent SFT more accessible to the broader research community.

3.2 ARCHITECTURE

The ADP schema is implemented as Pydantic schemas, and is simple yet expressive in design. Each
ADP standardized agent trajectory is represented as a Trajectory object.

Trajectory consists of (1) id: trajectory id, (2) content: an alternating sequence of actions
and observations representing the agent’s interaction with the user/environment, (3) details: A
flexible metadata dictionary for dataset-specific information (e.g., dataset source URLs).

Action represents agents’ decisions and behaviors. We categorize actions into three types:

• API Actions: Function calls with structured parameters and outputs capturing tool use. Each API
action includes: (1) function: name of tool call, (2) kwargs: a dictionary of function argu-
ments, and (3) description: optional reasoning or explanation for the action. For example,
with ADP, a web navigation call goto(url=https://www.google.com) is represented as
APIAction(function=goto, kwargs=url:https://www.google.com).

• Code Actions: Code generation and execution across programming languages. Each code action
specifies: (1) language: the programming language (e.g., python), (2) content: the code to
execute, and (3) description: optional reasoning or explanation for the action. For example,
the ADP representation of a python code block ‘‘‘python print("Hello World")‘‘‘
is CodeAction(language=python,content=print("Hello World").

• Message Actions: Natural language communications between agents and users, each containing
a content field, documenting agents’ explanations, clarifications, and responses. For example,
MessageAction(content=How can I help you?).

Observation represents agents’ perceptions from the environment, categorized into two types:

4
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• Text Observations: Captures the text information from various sources, including user instruc-
tions and environmental feedback. Each text observation includes: (1) source: the origin of
the observation (“user” or “environment”), and (2) content: the observed text. For example, a
python execution output Execution result: Hello World, will be converted to ADP
format TextObservation(content=Hellow World, source=environment).

• Web Observations: Represent the state and content of webpages. Each observation includes: (1)
html: raw HTML content, (2) axtree: accessibility tree of the webpage, (3) url: current page
URL, (4) viewport size: browser viewport dimensions, and (5) image observation:
optional screenshot data. Web observations enable ADP to support complex browsing scenarios.

The core insight behind ADP is that despite the surface-level diversity in agent datasets, most agen-
tic interactions can be decomposed into a sequence of actions taken by the agent and observations
received from the environment. By standardizing these fundamental components, ADP directly ad-
dresses each challenge identified in § 2.2 while preserving the rich semantics of the original data.
This unified representation enables researchers to combine datasets that were previously incompati-
ble, facilitating large-scale training across diverse domains.

3.3 CONVERSION PIPELINE

As shown in Figure 1, we implemented a three-stage conversion pipeline with ADP that transforms
heterogeneous datasets into training-ready agentic formats.

1. Raw to Standardized: This stage unifies original dataset formats into the ADP standardized
schema. Each dataset is extracted in its raw format, and then converted to the ADP schema by
mapping each dataset-specific actions and observations to the ADP’s standardized action and
observation space. For example, a web browsing task with HTML representations is converted
to a pairs of APIAction and WebObservation, while a coding task with execution output
is mapped to CodeAction and TextObservation pairs.

2. Standardized to SFT: This stage converts ADP standardized trajectories into supervised fine-
tuning (SFT) format suitable for training language models. Different agent frameworks oper-
ate with distinct actions spaces, observations formats, etc. For example, OpenHands employs
IPython execution with web browsing capabilities, SWE-Agent uses structured bash commands
and file operations, while AgentLab focuses on DOM-based web interactions. Rather than train-
ing only one generic action model, we recognize that effective agent training requires adaptation
to each framework’s specific scaffolding and interactions formats. For each agent harness, the
conversion process uses one agent-specific script that translates each type of action and observa-
tion into the target agent’s action and observation space based on the agent’s framework. This
stage handles context management, specifies system prompts, and formats conversations to create
SFT-ready instruction-response pairs, optimized for the particular agent architecture.

3. Quality Assurance: This stage ensures data correctness and consistency in alignment with agent
format, tool use, and conversation structure through automated validation. Example quality
checks include verifying tool call formats, ensuring most2 tool calls are paired with an English
thought, and checking whether the conversation ends properly, etc.

3.4 PRACTICAL IMPACT OF ADP ON AGENT TRAINING RESEARCH

The two-direction pipeline (Raw→ADP and ADP→SFT) cleanly separates responsibilities and
eliminates redundant engineering (Figure 2). In practice:

• Dataset conversion (once per dataset). Contributors convert each raw dataset to the ADP schema
exactly once. From then on, the dataset is a standardized resource usable by any agent harness.

• Agent-specific conversion (once per agent). Each agent maintains a single script for ADP→SFT;
no per-dataset engineering needed. Adding new datasets requires no change to agent-side scripts.

