

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 AGENT DATA PROTOCOL: UNIFYING DATASETS FOR DIVERSE, EFFECTIVE FINE-TUNING OF LLM AGENTS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Public research results on large-scale supervised finetuning of AI agents remain
012 relatively rare, since the collection of agent training data presents unique chal-
013 lenges. In this work, we argue that the bottleneck is not a lack of underlying data
014 sources, but that a large variety of data is fragmented across heterogeneous for-
015 mats, tools, and interfaces. To this end, we introduce the Agent Data Protocol
016 (ADP), a light-weight representation language that serves as an “interlingua” be-
017 tween agent datasets in diverse formats and unified agent training pipelines down-
018 stream. The design of ADP is expressive enough to capture a large variety of
019 tasks, including API/tool use, browsing, coding, software engineering, and gen-
020 eral agentic workflows, while remaining simple to parse and train on without en-
021 gineering at a per-dataset level. In experiments, we unified a broad collection of
022 13 existing agent training datasets into ADP format, and converted the standard-
023 ized ADP data into training-ready formats for multiple agent frameworks. We
024 performed supervised finetuning on the unified data, and demonstrated an average
025 performance gain of $\sim 20\%$ over corresponding base models, and delivers state-
026 of-the-art or near-SOTA performance on standard coding, browsing, tool use, and
027 research benchmarks, without domain-specific tuning. All code and data are re-
028 leased publicly, in the hope that ADP could help lower the barrier to standardized,
029 scalable, and reproducible agent training.

1 INTRODUCTION

047 Figure 1: Overview of the Agent Data Protocol (ADP). Raw data from diverse sources such as
048 AgentInstruct, CodeActInstruct, SWE-Gym, and Mind2Web are converted into a standardized ADP
049 format. ADP unifies data into Trajectory objects, which include two core components: Actions (API
050 action, code action, message action) and Observations (text observation, web observation). This
051 standardized representation enables seamless integration with various agent SFT pipelines. Example
052 transformations demonstrate how heterogeneous raw data is normalized for training agentic models.

053 Pre-training large language models (LLMs) benefits from abundant, readily available Internet-scale
data. In contrast, post-training presents a much harder challenge: high-quality task-specific data

054 must be carefully curated. While creative strategies have emerged for collecting data in relatively
 055 simple settings, such as single-turn user interactions like code generation (Nijkamp et al., 2023),
 056 question answering (Rajpurkar et al., 2016), and sentiment analysis (Maas et al., 2011), many real-
 057 world tasks are far more complex.

058 A particularly difficult case is agent applications, where models must take sequential actions and
 059 interact with the world iteratively. Building datasets for such scenarios requires recording and struc-
 060 turing trajectories of agent behavior, much more challenging than collecting static input-output pairs.
 061

062 Despite these difficulties, a growing body of work has explored different approaches for creating
 063 agent datasets. These efforts vary in methodology, from manual curation (Rawles et al., 2023; Xu
 064 et al., 2024a), to synthetic data generation (Ou et al., 2024; Zheng et al., 2024a), to recorded agent
 065 rollouts (Pan et al., 2025; Yang et al., 2025b). The resulting datasets span a wide range of tasks,
 066 including web navigation (Deng et al., 2023; Lù et al., 2024), software development (Yang et al.,
 067 2025b; Pan et al., 2025), visual interface control (Rawles et al., 2023; Kapoor et al., 2024), and
 068 general tool use (Zeng et al., 2023; Liu et al., 2024a) (an overview of these datasets in § 2.1).

069 However, despite the availability of such data, large-scale supervised fine-tuning (SFT) of agents
 070 remains rare in academic research. A few notable projects, such as Zeng et al. (2023) and Mitra
 071 et al. (2024), have demonstrated their potential, but remain exceptions rather than the norm. Why
 072 has this not become standard practice? We argue that *the issue is not a lack of data, but rather a lack*
 073 *of standardization*. Existing datasets are fragmented, with inconsistent formats and representations,
 074 making it difficult to combine, share, and leverage them effectively, thus they remain underutilized.

075 To address this gap, we introduce the Agent Data Protocol (ADP), a standardized expressive repre-
 076 sentation language for agent data. By converting heterogeneous datasets into ADP, it makes it simple
 077 to generate large-scale and diverse data for a variety of downstream training pipelines (Figure 1).
 078 Technically, ADP is implemented as Pydantic¹ schemas that express actions and observations corre-
 079 sponding to common agent use cases such as communicating, browsing, coding, and miscellaneous
 080 tool calling, coupled with strict automated validation to maintain high data quality.

081 As a first step to demonstrate the practical utility of ADP, we implement converters from 13 pre-
 082 existing datasets into ADP, and converters from ADP to 3 different agent architectures, demon-
 083 strating its generality. Based on this, we create and release the largest publicly available dataset for agent
 084 training, consisting of 1.3M training trajectories, dubbed the ADP Dataset V1.

085 Our experiments show training agents using ADP leads to significant performance improvements
 086 across diverse domains, including coding (SWE-Bench Verified), web browsing (WebArena), re-
 087 search (GAIA), and agentic tool use (AgentBench), as shown in § 6. Notably, these results improve
 088 by an average of 20% over base models, and are competitive with or superior to other state-of-the-art
 089 results from similarly-sized models. We also identify significant benefits from cross-task transfer,
 090 with training on the ADP data improving significantly over training on individual datasets. Be-
 091 yond performance, ADP enables systematic cross-dataset analysis, revealing trends and areas for
 092 improvement in publicly available data.

093 Finally, we release all code and datasets in open source to foster community adoption and encourage
 094 contributions of new datasets. We believe ADP will unlock a new wave of progress in agentic model
 095 fine-tuning by providing the standardization needed to make large-scale supervised agent training
 096 practical and scalable.

2 RELATED WORK

101 The development of effective LLM-based agents critically depends on high-quality training data
 102 that captures the complexity of multi-step reasoning, tool usage, and environmental interaction (Yao
 103 et al., 2022b; Schick et al., 2023; Deng et al., 2023; Masterman et al., 2024). This section reviews
 104 existing methods for agent data collection and the challenges that motivate ADP.

¹<https://pydantic.dev/>

108
109

2.1 AGENT DATA COLLECTION METHODS

110
111
112
113
114
115

Existing approaches span manual creation (human experts creating step-by-step demonstrations of desired agent behaviors) (Nakano et al., 2021; Yao et al., 2022a), synthetic generation (leverages existing LLMs to create agent trajectories through prompting or structured generation) (Luo et al., 2023; Xu et al., 2024b), and recorded agent rollouts (captures trajectories from existing agent systems during task execution) (Wang et al., 2024a; Pan et al., 2025), etc, resulting in abundant agent training data, a representative set of which listed in Table 1.

116
117

Table 1: Overview of Existing Agent Training Datasets. **C=Coding**, **S=Software Engineering**, **T=API/Tool Use**, **W=Web Browsing**.

118
119
120
121
122
123
124
125
126
127
128
129
130

Dataset	Variety	Count	Source	Note
AgentInstruct (Zeng et al., 2023)	C T W	1.9K	synthetic	Mixture of Browsing, Database, OS, etc.
Code-Feedback (Zheng et al., 2024a)	C	66.4K	manual	Code generation with runtime feedback loops
CodeActInstruct (Wang et al., 2024b)	C	7.1K	synthetic	Code generation and tool use with execution
Go-Browse (Gandhi & Neubig, 2025)	W	9.5K	rollout	Structured exploration web rollouts
Mind2Web (Deng et al., 2023)	W	1.0K	manual	Human web demos on real websites
Nebius SWE Trajectories (Golubev et al., 2024)	S	13.4K	rollout	SWE-agent trajectories from Nebius relying solely on open-weight models
NNetNav-live (Murty et al., 2024)	W	5.0K	rollout	Retroactively labeled live web exploration
NNetNav-wa (Murty et al., 2024)	W	4.2K	rollout	Retroactively labeled WebArena exploration
openhands-feedback (All Hands AI, 2024)	C T W	0.2K	rollout	Recorded OpenHands agent trajectories with human feedback
Orca Agentinstruct (Mitra et al., 2024)	T	1046.1K	synthetic	Large-scale synthetic tool-use instructions data
SWE-Gym (Pan et al., 2025)	S	0.5K	rollout	Agent trajectories solving real GitHub repo tasks
SWE-smith (Yang et al., 2025b)	S	5.0K	synthetic	Trajectories of agents on synthesized bug-fix tasks
Synatra (Ou et al., 2024)	W	99.9K	synthetic	Synthetically created web demos of tutorials

131
132

We also group each dataset into a coarse task category.

