Under review as a conference paper at ICLR 2026

AGENT DATA PROTOCOL: UNIFYING DATASETS FOR
DI1VERSE, EFFECTIVE FINE-TUNING OF LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Public research results on large-scale supervised finetuning of Al agents remain
relatively rare, since the collection of agent training data presents unique chal-
lenges. In this work, we argue that the bottleneck is not a lack of underlying
data sources, but that a large variety of data is fragmented across heterogeneous
formats, tools, and interfaces. To this end, we introduce the agent data protocol
(ADP), a light-weight representation language that serves as an “interlingua” be-
tween agent datasets in diverse formats and unified agent training pipelines down-
stream. The design of ADP is expressive enough to capture a large variety of tasks,
including API/tool use, browsing, coding, software engineering, and general agen-
tic workflows, while remaining simple to parse and train on without engineering
at a per-dataset level. In experiments, we unified a broad collection of 13 exist-
ing agent training datasets into ADP format, and converted the standardized ADP
data into training-ready formats for multiple agent frameworks. We performed
SFT on these data, and demonstrated an average performance gains of 10% over
corresponding base models, and of as much as 8% over the existing model-size-
matched SOTA on standard coding, browsing, tool use, and research benchmarks.
All code and data will be released open source, in the hope that ADP could help
lower the barrier to standardized, scalable, and reproducible agent training.

1 INTRODUCTION

Pre-training large language models (LLMs) benefits from abundant, readily available internet-scale
data. In contrast, post-training presents a much harder challenge: high-quality task-specific data
must be carefully curated. While creative strategies have emerged for collecting data in relatively
simple settings, such as single-turn user interactions like code generation (Nijkamp et al., |2023),
question answering (Rajpurkar et al.,|2016), and sentiment analysis (Maas et al.| 2011), many real-
world tasks are far more complex.

A particularly difficult case is agent applications, where models must take sequential actions and
interact with the world over time. Building datasets for such scenarios requires recording and struc-
turing trajectories of agent behavior, much more challenging than collecting static input-output pairs.

Despite these difficulties, a growing body of work has explored different approaches for creating
agent datasets. These efforts vary in methodology, from manual curation (Rawles et al.| 2023 Xu
et al., [2024), to synthetic data generation (Ou et al., 2024; |[Zheng et al., [2024a)), to recorded agent
rollouts (Pan et al.| [2025; |Yang et al., 2025b). The resulting datasets span a wide range of tasks,
including web navigation (Deng et al.l [2023; [Lu et al., [2024), software development (Yang et al.,
2025b; Pan et al., [2025), visual interface control (Rawles et al., [2023} [Kapoor et al.l [2024), and
general tool use (Zeng et al.,[2023; |Liu et al.,|2024a) (an overview of these datasets in @])

However, despite the availability of such data, large-scale supervised fine-tuning (SFT) of agents
remains rare in academic research. A few notable projects, such as (Zeng et al., 2023) and (Mitra
et al., |2024), have demonstrated their potential, but remain exceptions rather than the norm. Why
has this not become standard practice? We argue that the issue is not a lack of data, but rather a lack
of standardization. Existing datasets are fragmented, with inconsistent formats and representations,
making it difficult to combine, share, and leverage them effectively, thus they remain underutilized.

To address this gap, we introduce the Agent Data Protocol (ADP), a standardized expressive repre-
sentation language for agent data. By converting heterogeneous datasets into ADP, it makes it simple

Under review as a conference paper at ICLR 2026

Raw Data

Agent Data Protocol

OpenHands SFT

* Agentlnstruct Action Observation
% CodeActinstruct . ! SWE Agent SFT
% SWE-Gym > APl ACt'Oh > Text Observation
% Mind2Web > Code Action | | \eb Observation
o > Message Action
*® L
&) N
Q o APIAction (@
(D) B function=goto, -
goto(ur\fgoogle.com)| —>
kwargs={url: google.com} Wij?bgsr“;a;:)";(
<!doctype html> htr:1?7<hgtm.l> :
html it -
@ - Zit\‘eiméggglz > axtree=RootWebArena
. ‘ —
<ftitles ... </htmi> 2 Goog‘e , focused ... Trajectory (
CeERAETE Y, id=example_id
language=python, \J 2 content=L...]
content=print("Hello World") T tion ()
ex servation
\) content=Hello World,
@ Execution result: > source=environment
Hello World ()
MessageAction (\J
‘ How can | help you? :> content=How can | help you?
\J J

Figure 1: Overview of the Agent Data Protocol (ADP). Raw data from diverse sources such as
Agentlnstruct, CodeActlnstruct, SWE-Gym, and Mind2Web are converted into a standardized ADP
format. ADP unifies data into Trajectory objects, which include two core components: Actions (API
action, code action, message action) and Observations (text observation, web observation). This
standardized representation enables seamless integration with various agent SFT pipelines. Example
transformations demonstrate how heterogeneous raw data is normalized for training agentic models.

to generate large-scale and diverse data for a variety of downstream training pipelines (Figure TJ).
Technically, ADP is implemented as Pydanti<£| schemas that express actions and observations corre-
sponding to common agent use cases such as communicating, browsing, coding, and miscellaneous
tool calling, coupled with strict automated validation to maintain high data quality.