• Without ADP. Researchers must write a Raw→SFT converter for each dataset–agent pair, dupli-
cating effort across groups and making large-scale data integration brittle and slow.

2We set this threshold to be 80%, but it can be changed based on demand.
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Go-Browse

AgentInstruct

Code-Feedback

Mind2Web

SWE-smith

……

AgentLab SFT

OpenHands SFT

SWE-Agent SFT Go-Browse

AgentInstruct

Code-Feedback

Mind2Web

SWE-smith

……

With ADP: Linear EffortWithout ADP: Quadratic Effort

ADP
Standardized

Data

AgentLab SFT

OpenHands SFT

SWE-Agent SFT

Figure 2: ADP collapses many-to-many conversions into a hub-and-spoke pipeline. Left: With-
out ADP, each of D-many datasets needs a custom Raw→SFT converter for each of A-many agentic
formats (quadratic O(D × A) effort), causing duplicated code and efforts. Right: With ADP, each
dataset is converted once (Raw→ADP) and each agent only requires one converter (ADP→SFT),
yielding linear O(D+A) effort. New datasets or agents plug in immediately to the rest of ADP.
ADP amortizes conversion cost across the community, accelerates adoption of new datasets, and
ensures that a single ADP→SFT script instantly unlocks the entire pool of ADP-standardized data
to an agent framework. More discussion could be found in § 6.3.

4 CROSS DATASET ANALYSIS Table 2: Dataset Stats and Trajectory Analysis.
A=APIAction, C=CodeAction, M=MessageAction.

Dataset AVG.
Rounds

% Actions
(A/C/M)

% Func
Thought

AgentInstruct 8.2 64/10/26 100.0
Code-Feedback 4.0 0/58/42 82.8
CodeActInstruct 4.0 0/65/35 98.6
Go-Browse 3.9 70/0/30 100.0
Mind2Web 9.7 90/0/10 0.0
Nebius SWE-Agent 16.2 67/27/6 100.0
NNetNav-live 8.2 80/0/20 99.9
NNetNav-wa 10.1 89/0/11 99.9
OpenHands 18.3 11/73/16 91.7
Orca AgentInstruct 1.3 0/15/85 84.0
SWE-Gym 19.7 61/25/14 42.0
SWE-smith 26.8 56/40/4 90.1
Synatra 1.0 100/0/0 99.9

Overall 10.1 53/24/23 83.8

Table 2 shows analysis on 13 ADP stan-
dardized datasets, revealing significant di-
versity in trajectory lengths, action distri-
butions, and reasoning patterns across dif-
ferent task domains.

Trajectory Length. Trajectory rounds
vary dramatically across datasets, from 1
to 26.8 turns, with an average of 10.1
turns. SWE datasets consistently exhibit
longer trajectories, reflecting the inherent
complexity of multi-step repo-level pro-
gramming tasks.

Action Distribution Patterns. Clear
domain-specific preferences emerge from
the action distributions after standardiza-
tion with ADP. Web datasets (Mind2Web, NNetNav, Synatra) heavily favor API actions (80–100%)
with minimal code execution, reflecting their focus on interface interaction. Conversely, coding
datasets (Code-Feedback, CodeActInstruct) show high code usage (∼60% code) with no API usage,
emphasizing direct programming activities. Software engineering datasets demonstrate mixed pat-
terns, with SWE-smith, SWE-Gym, and Nebius SWE-Agent Trajectories relies on API actions such
as file writes while also using code actions for code generation and execution.

Function Reasoning Analysis. A striking finding is the high function thought coverage (≥ 90% for
most datasets), indicating that these training datasets consistently provide explanations for actions.
This is particularly valuable for interpretability and training agents with reasoning abilities. Impor-
tantly, high reasoning coverage appears across all task varieties, suggesting that function thoughts
represent a general characteristic of well-documented datasets rather than domain-specific behavior.

5 EXPERIMENTAL SETUP

5.1 TRAINING SETUP

To evaluate ADP’s effectiveness in training across diverse data sources, we utilize a comprehensive
collection of 13 agent training datasets, spanning coding, SWE, API/tool user, and browsing, as

6
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documented in Table 1. These datasets represent a broad spectrum of heterogeneity challenges
that ADP addresses, including varied data creation methodologies (synthetic generation, manual
curation, agent rollouts), different complexity (from simple to complex multi-step workflows), and
diverse environments (command-line interfaces, web GUIs, Jupyter Notebooks, API calls).

The selected datasets collectively contain over 1.3M instances, ranging from smaller ones like
Mind2Web to larger-scale ones like Orca AgentInstruct. To ensure balanced representation across
domains and prevent any single large dataset from dominating the training process, we subsample
from larger datasets while using smaller datasets in their entirety. Full details of our data sampling
and mixture weights are in Appendix C.