133
134
135
136
137
138
139
140
141

- **Coding**: generally includes fundamental programming tasks, such as command line code generation, algorithm implementation, code completion, code translation, and code repair, etc.
- **Software Engineering**: often consists of repository-level software engineering tasks, such as bug fixing, feature implementation, code refactoring, and dependency management, etc.
- **API/Tool Use**: usually requires agents to use external APIs/tools effectively to solve tasks. Common tools include file manipulation, database queries, and customized APIs, etc.
- **Web Browsing**: commonly encompasses tasks including web navigation, online shopping, and social media interactions, etc, requiring agents to understand GUIs.

142
143

2.2 CHALLENGES AND LIMITATIONS

144
145
146

Despite abundant existing agent training datasets, several fundamental challenges prevent effective large-scale utilization of these resources:

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

- **Complexity of Data Curation**: Creation of high-quality agent training data requires significant resources and expertise (Paullada et al., 2021; Bhardwaj et al., 2024; Zha et al., 2025). Manual curation is expensive and requires domain knowledge; synthetic generation faces challenges in verifying data quality; recorded agent rollouts are fundamentally constrained by the capabilities of existing baseline agents, limiting the diversity and complexity of trajectories. Each approach requires significant time and investment. While recent efforts have scaled trajectory collection (Song et al., 2024; Mitra et al., 2024), the fundamental challenge of balancing quality, diversity, and scale across different curation approaches remains.
- **Heterogeneity of Dataset Format**: Existing agent training datasets each employ its own representation format, action spaces, and observation structures (Ning et al., 2025; Luo et al., 2025). For example, some web datasets use HTML while some use accessibility tree structures (de Chezelles et al., 2025). Existing efforts have noted and begun addressing data standardization (Zhang et al., 2024; Chen et al., 2024; Mohammadi et al., 2025; Xi et al., 2025; Zhang et al., 2025), but they mostly focused on proposing task-specific or agent-specific unification rather than community-wide standardization of data representation, limiting plug-and-play with other datasets or agents, where significant engineering effort is still required to utilize multiple datasets together, hindering integration across different data sources.

162 • **Difficulty of Analysis and Comparison:** The diverse structures of existing datasets also makes it
 163 difficult to perform systematic comparisons or quantitative analysis across different data sources
 164 (Putrama & Martinek, 2024), limiting researchers' ability to understand the relative usefulness,
 165 coverage, and quality of different datasets, hindering data-driven selection or improvements.
 166

167 **3 THE AGENT DATA PROTOCOL**

169 To overcome these challenges and limitations, and to make good use of existing data resources, we
 170 propose the Agent Data Protocol (ADP). ADP establishes a unified schema that bridges the gap
 171 between existing heterogeneous agent training datasets and large-scale supervised agent fine-tuning.
 172

173 **3.1 DESIGN PRINCIPLES**

175 We design ADP around the following core principles:
 176

- 177 • **Simplicity:** ADP maintains a simple and intuitive structure. This directly addresses the *complexity*
 178 of *data curation* challenge by providing a straightforward framework that eliminates the need
 179 for specialized per-dataset engineering, making large-scale agent data utilization accessible to
 180 researchers without extensive adaptation effort.
- 181 • **Standardization:** ADP is designed to provide a unified representation that unifies existing agent
 182 training datasets of various different formats to a standardized format, addressing the challenge of
 183 *heterogeneous dataset formats*.
- 184 • **Expressiveness:** ADP is designed to ensure that complex agentic trajectories could be accurately
 185 expressed with no loss of critical information. This directly addresses the *difficulty of analysis and*
 186 *comparison* challenge because ADP is expressive enough to cover the broad variety of existing
 187 agent datasets across different domains, enabling researchers to put these diverse datasets under
 188 the same conditions and context.

190 By addressing the fundamental challenges in utilization agent data, ADP aims to push the progress
 191 in agent training, making large-scale agent SFT more accessible to the broader research community.
 192

193 **3.2 ARCHITECTURE**

194 The ADP schema is implemented as Pydantic schemas, and is simple yet expressive in design. Each
 195 ADP standardized agent trajectory is represented as a `Trajectory` object.
 196

197 **Trajectory** consists of (1) `id`: trajectory id, (2) `content`: an alternating sequence of actions
 198 and observations representing the agent's interaction with the user/environment, (3) `details`: A
 199 flexible metadata dictionary for dataset-specific information (e.g., dataset source URLs).

200 **Action** represents agents' decisions and behaviors. We categorize actions into three types:
 201

- 202 • **API Actions:** Function calls with structured parameters and outputs capturing tool use. Each API
 203 action includes: (1) `function`: name of tool call, (2) `kwargs`: a dictionary of function argu-
 204 ments, and (3) `description`: optional reasoning or explanation for the action. For example,
 205 with ADP, a web navigation call `goto(url=https://www.google.com)` is represented as
 206 `APIAction(function=goto, kwargs=url:https://www.google.com)`.
- 207 • **Code Actions:** Code generation and execution across programming languages. Each code action
 208 specifies: (1) `language`: the programming language (e.g., `python`), (2) `content`: the code to
 209 execute, and (3) `description`: optional reasoning or explanation for the action. For example,
 210 the ADP representation of a `python` code block ````python print("Hello World")````
 211 is `CodeAction(language=python, content=print("Hello World"))`.
- 212 • **Message Actions:** Natural language communications between agents and users, each containing
 213 a `content` field, documenting agents' explanations, clarifications, and responses. For example,
 214 `MessageAction(content=How can I help you?)`.

215 **Observation** represents agents' perceptions from the environment, categorized into two types:

- **Text Observations:** Captures the text information from various sources, including user instructions and environmental feedback. Each text observation includes: (1) `source`: the origin of the observation (“user” or “environment”), and (2) `content`: the observed text. For example, a python execution output `Execution result: Hello World`, will be converted to ADP format `TextObservation(content=Hello World, source=environment)`.
- **Web Observations:** Represent the state and content of webpages. Each observation includes: (1) `html`: raw HTML content, (2) `axtree`: accessibility tree of the webpage, (3) `url`: current page URL, (4) `viewport_size`: browser viewport dimensions, and (5) `image_observation`: optional screenshot data. Web observations enable ADP to support complex browsing scenarios.

The core insight behind ADP is that despite the surface-level diversity in agent datasets, most agentic interactions can be decomposed into a sequence of *actions* taken by the agent and *observations* received from the environment. By standardizing these fundamental components, ADP directly addresses each challenge identified in § 2.2 while preserving the rich semantics of the original data. This unified representation enables researchers to combine datasets that were previously incompatible, facilitating large-scale training across diverse domains.

3.3 CONVERSION PIPELINE

As shown in Figure 1, we implemented a three-stage conversion pipeline with ADP that transforms heterogeneous datasets into training-ready agentic formats.