As a first step to demonstrate the practical utility of ADP, we implement converters from 13 datasets
into ADP, and converters from ADP to 3 different agent architectures, demonstrating its general-
ity. Based on this, we create and release the largest publically available dataset for agent training,
consisting of 1.3M training trajectories, dubbed the ADP Dataset V1.

Our experiments show training agents using ADP leads to significant performance improvements
across diverse domains, including coding (SWE-Bench Verified), web browsing (WebArena), re-
search (GAIA), and agentic tool use (AgentBench), as shown in[§ 6] Notably, these results improve
by an average of 10% over base models, and are competitive with or superior to other state-of-the-art
results from similarly-sized models, exceeding existing SOTA for 7-8B models by as much as 8%.
We also identify significant benefits from cross-task transfer, with training on the ADP data improv-
ing significantly over training on individual datasets. Beyond performance, ADP enables systematic
cross-dataset analysis, revealing trends and areas for improvement in publicly available data.

Finally, we are releasing all code and datasets in open source to foster community adoption and
encourage contributions of new datasets. We believe ADP will unlock a new wave of progress in
agentic model fine-tuning by providing the standardization needed to make large-scale supervised
agent training practical and scalable.

2 EXISTING AGENT TRAINING DATASETS

2.1 REPRESENTATIVE DATASETS

[Table T|lists representative agent training datasets. We categorize the data collection method (manual
curation, synthetic generation, or recorded agent rollouts) of each dataset.

'https://pydantic.dev/

https://pydantic.dev/

Under review as a conference paper at ICLR 2026

Table 1: Overview of Existing Agent Training Datasets. C=Coding, S= ,
T=API/Tool Use, W=Web Browsing.

Dataset Variety Count Source Note

AgentlInstruct (Zeng et al.|[2023) CTW 19K synthetic Mixture of Browsing, Database, OS, etc.
Code-Feedback (Zheng et al.|[2024a) C 66.4K manual Code generation with runtime feedback loops
CodeActInstruct (Wang et al.[[2024) C 7.1K synthetic Code generation and tool use with execution
Go-Browse(Gandhi & Neubig|2025) w 9.5K rollout Structured exploration web rollouts

Mind2Web (Deng et al.[[2023) w 1.0K manual Human web demos on real websites

Nebius SWE Trajectories 134K rollout SWE-agent trajectories from Nebius relying
(Golubev et al.|[2024) solely on open-weight models

NNetNav-live (Murty et al.|[2024) w 5.0K rollout Retroactively labeled live web exploration
NNetNav-wa (Murty et al.|[2024) w 4.2K rollout Retroactively labeled WebArena exploration
openhands-feedback CTW 02K rollout Recorded OpenHands agent trajectories with hu-
(All Hands AIl[2024) man feedback

Orca Agentinstruct (Mitra et al.|[2024) T 1046.1K synthetic Large-scale synthetic tool-use instructions data
SWE-Gym (Pan et al.||2025) 0.5K rollout Agent trajectories solving real GitHub repo tasks
SWE-smith (Yang et al.|[2025b) 5.0K manual Trajectories of agents on synthesized bug-fix tasks
Synatra (Ou et al.[|2024) \'% 99.9K rollout Synthetically created web demos of tutorials

We also group each dataset into a coarse task category.

* Coding: generally includes fundamental programming tasks, such as command line code genera-
tion, algorithm implementation, code completion, code translation, and code repair, etc.

. : often consists of repository-level software engineering tasks, such as bug
fixing, feature implementation, code refactoring, and dependency management, etc.

» API/Tool Use: usually requires agents to use external APIs/tools effectively to solve tasks. Com-
mon tools include file manipulation, database queries, and customized APIs, etc.

* Web Browsing: commonly encompasses tasks including web navigation, online shopping, and
social media interactions, etc, requiring agents to understand GUIs.

2.2 CHALLENGES AND LIMITATIONS

Despite abundant existing agent training datasets, unique challenges in collecting agent-training data
hinder large-scale training:

* Complexity of Data Curation: Creation of high-quality agent training data requires significant
resources and expertise. Manual curation is expensive and requires domain knowledge; synthetic
generation faces challenges in verifying data quality; recorded agent rollouts are fundamentally
constrained by the capabilities of existing baseline agents, limiting the diversity and complexity
of trajectories. Each approach requires significant time and investment.

* Heterogeneity of Dataset format: Existing agent training datasets each employ its own repre-
sentation format, action spaces, and observation structures. For example, some web datasets use
HTML while some use accessibility tree structures. Thus, significant engineering effort is required
to utilize multiple datasets together, hindering integration across different data sources.

* Difficulty of Analysis and Comparison: The diverse formats and structures of existing datasets
also makes it difficult to perform systematic comparisons or quantitative analysis across different
data sources. This limits researchers’ ability to understand the relative usefulness, coverage, and
quality of different datasets, hindering data-driven selection or improvements.