We use Qwen2.5-Coder-Instruct model family (Qwen Team, 2024; Hui et al., 2024) as the base
models, with 3 agent frameworks for comprehensive evaluation across multiple benchmarks. We
fine-tuned all models using the same SFT pipeline from LLaMA-Factory (Zheng et al., 2024b).
These experiments focus on each framework’s specialized domain to demonstrate targeted effec-
tiveness. Each agent has unique architectures, tool interfaces, and interaction environments. This
diversity allows us to validate that ADP-standardized data can be readily and easily converted to
different agent formats, demonstrating the protocol’s utility across various agent implementations.

OpenHands (Wang et al., 2025) is an open platform for building generalist AI agents that operate
like software developers: writing code, using command lines, and browsing the web. It provides
sandboxed execution environments, tool coordination, and benchmark evaluation.

AgentLab (Drouin et al., 2024; de Chezelles et al., 2025) is an open-source framework for de-
veloping, testing, and benchmarking web agents across diverse tasks, emphasizing scalability and
reproducibility. It supports a suite of evaluation benchmarks like WebArena and WorkArena.

SWE-Agent (Yang et al., 2024) introduces a custom Agent-Computer Interface (ACI) that enables
language model agents to autonomously perform software engineering tasks by navigating code-
bases, editing and running code, viewing files, and executing tests.

5.2 EVALUATION BENCHMARKS

We evaluated these agents across 4 benchmarks (based on the availability of benchmark evalua-
tion code and specialization of agents) that span different domains. This comprehensive evaluation
demonstrates ADP’s expressiveness in preserving critical information across diverse tasks.

SWE-Bench (Jimenez et al., 2024) evaluates agents on real-world software engineering tasks. Given
a Github codebase and a bug report, agents must generate patches that satisfy existing unit tests. We
used the SWE-Bench Verified subset for evaluation (Chowdhury et al., 2024).

WebArena (Zhou et al., 2024) provides a realistic, self-hosted web environment composed of fully
functional websites in domains like e-commerce, forums, and map navigation, requiring agents to
interpret high-level natural language commands and perform concrete web interactions.

AgentBench (Liu et al., 2024b) evaluates agents across different environments, such as operating
systems, databases, and web browsing. It emphasizes multi-turn reasoning, decision making, and
adaptability across domains.

GAIA (Mialon et al., 2023) is a benchmark for general AI assistants featuring human-annotated
tasks that combine reasoning, tool use, and multi-step problem solving, often with multimodal input.
Tasks vary in difficulty by number of steps and required tools.

6 EXPERIMENTAL RESULTS

6.1 ADP DATA RESULTS IN HIGHLY EFFECTIVE AGENTS ACROSS DIVERSE TASKS

ADP fine-tuning consistently improves performance across models, benchmarks, and
agent harnesses. As shown in Table 3, Table 4, and Table 5, training on standard-
ized ADP data yields substantial gains across 7B, 14B, and 32B models on several popu-
lar evaluation benchmarks. On SWE-Bench (Verified), ADP training delivers remarkable im-
provements: Qwen-2.5-7B-Coder-Instruct improves from 0.4% to 20.2% (+19.8%)

7
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Table 3: Comparison of SOTA and our Best 7–8B ADP-trained agents’ results across benchmarks.
Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent Model Training Data Accuracy

SWE-Bench (Verified) (Jimenez et al., 2024; Chowdhury et al., 2024)

SWE-Agent
(Yang et al., 2024)

Qwen-2.5-7B-Coder-Instruct – 0.4%
Qwen-2.5-7B-Coder-Instruct SWE-smith (Yang et al., 2025b) 15.2% (+14.8%)
Claude 3 Opus (Anthropic Team) – 15.8%
Qwen-2.5-7B-Coder-Instruct ADP Data 20.2% (+19.8%)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-7B-Coder-Instruct – 2.8%
Qwen-2.5-7B-Coder-Instruct SWE-Gym (Pan et al., 2025) 10.6% (+7.8%)
Qwen-2.5-7B-Coder-Instruct ADP Data 20.4% (+17.6%)

WebArena (Zhou et al., 2024)

BrowserGym
(de Chezelles et al., 2025)

Llama-3.1-8B – 1.0%
Qwen-2.5-7B-Instruct – 8.3%
Llama-3.1-8B NNetNav (Murty et al., 2024) 16.3% (+15.3%)
Qwen-2.5-7B-Instruct Go-Browse (Gandhi & Neubig, 2025) 21.7% (+13.4%)

AgentLab (Drouin et al., 2024)
(de Chezelles et al., 2025)

