Under review as a conference paper at ICLR 2026

AGENT DATA PROTOCOL: UNIFYING DATASETS FOR
DI1VERSE, EFFECTIVE FINE-TUNING OF LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Public research results on large-scale supervised finetuning of Al agents remain
relatively rare, since the collection of agent training data presents unique chal-
lenges. In this work, we argue that the bottleneck is not a lack of underlying data
sources, but that a large variety of data is fragmented across heterogeneous for-
mats, tools, and interfaces. To this end, we introduce the Agent Data Protocol
(ADP), a light-weight representation language that serves as an “interlingua” be-
tween agent datasets in diverse formats and unified agent training pipelines down-
stream. The design of ADP is expressive enough to capture a large variety of
tasks, including API/tool use, browsing, coding, software engineering, and gen-
eral agentic workflows, while remaining simple to parse and train on without en-
gineering at a per-dataset level. In experiments, we unified a broad collection of
13 existing agent training datasets into ADP format, and converted the standard-
ized ADP data into training-ready formats for multiple agent frameworks. We
performed supervised finetuning on the unified data, and demonstrated an average
performance gain of ~20% over corresponding base models, and delivers state-
of-the-art or near-SOTA performance on standard coding, browsing, tool use, and
research benchmarks, without domain-specific tuning. All code and data are re-
leased publicly, in the hope that ADP could help lower the batrier to standardized,
scalable, and reproducible agent training.

1 INTRODUCTION

Agent Data Protocol

OpenHands SFT

o - I~

% Agentlnstruct Action Observation

% CodeActinstruct 1 SWE Agent SFT
< SWE-Gym > APl Action > Text Observation

% Mind2Web > Code Action > Web Observation AgentLab SFT
P > Message Action

[0
(O APIAction (Q)

B function=goto,
oto(url=google.com)| ——> q
goto(url=goog) ey T WebObservation (

<Idoctype html>) url=google.com

<html itemscope html=<htm>...,
! = axtree=RootWebArena D
... <title> Google 2 G
fB CodeAction (

'Google', focused . D Trajectory (
language=python,

) id=example_id,
content=print("Hello World")

%) content=[...]

TextObservation ()
content=Hello World,
source=environment

)

U
Execution result: I
Hello World - o]
MessageAction (

How can | help you? | == : content=How can | help you?

Figure 1: Overview of the Agent Data Protocol (ADP). Raw data from diverse sources such as
Agentlnstruct, CodeActInstruct, SWE-Gym, and Mind2Web are converted into a standardized ADP
format. ADP unifies data into Trajectory objects, which include two core components: Actions (API
action, code action, message action) and Observations (text observation, web observation). This
standardized representation enables seamless integration with various agent SFT pipelines. Example
transformations demonstrate how heterogeneous raw data is normalized for training agentic models.

)

Pre-training large language models (LLMs) benefits from abundant, readily available Internet-scale
data. In contrast, post-training presents a much harder challenge: high-quality task-specific data

Under review as a conference paper at ICLR 2026

must be carefully curated. While creative strategies have emerged for collecting data in relatively
simple settings, such as single-turn user interactions like code generation (Nijkamp et al., |2023),
question answering (Rajpurkar et al.| 2016)), and sentiment analysis (Maas et al.l 2011}, many real-
world tasks are far more complex.

A particularly difficult case is agent applications, where models must take sequential actions and
interact with the world iteratively. Building datasets for such scenarios requires recording and struc-
turing trajectories of agent behavior, much more challenging than collecting static input-output pairs.

Despite these difficulties, a growing body of work has explored different approaches for creating
agent datasets. These efforts vary in methodology, from manual curation (Rawles et al.| 2023 Xu
et al., 2024a), to synthetic data generation (Ou et al., 2024; Zheng et al.,|2024a), to recorded agent
rollouts (Pan et al.|l [2025; [Yang et al., 2025b). The resulting datasets span a wide range of tasks,
including web navigation (Deng et al.l [2023; [Lu et al., [2024), software development (Yang et al.,
2025b; Pan et al., 2025), visual interface control (Rawles et al., [2023} [Kapoor et al., |2024), and
general tool use (Zeng et al., [2023; |Liu et al.,|2024a) (an overview of these datasets in .

However, despite the availability of such data, large-scale supervised fine-tuning (SFT) of agents
remains rare in academic research. A few notable projects, such as [Zeng et al.| (2023) and Mitra
et al.| (2024)), have demonstrated their potential, but remain exceptions rather than the norm. Why
has this not become standard practice? We argue that the issue is not a lack of data, but rather a lack
of standardization. Existing datasets are fragmented, with inconsistent formats and representations,
making it difficult to combine, share, and leverage them effectively, thus they remain underutilized.

To address this gap, we introduce the Agent Data Protocol (ADP), a standardized expressive repre-
sentation language for agent data. By converting heterogeneous datasets into ADP, it makes it simple
to generate large-scale and diverse data for a variety of downstream training pipelines (Figure TJ.
Technically, ADP is implemented as Pydanticﬂ schemas that express actions and observations corre-
sponding to common agent use cases such as communicating, browsing, coding, and miscellaneous
tool calling, coupled with strict automated validation to maintain high data quality.

As a first step to demonstrate the practical utility of ADP, we implement converters from 13 pre-
existing datasets into ADP, and converters from ADP to 3 different agent architectures, demonstrat-
ing its generality. Based on this, we create and release the largest publicly available dataset for agent
training, consisting of 1.3M training trajectories, dubbed the ADP Dataset V1.

Our experiments show training agents using ADP leads to significant performance improvements
across diverse domains, including coding (SWE-Bench Verified), web browsing (WebArena), re-
search (GAIA), and agentic tool use (AgentBench), as shown in@ Notably, these results improve
by an average of 20% over base models, and are competitive with or superior to other state-of-the-art
results from similarly-sized models. We also identify significant benefits from cross-task transfer,
with training on the ADP data improving significantly over training on individual datasets. Be-
yond performance, ADP enables systematic cross-dataset analysis, revealing trends and areas for
improvement in publicly available data.

Finally, we release all code and datasets in open source to foster community adoption and encourage
contributions of new datasets. We believe ADP will unlock a new wave of progress in agentic model
fine-tuning by providing the standardization needed to make large-scale supervised agent training
practical and scalable.

2 RELATED WORK

The development of effective LLM-based agents critically depends on high-quality training data
that captures the complexity of multi-step reasoning, tool usage, and environmental interaction (Yao
et al., 2022b; Schick et al.} 2023} |Deng et al., [2023; Masterman et al., 2024). This section reviews
existing methods for agent data collection and the challenges that motivate ADP.

'https://pydantic.dev/

https://pydantic.dev/

Under review as a conference paper at ICLR 2026

2.1 AGENT DATA COLLECTION METHODS

Existing approaches span manual creation (human experts creating step-by-step demonstrations of
desired agent behaviors) (Nakano et al.l [2021; [Yao et al. 2022a)), synthetic generation (leverages
existing LLMs to create agent trajectories through prompting or structured generation) (Luo et al.,
2023; | Xu et al.l [2024b), and recorded agent rollouts (captures trajectories from existing agent sys-
tems during task execution) (Wang et al.| |2024a} Pan et al. [2025)), etc, resulting in abundant agent
training data, a representative set of which listed in

Table 1: Overview of Existing Agent Training Datasets. C=Coding, S= ,
T=APIl/Tool Use, W=Web Browsing.