1. **Raw to Standardized:** This stage unifies original dataset formats into the ADP standardized schema. Each dataset is extracted in its raw format, and then converted to the ADP schema by mapping each dataset-specific actions and observations to the ADP’s standardized action and observation space. For example, a web browsing task with HTML representations is converted to a pairs of `APIAction` and `WebObservation`, while a coding task with execution output is mapped to `CodeAction` and `TextObservation` pairs.
2. **Standardized to SFT:** This stage converts ADP standardized trajectories into supervised fine-tuning (SFT) format suitable for training language models. Different agent frameworks operate with distinct actions spaces, observations formats, etc. For example, OpenHands employs IPython execution with web browsing capabilities, SWE-Agent uses structured bash commands and file operations, while AgentLab focuses on DOM-based web interactions. Rather than training only one generic action model, we recognize that effective agent training requires adaptation to each framework’s specific scaffolding and interactions formats. For each agent harness, the conversion process uses one agent-specific script that translates each type of action and observation into the target agent’s action and observation space based on the agent’s framework. This stage handles context management, specifies system prompts, and formats conversations to create SFT-ready instruction-response pairs, optimized for the particular agent architecture.
3. **Quality Assurance:** This stage ensures data correctness and consistency in alignment with agent format, tool use, and conversation structure through automated validation. Example quality checks include verifying tool call formats, ensuring most² tool calls are paired with an English thought, and checking whether the conversation ends properly, etc.

3.4 PRACTICAL IMPACT OF ADP ON AGENT TRAINING RESEARCH

The two-direction pipeline (Raw→ADP and ADP→SFT) cleanly separates responsibilities and eliminates redundant engineering (Figure 2). In practice:

- **Dataset conversion (once per dataset).** Contributors convert each *raw* dataset to the *ADP* schema *exactly once*. From then on, the dataset is a standardized resource usable by any agent harness.
- **Agent-specific conversion (once per agent).** Each agent maintains a single script for *ADP→SFT*; no per-dataset engineering needed. Adding new datasets requires *no* change to agent-side scripts.
- **Without ADP.** Researchers must write a *Raw→SFT* converter for *each* dataset–agent pair, duplicating effort across groups and making large-scale data integration brittle and slow.

²We set this threshold to be 80%, but it can be changed based on demand.

Figure 2: **ADP collapses many-to-many conversions into a hub-and-spoke pipeline.** *Left:* Without ADP, each of D -many datasets needs a custom Raw→SFT converter for each of A -many agentic formats (quadratic $O(D \times A)$ effort), causing duplicated code and efforts. *Right:* With ADP, each dataset is converted once (Raw→ADP) and each agent only requires one converter (ADP→SFT), yielding linear $O(D+A)$ effort. New datasets or agents plug in immediately to the rest of ADP.

ADP amortizes conversion cost across the community, accelerates adoption of new datasets, and ensures that a single ADP→SFT script instantly unlocks the entire pool of ADP-standardized data to an agent framework. More discussion could be found in § 6.3.

4 CROSS DATASET ANALYSIS

Table 2 shows analysis on 13 ADP standardized datasets, revealing significant diversity in trajectory lengths, action distributions, and reasoning patterns across different task domains.

Trajectory Length. Trajectory rounds vary dramatically across datasets, from 1 to 26.8 turns, with an average of 10.1 turns. SWE datasets consistently exhibit longer trajectories, reflecting the inherent complexity of multi-step repo-level programming tasks.

Action Distribution Patterns. Clear domain-specific preferences emerge from the action distributions after standardization with ADP. Web datasets (Mind2Web, NNetNav, Synatra) heavily favor API actions (80–100%) with minimal code execution, reflecting their focus on interface interaction. Conversely, coding datasets (Code-Feedback, CodeActInstruct) show high code usage ($\sim 60\%$ code) with no API usage, emphasizing direct programming activities. Software engineering datasets demonstrate mixed patterns, with SWE-smith, SWE-Gym, and Nebius SWE-Agent Trajectories relying on API actions such as file writes while also using code actions for code generation and execution.

Function Reasoning Analysis. A striking finding is the high function thought coverage ($\geq 90\%$ for most datasets), indicating that these training datasets consistently provide explanations for actions. This is particularly valuable for interpretability and training agents with reasoning abilities. Importantly, high reasoning coverage appears across all task varieties, suggesting that function thoughts represent a general characteristic of well-documented datasets rather than domain-specific behavior.

5 EXPERIMENTAL SETUP

5.1 TRAINING SETUP

To evaluate ADP’s effectiveness in training across diverse data sources, we utilize a comprehensive collection of 13 agent training datasets, spanning coding, SWE, API/tool user, and browsing, as

Table 2: Dataset Stats and Trajectory Analysis. A=APIAction, C=CodeAction, M=MessageAction.

Dataset	Avg. Rounds	% Actions (A/C/M)	% Func Thought
AgentInstruct	8.2	64/10/26	100.0
Code-Feedback	4.0	0/58/42	82.8
CodeActInstruct	4.0	0/65/35	98.6
Go-Browse	3.9	70/0/30	100.0
Mind2Web	9.7	90/0/10	0.0
Nebius SWE-Agent	16.2	67/27/6	100.0
NNetNav-live	8.2	80/0/20	99.9
NNetNav-wa	10.1	89/0/11	99.9
OpenHands	18.3	11/73/16	91.7
Orca AgentInstruct	1.3	0/15/85	84.0
SWE-Gym	19.7	61/25/14	42.0
SWE-smith	26.8	56/40/4	90.1
Synatra	1.0	100/0/0	99.9
Overall	10.1	53/24/23	83.8

324 documented in Table 1. These datasets represent a broad spectrum of heterogeneity challenges
 325 that ADP addresses, including varied data creation methodologies (synthetic generation, manual
 326 curation, agent rollouts), different complexity (from simple to complex multi-step workflows), and
 327 diverse environments (command-line interfaces, web GUIs, Jupyter Notebooks, API calls).

328 The selected datasets collectively contain over 1.3M instances, ranging from smaller ones like
 329 Mind2Web to larger-scale ones like Orca AgentInstruct. To ensure balanced representation across
 330 domains and prevent any single large dataset from dominating the training process, we subsample
 331 from larger datasets while using smaller datasets in their entirety. Full details of our data sampling
 332 and mixture weights are in Appendix C.

333 We use Qwen2.5-Coder-Instruct model family (Qwen Team, 2024; Hui et al., 2024) as the base
 334 models, with 3 agent frameworks for comprehensive evaluation across multiple benchmarks. We
 335 fine-tuned all models using the same SFT pipeline from LLaMA-Factory (Zheng et al., 2024b).
 336 These experiments focus on each framework’s specialized domain to demonstrate targeted effec-
 337 tiveness. Each agent has unique architectures, tool interfaces, and interaction environments. This
 338 diversity allows us to validate that ADP-standardized data can be readily and easily converted to
 339 different agent formats, demonstrating the protocol’s utility across various agent implementations.

340 **OpenHands** (Wang et al., 2025) is an open platform for building generalist AI agents that operate
 341 like software developers: writing code, using command lines, and browsing the web. It provides
 342 sandboxed execution environments, tool coordination, and benchmark evaluation.

343 **AgentLab** (Drouin et al., 2024; de Chezelles et al., 2025) is an open-source framework for de-
 344 veloping, testing, and benchmarking web agents across diverse tasks, emphasizing scalability and
 345 reproducibility. It supports a suite of evaluation benchmarks like WebArena and WorkArena.

346 **SWE-Agent** (Yang et al., 2024) introduces a custom Agent-Computer Interface (ACI) that enables
 347 language model agents to autonomously perform software engineering tasks by navigating code-
 348 bases, editing and running code, viewing files, and executing tests.

351 5.2 EVALUATION BENCHMARKS

352 We evaluated these agents across 4 benchmarks (based on the availability of benchmark evalua-
 353 tion code and specialization of agents) that span different domains. This comprehensive evaluation
 354 demonstrates ADP’s expressiveness in preserving critical information across diverse tasks.

355 **SWE-Bench** (Jimenez et al., 2024) evaluates agents on real-world software engineering tasks. Given
 356 a Github codebase and a bug report, agents must generate patches that satisfy existing unit tests. We
 357 used the SWE-Bench Verified subset for evaluation (Chowdhury et al., 2024).