Qwen-2.5-7B-Coder-Instruct – 4.5%
Qwen-2.5-7B-Coder-Instruct ADP Data 21.0% (+16.5%)

AgentBench OS (Liu et al., 2024b)

AgentLM
(Liu et al., 2024b)

Llama-2-chat-7B – 8.3%
Llama-2-chat-7B AgentInstruct (Zeng et al., 2023) 17.4% (+9.1%)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-7B-Coder-Instruct – 3.5%
Qwen-2.5-7B-Coder-Instruct ADP Data 27.1% (+23.6%)

GAIA (Mialon et al., 2023)

OWL Agent (Hu et al., 2025) Qwen-2.5-7B-Instruct – 4.8%

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-7B-Instruct – 7.3%
Qwen-2.5-7B-Instruct ADP Data 9.1% (+1.8%)

Table 4: Comparison of SOTA and our Best 13–14B ADP-trained agents’ results across benchmarks.
Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent Model Training Data Accuracy

SWE-Bench (Verified) (Jimenez et al., 2024; Chowdhury et al., 2024)

SWE-Agent
(Yang et al., 2024)

Qwen-2.5-14B-Coder-Instruct – 2.0%
Claude 3.5 Sonnet(Anthropic Team) – 33.6%
Qwen-2.5-14B-Coder-Instruct ADP Data 34.4% (+32.4%)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-14B-Coder-Instruct – 5.8%
Qwen-2.5-14B-Coder-Instruct SWE-Gym (Pan et al., 2025) 16.4% (+10.6%)
Qwen-2.5-14B-Coder-Instruct ADP Data 30.6% (+24.8%)

WebArena (Zhou et al., 2024)

AgentLab (Drouin et al., 2024)
(de Chezelles et al., 2025)

Qwen-2.5-14B-Coder-Instruct – 5.5%
Qwen-2.5-14B-Coder-Instruct ADP Data 22.2% (+16.7%)

AgentBench OS (Liu et al., 2024b)

AgentLM
(Liu et al., 2024b)

Llama-2-chat-13B – 9.0%
Llama-2-chat-13B AgentInstruct (Zeng et al., 2023) 18.1% (+9.1%)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-14B-Coder-Instruct – 2.8%
Qwen-2.5-14B-Coder-Instruct ADP Data 20.8% (+18.0%)

with SWE-Agent and from 2.8% to 20.4% (+17.6%) with OpenHands. At 14B scale,
Qwen-2.5-14B-Coder-Instruct achieves 34.4% (+32.4%) with SWE-Agent and 30.6%
(+24.8%) with OpenHands. The 32B model reaches 40.3% (+38.1%) with SWE-Agent and 36.8%
(+26.2%) with OpenHands, matching or exceeding Claude 3.5 Sonnet with SWE-Agent’s 33.6%
performance. On WebArena, ADP training shows consistent gains across model sizes: 7B achieves
21.0% (+16.5%), 14B reaches 22.2% (+16.7%), and 32B attains 22.9% (+12.0%). On AgentBench
OS, the improvements are substantial: the 7B model improves from 3.5% to 27.1% (+23.6%), the
14B model improves from 2.8% to 20.8% (+18.0%), and 32B models from 27.8% to 34.7% (+6.9%).
Finally, on GAIA, the 7B model improves from 7.3% to 9.1% (+1.8%).

These gains, spanning both coding and browsing settings, show that a unified, cross-domain ADP
training corpus can deliver SOTA or near-SOTA performance without domain-specific tuning and is
effective across models, action spaces, and agent harnesses. Figure 3 and Figure 4 also show clear
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Table 5: Comparison of SOTA and our Best 32B ADP-trained agents’ results across benchmarks.
Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent Model Training Data Accuracy

SWE-Bench (Verified) (Jimenez et al., 2024; Chowdhury et al., 2024)

SWE-Agent
(Yang et al., 2024)

Qwen-2.5-32B-Coder-Instruct – 2.2%
Qwen-2.5-32B-Coder-Instruct SWE-smith (Yang et al., 2025b) 40.2% (+33.7%)
Qwen-2.5-32B-Coder-Instruct ADP Data 40.3% (+38.1%)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-32B-Coder-Instruct – 10.6%
Qwen-2.5-32B-Coder-Instruct SWE-Gym (Pan et al., 2025) 20.6% (+10.0%)
Qwen-2.5-32B-Coder-Instruct ADP Data 36.8% (+26.2%)

WebArena (Zhou et al., 2024)

AgentLab (Drouin et al., 2024)
(de Chezelles et al., 2025)

Qwen-2.5-32B-Coder-Instruct – 10.9%
Qwen-2.5-32B-Coder-Instruct ADP Data 22.9% (+12.0%)

AgentBench OS (Liu et al., 2024b)

AgentLM
(Liu et al., 2024b)

Llama-2-chat-70B – 9.0%
Llama-2-chat-70B AgentInstruct (Zeng et al., 2023) 21.5% (+12.5%)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-32B-Coder-Instruct – 27.8%
Qwen-2.5-32B-Coder-Instruct ADP Data 34.7% (+6.9%)

monotonic gains with model size and consistent boosts from ADP training across agents and tasks,
with ADP-trained models outperforming their base counterparts at every scale.