3 THE AGENT DATA PROTOCOL
To overcome these challenges and limitations, and to make good use of existing data resources,

we propose the agent data protocol (ADP). ADP establishes a unified schema that bridges the gap
between existing heterogeneous agent training datasets and large-scale supervised agent fine-tuning.

3.1 DESIGN PRINCIPLES

We design ADP around the following core principles:

Under review as a conference paper at ICLR 2026

» Simplicity: ADP maintains a simple and intuitive structure. This directly addresses the complexity
of data curation challenge by providing a straightforward framework that eliminates the need
for specialized per-dataset engineering, making large-scale agent data utilization accessible to
researchers without extensive adaptation effort.

 Standardization: ADP is designed to provide a unified representation that unifies existing agent
training datasets of various different formats to a standardized format, addressing the challenge of
heterogeneous dataset formats.

» Expressiveness: ADP is designed to ensure that complex agentic trajectories could be accurately
expressed with no loss of critical information. This directly addresses the difficulty of analysis and
comparison challenge because ADP is expressive enough to cover the broad variety of existing
agent datasets across different domains, enabling researchers to put these diverse datasets under
the same conditions and context.

By addressing the fundamental challenges in utilization agent data, ADP aims to push the progress
in agent training, making large-scale agent SFT more accessible to the broader research community.

3.2 ARCHITECTURE

The ADP schema is implemented as Pydantic schemas, and is simple yet expressive in design. Each
ADP standardized agent trajectory is represented as a Tra jectory object.

Trajectory consists of (1) id: trajectory id, (2) content: an alternating sequence of actions
and observations representing the agent’s interaction with the user/environment, (3) details: A
flexible metadata dictionary for dataset-specific information (e.g., dataset source URLSs).

Actions represent agents’ decisions and behaviours. We categorize actions into three types:

* API Actions: Function calls with structured parameters and outputs capturing tool use. Each API
action includes: (1) function: name of tool call, (2) kwargs: a dictionary of function argu-
ments, and (3) description: optional reasoning or explanation for the action. For example,
with ADP, a web navigation call goto (url=https://www.google.com) isrepresented as
APIAction (function=goto, kwargs=url:https://www.google.com).

* Code Actions: Code generation and execution across programming languages. Each code action
specifies: (1) language: the programming language (e.g., python), (2) content: the code to
execute, and (3) description: optional reasoning or explanation for the action. For example,
the ADP representation of a python code block ** ‘python print ("Hello World") ‘‘®
is CodeAction (language=python, content=print ("Hello World").

» Message Actions: Natural language communications between agents and users, each containing
a content field, documenting agents’ explanations, clarifications, and responses. For example,
MessageAction (content=How can I help you?).

Observations represent agents’ perceptions from the environment, categorized into two types:

» Text Observations: Captures the text information from various sources, including user instruc-
tions and environmental feedback. Each text observation includes: (1) source: the origin of
the observation (“user” or “environment”), and (2) content: the observed text. For example, a
python execution output Execution result: Hello World, will be converted to ADP
format TextObservation (content=Hellow World, source=environment).

* Web Observations: Represent the state and content of webpages. Each observation includes: (1)
html: raw HTML content, (2) axt ree: accessibility tree of the webpage, (3) url: current page
URL, (4) viewport_size: browser viewport dimensions, and (5) image_observation:
optional screenshot data. Web observations enable ADP to support complex browsing scenarios.

The core insight behind ADP is that despite the surface-level diversity in agent datasets, most agen-
tic interactions can be decomposed into a sequence of actions taken by the agent and observations
received from the environment. By standardizing these fundamental components, ADP directly ad-
dresses each challenge identified in [§ 2.2 while preserving the rich semantics of the original data.
This unified representation enables researchers to combine datasets that were previously incompati-
ble, facilitating large-scale training across diverse domains.

Under review as a conference paper at ICLR 2026

{ Without ADP: Quadratic Effort } With ADP: Linear Effort

[Agentinstruct OpenHands SFT] [Agentinstruct OpenHands SFT
Code-Feedback Code-Feedback
[Go-Browse SWE-Agent SFT J [Go-Browse ADP SWE-Agent SFT

Standardized
Mind2Web Mind2Web Data
[SWE-smith AgentLab SFT } [SWE-smith AgentLab SFT

Figure 2: ADP collapses many-to-many conversions into a hub-and-spoke pipeline. Left: With-
out ADP, each of D-many datasets needs a custom Raw— SFT converter for each of A-many agentic
formats (quadratic O(D x A) effort), causing duplicated code and efforts. Right: With ADP, each
dataset is converted once (Raw— ADP) and each agent only requires one converter (ADP—SFT),
yielding linear O(D+ A) effort. New datasets or agents plug in immediately to the rest of ADP.

3.3 CONVERSION PIPELINE

As shown in we implemented a three-stage conversion pipeline with ADP that transforms
heterogeneous datasets into training-ready agentic formats.

1. Raw to Standardized: This stage unifies original dataset formats into the ADP standardized
schema. Each dataset is extracted in its raw format, and then converted to the ADP schema by
mapping each dataset-specific actions and observations to the ADP’s standardized action and
observation space. For example, a web browsing task with HTML representations is converted
to a pairs of APTAction and WebObservation, while a coding task with execution output
is mapped to CodeAction and TextObservation pairs.