358 **WebArena** (Zhou et al., 2024) provides a realistic, self-hosted web environment composed of fully
 359 functional websites in domains like e-commerce, forums, and map navigation, requiring agents to
 360 interpret high-level natural language commands and perform concrete web interactions.

361 **AgentBench** (Liu et al., 2024b) evaluates agents across different environments, such as operating
 362 systems, databases, and web browsing. It emphasizes multi-turn reasoning, decision making, and
 363 adaptability across domains.

364 **GAIA** (Mialon et al., 2023) is a benchmark for general AI assistants featuring human-annotated
 365 tasks that combine reasoning, tool use, and multi-step problem solving, often with multimodal input.
 366 Tasks vary in difficulty by number of steps and required tools.

370 6 EXPERIMENTAL RESULTS

372 6.1 ADP DATA RESULTS IN HIGHLY EFFECTIVE AGENTS ACROSS DIVERSE TASKS

373 **ADP fine-tuning consistently improves performance across models, benchmarks, and
 374 agent harnesses.** As shown in Table 3, Table 4, and Table 5, training on standard-
 375 ized ADP data yields substantial gains across 7B, 14B, and 32B models on several popu-
 376 lar evaluation benchmarks. On *SWE-Bench (Verified)*, ADP training delivers remarkable im-
 377 provements: Qwen-2.5-7B-Coder-Instruct improves from 0.4% to 20.2% (+19.8%)

378
 379 Table 3: Comparison of SOTA and our Best 7–8B ADP-trained agents’ results across benchmarks.
 380 Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent	Model	Training Data	Accuracy
SWE-Bench (Verified) (Jimenez et al., 2024; Chowdhury et al., 2024)			
SWE-Agent (Yang et al., 2024)	Qwen-2.5-7B-Coder-Instruct Qwen-2.5-7B-Coder-Instruct Claude 3 Opus (Anthropic Team) Qwen-2.5-7B-Coder-Instruct	— SWE-smith (Yang et al., 2025b) — ADP Data	0.4% 15.2% (+14.8%) 15.8% 20.2% (+19.8%)
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-7B-Coder-Instruct Qwen-2.5-7B-Coder-Instruct Qwen-2.5-7B-Coder-Instruct	— SWE-Gym (Pan et al., 2025) ADP Data	2.8% 10.6% (+7.8%) 20.4% (+17.6%)
WebArena (Zhou et al., 2024)			
BrowserGym (de Chezelles et al., 2025)	Llama-3.1-8B Qwen-2.5-7B-Instruct Llama-3.1-8B Qwen-2.5-7B-Instruct	— — NNetNav (Murty et al., 2024) Go-Browse (Gandhi & Neubig, 2025)	1.0% 8.3% 16.3% (+15.3%) 21.7% (+13.4%)
AgentLab (Drouin et al., 2024) (de Chezelles et al., 2025)	Qwen-2.5-7B-Coder-Instruct Qwen-2.5-7B-Coder-Instruct	— ADP Data	4.5% 21.0% (+16.5%)
AgentBench OS (Liu et al., 2024b)			
AgentLM (Liu et al., 2024b)	Llama-2-chat-7B Llama-2-chat-7B	AgentInstruct (Zeng et al., 2023)	8.3% 17.4% (+9.1%)
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-7B-Coder-Instruct Qwen-2.5-7B-Coder-Instruct	— ADP Data	3.5% 27.1% (+23.6%)
GAIA (Mialon et al., 2023)			
OWL Agent (Hu et al., 2025)	Qwen-2.5-7B-Instruct	—	4.8%
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-7B-Instruct Qwen-2.5-7B-Instruct	— ADP Data	7.3% 9.1% (+1.8%)

402
 403 Table 4: Comparison of SOTA and our Best 13–14B ADP-trained agents’ results across benchmarks.
 404 Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent	Model	Training Data	Accuracy
SWE-Bench (Verified) (Jimenez et al., 2024; Chowdhury et al., 2024)			
SWE-Agent (Yang et al., 2024)	Qwen-2.5-14B-Coder-Instruct Claude 3.5 Sonnet(Anthropic Team) Qwen-2.5-14B-Coder-Instruct	— — ADP Data	2.0% 33.6% 34.4% (+32.4%)
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-14B-Coder-Instruct Qwen-2.5-14B-Coder-Instruct Qwen-2.5-14B-Coder-Instruct	— SWE-Gym (Pan et al., 2025) ADP Data	5.8% 16.4% (+10.6%) 30.6% (+24.8%)
WebArena (Zhou et al., 2024)			
AgentLab (Drouin et al., 2024) (de Chezelles et al., 2025)	Qwen-2.5-14B-Coder-Instruct Qwen-2.5-14B-Coder-Instruct	— ADP Data	5.5% 22.2% (+16.7%)
AgentBench OS (Liu et al., 2024b)			
AgentLM (Liu et al., 2024b)	Llama-2-chat-13B Llama-2-chat-13B	AgentInstruct (Zeng et al., 2023)	9.0% 18.1% (+9.1%)
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-14B-Coder-Instruct Qwen-2.5-14B-Coder-Instruct	— ADP Data	2.8% 20.8% (+18.0%)

421 with SWE-Agent and from 2.8% to 20.4% (+17.6%) with OpenHands. At 14B scale,
 422 Qwen-2.5-14B-Coder-Instruct achieves 34.4% (+32.4%) with SWE-Agent and 30.6%
 423 (+24.8%) with OpenHands. The 32B model reaches 40.3% (+38.1%) with SWE-Agent and 36.8%
 424 (+26.2%) with OpenHands, matching or exceeding Claude 3.5 Sonnet with SWE-Agent’s 33.6%
 425 performance. On *WebArena*, ADP training shows consistent gains across model sizes: 7B achieves
 426 21.0% (+16.5%), 14B reaches 22.2% (+16.7%), and 32B attains 22.9% (+12.0%). On *AgentBench*
 427 OS, the improvements are substantial: the 7B model improves from 3.5% to 27.1% (+23.6%), the
 428 14B model improves from 2.8% to 20.8% (+18.0%), and 32B models from 27.8% to 34.7% (+6.9%).
 429 Finally, on *GAIA*, the 7B model improves from 7.3% to 9.1% (+1.8%).

430 These gains, spanning both coding and browsing settings, show that a unified, cross-domain ADP
 431 training corpus can deliver SOTA or near-SOTA performance without domain-specific tuning and is
 effective across models, action spaces, and agent harnesses. Figure 3 and Figure 4 also show clear

432
 433 Table 5: Comparison of SOTA and our Best 32B ADP-trained agents’ results across benchmarks.
 434 Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent	Model	Training Data	Accuracy
SWE-Bench (Verified) (Jimenez et al., 2024; Chowdhury et al., 2024)			
SWE-Agent (Yang et al., 2024)	Qwen-2.5-32B-Coder-Instruct Qwen-2.5-32B-Coder-Instruct Qwen-2.5-32B-Coder-Instruct	— SWE-smith (Yang et al., 2025b) ADP Data	2.2% 40.2% (+33.7%) 40.3% (+38.1%)
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-32B-Coder-Instruct Qwen-2.5-32B-Coder-Instruct Qwen-2.5-32B-Coder-Instruct	— SWE-Gym (Pan et al., 2025) ADP Data	10.6% 20.6% (+10.0%) 36.8% (+26.2%)
WebArena (Zhou et al., 2024)			
AgentLab (Drouin et al., 2024) (de Chezelles et al., 2025)	Qwen-2.5-32B-Coder-Instruct Qwen-2.5-32B-Coder-Instruct	— ADP Data	10.9% 22.9% (+12.0%)
AgentBench OS (Liu et al., 2024b)			
AgentLM (Liu et al., 2024b)	Llama-2-chat-70B Llama-2-chat-70B	— AgentInstruct (Zeng et al., 2023)	9.0% 21.5% (+12.5%)
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-32B-Coder-Instruct Qwen-2.5-32B-Coder-Instruct	— ADP Data	27.8% 34.7% (+6.9%)

449
 450 monotonic gains with model size and consistent boosts from ADP training across agents and tasks,
 451 with ADP-trained models outperforming their base counterparts at every scale.
 452

453 6.2 DIVERSE DATA RESULTS IN CROSS-TASK TRANSFER

456 Table 6: Cross-task transfer with diverse vs. task-specific data. For each benchmark, we compare
 457 the same harness+model under task-specific “only” tuning and training on ADP corpus.