6.2 DIVERSE DATA RESULTS IN CROSS-TASK TRANSFER

Table 6: Cross-task transfer with diverse vs. task-specific data. For each benchmark, we compare
the same harness+model under task-specific “only” tuning and training on ADP corpus.

Agent Model Training Data Accuracy

SWE-Bench (Verified) (Jimenez et al., 2024; Chowdhury et al., 2024)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-7B-Instruct SWE-smith Only 1.0%
Qwen-2.5-7B-Instruct ADP Data 10.4%
Qwen-3-8B CodeActInstruct + Code-Feedback 0.2%
Qwen-3-8B SWE-smith Only 11.0%
Qwen-3-8B ADP Data 16.6%

WebArena (Zhou et al., 2024)

AgentLab (Drouin et al., 2024)
(de Chezelles et al., 2025)

Qwen-2.5-7B-Instruct Go-Browse Only 16.0%
Qwen-2.5-7B-Instruct ADP Data 20.1%

AgentBench OS (Liu et al., 2024b)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-3-8B AgentInstruct Only 21.5%
Qwen-3-8B ADP Data 25.7%

GAIA (Mialon et al., 2023)

OpenHands CodeActAgent
(Wang et al., 2025)

Qwen-2.5-7B-Instruct AgentInstruct Only 0.6%
Qwen-2.5-7B-Instruct ADP Data 9.1%

We study whether data diversity helps agents generalize across tasks. Holding the agent setup and
evaluation fixed, we compare training with different data mixtures: (i) Base (no tuning), (ii) Task-
specific only fine-tuning (e.g., SWE-smith Only, etc.), and (iii) ADP Data (as detailed in § 5), a
mixed, cross-domain corpus. As shown in Table 6, ADP consistently outperforms task-specific
tuning on the target task and, critically, avoids the negative transfer that single-domain tuning
often induces on other tasks (Mueller et al., 2024; Kotha et al., 2024; Li et al., 2024).

Concretely, on SWE-Bench, ADP trained Qwen-2.5-7B-Instruct achieves 10.4%, versus
1.0% with SWE-smith Only; for Qwen-3-8B (Yang et al., 2025a), ADP reaches 16.6% versus
0.2% with CodeActInstruct + Code-Feedback and 11.0% with SWE-smith Only. On WebArena,
ADP trained Qwen-2.5-7B-Instruct attains 20.1% versus 16.0% with Go-Browse Only. On
AgentBench OS, ADP lifts Qwen-3-8B to 25.7% versus 21.5% with AgentInstruct Only. On GAIA,
AgentInstruct Only results in 0.6% accuracy, while ADP improves it to 9.1%. Overall, mixed ADP
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training yields better in-domain accuracy and stronger cross-task generalization than single-domain
tuning.

6.3 ADP EASES ADAPTATION TO NEW AGENT HARNESSES

Table 7: LOC for converting datasets to ADP.
Dataset Total LOC

AgentInstruct ∼1500
Code-Feedback 134
CodeActInstruct 269
Go-Browse 335
Mind2Web 476
Nebius SWE-Agent Trajectories 260
NNetNav (live+wa) 290
openhands-feedback 879
Orca AgentInstruct 155
SWE-Gym 221
SWE-smith 228
Synatra 145

Total 4892

Table 7 demonstrates the lines of code (LOC)3

the authors and community contributors used
to convert 13 datasets from distinct sources
to the ADP schema. A single Raw→ADP
converter per dataset performs the same nor-
malization work (schema mapping, tool/action
alignment, conversation formatting) that a tra-
ditional Raw→SFT converter would do for a
specific agent harness. Therefore, LOC statis-
tics in Table 7 are a reasonable proxy for the
per-agent harness effort without ADP.

Without ADP. Using this proxy, the cost of
converting D-many datasets to A-many har-
nesses without ADP is Costno-ADP(A,D) ≈
A ·

∑D
i=0 LOCi,Raw→ADP. Thus the total con-

version cost across the community is quadratic (O(D × A) effort), as depicted in Figure 2. In our
data,

∑D
i=0 LOCi,Raw→ADP = 4892 LOC across 13 datasets, so for A = 100 harnesses the total cost

is Costno-ADP ≈ 100× 4892 = 489,200 LOC.