Dataset Variety Count Source Note

AgentlInstruct (Zeng et al.|[2023) CTW 19K synthetic Mixture of Browsing, Database, OS, etc.
Code-Feedback (Zheng et al.[[2024a) C 66.4K manual Code generation with runtime feedback loops
CodeActInstruct (Wang et al.[|2024b) C 7.1K synthetic Code generation and tool use with execution
Go-Browse(Gandhi & Neubig|2025) W 9.5K rollout Structured exploration web rollouts

Mind2Web (Deng et al.[[2023) w 1.0K manual Human web demos on real websites

Nebius SWE Trajectories 134K rollout SWE-agent trajectories from Nebius relying
(Golubev et al.||2024) solely on open-weight models

NNetNav-live (Murty et al.||2024) w 5.0K rollout Retroactively labeled live web exploration
NNetNav-wa (Murty et al.|[2024) w 4.2K rollout Retroactively labeled WebArena exploration
openhands-feedback CTW 02K rollout Recorded OpenHands agent trajectories with hu-
(All Hands AI}[2024) man feedback

Orca Agentinstruct (Mitra et al.}2024) T 1046.1K synthetic Large-scale synthetic tool-use instructions data
SWE-Gym (Pan et al.[[2025) 0.5K rollout ~ Agent trajectories solving real GitHub repo tasks
SWE-smith (Yang et al.|[2025b) 5.0K synthetic Trajectories of agents on synthesized bug-fix tasks
Synatra (Ou et al.||2024) w 99.9K synthetic Synthetically created web demos of tutorials

We also group each dataset into a coarse task category.

* Coding: generally includes fundamental programming tasks, such as command line code genera-
tion, algorithm implementation, code completion, code translation, and code repair, etc.

. : often consists of repository-level software engineering tasks, such as bug
fixing, feature implementation, code refactoring, and dependency management, etc.

* API/Tool Use: usually requires agents to use external APIs/tools effectively to solve tasks. Com-
mon tools include file manipulation, database queries, and customized APIs, etc.

* Web Browsing: commonly encompasses tasks including web navigation, online shopping, and
social media interactions, etc, requiring agents to understand GUIs.

2.2 CHALLENGES AND LIMITATIONS

Despite abundant existing agent training datasets, several fundamental challenges prevent effective
large-scale utilization of these resources:

* Complexity of Data Curation: Creation of high-quality agent training data requires significant
resources and expertise (Paullada et al., 2021} Bhardwaj et al., 2024} Zha et al.| |2025)). Manual
curation is expensive and requires domain knowledge; synthetic generation faces challenges in
verifying data quality; recorded agent rollouts are fundamentally constrained by the capabilities
of existing baseline agents, limiting the diversity and complexity of trajectories. Each approach
requires significant time and investment. While recent efforts have scaled trajectory collection
(Song et al., [2024; |[Mitra et al., [2024), the fundamental challenge of balancing quality, diversity,
and scale across different curation approaches remains.

* Heterogeneity of Dataset Format: Existing agent training datasets each employ its own represen-
tation format, action spaces, and observation structures (Ning et al.| 2025} |[Luo et al.l 2025). For
example, some web datasets use HTML while some use accessibility tree structures (de Chezelles
et al.| 2025)). Existing efforts have noted and begun addressing data standardization (Zhang et al.,
2024; |(Chen et al.| [2024; [Mohammadi et al., 2025} Xi et al., |2025; Zhang et al.| 2025), but they
mostly focused on proposing task-specific or agent-specific unification rather than community-
wide standardization of data representation, limiting plug-and-play with other datasets or agents,
where significant engineering effort is still required to utilize multiple datasets together, hindering
integration across different data sources.

Under review as a conference paper at ICLR 2026

* Difficulty of Analysis and Comparison: The diverse structures of existing datasets also makes it
difficult to perform systematic comparisons or quantitative analysis across different data sources
(Putrama & Martinek| |2024), limiting researchers’ ability to understand the relative usefulness,
coverage, and quality of different datasets, hindering data-driven selection or improvements.

3 THE AGENT DATA PROTOCOL

To overcome these challenges and limitations, and to make good use of existing data resources, we
propose the Agent Data Protocol (ADP). ADP establishes a unified schema that bridges the gap
between existing heterogeneous agent training datasets and large-scale supervised agent fine-tuning.

3.1 DESIGN PRINCIPLES
We design ADP around the following core principles:

 Simplicity: ADP maintains a simple and intuitive structure. This directly addresses the complexity
of data curation challenge by providing a straightforward framework that eliminates the need
for specialized per-dataset engineering, making large-scale agent data utilization accessible to
researchers without extensive adaptation effort.

 Standardization: ADP is designed to provide a unified representation that unifies existing agent
training datasets of various different formats to a standardized format, addressing the challenge of
heterogeneous dataset formats.

» Expressiveness: ADP is designed to ensure that complex agentic trajectories could be accurately
expressed with no loss of critical information. This directly addresses the difficulty of analysis and
comparison challenge because ADP is expressive enough to cover the broad variety of existing
agent datasets across different domains, enabling researchers to put these diverse datasets under
the same conditions and context.

By addressing the fundamental challenges in utilization agent data, ADP aims to push the progress
in agent training, making large-scale agent SFT more accessible to the broader research community.

3.2 ARCHITECTURE

The ADP schema is implemented as Pydantic schemas, and is simple yet expressive in design. Each
ADP standardized agent trajectory is represented as a Tra jectory object.

Trajectory consists of (1) id: trajectory id, (2) content: an alternating sequence of actions
and observations representing the agent’s interaction with the user/environment, (3) details: A
flexible metadata dictionary for dataset-specific information (e.g., dataset source URLSs).

Action represents agents’ decisions and behaviors. We categorize actions into three types:

* API Actions: Function calls with structured parameters and outputs capturing tool use. Each API
action includes: (1) function: name of tool call, (2) kwargs: a dictionary of function argu-
ments, and (3) description: optional reasoning or explanation for the action. For example,
with ADP, a web navigation call goto (url=https://www.google.com) isrepresented as
APIAction (function=goto, kwargs=url:https://www.google.com).

* Code Actions: Code generation and execution across programming languages. Each code action
specifies: (1) language: the programming language (e.g., python), (2) content: the code to
execute, and (3) description: optional reasoning or explanation for the action. For example,
the ADP representation of a python code block * * ‘python print ("Hello World") *'®
is CodeAction (language=python, content=print ("Hello World").

* Message Actions: Natural language communications between agents and users, each containing
a content field, documenting agents’ explanations, clarifications, and responses. For example,
MessageAction (content=How can I help you?).

Observation represents agents’ perceptions from the environment, categorized into two types:

Under review as a conference paper at ICLR 2026

» Text Observations: Captures the text information from various sources, including user instruc-
tions and environmental feedback. Each text observation includes: (1) source: the origin of
the observation (“user” or “environment”), and (2) content: the observed text. For example, a
python execution output Execution result: Hello World, will be converted to ADP
format TextObservation (content=Hellow World, source=environment).

* Web Observations: Represent the state and content of webpages. Each observation includes: (1)
html: raw HTML content, (2) axt ree: accessibility tree of the webpage, (3) url: current page
URL, (4) viewport_size: browser viewport dimensions, and (5) image_observation:
optional screenshot data. Web observations enable ADP to support complex browsing scenarios.

The core insight behind ADP is that despite the surface-level diversity in agent datasets, most agen-
tic interactions can be decomposed into a sequence of actions taken by the agent and observations
received from the environment. By standardizing these fundamental components, ADP directly ad-
dresses each challenge identified in [§ 2.2 while preserving the rich semantics of the original data.
This unified representation enables researchers to combine datasets that were previously incompati-
ble, facilitating large-scale training across diverse domains.

3.3 CONVERSION PIPELINE

As shown in we implemented a three-stage conversion pipeline with ADP that transforms
heterogeneous datasets into training-ready agentic formats.

1. Raw to Standardized: This stage unifies original dataset formats into the ADP standardized
schema. Each dataset is extracted in its raw format, and then converted to the ADP schema by
mapping each dataset-specific actions and observations to the ADP’s standardized action and
observation space. For example, a web browsing task with HTML representations is converted
to a pairs of APTAction and WebObservation, while a coding task with execution output
is mapped to CodeAction and TextObservation pairs.