Agent	Model	Training Data	Accuracy
SWE-Bench (Verified) (Jimenez et al., 2024; Chowdhury et al., 2024)			
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-7B-Instruct Qwen-2.5-7B-Instruct Qwen-3-8B Qwen-3-8B Qwen-3-8B	SWE-smith Only ADP Data CodeActInstruct + Code-Feedback SWE-smith Only ADP Data	1.0% 10.4% 0.2% 11.0% 16.6%
WebArena (Zhou et al., 2024)			
AgentLab (Drouin et al., 2024) (de Chezelles et al., 2025)	Qwen-2.5-7B-Instruct Qwen-2.5-7B-Instruct	Go-Browse Only ADP Data	16.0% 20.1%
AgentBench OS (Liu et al., 2024b)			
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-3-8B Qwen-3-8B	AgentInstruct Only ADP Data	21.5% 25.7%
GAIA (Mialon et al., 2023)			
OpenHands CodeActAgent (Wang et al., 2025)	Qwen-2.5-7B-Instruct Qwen-2.5-7B-Instruct	AgentInstruct Only ADP Data	0.6% 9.1%

475 We study whether *data diversity* helps agents generalize across tasks. Holding the agent setup and
 476 evaluation fixed, we compare training with different data mixtures: (i) *Base* (no tuning), (ii) *Task-*
 477 *specific only* fine-tuning (e.g., *SWE-smith Only*, etc.), and (iii) *ADP Data* (as detailed in § 5), a
 478 mixed, cross-domain corpus. As shown in Table 6, **ADP consistently outperforms task-specific**
 479 **tuning on the target task and, critically, avoids the negative transfer that single-domain tuning**
 480 **often induces on other tasks** (Mueller et al., 2024; Kotha et al., 2024; Li et al., 2024).

481 Concretely, on *SWE-Bench*, ADP trained Qwen-2.5-7B-Instruct achieves 10.4%, versus
 482 1.0% with *SWE-smith Only*; for Qwen-3-8B (Yang et al., 2025a), ADP reaches **16.6%** versus
 483 0.2% with *CodeActInstruct + Code-Feedback* and 11.0% with *SWE-smith Only*. On *WebArena*,
 484 ADP trained Qwen-2.5-7B-Instruct attains **20.1%** versus 16.0% with *Go-Browse Only*. On *AgentBench OS*, ADP lifts Qwen-3-8B to **25.7%** versus 21.5% with *AgentInstruct Only*. On *GAIA*,
 485 *AgentInstruct Only* results in 0.6% accuracy, while ADP improves it to **9.1%**. Overall, mixed ADP

486 training yields better in-domain accuracy and stronger cross-task generalization than single-domain
 487 tuning.
 488

489 6.3 ADP EASES ADAPTATION TO NEW AGENT HARNESSES

490
 491 Table 7 demonstrates the lines of code (LOC)³
 492 the authors and community contributors used
 493 to convert 13 datasets from distinct sources
 494 to the ADP schema. A single $Raw \rightarrow ADP$
 495 converter per dataset performs the same nor-
 496 malization work (schema mapping, tool/action
 497 alignment, conversation formatting) that a tra-
 498 ditional $Raw \rightarrow SFT$ converter would do for a
 499 specific agent harness. Therefore, LOC statis-
 500 tics in Table 7 are a reasonable proxy for the
 501 per-agent harness effort *without* ADP.
 502

503 **Without ADP.** Using this proxy, the cost of
 504 converting D -many datasets to A -many har-
 505 nesses *without* ADP is $Cost_{no-ADP}(A, D) \approx$
 506 $A \cdot \sum_{i=0}^D LOC_{i, Raw \rightarrow ADP}$. Thus the total con-
 507 version cost across the community is **quadratic** ($O(D \times A)$ effort), as depicted in Figure 2. In our
 508 data, $\sum_{i=0}^D LOC_{i, Raw \rightarrow ADP} = 4892$ LOC across 13 datasets, so for $A = 100$ harnesses the total cost
 509 is $Cost_{no-ADP} \approx 100 \times 4892 = \mathbf{489,200}$ LOC.

510 **Table 8: LOC for ADP \rightarrow SFT converters.**

511 Agent Harness	Total LOC
512 OpenHands	~ 150
513 CodeActAgent	~ 50
514 SWE-Agent	~ 30
515 AgentLab	~ 77
Average	

516 **With ADP.** The total cost becomes $Cost_{ADP}(A, D) \approx$
 517 $\sum_{i=0}^D LOC_{i, Raw \rightarrow ADP} + \sum_{j=0}^A LOC_{ADP \rightarrow SFT, j}$ with
 518 ADP. Thus, as shown in Figure 2, the total conver-
 519 sion cost across the community now becomes **linear**
 520 with ADP ($O(D + A)$ effort). Table 8 demonstrates
 521 that converting ADP standardized data to agent harness
 522 format takes an average of 77 LOC. For $A = 100$,
 523 $Cost_{ADP}(A, D) \approx 4892 + 77 \times 100 = \mathbf{12,592}$ across
 524 the 13 datasets we used, greatly less than the no-ADP
 525 setting. Additionally, adding a new harness only require writing one script converting ADP stan-
 526 dardized data to SFT, greatly easing adaptation to new agent harnesses. Hence, **ADP substantially**
 527 **reduces the community’s collective effort required to develop scalable, reproducible agents.**

528 7 CONCLUSION AND FUTURE WORK

529 ADP provides a practical, lightweight “interlingua” that unifies heterogeneous datasets into a sin-
 530 gle schema consumable by many agent harnesses, turning today’s fragmented data landscape into a
 531 scalable training pipeline. Looking ahead, we see three immediate directions. **(i) Multimodality:**
 532 extending ADP beyond text to images, screen recordings, and other modalities to capture richer
 533 agent–environment interactions. **(ii) Standardized evaluation:** applying the same standardized
 534 “protocol” idea to evaluation and environment settings so that datasets, agents, and evaluations com-
 535 pose cleanly. **(iii) Community growth and data quality:** continuing open-source releases, stronger
 536 automated validation or even automated dataset conversion, to sustain scale while preserving qual-
 537 ity. We believe that, by lowering integration costs and enabling systematic and scalable training and
 538 analysis across sources, ADP can catalyze the next wave of agent-training research and practice.

539 REPRODUCIBILITY STATEMENT.

540 We provide clear pointers to enable independent reproduction of all results. We describe the ADP
 541 schema and conversion pipeline (§ 3), allowing others to regenerate the training corpus from raw
 542 sources. We list the datasets and their characteristics in § 2.1. The exact training and evaluation

³All LOC exclude prompt text (e.g., system prompts); only converter code is counted.

540 setup-including base models, agent harnesses, our SFT pipeline, the evaluation benchmarks and
 541 protocol-is specified in § 5. Finally, we will release all code and data open source, including the
 542 ADP schemas, converters, and scripts referenced above.

543

544

545 REFERENCES

546 All Hands AI. Openhands feedback dataset. <https://huggingface.co/datasets/all-hands-feedback>, 2024.

547

548

549 Anthropic Team. The claude 3 model family: Opus, sonnet, haiku. URL <https://api.semanticscholar.org/CorpusID:268232499>.

550

551

552 Eshta Bhardwaj, Harshit Gujral, Siyi Wu, Ciara Zogheib, Tegan Maharaj, and Christoph Becker.
 553 Machine learning data practices through a data curation lens: An evaluation framework. FAccT
 554 '24, pp. 1055–1067, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
 555 9798400704505. doi: 10.1145/3630106.3658955. URL <https://doi.org/10.1145/3630106.3658955>.