Table 8: LOC for ADP→SFT converters.
Agent Harness Total LOC

OpenHands CodeActAgent ∼150
SWE-Agent ∼50
AgentLab ∼30

Average ∼77

With ADP. The total cost becomes CostADP(A,D) ≈∑D
i=0 LOCi,Raw→ADP +

∑A
j=0 LOCADP→SFT,j with

ADP. Thus, as shown in Figure 2, the total conver-
sion cost across the community now becomes linear
with ADP (O(D + A) effort). Table 8 demonstrates
that converting ADP standardized data to agent harness
format takes an average of 77 LOC. For A = 100,
CostADP(A,D) ≈ 4892 + 77 × 100 = 12,592 across
the 13 datasets we used, greatly less than the no-ADP

setting. Additionally, adding a new harness only require writing one script converting ADP stan-
dardized data to SFT, greatly easing adaptation to new agent harnesses. Hence, ADP substantially
reduces the community’s collective effort required to develop scalable, reproducible agents.

7 CONCLUSION AND FUTURE WORK

ADP provides a practical, lightweight “interlingua” that unifies heterogeneous datasets into a sin-
gle schema consumable by many agent harnesses, turning today’s fragmented data landscape into a
scalable training pipeline. Looking ahead, we see three immediate directions. (i) Multimodality:
extending ADP beyond text to images, screen recordings, and other modalities to capture richer
agent–environment interactions. (ii) Standardized evaluation: applying the same standardized
“protocol” idea to evaluation and environment settings so that datasets, agents, and evaluations com-
pose cleanly. (iii) Community growth and data quality: continuing open-source releases, stronger
automated validation or even automated dataset conversion, to sustain scale while preserving qual-
ity. We believe that, by lowering integration costs and enabling systematic and scalable training and
analysis across sources, ADP can catalyze the next wave of agent-training research and practice.

REPRODUCIBILITY STATEMENT.

We provide clear pointers to enable independent reproduction of all results. We describe the ADP
schema and conversion pipeline (§ 3), allowing others to regenerate the training corpus from raw
sources. We list the datasets and their characteristics in § 2.1. The exact training and evaluation

3All LOC exclude prompt text (e.g., system prompts); only converter code is counted.
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setup-including base models, agent harnesses, our SFT pipeline, the evaluation benchmarks and
protocol-is specified in § 5. Finally, we will release all code and data open source, including the
ADP schemas, converters, and scripts referenced above.
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A USE OF LLMS

We used LLMs to aid and polish writing for style and presentation.

Specifically, LLMs were employed to:

• polish wording, tighten paragraphs, and improve clarity/flow;

• improve latex presentation (e.g., table/figure captions)

B ADP EXAMPLE CONVERSION

The conversion pipeline: Raw → ADP → SFT enables scalable training across diverse agent archi-
tectures while maintaining data provenance and semantic structure.

This section demonstrates an example conversion from raw agent interaction data of the Code Feed-
back dataset (Zheng et al., 2024a) to the standardized ADP format. The transformation process
extracts structured observations and actions from a raw conversation between the user and the agent.

15

https://aclanthology.org/2025.naacl-long.578/
https://aclanthology.org/2025.naacl-long.578/
https://aclanthology.org/2024.findings-acl.762/
http://arxiv.org/abs/2403.13372
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.1 RAW FORMAT EXAMPLE

The raw format typically contains conversational messages with roles and content:

Listing 1: Raw Format Example from Code Feedback

1 [
2 {
3 "id": 13461,
4 "messages": [
5 {
6 "role": "user",
7 "content": "Write a Python script to calculate statistical

measures..."
8 },
9 {

10 "role": "assistant",
11 "content": "You’re correct. Let me optimize the code...\n\

n‘‘‘python\nimport math\n\ndef calculate_statistics(x,
y):\n # Implementation details...\n return

r_squared, correlation_coefficient, adjusted_r_squared
\n‘‘‘"

12 },
13 {
14 "role": "user",
15 "content": "Execution result: \nR-squared: 0.6\

nCorrelation: 3.87\nAdjusted R-squared: 0.47"
16 }
17 ]
18 }
19 ]

B.2 STANDARDIZED ADP FORMAT EXAMPLE

The standardized format structures the same interaction into typed observations and actions:

Listing 2: Standardized ADP Format Example

1 [
2 {
3 "id": "13461",
4 "content": [
5 {
6 "class_": "text_observation",
7 "content": "Write a Python script to calculate statistical

measures...",
8 "name": null,
9 "source": "user"

10 },
11 {
12 "class_": "code_action",
13 "language": "python",
14 "content": "import math\n\ndef calculate_statistics(x, y):

\n # Implementation details...\n return
r_squared, correlation_coefficient, adjusted_r_squared
",

15 "description": "You’re correct. Let me optimize the code
by calculating values once and reusing them..."