2. Standardized to SFT: This stage converts ADP standardized trajectories into supervised fine-
tuning (SFT) format suitable for training language models. Different agent frameworks oper-
ate with distinct actions spaces, observations formats, etc. For example, OpenHands employs
IPython execution with web browsing capabilities, SWE-Agent uses structured bash commands
and file operations, while AgentLab focuses on DOM-based web interactions. Rather than train-
ing only one generic action model, we recognize that effective agent training requires adaptation
to each framework’s specific scaffolding and interactions formats. For each agent harness, the
conversion process uses one agent-specific script that translates each type of action and observa-
tion into the target agent’s action and observation space based on the agent’s framework. This
stage handles context management, specifies system prompts, and formats conversations to create
SFT-ready instruction-response pairs, optimized for the particular agent architecture.

3. Quality Assurance: This stage ensures data correctness and consistency in alignment with agent
format, tool use, and conversation structure through automated validation. Example quality
checks include verifying tool call formats, ensuring mos tool calls are paired with an English
thought, and checking whether the conversation ends properly, etc.

3.4 PRACTICAL IMPACT OF ADP ON AGENT TRAINING RESEARCH

The two-direction pipeline (Raw—ADP and ADP—SFT) cleanly separates responsibilities and
eliminates redundant engineering (Figure 2)). In practice:

» Dataset conversion (once per dataset). Contributors convert each raw dataset to the ADP schema
exactly once. From then on, the dataset is a standardized resource usable by any agent harness.

» Agent-specific conversion (once per agent). Each agent maintains a single script for ADP—SFT;
no per-dataset engineering needed. Adding new datasets requires no change to agent-side scripts.

* Without ADP. Researchers must write a Raw—SFT converter for each dataset—agent pair, dupli-
cating effort across groups and making large-scale data integration brittle and slow.

We set this threshold to be 80%, but it can be changed based on demand.

Under review as a conference paper at ICLR 2026

{ Without ADP: Quadratic Effort } With ADP: Linear Effort
[Agentinstruct OpenHands SFT] [Agentinstruct OpenHands SFT
Code-Feedback Code-Feedback
[Go-Browse SWE-Agent SFT J [Go-Browse ADP SWE-Agent SFT
Standardized
Mind2Web Mind2Web Data
[SWE-smith AgentLab SFT } [SWE-smith AgentLab SFT

Figure 2: ADP collapses many-to-many conversions into a hub-and-spoke pipeline. Left: With-
out ADP, each of D-many datasets needs a custom Raw— SFT converter for each of A-many agentic
formats (quadratic O(D x A) effort), causing duplicated code and efforts. Right: With ADP, each
dataset is converted once (Raw— ADP) and each agent only requires one converter (ADP—SFT),
yielding linear O(D+ A) effort. New datasets or agents plug in immediately to the rest of ADP.

ADP amortizes conversion cost across the community, accelerates adoption of new datasets, and
ensures that a single ADP—SFT script instantly unlocks the entire pool of ADP-standardized data
to an agent framework. More discussion could be found in

4 CROSS DATASET ANALYSIS Table 2: Dataset Stats and Trajectory Analysis.
A=APIAction, C=CodeAction, M=MessageAction.

shows analysis on 13 ADP stan- AVG. % Actions % Func

- . Lo . Dataset
dardized datasets, revealing significant di- Rounds (A/C/M) Thought
Ver§ity in trajector}{ lengths, action dist?i- AgentInstruct 82 64/10/26 100.0
butions, and reasoning patterns across dif- Code-Feedback 4.0 0/58/42 82.8
ferent task domains. CodeActInstruct 4.0 0/65/35 98.6

. . Go-Browse 39 70/0/30 100.0
Trajectory Length. Trajectory rounds Mind2Web 9.7 90/0/10 0.0
vary dramatically across datasets, from 1 Nebius SWE-Agent 16.2 67/27/6 100.0
to 26.8 turns, with an average of 10.1 ggetgav-live 18621 Sgﬁgﬁ? ggg
turns. SWE datasets consistently exhibit etNay-wa : :
1 ts ector] flecting th y h t OpenHands 18.3 11/73/16 91.7
onger trajectories, refiecting the inheren Orca AgentInstruct 1.3 0/15/85 84.0
complexity of multi-step repo-level pro- SWE-Gym 197 61/25/14 42.0
gramming tasks. SWE-smith 26.8 56/40/4 90.1

. .. . Synatra 1.0 100/0/0 99.9
Action Distribution Patterns. Clear Y

Overall 10.1 53/24/23 83.8

domain-specific preferences emerge from
the action distributions after standardiza-
tion with ADP. Web datasets (Mind2Web, NNetNav, Synatra) heavily favor API actions (80—-100%)
with minimal code execution, reflecting their focus on interface interaction. Conversely, coding
datasets (Code-Feedback, CodeActInstruct) show high code usage (~60% code) with no API usage,
emphasizing direct programming activities. Software engineering datasets demonstrate mixed pat-
terns, with SWE-smith, SWE-Gym, and Nebius SWE-Agent Trajectories relies on API actions such
as file writes while also using code actions for code generation and execution.

Function Reasoning Analysis. A striking finding is the high function thought coverage (> 90% for
most datasets), indicating that these training datasets consistently provide explanations for actions.
This is particularly valuable for interpretability and training agents with reasoning abilities. Impor-
tantly, high reasoning coverage appears across all task varieties, suggesting that function thoughts
represent a general characteristic of well-documented datasets rather than domain-specific behavior.

5 EXPERIMENTAL SETUP

5.1 TRAINING SETUP

To evaluate ADP’s effectiveness in training across diverse data sources, we utilize a comprehensive
collection of 13 agent training datasets, spanning coding, SWE, API/tool user, and browsing, as

Under review as a conference paper at ICLR 2026

documented in These datasets represent a broad spectrum of heterogeneity challenges
that ADP addresses, including varied data creation methodologies (synthetic generation, manual
curation, agent rollouts), different complexity (from simple to complex multi-step workflows), and
diverse environments (command-line interfaces, web GUIs, Jupyter Notebooks, API calls).

The selected datasets collectively contain over 1.3M instances, ranging from smaller ones like
Mind2Web to larger-scale ones like Orca AgentInstruct. To ensure balanced representation across
domains and prevent any single large dataset from dominating the training process, we subsample
from larger datasets while using smaller datasets in their entirety. Full details of our data sampling
and mixture weights are in Appendix [C]

We use Qwen2.5-Coder-Instruct model family (Qwen Team), [2024; Hui et al., 2024) as the base
models, with 3 agent frameworks for comprehensive evaluation across multiple benchmarks. We
fine-tuned all models using the same SFT pipeline from LLaMA-Factory (Zheng et al.l |2024b).
These experiments focus on each framework’s specialized domain to demonstrate targeted effec-
tiveness. Each agent has unique architectures, tool interfaces, and interaction environments. This
diversity allows us to validate that ADP-standardized data can be readily and easily converted to
different agent formats, demonstrating the protocol’s utility across various agent implementations.

OpenHands (Wang et al. 2025) is an open platform for building generalist Al agents that operate
like software developers: writing code, using command lines, and browsing the web. It provides
sandboxed execution environments, tool coordination, and benchmark evaluation.

AgentLab (Drouin et al., [2024; [de Chezelles et al.l [2025) is an open-source framework for de-
veloping, testing, and benchmarking web agents across diverse tasks, emphasizing scalability and
reproducibility. It supports a suite of evaluation benchmarks like WebArena and WorkArena.

