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ABSTRACT

Gradient descent-based algorithms are crucial in neural network optimization, and
most of them only depend on local properties such as the first and second-order
momentum of gradients to determine the local optimization directions. As a re-
sult, such algorithms often converge slowly in the case of a small gradient and
easily fall into the local optimum. Since the goal of optimization is to minimize
the loss function, the status of the loss indicates the overall progress of the opti-
mization but has not been fully explored. In this paper, we propose a loss-aware
gradient adjusting strategy (LGA) based on the loss status. LGA automatically
adjusts the update magnitude of parameters to accelerate convergence and escape
local optimums by introducing a loss-incentive correction term monitoring the
loss and adapting gradient experience. The proposed strategy can be applied to
various gradient descent-based optimization algorithms. We provide theoretical
analysis on the convergence rate and empirical evaluations on different datasets to
demonstrate the effectiveness of our method.

1 INTRODUCTION

Deep neural networks have achieved great success and become a ubiquitous component in various
fields such as computer vision (Yoo, 2015; Khan et al., 2018; Buhrmester et al., 2021) and natural
language processing (Goldberg, 2017; Yin et al., 2017; Galassi et al., 2020). The training of neural
networks relies heavily on the optimization algorithm. Although great progress has been made in
the optimization algorithms, choosing a proper learning rate for the parameter updates and avoiding
parameters from getting trapped in local optimum are still challenging. For the former, too small a
learning rate leads to painfully slow convergence, while too large a learning rate hinders convergence
and causes the loss function to fluctuate around the optimum, or even diverge (Ruder, 2016). For the
latter, the local optimum usually makes it notoriously hard for parameters to escape, as the gradient
is close to zero in all dimensions.

To address the above challenges, many methods have been proposed. Mini-batch Stochastic Gradi-
ent Descent (SGD) (Werbos, 1974) is probabily the most widely used optimization algorithm, which
can well scale to large models and large datasets. However, SGD has a relatively slow convergence
rate and easily falls into the local optimum (Ruder, 2016). Several variants of SGD, such as Mo-
mentum (Qian, 1999) and Nesterov (Sutskever et al., 2013), accelerate deep network training by
employing the momentum of gradients to partially preserve the previous gradients. Gradients of the
current batch are only used to fine-tune the optimization direction. In this way, the optimization is
more stable, converges faster, and has some ability to pass the saddle points. Taking into account
that the same learning rate may not be suitable for all parameters, some optimization algorithms
such as Adagrad (Duchi et al., 2011) and Adadelta (Zeiler, 2012) adaptively assign the learning
rates for different parameters according to their second-order momentum. RMSprop (Tieleman &
Hinton, 2012) and Adam (Kingma & Ba, 2014) incorporate the adaptive learning rate into momen-
tum gradient descent. Besides, second-order optimization algorithms such as the Newton’s method
utilize the second-order derivatives to further speed up the convergence. Nevertheless, such methods
require calculating the inverse of the Hessian matrix and the computational cost is high. Moreover,
to apply such methods, there are strict requirements for the objective function, i.e., they must have
continuous first and second-order partial derivatives, which are not always satisfied when training
neural networks in complicated tasks.
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Figure 1: Effect of LGA for the parameter update. The strategy utilizes the information of loss
function (f(x)) and gradient to adjust the update magnitude of parameters (x) to enhance the search
capability for parameters. Especially for the state space (like A, B) with a small gradient and a long
distance from the global optimum point (E), this strategy can provide additional excitation to evade
the local optimum points.

These existing optimization algorithms generally determine the current descent direction only based
on local properties of gradients (e.g., the first and second-order momentum and the Hessian matrix)
in a greedy manner. If the parameters fall into local optimum during the early stage of training, this
will be detrimental to the effectiveness of momentum terms and then harm the convergence effi-
ciency of the algorithms. For instance, when the parameters fall into the local optimum (gradient is
close to zero) during initialization, the first and second-order momentum cannot help the parameters
to escape the local optimum quickly. Therefore, the local properties of gradients cannot always work
well. A natural idea is to use the global state of optimization to improve the performance of algo-
rithms, but it is not fully explored. Although it is difficult to detect the exact gap between the current
estimate and the global optimum, the loss can be viewed as a direct indicator of global progress
since it naturally measures how well the current estimate fits the training data without additional
calculations. Hence, the loss may provide global information for tuning the current optimization.