2. Standardized to SFT: This stage converts ADP standardized trajectories into supervised fine-
tuning (SFT) format suitable for training language models. For each agent harness, the conver-
sion process uses one agent-specific script that translates each type of action and observation
into the target agent’s action and observation space based on the agent’s framework. This stage
handles context management, specifies system prompts, and formats conversations to create SFT-
ready instruction-response pairs.

3. Quality Assurance: This stage ensures data correctness and consistency in alignment with agent
format, tool use, and conversation structure through automated validation. Example quality
checks include verifying tool call formats, ensuring mosﬂ tool calls are paired with a function
thought, and checking whether the conversation ends properly, etc.

3.4 PRACTICAL IMPACT OF ADP ON AGENT TRAINING RESEARCH

The two-direction pipeline (Raw—ADP and ADP—SFT) cleanly separates responsibilities and
eliminates redundant engineering (Figure 2). In practice:

* Dataset conversion (once per dataset). Contributors convert each raw dataset to the ADP schema
exactly once. From then on, the dataset is a standardized resource usable by any agent harness.

* Agent-specific conversion (once per agent). Each agent maintains a single script for ADP—SFT;
no per-dataset engineering needed. Adding new datasets requires no change to agent-side scripts.

* Without ADP. Researchers must write a Raw—SFT converter for each dataset—agent pair, dupli-
cating effort across groups and making large-scale data integration brittle and slow.

ADP amortizes conversion cost across the community, accelerates adoption of new datasets, and
ensures that a single ADP—SFT script instantly unlocks the entire pool of ADP-standardized data
to an agent framework. More discussion could be found in[§ 6.3]

We set this threshold to be 80%, but it can be changed based on demand.

Under review as a conference paper at ICLR 2026

4 CROSS DATASET ANALYSIS Table 2: Dataset Statistics and Trajectory Analysis.
AVG. % Actions % Func

shows analysis on 13 ADp Dataset Rounds (A/C/M) Thought
standardized datasets, revealing signif- =0 oo o 9.2 66/12/22 100
icant diversity in trajectory lengths, ac- Code-Feedback 4.0 0/65/35 100
tion distributions, and reasoning pat- CodeActInstruct 4.0 0/61/39 100
terns across different task domains. Go-Browse 6.8 60/0/40 100

. . Mind2Web 9.6 93/0/7 0
Trajectory Length. Trajectory rounds G5 CowE Agent 162 59/31/9 100
vary dramatically across datasets, from NNetNay-live 15.5 80/0/20 100
1 to 29.4 turns, with an average of 11.8 NNetNav-wa 19.2 90/0/10 100
turns. SWE datasets consistently ex- QpenHands 18.0 39/53/8 95
hibit longer trajectories, reflecting the =~ Orca AgentInstruct 1.3 0/0/100 0
inherent complexity of multi-step repo- ~ SWE-Gym 19.7 64/23/14 42
level programming tasks. SWE-smith 29.4 60/36/4 91

o Synatra 1.0 100/0/0 100
Action Distribution Patterns. Clear

Overall 11.8 62/22/16 82

domain-specific preferences emerge
from the action distributions after stan-
dardization with ADP. Web datasets (Mind2Web, NNetNav, Synatra) heavily favor API actions (80—
100%) with minimal code execution, reflecting their focus on interface interaction. Conversely,
coding datasets (Code-Feedback, CodeActlnstruct) show high code usage (61-65% code) with no
API usage, emphasizing direct programming activities. Software engineering datasets demonstrate
mixed patterns, with SWE-smith, SWE-Gym, and Nebius SWE-Agent Trajectories relies on API
actions such as file writes while using also using code actions for code generation and execution.

Function Reasoning Analysis. A striking finding is the high function thought coverage across most
datasets, with most achieving > 90 coverage, indicating that these training datasets consistently pro-
vide explanations for their actions. This characteristic is particularly valuable for interpretability and
training agents with reasoning abilities. Importantly, high reasoning coverage appears across all task
varieties, suggesting that function thoughts represent a general characteristic of well-documented
datasets rather than domain-specific behavior.

5 EXPERIMENTAL SETUP

5.1 TRAINING SETUP

To evaluate ADP’s effectiveness in training across diverse data sources, we utilize a comprehensive
collection of 13 agent training datasets, spanning coding, SWE, API/tool user, and browsing, as
documented in These datasets represent a broad spectrum of heterogeneity challenges
that ADP addresses, including varied data creation methodologies (synthetic generation, manual
curation, agent rollouts), different complexities (from simple to complex multi-step workflows), and
diverse environments (command-line interfaces, web GUIs, Jupyter Notebooks, API calls).