SWE-Agent (Yang et al.,2024) introduces a custom Agent-Computer Interface (ACI) that enables
language model agents to autonomously perform software engineering tasks by navigating code-
bases, editing and running code, viewing files, and executing tests.

5.2 EVALUATION BENCHMARKS

We evaluated these agents across 4 benchmarks (based on the availability of benchmark evalua-
tion code and specialization of agents) that span different domains. This comprehensive evaluation
demonstrates ADP’s expressiveness in preserving critical information across diverse tasks.

SWE-Bench (Jimenez et al.,[2024) evaluates agents on real-world software engineering tasks. Given
a Github codebase and a bug report, agents must generate patches that satisfy existing unit tests. We
used the SWE-Bench Verified subset for evaluation (Chowdhury et al., [2024)).

WebArena (Zhou et al., [2024) provides a realistic, self-hosted web environment composed of fully
functional websites in domains like e-commerce, forums, and map navigation, requiring agents to
interpret high-level natural language commands and perform concrete web interactions.

AgentBench (Liu et al., 2024b) evaluates agents across different environments, such as operating
systems, databases, and web browsing. It emphasizes multi-turn reasoning, decision making, and
adaptability across domains.

GAIA (Mialon et al., [2023) is a benchmark for general Al assistants featuring human-annotated
tasks that combine reasoning, tool use, and multi-step problem solving, often with multimodal input.
Tasks vary in difficulty by number of steps and required tools.

6 EXPERIMENTAL RESULTS

6.1 ADP DATA RESULTS IN HIGHLY EFFECTIVE AGENTS ACROSS DIVERSE TASKS

ADP fine-tuning consistently improves performance across models, benchmarks, and
agent harnesses. As shown in [Table 3] [Table 4] and training on standard-
ized ADP data yields substantial gains across 7B, 14B, and 32B models on several popu-
lar evaluation benchmarks. On SWE-Bench (Verified), ADP training delivers remarkable im-
provements: Qwen-2.5-7B-Coder—-Instruct improves from 0.4% to 20.2% (+19.8%)

Under review as a conference paper at ICLR 2026

Table 3: Comparison of SOTA and our Best 7-8B ADP-trained agents’ results across benchmarks.
Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent | Model | Training Data | Accuracy

SWE-Bench (Verified) (Jimenez et al.,|2024}|Chowdhury et al.}|2024)

SWE-Agent Qwen-2.5-7B-Coder-Instruct — 0.4%

(Yang et al.||2024) Qwen-2.5-7B-Coder—-Instruct SWE-smith (Yang et al.{[2025b) 15.2% (+14.8%)
Claude 3 Opus (Anthropic Team) - 15.8%
Qwen-2.5-7B-Coder-Instruct ADP Data 20.2% (+19.8%)

OpenHands CodeActAgent Qwen-2.5-7B-Coder-Instruct — 2.8%

(Wang et al..|2025) Qwen-2.5-7B-Coder-Instruct SWE-Gym (Pan et al.|[2025) 10.6% (+7.8%)
Qwen-2.5-7B-Coder-Instruct ADP Data 20.4% (+17.6%)

WebArena (Zhou et al.||2024)

BrowserGym
(de Chezelles et al.|2025)

Llama-3.1-8B
Qwen-2.5-7B-Instruct
Llama-3.1-8B
Qwen-2.5-7B-Instruct

NNetNayv (Murty et al.|[2024)
Go-Browse (Gandhi & Neubig!|2025)

1.0%
8.3%
16.3% (+15.3%)
21.7% (+13.4%)

AgentLab (Drouin et al.|[2024)
(de Chezelles et al.|2025)

Qwen—-2.5-7B-Coder—-Instruct
Qwen—-2.5-7B-Coder—-Instruct

ADP Data

4.5%
21.0% (+16.5%)

AgentBench OS (Liu et al.)|2024b)

AgentLM Llama-2-chat-7B - 8.3%

(Liu et al.|[2024b) Llama-2-chat-7B AgentInstruct (Zeng et al.|[2023) 17.4% (+9.1%)
OpenHands CodeActAgent Qwen-2.5-7B-Coder-Instruct - 3.5%
(Wang et al..|2025) Qwen—-2.5-7B-Coder—Instruct ADP Data 27.1% (+23.6%)
GAIA (Mialon et al.)2023)

OWL Agent (Hu et al.|[2025) | Qwen-2.5-7B-Instruct | - | 4.8%
OpenHands CodeActAgent Qwen-2.5-7B-Instruct - 7.3%
(Wang et al..|2025) Qwen-2.5-7B-Instruct ADP Data 9.1% (+1.8%)

Table 4: Comparison of SOTA and our Best 13—14B ADP-trained agents’ results across benchmarks.
Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent | Model \ Training Data | Accuracy

SWE-Bench (Verified) (Jimenez et al.,|2024)|Chowdhury et al.|2024)

SWE-Agent Qwen-2.5-14B-Coder—-Instruct - 2.0%

(Yang et al.|[2024) Claude 3.5 Sonnet(Anthropic Team) - 33.6%
Qwen-2.5-14B-Coder—-Instruct ADP Data 34.4% (+32.4%)

OpenHands CodeActAgent Qwen-2.5-14B-Coder-Instruct - 5.8%

(Wang et al.|[2025) Qwen—-2.5-14B-Coder-Instruct SWE-Gym (Pan et al.||2025) 16.4% (+10.6%)
Qwen-2.5-14B-Coder—-Instruct ADP Data 30.6% (+24.8%)

WebArena (Zhou et al.)|2024)

AgentLab (Drouin et al.!|2024) | Qwen-2.5-14B-Coder-Instruct - 5.5%

(de Chezelles et al.{[2025) Qwen-2.5-14B-Coder—-Instruct ADP Data 22.2% (+16.7%)

AgentBench OS (Liu et al.}|2024b)

AgentLM Llama-2-chat-13B - 9.0%
(Liu et al.![2024b) Llama-2-chat-13B AgentInstruct (Zeng et al.|[2023) 18.1% (+9.1%)
OpenHands CodeActAgent Qwen-2.5-14B-Coder-Instruct 2.8%

(Wang et al.|2025) Qwen-2.5-14B-Coder-Instruct ‘ ADP Data 20.8% (+18.0%)

with SWE-Agent and from 2.8% to 20.4% (+17.6%) with OpenHands. At 14B scale,
Qwen-2.5-14B-Coder-Instruct achieves 34.4% (+32.4%) with SWE-Agent and 30.6%
(+24.8%) with OpenHands. The 32B model reaches 40.3% (+38.1%) with SWE-Agent and 36.8%
(+26.2%) with OpenHands, matching or exceeding Claude 3.5 Sonnet with SWE-Agent’s 33.6%
performance. On WebArena, ADP training shows consistent gains across model sizes: 7B achieves
21.0% (+16.5%), 14B reaches 22.2% (+16.7%), and 32B attains 22.9% (+12.0%). On AgentBench
OS, the improvements are substantial: the 7B model improves from 3.5% to 27.1% (+23.6%), the
14B model improves from 2.8% to 20.8% (+18.0%), and 32B models from 27.8% to 34.7% (+6.9%).
Finally, on GAIA, the 7B model improves from 7.3% to 9.1% (+1.8%).

These gains, spanning both coding and browsing settings, show that a unified, cross-domain ADP
training corpus can deliver SOTA or near-SOTA performance without domain-specific tuning and is
effective across models, action spaces, and agent harnesses. [Figure 3| and [Figure 4] also show clear

Under review as a conference paper at ICLR 2026

Table 5: Comparison of SOTA and our Best 32B ADP-trained agents’ results across benchmarks.
Shaded rows are our ADP-tuned models. Other rows are collected from previous works.