556

557

558 Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
 559 and Feng Zhao. Agent-FLAN: Designing data and methods of effective agent tuning for large
 560 language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 9354–9366, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.557. URL <https://aclanthology.org/2024.findings-acl.557>.

561

562

563 Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
 564 Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, et al. Introducing swe-bench verified. <https://openai.com/index/introducing-swe-bench-verified>, 2024.

565

566

567 Thibault Le Sellier de Chezelles, Maxime Gasse, Alexandre Lacoste, Massimo Caccia, Alexandre Drouin, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lù, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Graham Neubig, Quentin Cappart, Russ Salakhutdinov, and Nicolas Chapados. The browsergym ecosystem for web agent research. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=5298fKGmv3>. Expert Certification.

568

569

570

571

572

573

574

575

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing Systems*, 36:28091–28114, 2023.

576

577

578

579

580

581

582

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capable are web agents at solving common knowledge work tasks? In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 11642–11662. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/drouin24a.html>.

583

584

585

Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration. *arXiv preprint arXiv:2506.03533*, 2025.

586

587

588

589

590

Alexander Golubev, Sergey Polezhaev, Karina Zainullina, Maria Trofimova, Ibragim Badertdinov, Yury Anapolskiy, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergey Skvortsov, Maxim Nekrashevich, Anton Shevtsov, Sergey Abramov, and Boris Yangel. Leveraging training and search for better software engineering agents. *Nebius blog*, 2024. <https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents>.

591

592

593

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent assistance in real-world task automation, 2025. URL <https://arxiv.org/abs/2505.23885>.

594 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 595 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 596 2024.

597 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
 598 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth*
 599 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=VTF8yNQM66>.

600 Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
 601 and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
 602 autonomous agents for desktop and web. In *European Conference on Computer Vision*, pp. 161–
 603 178. Springer, 2024.

604 Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forget-
 605 ting in language models via implicit inference. In *The Twelfth International Conference on Learn-
 606 ing Representations*, 2024. URL <https://openreview.net/forum?id=VrHiF2hsrm>.

607 Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting in large
 608 language model tuning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings*
 609 *of the Association for Computational Linguistics: EMNLP 2024*, pp. 4297–4308, Miami, Florida,
 610 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 611 findings-emnlp.249. URL <https://aclanthology.org/2024.findings-emnlp.249>.

612 Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
 613 Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. In
 614 *European conference on computer vision*, pp. 126–142. Springer, 2024a.

615 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 616 Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
 617 Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
 618 Agentbench: Evaluating LLMs as agents. In *The Twelfth International Conference on Learning
 619 Representations*, 2024b. URL <https://openreview.net/forum?id=zAdUB0aCTQ>.

620 Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
 621 turn dialogue. *arXiv preprint arXiv:2402.05930*, 2024.

622 Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi
 623 Chen, Ziyue Qiao, Qingqing Long, et al. Large language model agent: A survey on methodology,
 624 applications and challenges. *arXiv preprint arXiv:2503.21460*, 2025.

625 Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
 626 Ma, Qingwei Lin, and Dixin Jiang. Wizardcoder: Empowering code large language models with
 627 evol-instruct. *arXiv preprint arXiv:2306.08568*, 2023.

628 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 629 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting*
 630 *of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150,
 631 Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL <http://www.aclweb.org/anthology/P11-1015>.

632 Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The landscape of emerging
 633 ai agent architectures for reasoning, planning, and tool calling: A survey. *arXiv preprint
 634 arXiv:2404.11584*, 2024.

635 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 636 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning
 637 Representations*, 2023.

638 Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweta Mahajan, Dany Rouhana, Andres Co-
 639 das, Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, et al. Agentinstruct: Toward gen-
 640 erative teaching with agentic flows. *arXiv preprint arXiv:2407.03502*, 2024.

648 Mahmoud Mohammadi, Yipeng Li, Jane Lo, and Wendy Yip. Evaluation and benchmarking of llm
 649 agents: A survey. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery*
 650 and Data Mining V. 2, pp. 6129–6139, 2025.

651 David Mueller, Mark Dredze, and Nicholas Andrews. Multi-task transfer matters during instruction-
 652 tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Associa-
 653 tion for Computational Linguistics: ACL 2024*, pp. 14880–14891, Bangkok, Thailand, August
 654 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.883. URL
 655 <https://aclanthology.org/2024.findings-acl.883/>.

656 Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
 657 vised learning of browser agents through environment interaction in the wild. *arXiv preprint*
 658 *arXiv:2410.02907*, 2024.

659 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
 660 pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
 661 question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

662 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
 663 and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
 664 synthesis. *ICLR*, 2023.

665 Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao Qu, Yujuan Ding, Wenqi Fan, Xiao-yong
 666 Wei, Shanru Lin, Hui Liu, Philip S Yu, et al. A survey of webagents: Towards next-generation
 667 ai agents for web automation with large foundation models. In *Proceedings of the 31st ACM*
 668 *SIGKDD Conference on Knowledge Discovery and Data Mining* V. 2, pp. 6140–6150, 2025.

669 Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sen-
 670 gupta, Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into
 671 direct demonstrations for computer agents at scale. In *Conference on Neural Information Pro-
 672 cessing Systems (NeurIPS)*, Vancouver, BC, December 2024. URL <https://arxiv.org/abs/2409.15637>.

673 Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
 674 Training software engineering agents and verifiers with SWE-gym. In *Forty-second Interna-
 675 tional Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=Cq1BNvHx74>.

676 Amandalynne Paullada, Inioluwa Deborah Raji, Emily M Bender, Emily Denton, and Alex Hanna.
 677 Data and its (dis) contents: A survey of dataset development and use in machine learning research.
 678 *Patterns*, 2(11), 2021.

679 I Made Putrama and Péter Martinek. Heterogeneous data integration: Challenges and opportu-
 680 nities. *Data in Brief*, 56:110853, 2024. ISSN 2352-3409. doi: <https://doi.org/10.1016/j.dib.2024.110853>. URL <https://www.sciencedirect.com/science/article/pii/S2352340924008175>.

681 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

682 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
 683 for machine comprehension of text. In *Proceedings of the 2016 Conference on Empirical Methods*
 684 in *Natural Language Processing*, pp. 2383–2392, Austin, Texas, November 2016. Association for
 685 Computational Linguistics. doi: 10.18653/v1/D16-1264. URL <https://aclanthology.org/D16-1264>.

686 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
 687 droidinthewild: A large-scale dataset for android device control. *Advances in Neural Information*
 688 *Processing Systems*, 36:59708–59728, 2023.

689 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 690 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
 691 teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–
 692 68551, 2023.

702 Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu, Wenhao Wu, Ke Wang, Cheng Li, Wei Peng,
 703 and Sujian Li. AgentBank: Towards generalized LLM agents via fine-tuning on 50000+ inter-
 704 action trajectories. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of*
 705 *the Association for Computational Linguistics: EMNLP 2024*, pp. 2124–2141, Miami, Florida,
 706 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 707 *findings-emnlp.116*. URL <https://aclanthology.org/2024.findings-emnlp.116/>.

709 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
 710 and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
 711 els. *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856. URL <https://openreview.net/forum?id=ehfRiF0R3a>.

713 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
 714 cutable code actions elicit better llm agents. In *Forty-first International Conference on Machine*
 715 *Learning*, 2024b.

717 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 718 Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
 719 Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
 720 Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
 721 ware developers as generalist agents. In *The Thirteenth International Conference on Learning*
 722 *Representations*, 2025. URL <https://openreview.net/forum?id=OJd3ayDDoF>.

724 Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Xin Guo,
 725 Dingwen Yang, Chenyang Liao, Wei He, Songyang Gao, Lu Chen, Rui Zheng, Yicheng Zou,
 726 Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Agent-
 727 Gym: Evaluating and training large language model-based agents across diverse environments.
 728 In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
 729 *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 27914–27961, Vienna, Austria, July 2025. Association for Compu-
 730 tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1355. URL
 731 <https://aclanthology.org/2025.acl-long.1355/>.