The selected datasets collectively contain over 1.3M instances, ranging from smaller ones like
Mind2Web to larger-scale ones like Orca AgentInstruct. To ensure balanced representation across
domains and prevent any single large dataset from dominating the training process, we subsample
from larger datasets while using smaller datasets in their entirety. Full details of our data sampling
and mixture weights are in Appendix [B]

We use Qwen2.5-7B-Instruct (Qwen Team, [2024) and Qwen3-8B (Yang et al., [2025a)) as the base
models, with 3 agent frameworks for comprehensive evaluation across multiple benchmarks. We
fine-tuned all models using the same SFT pipeline from LLaMA-Factory (Zheng et al.l |2024b).
These experiments focus on each framework’s specialized domain to demonstrate targeted effec-
tiveness. Each agent has unique architectures, tool interfaces, and interaction environments. This
diversity allows us to validate that ADP-standardized data can be readily and easily converted to
different agent formats, demonstrating the protocol’s utility across various agent implementations.

OpenHands (Wang et al.| 2025) is an open platform for building generalist Al agents that operate
like software developers: writing code, using command lines, and browsing the web. It provides
sandboxed execution environments, tool coordination, and benchmark evaluation.

Under review as a conference paper at ICLR 2026

AgentLab (Drouin et al |2024; de Chezelles et al., 2025)) is an open-source framework for de-
veloping, testing, and benchmarking web agents across diverse tasks, emphasizing scalability and
reproducibility. It supports a suite of evaluation benchmarks like WebArena and WorkArena.

SWE-Agent (Yang et al., [2024) introduces a custom Agent-Computer Interface (ACI) that enables
language model agents to autonomously perform software engineering tasks by navigating code-
bases, editing and running code, viewing files, and executing tests.

5.2 EVALUATION BENCHMARKS

We evaluated these agents across 4 benchmarks (based on the availability of benchmark evalua-
tion code and specialization of agents) that span different domains. This comprehensive evaluation
demonstrates ADP’s expressiveness in preserving critical information across diverse tasks.

SWE-Bench (Jimenez et al.,2024) evaluates agents on real-world software engineering tasks. Given
a Github codebase and a bug report, agents must generate patches that satisfy existing unit tests. We
used the SWE-Bench Verified subset for evaluation (Chowdhury et al., [2024)).

WebArena (Zhou et al.,[2024) provides a realistic, self-hosted web environment composed of fully
functional websites in domains like e-commerce, forums, and map navigation, requiring agents to
interpret high-level natural language commands and perform concrete web interactions.

AgentBench (Liu et al.| [2024b)) evaluates agents across different environments, such as operating
systems, databases, and web browsing. It emphasizes multi-turn reasoning, decision making, and
adaptability across domains.

GAIA (Mialon et al., [2023) is a benchmark for general Al assistants featuring human-annotated
tasks that combine reasoning, tool use, and multi-step problem solving, often with multimodal input.
Tasks vary in difficulty by number of steps and required tools.

6 EXPERIMENTAL RESULTS

6.1 ADP DATA RESULTS IN HIGHLY EFFECTIVE AGENTS ACROSS DIVERSE TASKS

Agent | Model | Training Data | Accuracy (%)

SWE-Bench (Verified) (Jimenez et al.||2024; | Chowdhury et al.|2024)

SWE-Agent (Yang et al.|2024) | Qwen-2.5-7B-Coder-Instruct | SWE-smith | 15.2%

OpenHands CodeActAgent Qwen-2.5-7B-Coder-Instruct SWE-Gym 10.6%

(Wang et al.||2025) Qwen-3-8B (Base) - 12.4%
Qwen—-3-8B ADP Data 16.6%

WebArena (Zhou et al.,|2024)

BrowserGym Llama-3.1-8B NNetNav 16.3%

(de Chezelles et al.}[2025) Qwen—2.5-7B-Instruct Go-Browse 21.7%

AgentLab (Drouin et al.|[2024) | Qwen-2.5-7B-Instruct - 8.9%
(de Chezelles et al.|[2025) Qwen—2.5-7B-Instruct ADP Data 20.1%

AgentBench OS (Liu et al.||2024b)

AgentLM (Liu et al.|[2024b) Llama-2-chat-7B | AgentInstruct | 17.4%
OpenHands CodeActAgent Qwen-3-8B - 2.5%
(Wang et al.}[2025) Qwen-3-8B ADP Data 25.7%
GAIA (Mialon et al.||2023)

OWL Agent (Hu et al.|[2025) Qwen-2.5-7B-Instruct - 4.8%
OpenHands CodeActAgent Qwen-2.5-7B-Instruct - 7.3%
(Wang et al.}[2025) Qwen—-2.5-7B-Instruct ADP Data 9.1%

Table 3: Comparison of SOTA and our Best 7-8B ADP-trained agents’ results across four bench-
marks. Shaded rows are our ADP-tuned models. We report the best performance for each benchmark
in this table.