Agent | Model | Training Data | Accuracy

SWE-Bench (Verified) (Jimenez et al.)|2024}|\Chowdhury et al.||2024)

SWE-Agent Qwen-2.5-32B-Coder-Instruct — 2.2%

(Yang et al.|[2024) Qwen-2.5-32B-Coder-Instruct SWE-smith (Yang et al.|[2025b) 40.2% (+33.7%)
Qwen-2.5-32B-Coder—-Instruct ADP Data 40.3% (+38.1%)

OpenHands CodeActAgent Qwen-2.5-32B-Coder-Instruct - 10.6%

(Wang et al.|[2025) Qwen-2.5-32B-Coder-Instruct SWE-Gym (Pan et al.|[2025) 20.6% (+10.0%)
Qwen-2.5-32B-Coder-Instruct ADP Data 36.8% (+26.2%)

WebArena (Zhou et al.,|2024)

AgentLab (Drouin et al.[[2024) | Qwen-2.5-32B-Coder-Instruct - 10.9%

(de Chezelles et al.||2025) Qwen-2.5-32B-Coder—-Instruct ADP Data 22.9% (+12.0%)

AgentBench OS (Liu et al.}|2024b)

AgentLM Llama-2-chat-70B — 9.0%
(Liu et al.||2024b) Llama—-2-chat-70B Agentlnstruct (Zeng et al.|{2023) | 21.5% (+12.5%)
OpenHands CodeActAgent Qwen-2.5-32B-Coder-Instruct - 27.8%
(Wang et al.|[2025) Qwen-2.5-32B-Coder-Instruct ADP Data 34.7% (+6.9%)

monotonic gains with model size and consistent boosts from ADP training across agents and tasks,
with ADP-trained models outperforming their base counterparts at every scale.

6.2 DIVERSE DATA RESULTS IN CROSS-TASK TRANSFER

Table 6: Cross-task transfer with diverse vs. task-specific data. For each benchmark, we compare
the same harness+model under task-specific “only” tuning and training on ADP corpus.

Agent | Model | Training Data | Accuracy

SWE-Bench (Verified) (Jimenez et al.}|2024; |Chowdhury et al.| 2024)

OpenHands CodeActAgent Qwen-2.5-7B-Instruct SWE-smith Only 1.0%

(Wang et al.|[2025) Qwen-2.5-7B-Instruct ADP Data 10.4%
Qwen—-3-8B CodeActInstruct + Code-Feedback 0.2%
Qwen—-3-8B SWE-smith Only 11.0%
Qwen—-3-8B ADP Data 16.6 %

WebArena (Zhou et al.,12024)

AgentLab (Drouin et al.|2024) | Qwen-2.5-7B-Instruct Go-Browse Only 16.0%

(de Chezelles et al.|[2025) Qwen-2.5-7B-Instruct ADP Data 20.1%

AgentBench OS (Liu et al.||2024b)

OpenHands CodeActAgent Qwen—3-8B AgentInstruct Only 21.5%

(Wang et al.|[2025) Qwen-3-8B ADP Data 25.7 %

GAIA (Mialon et al.| 2023)

OpenHands CodeActAgent Qwen-2.5-7B-Instruct AgentInstruct Only 0.6%

(Wang et al.|[2025) Qwen-2.5-7B-Instruct ADP Data 9.1%

We study whether data diversity helps agents generalize across tasks. Holding the agent setup and
evaluation fixed, we compare training with different data mixtures: (i) Base (no tuning), (ii) 7ask-
specific only fine-tuning (e.g., SWE-smith Only, etc.), and (iii) ADP Data (as detailed in [§ 3), a
mixed, cross-domain corpus. As shown in ADP consistently outperforms task-specific
tuning on the target task and, critically, avoids the negative transfer that single-domain tuning
often induces on other tasks (Mueller et al., [2024} Kotha et al., 2024; L1 et al., [2024).

Concretely, on SWE-Bench, ADP trained Qwen-2.5-7B-Instruct achieves 10.4%, versus
1.0% with SWE-smith Only; for Qwen-3-8B (Yang et al., 2025a), ADP reaches 16.6% versus
0.2% with CodeActlnstruct + Code-Feedback and 11.0% with SWE-smith Only. On WebArena,
ADP trained Qwen—-2.5-7B-Instruct attains 20.1% versus 16.0% with Go-Browse Only. On
AgentBench OS, ADP lifts Qwen—3—-8B to 25.7 % versus 21.5% with AgentInstruct Only. On GAIA,
Agentlnstruct Only results in 0.6% accuracy, while ADP improves it to 9.1%. Overall, mixed ADP

Under review as a conference paper at ICLR 2026

training yields better in-domain accuracy and stronger cross-task generalization than single-domain
tuning.

6.3 ADP EASES ADAPTATION TO NEW AGENT HARNESSES

Table 7| demonstrates the lines of code (LOCE] Table 7: LOC for converting datasets to ADP.

the authors and community contributors used Dataset Total LOC
to convert 13 datasets from distinct sources Agentlnstruct ~1500
to the ADP schema. A single Raw—ADP Code-Feedback 134
converter per dataset performs the same nor- CodeActlInstruct 269
malization work (schema mapping, tool/action Go-Browse 335
alignment, conversation formatting) that a tra- Mind2Web . . 476
ditional Raw—SFT converter would do for a Nebius SWE-Agent Trajectories 260
. . NNetNav (live+wa) 290
s.pecllﬁc agent harness. Therefore, LOC statis- openhands-feedback 879
tics in are a reasonable proxy for the Orca AgentInstruct 155
per-agent harness effort without ADP. SWE-Gym 221
. . . SWE-smith 228
Without ADP. Using this proxy, the cost of Synatra 145

converting D-many datasets to A-many har-
nesses without ADP is Costpo.app(A, D) =~ Total 4892

A- Zio LOC; Raw—sapp. Thus the total con-
version cost across the community is quadratic (O(D x A) effort), as depicted in In our

data, ZZD:O LOC; raw—app = 4892 LOC across 13 datasets, so for A = 100 harnesses the total cost
is Costpo-app &~ 100 x 4892 = 489, 200 LOC.

With ADP. The total cost becomes Costapp(A4, D) =
Zig LOC; Raw—sapp + ZA:o LOCapp—sser,; With

Table 8: LOC for ADP—SFT converters.

Agent Harness Total LOC ADP. Thus, as shown in the total conver-
OpenHands CodeActAgent ~150 sion cost across the community now becomes linear
SWE-Agent ~50 with ADP (O(D + A) effort). [Table §| demonstrates
AgentLab ~30 that converting ADP standardized data to agent harness
Average ~77 format takes an average of 77 LOC. For A = 100,

Costapp(A, D) ~ 4892 + 77 x 100 = 12,592 across
the 13 datasets we used, greatly less than the no-ADP
setting. Additionally, adding a new harness only require writing one script converting ADP stan-
dardized data to SFT, greatly easing adaptation to new agent harnesses. Hence, ADP substantially
reduces the community’s collective effort required to develop scalable, reproducible agents.

7 CONCLUSION AND FUTURE WORK

ADP provides a practical, lightweight “interlingua” that unifies heterogeneous datasets into a sin-
gle schema consumable by many agent harnesses, turning today’s fragmented data landscape into a
scalable training pipeline. Looking ahead, we see three immediate directions. (i) Multimodality:
extending ADP beyond text to images, screen recordings, and other modalities to capture richer
agent—environment interactions. (ii) Standardized evaluation: applying the same standardized
“protocol” idea to evaluation and environment settings so that datasets, agents, and evaluations com-
pose cleanly. (iii) Community growth and data quality: continuing open-source releases, stronger
automated validation or even automated dataset conversion, to sustain scale while preserving qual-
ity. We believe that, by lowering integration costs and enabling systematic and scalable training and
analysis across sources, ADP can catalyze the next wave of agent-training research and practice.

REPRODUCIBILITY STATEMENT.