16 },
17 {
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18 "class_": "text_observation",
19 "content": "R-squared: 0.6\nCorrelation: 3.87\nAdjusted R-

squared: 0.47",
20 "name": null,
21 "source": "environment"
22 },
23 {
24 "class_": "message_action",
25 "content": "<finish> The code executed successfully with

statistical results...",
26 "description": null
27 }
28 ],
29 "details": {}
30 }
31 ]

The conversion process applies several key transformations:

• Message Classification: Raw messages are classified into observations and actions based on
content analysis.

• Code Extraction: Code blocks within assistant messages are extracted as code action entries.
• Source Attribution: User inputs become text observation with source: "user",

execution results with source: "environment".
• Thought Preservation: Original function thoughts are preserved in description fields while

structured contents are extracted.
• Action Classes: Different classes of agent actions (code execution, messaging, tool usage) are

explicitly categorized

This standardization enables systematic analysis of agent behaviors, tool usage patterns, and inter-
action dynamics across different agent implementations and domains.

B.3 SFT FORMAT EXAMPLE

The standardized ADP format can be further converted to training-ready formats for specific agent
frameworks. Here’s the example in OpenHands (Wang et al., 2025) SFT format:

Listing 3: OpenHands SFT Format Example

1 [
2 {
3 "id": "13461",
4 "conversations": [
5 {
6 "from": "human",
7 "value": "Write a Python script to calculate statistical

measures..."
8 },
9 {

10 "from": "gpt",
11 "value": "You’re correct. Let me optimize the code...\n\n<

function=execute_ipython_cell>\n<parameter=code>\
nimport math\n\ndef calculate_statistics(x, y):\n #
Implementation details...\n return r_squared,

correlation_coefficient, adjusted_r_squared\n</
parameter>\n</function>"

12 },
13 {
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14 "from": "human",
15 "value": "EXECUTION RESULT of [execute_ipython_cell]:\nR-

squared: 0.6\nCorrelation: 3.87\nAdjusted R-squared: 0
.47"

16 },
17 {
18 "from": "gpt",
19 "value": "<function=finish>\n<parameter=message>\nThe code

executed successfully with statistical results...\n</
parameter>\n</function>"

20 }
21 ],
22 "system": "You are OpenHands agent, a helpful AI assistant..."
23 }
24 ]

C DATA SAMPLING FOR BALANCED TRAINING

To balance domains and reduce over-represented sources, we resample each dataset with a per-
dataset multiplier wd. For dataset d with nd raw trajectories, we draw md = ⌈wd nd⌉ examples per
epoch; if wd < 1 we sample without replacement (downsample), and if wd > 1 we sample with
replacement (upsample). This yields an effective mixture proportional to wd across datasets (and
therefore across domains), while keeping the overall epoch size stable.

Table 9: Per-dataset sampling multipliers wd. wd < 1 indicates downsampling; wd > 1 indicates
upsampling.

Dataset wd Direction

agenttuning alfworld 2 up
agenttuning db 2 up
agenttuning kg 2 up
agenttuning mind2web 2 up
agenttuning os 2 up
agenttuning webshop 2 up
code feedback 0.1 down
codeactinstruct 1 neutral
go-browse-wa 1 neutral
mind2web 1 neutral
nebius SWE-agent-trajectories 0.2 down
nnetnav-live 1 neutral
nnetnav-wa 1 neutral
openhands 1 neutral
orca agentinstruct 0.001 down
swe-gym openhands sampled trajectories 3 up
swe-smith 1 neutral
synatra 0.01 down

In practice, we fix a random seed for reproducibility and shuffle the union of sampled
examples across datasets each epoch. This scheme targets a more balanced distribution
across coding, SWE, tool-use, and web-browsing sources by attenuating very large corpora
(e.g., orca agentinstruct at wd=0.001) and amplifying under-represented ones (e.g.,
swe-gym openhands sampled trajectories at wd=3).

C.1 DOMAIN-SPECIFIC DATA FILTERING

Beyond balanced sampling, we apply domain-specific filtering to optimize training effectiveness for
each agent framework based on their evaluation focus and capabilities.
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OpenHands and SWE-Agent Training Data. For OpenHands CodeActAgent and SWE-Agent,
which are primarily evaluated on coding and software engineering tasks (SWE-Bench, AgentBench
OS, and GAIA), we use only the non-web portion of the ADP training corpus. This includes datasets
focused on code generation, software engineering, general agent instruction following, and API/-
tool usage. Specifically, we exclude web browsing datasets Mind2Web, Go-Browse, NNetNav, and
Synatra to avoid potential interference from web-specific interaction patterns that are not applicable
to command-line and coding environments. Thus, using the sampling multipliers in Table 9, the
total number of training samples used is around 30K. Future experiments could explore different
sampling multipliers and examine the effect of each dataset on coding and software engineering
tasks.