Under review as a conference paper at ICLR 2026

ADP fine-tuning consistently improves performance across models, benchmarks, and agent
harnesses. As shown in training on standardized ADP data yields substantial gains
over base 7-8B models across four popular evaluation benchmarks. On SWE-Bench (Verified),
Qwen-2.5-7B-Instruct improves from 0.0% to 10.4% with OpenHands and from 0.2% to
13.7% with SWE-Agent, while Qwen-3-8B rises from 12.4% to 16.6% (+4.2). On WebArena
(AgentLab), performance jumps from 8.9% to 20.1% (+11.2). On AgentBench OS (OpenHands),
Qwen-2.5-7B-Instruct increases from 0.7% to 13.2% (+12.5) and Qwen—-3-8B from 2.5%
to 25.7% (+23.2). Finally, on GAIA, Qwen-2.5-7B-Instruct improves from 7.3% to 9.1%
(+1.8). These gains, spanning both coding- and browsing-centric settings, demonstrate that a unified,
cross-domain ADP training corpus can deliver state-of-the-art or near-SOTA performance without
domain-specific tuning and is effective across different models, action spaces, and agent harnesses.

6.2 DIVERSE DATA RESULTS IN CROSS-TASK TRANSFER

Agent | Model | Training Data | Accuracy (%)
SWE-Bench (Verified) (Jimenez et al., 2024} |Chowdhury et al.||2024)
OpenHands Qwen-2.5-7B-Instruct - 0.0%
CodeActAgent Qwen-2.5-7B-Instruct SWE-smith Only 1.0%
(Wang et al.||2025) Qwen-2.5-7B-Instruct ADP Data 10.4%
Qwen—-3-8B - 12.4%
Qwen-3-8B CodeActInstruct + Code-Feedback 0.2%
QOwen-3-8B SWE-smith Only 11.0%
Qwen—-3-8B ADP Data 16.6%
SWE-Agent Qwen-2.5-7B-Instruct - 0.2%
(Yang et al.|[2024) Qwen-2.5-7B-Instruct ADP Data 13.7%
WebArena (Zhou et al.||2024)
AgentLab Qwen-2.5-7B-Instruct - 8.9%
(Drouin et al.|[2024) Qwen-2.5-7B-Instruct Go-Browse Only 16.0%
(de Chezelles et al.|[2025) | Qwen-2.5-7B-Instruct ADP Data 20.1%
AgentBench OS (Liu et al.,|2024b)
OpenHands Qwen-2.5-7B-Instruct — 0.7%
CodeActAgent Qwen—-2.5-7B-Instruct ADP Data 13.2%
(Wang et al.|[2025) Qwen—-3-8B — 2.5%
Qwen-3-8B AgentlInstruct Only 21.5%
Qwen—-3-8B ADP Data 25.7%
GAIA (Mialon et al.||12023)
OpenHands Qwen-2.5-7B-Instruct - 7.3%
CodeActAgent Qwen-2.5-7B-Instruct AgentInstruct Only 0.6%
(Wang et al.|[2025) Qwen-2.5-7B-Instruct ADP Data 9.1%

Table 4: Cross-task transfer with diverse vs. task-specific data. For each benchmark, we compare
the same harness+model under three regimes: Base (untuned), task-specific “Only” fine-tuning, and
training on ADP corpus (shaded).

We study whether data diversity helps agents generalize across tasks. Holding the agent setup and
evaluation fixed, we compare training with different data mixtures: (i) Base (no tuning), (ii) Task-
specific only fine-tuning (e.g., SWE-smith Only, etc.), and (iii) ADP Data (as detailed in [§ J), a
mixed, cross-domain corpus. As shown in ADP consistently outperforms task-specific
tuning on the farget task and, critically, avoids the negative transfer that single-domain tuning
often induces on other tasks (Mueller et al., [2024; [Kotha et al., 2024; L1 et al., [2024).

Concretely, on SWE-Bench (Verified), ADP improves Qwen-2.5-7B-Instruct from 0.0% to
10.4%, versus 1.0% with SWE-smith Only; for Qwen—-3-8B, ADP reaches 16.6 % versus 0.2% with
CodeActinstruct + Code-Feedback and 11.0% with SWE-smith Only. On WebArena, ADP attains
20.1% compared to 16.0% with Go-Browse Only, indicating that code/API skills in ADP transfer to
browsing. On AgentBench OS, ADP lifts Qwen—-3-8B to 25.7% versus 21.5% with AgentInstruct
Only. Finally, on GAIA, Agentlnstruct Only causes clear negative transfer (0.6%, below the 7.3%
base), while ADP improves to 9.1%. Overall, mixed ADP training yields better in-domain accuracy
and stronger cross-task generalization than single-domain tuning.

Under review as a conference paper at ICLR 2026

6.3 ADP EASES ADAPTATION TO NEW AGENT HARNESSES

Table 5| demonstrates the lines of code (LOCF| ~ Table 5: LOC for converting datasets to ADP.

the authors and community contributors used Dataset Total LOC
to convert 13 datasets from distinct sources 00
to the ADP schema. A single Raw—ADP AgentInstruct ~1
Code-Feedback 134

converter per dataset performs the same nor- CodeActInstruct 269
malization work (schema mapping, tool/action Go-Browse 335
alignment, conversation formatting) that a tra- Mind2Web 476
ditional Raw—SFT converter would do for a Nebius SWE-Agent Trajectories 260
specific agent harness. Therefore, LOC statis- NNetNav (live+wa) 290
tics in are a reasonable proxy for the openhands-feedback 879
per-agent harness effort without ADP. Orca AgentlInstruct 155