We provide clear pointers to enable independent reproduction of all results. We describe the ADP
schema and conversion pipeline (§ 3), allowing others to regenerate the training corpus from raw
sources. We list the datasets and their characteristics in The exact training and evaluation

3 All LOC exclude prompt text (e.g., system prompts); only converter code is counted.

10

Under review as a conference paper at ICLR 2026

setup-including base models, agent harnesses, our SFT pipeline, the evaluation benchmarks and
protocol-is specified in[§ 5} Finally, we will release all code and data open source, including the
ADP schemas, converters, and scripts referenced above.

REFERENCES

All Hands AI. Openhands feedback dataset. https://huggingface.co/datasets/
all-hands/openhands—-feedback, 2024.

Anthropic Team. The claude 3 model family: Opus, sonnet, haiku. URL https://api.
semanticscholar.org/CorpusID:268232499.

Eshta Bhardwaj, Harshit Gujral, Siyi Wu, Ciara Zogheib, Tegan Maharaj, and Christoph Becker.
Machine learning data practices through a data curation lens: An evaluation framework. FAccT
24, pp. 1055-1067, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400704505. doi: 10.1145/3630106.3658955. URL https://doi.org/10.1145/
3630106.3658955.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
and Feng Zhao. Agent-FLAN: Designing data and methods of effective agent tuning for large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2024, pp. 9354-9366, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.557. URL
https://aclanthology.org/2024.findings—-acl.557/.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, et al. Introducing swe-bench verified. https:
//openai.com/index/introducing-swe—bench-verified, 2024.

Thibault Le Sellier de Chezelles, Maxime Gasse, Alexandre Lacoste, Massimo Caccia, Alexan-
dre Drouin, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan,
Lawrence Keunho Jang, Xing Han Lu, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Gra-
ham Neubig, Quentin Cappart, Russ Salakhutdinov, and Nicolas Chapados. The browsergym
ecosystem for web agent research. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=5298 fKGmv3. Expert Certifi-
cation.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capa-
ble are web agents at solving common knowledge work tasks? In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 11642-11662. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/drouin24a.html.

Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration.
arXiv preprint arXiv:2506.03533, 2025.

Alexander Golubev, Sergey Polezhaev, Karina Zainullina, Maria Trofimova, Ibragim Badert-
dinov, Yury Anapolskiy, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergey Skvortsov,
Maxim Nekrashevich, Anton Shevtsov, Sergey Abramov, and Boris Yangel. Leverag-
ing training and search for better software engineering agents. Nebius blog, 2024.
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents.

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping
Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent assistance in
real-world task automation, 2025. URL https://arxiv.org/abs/2505.23885.

11

https://huggingface.co/datasets/all-hands/openhands-feedback
https://huggingface.co/datasets/all-hands/openhands-feedback
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.1145/3630106.3658955
https://doi.org/10.1145/3630106.3658955
https://aclanthology.org/2024.findings-acl.557/
https://openai.com/index/introducing-swe-bench-verified
https://openai.com/index/introducing-swe-bench-verified
https://openreview.net/forum?id=5298fKGmv3
https://proceedings.mlr.press/v235/drouin24a.html
https://arxiv.org/abs/2505.23885

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM6 6.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. In European Conference on Computer Vision, pp. 161—
178. Springer, 2024.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forget-
ting in language models via implicit inference. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=VrHiF2hsrm.

Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting in large
language model tuning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 4297-4308, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.249. URL https://aclanthology.org/2024.findings—-emnlp.
249/

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. In
European conference on computer vision, pp. 126—142. Springer, 2024a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024b. URL |https://openreview.net/forum?id=zAdUB0aCTQ.

Xing Han LU, Zdenék Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Bingi
Chen, Ziyue Qiao, Qingqging Long, et al. Large language model agent: A survey on methodology,
applications and challenges. arXiv preprint arXiv:2503.21460, 2025.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142—-150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015!

Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The landscape of emerging
ai agent architectures for reasoning, planning, and tool calling: A survey. arXiv preprint
arXiv:2404.11584, 2024.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Co-
das, Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, et al. Agentinstruct: Toward gen-
erative teaching with agentic flows. arXiv preprint arXiv:2407.03502, 2024.

12

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VrHiF2hsrm
https://aclanthology.org/2024.findings-emnlp.249/
https://aclanthology.org/2024.findings-emnlp.249/
https://openreview.net/forum?id=zAdUB0aCTQ
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Under review as a conference paper at ICLR 2026

Mahmoud Mohammadi, Yipeng Li, Jane Lo, and Wendy Yip. Evaluation and benchmarking of llm
agents: A survey. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V. 2, pp. 6129-6139, 2025.

David Mueller, Mark Dredze, and Nicholas Andrews. Multi-task transfer matters during instruction-
tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 14880-14891, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024 findings-acl.883. URL
https://aclanthology.org/2024.findings—acl.883/.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
vised learning of browser agents through environment interaction in the wild. arXiv preprint
arXiv:2410.02907, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. ICLR, 2023.

Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao Qu, Yujuan Ding, Wenqi Fan, Xiao-yong
Wei, Shanru Lin, Hui Liu, Philip S Yu, et al. A survey of webagents: Towards next-generation
ai agents for web automation with large foundation models. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pp. 6140-6150, 2025.

Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sen-
gupta, Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into
direct demonstrations for computer agents at scale. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), Vancouver, BC, December 2024. URL https://arxiv.org/
abs/2409.15637.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with SWE-gym. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
CglBNvHx'74.

Amandalynne Paullada, Inioluwa Deborah Raji, Emily M Bender, Emily Denton, and Alex Hanna.
Data and its (dis) contents: A survey of dataset development and use in machine learning research.
Patterns, 2(11), 2021.

I Made Putrama and Péter Martinek. Heterogeneous data integration: Challenges and opportu-
nities. Data in Brief, 56:110853, 2024. ISSN 2352-3409. doi: https://doi.org/10.1016/j.dib.
2024.110853. URL https://www.sciencedirect.com/science/article/pii/
S523523409240081775.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm.
github.io/blog/gwen2.5/.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383-2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.
org/D16-1264.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708-59728, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—
68551, 2023.

13

https://aclanthology.org/2024.findings-acl.883/
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2409.15637
https://openreview.net/forum?id=Cq1BNvHx74
https://openreview.net/forum?id=Cq1BNvHx74
https://www.sciencedirect.com/science/article/pii/S2352340924008175
https://www.sciencedirect.com/science/article/pii/S2352340924008175
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264

Under review as a conference paper at ICLR 2026

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu, Wenhao Wu, Ke Wang, Cheng Li, Wei Peng,
and Sujian Li. AgentBank: Towards generalized LLM agents via fine-tuning on 50000+ inter-
action trajectories. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2024, pp. 2124-2141, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.116. URL https://aclanthology.org/2024.findings—-emnlp.
116/,

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
els. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ehfRiFO0R3al

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024b.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for Al soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=0Jd3ayDDOF.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Xin Guo,
Dingwen Yang, Chenyang Liao, Wei He, Songyang Gao, Lu Chen, Rui Zheng, Yicheng Zou,
Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Agent-
Gym: Evaluating and training large language model-based agents across diverse environments.
In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 27914-27961, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1355. URL
https://aclanthology.org/2025.acl-1long.1355/l

Kevin Xu, Yeganeh Kordi, Tanay Nayak, Adi Asija, Yizhong Wang, Kate Sanders, Adam Byerly,
Jingyu Zhang, Benjamin Van Durme, and Daniel Khashabi. Tur [k] ingbench: A challenge bench-
mark for web agents. arXiv preprint arXiv:2403.11905, 2024a.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. arXiv
preprint arXiv:2412.09605, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

John Yang, Kilian Leret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744-20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The eleventh international
conference on learning representations, 2022b.