732 Kevin Xu, Yeganeh Kordi, Tanay Nayak, Adi Asija, Yizhong Wang, Kate Sanders, Adam Byerly,
 733 Jingyu Zhang, Benjamin Van Durme, and Daniel Khashabi. Tur [k] ingbench: A challenge bench-
 734 mark for web agents. *arXiv preprint arXiv:2403.11905*, 2024a.

736 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
 737 and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. *arXiv*
 738 *preprint arXiv:2412.09605*, 2024b.

740 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 741 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 742 *arXiv:2505.09388*, 2025a.

743 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 744 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
 745 *Advances in Neural Information Processing Systems*, 37:50528–50652, 2024.

747 John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
 748 Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
 749 engineering agents. *arXiv preprint arXiv:2504.21798*, 2025b.

750 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 751 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-*
 752 *cessing Systems*, 35:20744–20757, 2022a.

754 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
 755 Cao. React: Synergizing reasoning and acting in language models. In *The eleventh international*
conference on learning representations, 2022b.

756 Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttunning:
 757 Enabling generalized agent abilities for llms. *arXiv preprint arXiv:2310.12823*, 2023.
 758

759 Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong,
 760 and Xia Hu. Data-centric artificial intelligence: A survey. *ACM Computing Surveys*, 57(5):1–42,
 761 2025.

762 Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Ming Zhu, Juntao Tan, Thai
 763 Hoang, Zuxin Liu, Liangwei Yang, et al. Agentohana: Design unified data and training pipeline
 764 for effective agent learning. *arXiv preprint arXiv:2402.15506*, 2024.

765

766 Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Quoc Hoang, Shirley Kokane, Weiran Yao,
 767 Juntao Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Manoj Awal-
 768 gaonkar, Rithesh R N, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan
 769 Wang, Silvio Savarese, and Caiming Xiong. xLAM: A family of large action models to em-
 770 power AI agent systems. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of*
 771 *the 2025 Conference of the Nations of the Americas Chapter of the Association for Compu-*
 772 *tational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 11583–11597,
 773 Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-
 774 8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.578. URL <https://aclanthology.org/2025.nacl-long.578/>.

775

776 Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhui Chen,
 777 and Xiang Yue. OpenCodeInterpreter: Integrating code generation with execution and refine-
 778 ment. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Associa-*
 779 *tion for Computational Linguistics: ACL 2024*, pp. 12834–12859, Bangkok, Thailand, August
 780 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.762. URL
 781 <https://aclanthology.org/2024.findings-acl.762/>.

782

783 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 784 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-*
 785 *ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 786 *3: System Demonstrations)*, Bangkok, Thailand, 2024b. Association for Computational Linguis-
 787 *tics*. URL <http://arxiv.org/abs/2403.13372>.

788

789 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 790 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A real-
 791 *istic web environment for building autonomous agents*. In *The Twelfth International Confer-*
 792 *ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=oKn9c6ytLx>.

793

794 A USE OF LLMs

795

796 We used LLMs to aid and polish writing for style and presentation.

797 Specifically, LLMs were employed to:

800 • polish wording, tighten paragraphs, and improve clarity/flow;
 801 • improve latex presentation (e.g., table/figure captions)

803 B ADP EXAMPLE CONVERSION

804

805 The conversion pipeline: Raw → ADP → SFT enables scalable training across diverse agent archi-
 806 tectures while maintaining data provenance and semantic structure.

807 This section demonstrates an example conversion from raw agent interaction data of the Code Feed-
 808 back dataset (Zheng et al., 2024a) to the standardized ADP format. The transformation process
 809 extracts structured observations and actions from a raw conversation between the user and the agent.

810 B.1 RAW FORMAT EXAMPLE
811812 The raw format typically contains conversational messages with roles and content:
813

814 Listing 1: Raw Format Example from Code Feedback

```

815 1 [
816 2 {
817 3   "id": 13461,
818 4   "messages": [
819 5     {
820 6       "role": "user",
821 7       "content": "Write a Python script to calculate statistical
822 8         measures..."
823 9     },
824 10    {
825 11      "role": "assistant",
826 12      "content": "You're correct. Let me optimize the code...\n\
827 13          n```python\nimport math\nndef calculate_statistics(x,
828 14              y):\n    # Implementation details...\n        return
829 15          r_squared, correlation_coefficient, adjusted_r_squared
830 16          \n```\n    },
831 17    },
832 18  },
833 19 ]

```

839
840 B.2 STANDARDIZED ADP FORMAT EXAMPLE
841842 The standardized format structures the same interaction into typed observations and actions:
843

844 Listing 2: Standardized ADP Format Example

```

845 1 [
846 2 {
847 3   "id": "13461",
848 4   "content": [
849 5     {
850 6       "class_": "text_observation",
851 7       "content": "Write a Python script to calculate statistical
852 8         measures...",
853 9       "name": null,
854 10      "source": "user"
855 11    },
856 12    {
857 13      "class_": "code_action",
858 14      "language": "python",
859 15      "content": "import math\nndef calculate_statistics(x, y):
860 16          \n          # Implementation details...\n              return
861 17          r_squared, correlation_coefficient, adjusted_r_squared
862 18          ",
863 19      "description": "You're correct. Let me optimize the code
864 20          by calculating values once and reusing them..."
865 21    },
866 22  ]

```

```

864 18     "class_": "text_observation",
865 19     "content": "R-squared: 0.6\nCorrelation: 3.87\nAdjusted R-
866 20     squared: 0.47",
867 21     "name": null,
868 22     "source": "environment"
869 23   },
870 24   {
871 24     "class_": "message_action",
872 25     "content": "<finish> The code executed successfully with
873 26       statistical results...",
874 27     "description": null
875 28   },
876 29   "details": {}
877 30 }
878 31 ]

```

880 The conversion process applies several key transformations:

881

- 882 • **Message Classification:** Raw messages are classified into observations and actions based on content analysis.
- 883
- 884 • **Code Extraction:** Code blocks within assistant messages are extracted as `code_action` entries.
- 885
- 886 • **Source Attribution:** User inputs become `text_observation` with `source: "user"`, execution results with `source: "environment"`.
- 887
- 888 • **Thought Preservation:** Original function thoughts are preserved in `description` fields while structured contents are extracted.
- 889
- 890 • **Action Classes:** Different classes of agent actions (code execution, messaging, tool usage) are explicitly categorized
- 891

892 This standardization enables systematic analysis of agent behaviors, tool usage patterns, and interaction dynamics across different agent implementations and domains.

893

894 B.3 SFT FORMAT EXAMPLE

895 The standardized ADP format can be further converted to training-ready formats for specific agent frameworks. Here's the example in OpenHands (Wang et al., 2025) SFT format:

896

900 Listing 3: OpenHands SFT Format Example

```

901 1 [
902 2   {
903 3     "id": "13461",
904 4     "conversations": [
905 5       {
906 6         "from": "human",
907 7         "value": "Write a Python script to calculate statistical
908 8           measures..."
909 9       },
910 10      {
911 11        "from": "gpt",
912 12        "value": "You're correct. Let me optimize the code...\n\n<
913 13           function=execute_ipython_cell>\n<parameter=code>\n
914 14             import math\n\n<parameter>\n
915 15               ndef calculate_statistics(x, y):\n
916 16                 # Implementation details...\n
917 17                   return r_squared,
918 18                   correlation_coefficient, adjusted_r_squared\n<
919 19             parameter>\n</function>"}
920 20   }
921 21 ]