AgentLab Training Data. For AgentLab, which is designed for web browsing tasks and we evalu-
ated exclusively it on WebArena, we use only the web portion of the ADP training corpus. This in-
cludes datasets focused on web navigation, browser-based task completion, and web-specific agent
instruction following (Mind2Web, Go-Browse, NNetNav, and Synatra). We exclude coding and
software engineering datasets to ensure the model is optimized for web browsing patterns and UI
element interaction without dilution from less compatible domains. Thus, using the sampling multi-
pliers in Table 9, the total number of training samples used is around 20K. Future experiments could
explore different sampling multipliers and examine the effect of each dataset on web tasks.

D PERFORMANCE SCALING
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Figure 3: Performance Scaling Across Agents
and Benchmarks (Base vs ADP Trained)
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Figure 4: Performance Gains Across Agents
and Benchmarks.

Figure 3 and Figure 4 shows the scaling curve of performance and performance gains across agents
and benchmarks. Both plots show clear monotonic gains regardless of model size and consistent
boosts from ADP training across agents and tasks, with ADP-trained models outperforming their
base counterparts at every scale.

E ADDITIONAL EXPERIMENTS

E.1 ADP’S ADVANTAGE PERSIST UNDER EQUAL DATA SCALE

To address the question of fair data scaling, we additionally compare ADP against a single-domain
fine-tuning baseline under matched dataset size. Specifically, we train Qwen-3-8B on SWE-smith
with up-sampling to match the number of training examples used in the ADP mixture, and evaluate
both models on SWE-Bench with the OpenHands harness. As shown in Table 10, SWE-smith
training yields 11.0% accuracy, whereas ADP training achieves 16.6% under a comparable number
of samples. This demonstrates that ADP’s benefit does not stem from data volume alone, but from
the greater diversity and unified structure of the ADP corpus.
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Table 10: Equal-scale comparison of Qwen-3-8B trained on SWE-smith vs. ADP, evaluated on
SWE-Bench with the OpenHands harness.

Model Training Data Data Scale Accuracy

Qwen3-8B SWE-smith (up-sampled) ≈ 30K 11.0%
Qwen-3-8B ADP ≈ 30K 16.6%

F LICENSE OF USE

This section provides licensing information for all datasets referenced in Table 1 and used in our
experiments. We have made every effort to identify and respect the licensing terms of each dataset.
Users should verify current licensing terms before using these datasets. Users should also verify the
licensing terms of datasets they are adding to ADP.

F.1 DATASET LICENSES

Table 11: Licensing information for datasets used in ADP
Dataset License Link
AgentInstruct Apache 2.0 ZhipuAI/AgentInstruct
Code-Feedback Apache 2.0 m-a-p/Code-Feedback
CodeActInstruct Apache 2.0 xingyaoww/code-act
Go-Browse MIT go-browse/go-browse
Mind2Web CC BY 4.0 osunlp/Mind2Web
Nebius SWE Trajectories CC BY 4.0 nebius/SWE-agent-trajectories
NNetNav-live Apache 2.0 stanfordnlp/nnetnav-live
NNetNav-wa Apache 2.0 stanfordnlp/nnetnav-wa
openhands-feedback MIT all-hands/openhands-feedback
Orca Agentinstruct CDLA-Permissive-2.0 microsoft/orca-agentinstruct-1M-v1
SWE-Gym MIT SWE-Gym/SWE-Gym
SWE-smith MIT SWE-bench/SWE-smith-trajectories
Synatra CC BY-SA 4.0 oottyy/Synatra

License Compliance: We have ensured compliance with licenses of all datasets utilized in this
paper. All licenses permit research use.

F.2 USAGE GUIDELINES

When using the ADP-converted versions of these datasets:

1. Verify Current Licenses: Check the original dataset repositories for the most up-to-date licens-
ing terms

2. Respect Restrictions: Some datasets have restrictions on commercial use, redistribution, or
specific use cases.

3. Cite Appropriately: Include citations for both the original datasets and the ADP conversion
methodology.

4. Contact Authors: For datasets with unclear licensing, contact the original authors for clarifica-
tion on usage terms.

F.3 DISCLAIMER

Licenses were collected at the time of dataset integration and may have changed. Users are respon-
sible for verifying current licensing terms and ensuring compliance with all applicable licenses. The
ADP project does not assume responsibility for license violations by downstream users.
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Under review as a conference paper at ICLR 2026

For questions about specific dataset licenses or usage permissions, please contact the original dataset
authors or maintainers directly.
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