14

https://aclanthology.org/2024.findings-emnlp.116/
https://aclanthology.org/2024.findings-emnlp.116/
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=OJd3ayDDoF
https://aclanthology.org/2025.acl-long.1355/

Under review as a conference paper at ICLR 2026

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823,2023.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong,
and Xia Hu. Data-centric artificial intelligence: A survey. ACM Computing Surveys, 57(5):1-42,
2025.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Ming Zhu, Juntao Tan, Thai
Hoang, Zuxin Liu, Liangwei Yang, et al. Agentohana: Design unified data and training pipeline
for effective agent learning. arXiv preprint arXiv:2402.15506, 2024.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Quoc Hoang, Shirley Kokane, Weiran Yao,
Juntao Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Manoj Awal-
gaonkar, Rithesh R N, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan
Wang, Silvio Savarese, and Caiming Xiong. XxLAM: A family of large action models to em-
power Al agent systems. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of
the 2025 Conference of the Nations of the Americas Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 11583-11597,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-
8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.578. URL https://aclanthology.
org/2025.naacl-1ong.578/.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen,
and Xiang Yue. OpenCodelnterpreter: Integrating code generation with execution and refine-
ment. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 12834-12859, Bangkok, Thailand, August
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.762. URL
https://aclanthology.org/2024.findings—acl.762/.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024b. Association for Computational Linguis-
tics. URL|http://arxiv.org/abs/2403.13372.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A real-
istic web environment for building autonomous agents. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
oKn9coytLx.

A USE OF LLMS

We used LLMs to aid and polish writing for style and presentation.
Specifically, LLMs were employed to:

* polish wording, tighten paragraphs, and improve clarity/flow;

* improve latex presentation (e.g., table/figure captions)

B ADP EXAMPLE CONVERSION
The conversion pipeline: Raw — ADP — SFT enables scalable training across diverse agent archi-
tectures while maintaining data provenance and semantic structure.

This section demonstrates an example conversion from raw agent interaction data of the Code Feed-
back dataset (Zheng et al) [2024a)) to the standardized ADP format. The transformation process
extracts structured observations and actions from a raw conversation between the user and the agent.

15

https://aclanthology.org/2025.naacl-long.578/
https://aclanthology.org/2025.naacl-long.578/
https://aclanthology.org/2024.findings-acl.762/
http://arxiv.org/abs/2403.13372
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

~N N B W N =

=)

10
11

12
13

15

17
18

~N O B WD =

Under review as a conference paper at ICLR 2026

B.1 RAW FORMAT EXAMPLE

The raw format typically contains conversational messages with roles and content:

Listing 1: Raw Format Example from Code Feedback

"id": 13461,
"messages": [
{ "role": "user",
"content": "Write a Python script to calculate statistical
measures..."
"role": "assistant",
"content": "You’re correct. Let me optimize the code...\n\
n''‘python\nimport math\n\ndef calculate_statistics(x,
y) :\n # Implementation details...\n return
r_squared, correlation_coefficient, adjusted_r_squared
\n\\\"
"role": "user",
"content": "Execution result: \nR-squared: 0.6\

nCorrelation: 3.87\nAdjusted R-squared: 0.47"

B.2 STANDARDIZED ADP FORMAT EXAMPLE

The standardized format structures the same interaction into typed observations and actions:

Listing 2: Standardized ADP Format Example

[
{

Ilid": "13461"
"content": [
"class_": "text_observation",
"content": "Write a Python script to calculate statistical
measures...",
"name": null,
"source": "user"
"class_": "code_action",
"language": "python",
"content": "import math\n\ndef calculate_statistics(x, y):
\n # Implementation details...\n return

r_squared, correlation_coefficient, adjusted_r_squared

n
14

"description": "You’re correct. Let me optimize the code
by calculating values once and reusing them..."

16

18

20
21
22
23
24
25

26
27
28
29
30
31

Under review as a conference paper at ICLR 2026

"class_": "text_observation",
"content": "R-squared: 0.6\nCorrelation: 3.87\nAdjusted R-
squared: 0.47",
"name": null,
"source": "environment"
b
{
"class_": "message_action",
"content": "<finish> The code executed successfully with
statistical results...",

"description": null

}
s
"details": {}

~N O B WD =

[~}

11

The conversion process applies several key transformations:

* Message Classification: Raw messages are classified into observations and actions based on

content analysis.

* Code Extraction: Code blocks within assistant messages are extracted as code_act ion entries.

* Source Attribution: User inputs become text_observation with source: "user",

execution results with source: "environment".

* Thought Preservation: Original function thoughts are preserved in description fields while

structured contents are extracted.

» Action Classes: Different classes of agent actions (code execution, messaging, tool usage) are

explicitly categorized

This standardization enables systematic analysis of agent behaviors, tool usage patterns, and inter-
action dynamics across different agent implementations and domains.

B.3 SFT FORMAT EXAMPLE

The standardized ADP format can be further converted to training-ready formats for specific agent
frameworks. Here’s the example in OpenHands (Wang et al., [2025)) SFT format:

Listing 3: OpenHands SFT Format Example

[
{

Ilid": "13461",
"conversations": [
"from": "human",
"value": "Write a Python script to calculate statistical
measures..."

A
~

"from" . "gpt",

"value": "You’re correct. Let me optimize the code...\n\n<
function=execute_ipython_cell>\n<parameter=code>\
nimport math\n\ndef calculate_statistics(x, y):\n #

Implementation details...\n return r_squared,

correlation_coefficient, adjusted_r_ squared\n</
parameter>\n</function>"

17

20
21
22
23
24

Under review as a conference paper at ICLR 2026

"from": "human",
"value": "EXECUTION RESULT of [execute_ipython_cell] :\nR—
squared: 0.6\nCorrelation: 3.87\nAdjusted R-squared: 0
LA4Tm
}
{
"from" : "qpt "
"value": "<function=finish>\n<parameter=message>\nThe code
executed successfully with statistical results...\n</

parameter>\n</function>"

}
]I

"system": "You are OpenHands agent, a helpful AI assistant..."

C DATA SAMPLING FOR BALANCED TRAINING

To balance domains and reduce over-represented sources, we resample each dataset with a per-
dataset multiplier wy. For dataset d with ng raw trajectories, we draw mg = [wg ny| examples per
epoch; if wg < 1 we sample without replacement (downsample), and if wg > 1 we sample with
replacement (upsample). This yields an effective mixture proportional to wgy across datasets (and
therefore across domains), while keeping the overall epoch size stable.

Table 9: Per-dataset sampling multipliers wq. wq < 1 indicates downsampling; wg > 1 indicates
upsampling.

Dataset Wq Direction
agenttuning_alfworld 2 up
agenttuning_db 2 up
agenttuning_kg 2 up
agenttuning.mind2web 2 up
agenttuning_os 2 up
agenttuning_webshop 2 up
code_feedback 0.1 down
codeactinstruct 1 neutral
go-browse-wa 1 neutral
mind2web 1 neutral
nebius_SWE-agent-trajectories 0.2 down
nnetnav-live 1 neutral
nnetnav-wa 1 neutral
openhands 1 neutral
orca.agentinstruct 0.001 down
swe—gym_openhands_sampled_trajectories 3 up
swe—-smith 1 neutral
synatra 0.01 down

In practice, we fix a random seed for reproducibility and shuffle the union of sampled
examples across datasets each epoch. This scheme targets a more balanced distribution
across coding, SWE, tool-use, and web-browsing sources by attenuating very large corpora
(e.g., orca_agentinstruct at wyg=0.001) and amplifying under-represented ones (e.g.,
swe—-gym_openhands_sampled_trajectories at wg=3).

C.1 DOMAIN-SPECIFIC DATA FILTERING

Beyond balanced sampling, we apply domain-specific filtering to optimize training effectiveness for
each agent framework based on their evaluation focus and capabilities.