)) SWE-Gym 221
Without ADP. Using this proxy, the cost of SWE-smith 228
converting D-many datasets to A-many har- Synatra 145
nesses without ADP is Costpoapp(A, D) = Total 4892

A - Zi’io LOC; raw—app. Thus the total con-
version cost across the community is quadratic (O(D x A) effort), as depicted in In our

data, Zi’;o LOC; raw—sapp = 4892 LOC across 13 datasets, so for A = 100 harnesses the total cost
is Costpo-app ~ 100 x 4892 = 489, 200 LOC.
With ADP. The total cost becomes Costapp(A4, D) =

Table 6: LOC for ADP— SFT converters. Zz’i o LOCi rawsapp + EA:O LOCapp_sser; with

Agent Haness Total LOC ADP. Thus, as shown in the total conver-
OpenHands CodeActAgent ~150 sion cost across the community now becomes linear
SWE-Agent ~50 with ADP (O(D + A) effort). [Table 6] demonstrates
AgentLab ~30 that converting ADP standardized data to agent harness
Average ~77 format takes an average of 77 LOC. For A = 100,

Costapp(A, D) = 4892 + 77 x 100 = 12,592 across
the 13 datasets we used, greatly less than the no-ADP
setting. Additionally, adding a new harness only require writing one script converting ADP stan-
dardized data to SFT, greatly easing adaptation to new agent harnesses. Hence, ADP substantially
reduces the community’s collective effort required to develop scalable, reproducible agents.

7 CONCLUSION AND FUTURE WORK

ADP provides a practical, lightweight “interlingua” that unifies heterogeneous agent datasets into
a single schema consumable by many agent harnesses, turning today’s fragmented data landscape
into a scalable training pipeline. Looking ahead, we see three immediate directions. (i) Multi-
modality: extending ADP beyond text to images, screen recordings, and other modalities to capture
richer agent—environment interactions. (ii) Standardized evaluation artifacts: applying the same
standardized “protocol” idea to evaluation and environment settings so that datasets, agents, and
evaluations compose cleanly. (iii) Community growth and data quality: continuing open-source
releases, stronger automated validation or even automated dataset conversion, to sustain scale while
preserving quality. We believe that, by lowering integration costs and enabling systematic and scal-
able training and analysis across sources, ADP can catalyze the next wave of agent-training research
and practice.

REPRODUCIBILITY STATEMENT.

We provide clear pointers to enable independent reproduction of all results. We describe the ADP
schema and conversion pipeline (§ 3), allowing others to regenerate the training corpus from raw
sources. We list the datasets and their characteristics in The exact training and evaluation
setup-including base models, agent harnesses, our SFT pipeline, the evaluation benchmarks and

3 All LOC exclude prompt text (e.g., system prompts); only converter code is counted.

Under review as a conference paper at ICLR 2026

protocol-is specified in[§ 5] Finally, we will release all code and data open source, including the
ADP schemas, converters, and scripts referenced above.

REFERENCES

All Hands AI. Openhands feedback dataset. https://huggingface.co/datasets/
all-hands/openhands—feedback, 2024.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, et al. Introducing swe-bench verified. https:
//openai.com/index/introducing—-swe—bench-verified, 2024.

Thibault Le Sellier de Chezelles, Maxime Gasse, Alexandre Lacoste, Massimo Caccia, Alexan-
dre Drouin, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan,
Lawrence Keunho Jang, Xing Han LU, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Gra-
ham Neubig, Quentin Cappart, Russ Salakhutdinov, and Nicolas Chapados. The browsergym
ecosystem for web agent research. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=5298fKGmv3, Expert Certifi-
cation.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capa-
ble are web agents at solving common knowledge work tasks? In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 11642-11662. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/drouin24a.html.

Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration.
arXiv preprint arXiv:2506.03533, 2025.

Alexander Golubev, Sergey Polezhaev, Karina Zainullina, Maria Trofimova, Ibragim Badert-
dinov, Yury Anapolskiy, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergey Skvortsov,
Maxim Nekrashevich, Anton Shevtsov, Sergey Abramov, and Boris Yangel. Leverag-
ing training and search for better software engineering agents. Nebius blog, 2024.
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents.

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping
Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent assistance in
real-world task automation, 2025. URL https://arxiv.org/abs/2505.23885.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?i1d=VTF8yNQM66.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. In European Conference on Computer Vision, pp. 161-
178. Springer, 2024.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forget-

ting in language models via implicit inference. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=VrHiF2hsrm.

10

https://huggingface.co/datasets/all-hands/openhands-feedback
https://huggingface.co/datasets/all-hands/openhands-feedback
https://openai.com/index/introducing-swe-bench-verified
https://openai.com/index/introducing-swe-bench-verified
https://openreview.net/forum?id=5298fKGmv3
https://proceedings.mlr.press/v235/drouin24a.html
https://arxiv.org/abs/2505.23885
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VrHiF2hsrm

Under review as a conference paper at ICLR 2026

Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting in large
language model tuning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 4297-4308, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.249. URL https://aclanthology.org/2024.findings—emnlp.
249/.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. In
European conference on computer vision, pp. 126—142. Springer, 2024a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024b. URL |https://openreview.net/forum?id=zAdUB0aCTQ.