```

```

918 14      "from": "human",
919 15      "value": "EXECUTION RESULT of [execute_ipython_cell]:\nR-
920 16          squared: 0.6\nCorrelation: 3.87\nAdjusted R-squared: 0
921 17          .47"
922 18      },
923 19      {
924 20          "from": "gpt",
925 21          "value": "<function=finish>\n<parameter=message>\nThe code
926 22              executed successfully with statistical results...\n</
927 23                  parameter>\n</function>"
928 24      ],
929 25      "system": "You are OpenHands agent, a helpful AI assistant..."
930 26  }
931 27 ]
932 28
933 29
934 30 C DATA SAMPLING FOR BALANCED TRAINING
935 31
936 32
937 33 To balance domains and reduce over-represented sources, we resample each dataset with a per-
938 34 dataset multiplier  $w_d$ . For dataset  $d$  with  $n_d$  raw trajectories, we draw  $m_d = \lceil w_d n_d \rceil$  examples per
939 35 epoch; if  $w_d < 1$  we sample without replacement (downsample), and if  $w_d > 1$  we sample with
940 36 replacement (upsample). This yields an effective mixture proportional to  $w_d$  across datasets (and
941 37 therefore across domains), while keeping the overall epoch size stable.
942 38
943 39 Table 9: Per-dataset sampling multipliers  $w_d$ .  $w_d < 1$  indicates downsampling;  $w_d > 1$  indicates
944 40 upsampling.
945 41
946 42
947 43
948 44
949 45
950 46
951 47
952 48
953 49
954 50
955 51
956 52
957 53
958 54
959 55
960 56
961 57
962 58
963 59
964 60
965 61
966 62
967 63
968 64
969 65
970 66
971 67

```

Dataset	w_d	Direction
agenttuning_alfworld	2	up
agenttuning_db	2	up
agenttuning_kg	2	up
agenttuning_mind2web	2	up
agenttuning_os	2	up
agenttuning_webshop	2	up
code_feedback	0.1	down
codeactinstruct	1	neutral
go-browse-wa	1	neutral
mind2web	1	neutral
nebius_SWE-agent-trajectories	0.2	down
nnetnav-live	1	neutral
nnetnav-wa	1	neutral
openhands	1	neutral
orca_agentinstruct	0.001	down
swe-gym_openhands_sampled_trajectories	3	up
swe-smith	1	neutral
synatra	0.01	down

In practice, we fix a random seed for reproducibility and shuffle the union of sampled examples across datasets each epoch. This scheme targets a more balanced distribution across coding, SWE, tool-use, and web-browsing sources by attenuating very large corpora (e.g., `orca_agentinstruct` at $w_d=0.001$) and amplifying under-represented ones (e.g., `swe-gym_openhands_sampled_trajectories` at $w_d=3$).

C.1 DOMAIN-SPECIFIC DATA FILTERING

Beyond balanced sampling, we apply domain-specific filtering to optimize training effectiveness for each agent framework based on their evaluation focus and capabilities.

OpenHands and SWE-Agent Training Data. For OpenHands CodeActAgent and SWE-Agent, which are primarily evaluated on coding and software engineering tasks (SWE-Bench, AgentBench OS, and GAIA), we use only the *non-web* portion of the ADP training corpus. This includes datasets focused on code generation, software engineering, general agent instruction following, and API-tool usage. Specifically, we exclude web browsing datasets Mind2Web, Go-Browse, NNetNav, and Synatra to avoid potential interference from web-specific interaction patterns that are not applicable to command-line and coding environments. Thus, using the sampling multipliers in Table 9, the total number of training samples used is around 30K. Future experiments could explore different sampling multipliers and examine the effect of each dataset on coding and software engineering tasks.

AgentLab Training Data. For AgentLab, which is designed for web browsing tasks and we evaluated exclusively it on WebArena, we use only the *web* portion of the ADP training corpus. This includes datasets focused on web navigation, browser-based task completion, and web-specific agent instruction following (Mind2Web, Go-Browse, NNetNav, and Synatra). We exclude coding and software engineering datasets to ensure the model is optimized for web browsing patterns and UI element interaction without dilution from less compatible domains. Thus, using the sampling multipliers in Table 9, the total number of training samples used is around 20K. Future experiments could explore different sampling multipliers and examine the effect of each dataset on web tasks.

D PERFORMANCE SCALING

Figure 3: Performance Scaling Across Agents and Benchmarks (Base vs ADP Trained)

Figure 4: Performance Gains Across Agents and Benchmarks.

Figure 3 and Figure 4 shows the scaling curve of performance and performance gains across agents and benchmarks. Both plots show clear monotonic gains regardless of model size and consistent boosts from ADP training across agents and tasks, with ADP-trained models outperforming their base counterparts at every scale.

E ADDITIONAL EXPERIMENTS

E.1 ADP’S ADVANTAGE PERSIST UNDER EQUAL DATA SCALE

To address the question of fair data scaling, we additionally compare ADP against a single-domain fine-tuning baseline under matched dataset size. Specifically, we train Qwen-3-8B on SWE-smith with up-sampling to match the number of training examples used in the ADP mixture, and evaluate both models on SWE-Bench with the OpenHands harness. As shown in Table 10, SWE-smith training yields 11.0% accuracy, whereas ADP training achieves 16.6% under a comparable number of samples. This demonstrates that ADP’s benefit does not stem from data volume alone, but from the greater diversity and unified structure of the ADP corpus.

1026

1027 Table 10: Equal-scale comparison of Qwen-3-8B trained on SWE-smith vs. ADP, evaluated on
1028 SWE-Bench with the OpenHands harness.

Model	Training Data	Data Scale	Accuracy
Qwen3-8B	SWE-smith (up-sampled)	≈ 30K	11.0%
Qwen-3-8B	ADP	≈ 30K	16.6%

1032

1033

1034

F LICENSE OF USE

1035

1036 This section provides licensing information for all datasets referenced in Table 1 and used in our
1037 experiments. We have made every effort to identify and respect the licensing terms of each dataset.
1038 Users should verify current licensing terms before using these datasets. Users should also verify the
1039 licensing terms of datasets they are adding to ADP.

1040

1041

F.1 DATASET LICENSES

1042

1043

1044 Table 11: Licensing information for datasets used in ADP

Dataset	License	Link
AgentInstruct	Apache 2.0	ZhipuAI/AgentInstruct
Code-Feedback	Apache 2.0	m-a-p/Code-Feedback
CodeActInstruct	Apache 2.0	xingyaoww/code-act
Go-Browse	MIT	go-browse/go-browse
Mind2Web	CC BY 4.0	osunlp/Mind2Web
Nebius SWE Trajectories	CC BY 4.0	nebius/SWE-agent-trajectories
NNetNav-live	Apache 2.0	stanfordnlp/nnetnav-live
NNetNav-wa	Apache 2.0	stanfordnlp/nnetnav-wa
openhands-feedback	MIT	all-hands/openhands-feedback
Orca AgentInstruct	CDLA-Permissive-2.0	microsoft/orca-agentinstruct-1M-v1
SWE-Gym	MIT	SWE-Gym/SWE-Gym
SWE-smith	MIT	SWE-bench/SWE-smith-trajectories
Synatra	CC BY-SA 4.0	oottyy/Synatra

1058

1059

1060

1061

License Compliance: We have ensured compliance with licenses of all datasets utilized in this
paper. All licenses permit research use.

1062

1063

F.2 USAGE GUIDELINES

1064

1065

When using the ADP-converted versions of these datasets:

1066

1067

- Verify Current Licenses:** Check the original dataset repositories for the most up-to-date licensing terms
- Respect Restrictions:** Some datasets have restrictions on commercial use, redistribution, or specific use cases.
- Cite Appropriately:** Include citations for both the original datasets and the ADP conversion methodology.
- Contact Authors:** For datasets with unclear licensing, contact the original authors for clarification on usage terms.

1075

1076

1077

F.3 DISCLAIMER

1078

1079

Licenses were collected at the time of dataset integration and may have changed. Users are responsible for verifying current licensing terms and ensuring compliance with all applicable licenses. The ADP project does not assume responsibility for license violations by downstream users.

1080 For questions about specific dataset licenses or usage permissions, please contact the original dataset
1081 authors or maintainers directly.
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133