18

Under review as a conference paper at ICLR 2026

OpenHands and SWE-Agent Training Data. For OpenHands CodeActAgent and SWE-Agent,
which are primarily evaluated on coding and software engineering tasks (SWE-Bench, AgentBench
OS, and GAIA), we use only the non-web portion of the ADP training corpus. This includes datasets
focused on code generation, software engineering, general agent instruction following, and API/-
tool usage. Specifically, we exclude web browsing datasets Mind2Web, Go-Browse, NNetNav, and
Synatra to avoid potential interference from web-specific interaction patterns that are not applicable
to command-line and coding environments. Thus, using the sampling multipliers in the
total number of training samples used is around 30K. Future experiments could explore different
sampling multipliers and examine the effect of each dataset on coding and software engineering
tasks.

AgentLab Training Data. For AgentLab, which is designed for web browsing tasks and we evalu-
ated exclusively it on WebArena, we use only the web portion of the ADP training corpus. This in-
cludes datasets focused on web navigation, browser-based task completion, and web-specific agent
instruction following (Mind2Web, Go-Browse, NNetNav, and Synatra). We exclude coding and
software engineering datasets to ensure the model is optimized for web browsing patterns and Ul
element interaction without dilution from less compatible domains. Thus, using the sampling multi-
pliers in[Table 9] the total number of training samples used is around 20K. Future experiments could
explore different sampling multipliers and examine the effect of each dataset on web tasks.

D PERFORMANCE SCALING

45

IS
]

ADP-Trained Models Models
SWE-Agent ADP (SWE-Bench) SWE-Agent ADP (SWE-Bench)
—- OpenHands ADP (SWE-Bench) —— OpenHands ADP (SWE-Bench)
—&— AgentLab ADP (WebArena)

IS
S

—4&— AgentLab ADP (WebArena)

w
G

w
S

Performance (%)

Base Models
@— SWE-Agent Base (SWE-Bench)
#- OpenHands Base (SWE-Bench)
AgentLab Base (WebArena)

Delta Between Base and ADP-Trained Performances (%)

5 55%

5

2.0% 2:2%
% * *
0 0
71 14B 328 7B 148 328
Model Size (Billions of Parameters) Model Size (Billions of Parameters)

Figure 3: Performance Scaling Across Agents Figure 4: Performance Gains Across Agents
and Benchmarks (Base vs ADP Trained) and Benchmarks.

2

92

@

[Figure 3|and [Figure 4| shows the scaling curve of performance and performance gains across agents
and benchmarks. Both plots show clear monotonic gains regardless of model size and consistent
boosts from ADP training across agents and tasks, with ADP-trained models outperforming their
base counterparts at every scale.

E ADDITIONAL EXPERIMENTS

E.1 ADP’S ADVANTAGE PERSIST UNDER EQUAL DATA SCALE

To address the question of fair data scaling, we additionally compare ADP against a single-domain
fine-tuning baseline under matched dataset size. Specifically, we train Qwen—3-8B on SWE-smith
with up-sampling to match the number of training examples used in the ADP mixture, and evaluate
both models on SWE-Bench with the OpenHands harness. As shown in Table SWE-smith
training yields 11.0% accuracy, whereas ADP training achieves 16.6% under a comparable number
of samples. This demonstrates that ADP’s benefit does not stem from data volume alone, but from
the greater diversity and unified structure of the ADP corpus.

19

Under review as a conference paper at ICLR 2026

Table 10: Equal-scale comparison of Qwen—3-8B trained on SWE-smith vs. ADP, evaluated on
SWE-Bench with the OpenHands harness.

Model Training Data Data Scale Accuracy
Qwen3-8B SWE-smith (up-sampled) ~ 30K 11.0%
Qwen-3-8B ADP ~ 30K 16.6%

F LICENSE OF USE

This section provides licensing information for all datasets referenced in Table |1| and used in our
experiments. We have made every effort to identify and respect the licensing terms of each dataset.
Users should verify current licensing terms before using these datasets. Users should also verify the
licensing terms of datasets they are adding to ADP.

F.1 DATASET LICENSES

Table 11: Licensing information for datasets used in ADP

Dataset License Link

AgentlInstruct Apache 2.0 ZhipuAl/AgentInstruct
Code-Feedback Apache 2.0 m-a-p/Code-Feedback
CodeActInstruct Apache 2.0 xingyaoww/code-act

Go-Browse MIT go-browse/go-browse

Mind2Web CCBY 4.0 osunlp/Mind2Web

Nebius SWE Trajectories = CCBY 4.0 nebius/SWE-agent-trajectories
NNetNav-live Apache 2.0 stanfordnlp/nnetnav-live
NNetNav-wa Apache 2.0 stanfordnlp/nnetnav-wa
openhands-feedback MIT all-hands/openhands-feedback
Orca Agentinstruct CDLA-Permissive-2.0 microsoft/orca-agentinstruct-1M-v1
SWE-Gym MIT SWE-Gym/SWE-Gym
SWE-smith MIT SWE-bench/SWE-smith-trajectories
Synatra CCBY-SA 4.0 oottyy/Synatra

License Compliance: We have ensured compliance with licenses of all datasets utilized in this
paper. All licenses permit research use.

F.2 USAGE GUIDELINES

When using the ADP-converted versions of these datasets:

1. Verify Current Licenses: Check the original dataset repositories for the most up-to-date licens-
ing terms

2. Respect Restrictions: Some datasets have restrictions on commercial use, redistribution, or
specific use cases.

3. Cite Appropriately: Include citations for both the original datasets and the ADP conversion
methodology.

4. Contact Authors: For datasets with unclear licensing, contact the original authors for clarifica-
tion on usage terms.

F.3 DISCLAIMER
Licenses were collected at the time of dataset integration and may have changed. Users are respon-

sible for verifying current licensing terms and ensuring compliance with all applicable licenses. The
ADP project does not assume responsibility for license violations by downstream users.

20

https://modelscope.cn/datasets/ZhipuAI/AgentInstruct
https://huggingface.co/datasets/m-a-p/Code-Feedback
https://huggingface.co/datasets/xingyaoww/code-act
https://github.com/go-browse/go-browse
https://huggingface.co/datasets/osunlp/Mind2Web
https://huggingface.co/datasets/nebius/SWE-agent-trajectories
https://huggingface.co/datasets/stanfordnlp/nnetnav-live
https://huggingface.co/datasets/stanfordnlp/nnetnav-wa
https://huggingface.co/datasets/all-hands/openhands-feedback
https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1
https://huggingface.co/datasets/SWE-Gym/SWE-Gym
https://huggingface.co/datasets/SWE-bench/SWE-smith-trajectories
https://oootttyyy.github.io/synatra

Under review as a conference paper at ICLR 2026

For questions about specific dataset licenses or usage permissions, please contact the original dataset
authors or maintainers directly.

21

	Introduction
	Related Work
	Agent Data Collection Methods
	Challenges and Limitations

	The Agent Data Protocol
	Design Principles
	Architecture
	Conversion Pipeline
	Practical Impact of ADP on Agent Training Research

	Cross Dataset Analysis
	Experimental Setup
	Training Setup
	Evaluation Benchmarks

	Experimental Results
	ADP Data Results in Highly Effective Agents Across Diverse Tasks
	Diverse Data Results in Cross-task Transfer
	ADP Eases Adaptation to New Agent Harnesses

	Conclusion and Future Work
	Use of LLMs
	ADP Example Conversion
	Raw Format Example
	Standardized ADP Format Example
	SFT Format Example

	Data Sampling for Balanced Training
	Domain-Specific Data Filtering

	Performance Scaling
	Additional Experiments
	ADP's Advantage Persist Under Equal Data Scale

	License of Use
	Dataset Licenses
	Usage Guidelines
	Disclaimer