Xing Han Lu, Zdenék Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142—-150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Tielfth International Conference on Learning
Representations, 2023.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Co-
das, Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, et al. Agentinstruct: Toward gen-
erative teaching with agentic flows. arXiv preprint arXiv:2407.03502, 2024.

David Mueller, Mark Dredze, and Nicholas Andrews. Multi-task transfer matters during instruction-
tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 14880-14891, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.883. URL
https://aclanthology.org/2024.findings—acl.883/.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
vised learning of browser agents through environment interaction in the wild. arXiv preprint
arXiv:2410.02907, 2024.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. ICLR, 2023.

Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sen-
gupta, Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into
direct demonstrations for computer agents at scale. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), Vancouver, BC, December 2024. URL https://arxiv.org/
abs/2409.15637.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with SWE-gym. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
CglBNvHx74.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://gqwenlm.
github.io/blog/qwen2.5/.

11

https://aclanthology.org/2024.findings-emnlp.249/
https://aclanthology.org/2024.findings-emnlp.249/
https://openreview.net/forum?id=zAdUB0aCTQ
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://aclanthology.org/2024.findings-acl.883/
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2409.15637
https://openreview.net/forum?id=Cq1BNvHx74
https://openreview.net/forum?id=Cq1BNvHx74
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Under review as a conference paper at ICLR 2026

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383-2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.
org/D16-1264.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708-59728, 2023.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fugiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for Al soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=0Jd3ayDDoOF.

Kevin Xu, Yeganeh Kordi, Tanay Nayak, Adi Asija, Yizhong Wang, Kate Sanders, Adam Byerly,
Jingyu Zhang, Benjamin Van Durme, and Daniel Khashabi. Tur [k] ingbench: A challenge bench-
mark for web agents. arXiv preprint arXiv:2403.11905, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

John Yang, Kilian Leret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025b.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen,
and Xiang Yue. OpenCodelnterpreter: Integrating code generation with execution and refine-
ment. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 12834-12859, Bangkok, Thailand, August
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.762. URL
https://aclanthology.org/2024.findings—acl.762/.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024b. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372|

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A real-
istic web environment for building autonomous agents. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
oKn9coytLx.

12

https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://openreview.net/forum?id=OJd3ayDDoF
https://aclanthology.org/2024.findings-acl.762/
http://arxiv.org/abs/2403.13372
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

Under review as a conference paper at ICLR 2026

A USE OF LLMs

We used LLMs to aid and polish writing for style and presentation.
Specifically, LLMs were employed to:

* polish wording, tighten paragraphs, and improve clarity/flow;

* improve latex presentation (e.g., table/figure captions)

B DATA SAMPLING FOR BALANCED TRAINING

To balance domains and reduce over-represented sources, we resample each dataset with a per-
dataset multiplier wy. For dataset d with ng raw trajectories, we draw mg = [wg ng| examples per
epoch; if wg < 1 we sample without replacement (downsample), and if wg > 1 we sample with
replacement (upsample). This yields an effective mixture proportional to wgy across datasets (and
therefore across domains), while keeping the overall epoch size stable.

Table 7: Per-dataset sampling multipliers wy. wg < 1 indicates downsampling; wy > 1 indicates
upsampling.

Dataset Wq Direction
agenttuning._alfworld 2 up
agenttuning_db 2 up
agenttuning_kg 2 up
agenttuning mind2web 2 up
agenttuning.os 2 up
agenttuning_webshop 2 up
code_feedback 0.1 down
codeactinstruct 1 neutral
go-browse-wa 1 neutral
mind2web 1 neutral
nebius_SWE-agent-trajectories 1 neutral
nnetnav-live 1 neutral
nnetnav-wa 1 neutral
openhands 1 neutral
orca.-agentinstruct 0.001 down
swe—gym_openhands_sampled_trajectories 3 up
swe—smith 1 neutral
synatra 0.01 down

In practice, we fix a random seed for reproducibility and shuffle the union of sampled
examples across datasets each epoch. This scheme targets a more balanced distribution
across coding, SWE, tool-use, and web-browsing sources by attenuating very large corpora
(e.g., orca_agentinstruct at wy=0.001) and amplifying under-represented ones (e.g.,
swe—gym_openhands_sampled_trajectories at wg=3).

13

	Introduction
	Existing Agent Training Datasets
	Representative Datasets
	Challenges and Limitations

	The Agent Data Protocol
	Design Principles
	Architecture
	Conversion Pipeline
	Practical Impact of ADP on Agent Training Research

	Cross Dataset Analysis
	Experimental Setup
	Training Setup
	Evaluation Benchmarks

	Experimental Results
	ADP Data Results in Highly Effective Agents Across Diverse Tasks
	Diverse Data Results in Cross-task Transfer
	ADP Eases Adaptation to New Agent Harnesses

	Conclusion and Future Work
	Use of LLMs
	Data Sampling for Balanced Training