In this paper, we propose a new loss-aware gradient adjusting strategy (LGA) to utilize such infor-
mation. LGA can serve as a universal module to enhance various existing gradient descent-based
optimization algorithms. Specifically, on the one hand, the magnitude of the gradient cannot fully
reflect the distance between the current position and the optimal solution. In a flat area or the area
near a saddle point, even if the gradient is small, it may still be far from the optimal solution and
a large learning rate helps to go through such areas quickly. On contrary, since the goal of opti-
mization is to minimize the loss function, if the loss is large, the current parameters are far from the
optimal parameters, thus larger learning rates are required to take a larger step to avoid some local
optimum. While a smaller loss means that the current parameters are closer to the optimal solutions,
so the learning rate should be reduced accordingly. Inspired by this intuition, our strategy, as shown
in Fig.1, adaptively adjusts the learning rate for updating parameters by introducing a loss-incentive
correction term, where the weight of this term is proportional to the loss.

The contributions of this paper are summarized as follows:

1. We propose a novel strategy to adjust the magnitude of gradients by considering the loss
status, which assist in assessing the global state of the optimization. The update step is
larger when the loss has not been sufficiently reduced, thereby avoiding some local mini-
mum points with large losses.

2. We propose the loss-incentive correction term to improve the performance of algorithms.
It adaptively provides incentives to escape some local optimums by tracking the loss status
and can serve as a general module that can be incorporated into various gradient-based
optimization algorithms.

3. We conduct extensive experiments on different tasks including image classification, image
segmentation, AutoEval, and video sentence grounding task. The empirical evaluations
show the proposed strategy can improve different algorithms.
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2 RELATED WORK

In machine learning, improving optimization algorithms to overcome the local optimal solutions is a
crucial problem, and many efforts have been done (Qian, 1999; Duchi et al., 2011; Tieleman & Hin-
ton, 2012; Kingma & Ba, 2014; Schulman et al., 2017). Momentum (Qian, 1999) was designed to
simulate motion inertia by adding a term containing historical gradient experience. Adagrad (Duchi
et al., 2011) can automatically adjust the learning rate by assigning different learning rates to pa-
rameters according to the accumulation of historical gradient experience. Based on Adagrad, RM-
Sprop (Tieleman & Hinton, 2012) was designed to reduce the cumulative influence of historical
gradient experience by assigning weight to the experience of historical gradient and the current de-
scending gradient. Adam (Kingma & Ba, 2014) was proposed to dynamically set different learning
rates for parameters by using the first and second-order momentum of gradients. The main goal of
such approaches is adding momentum terms and dynamically adjusting the learning rate, which is
not the focus of our current work.

In this paper, we mainly aim to investigate how to improve the search capability of algorithms by
leveraging the loss status, and little research has been conducted in the optimization about it. Closely
related are the works of (Schulman et al., 2017; Amid et al., 2022). Schulman et al. (2017) proposed
clipped surrogate objective function to enhance the search capability for parameters. Amid et al.
(2022) focus on improving the performance of first-order optimizers and proposed a layer-wise
loss construction framework to enhance backpropagation. Unlike the above studies optimizing a
surrogate objective function to improve the algorithms, this work focus on adjusting the gradient
information based on the status of the objective function.

3 METHOD

Generally, the target of optimization algorithms is to minimize the loss function fx with respect to
x of a neural network. For most existing algorithms, each update of x can be formulated as follows:

xt+1 = xt − γ1 (fx, x) · ∇fxt
(1)

where xt is defined as the parameters of a neural network at step t and ∇fxt is defined as the first-
order partial derivatives of fxt

with respect to xt. We define γ1 (fx, x) as the adjustment factor to
the descent gradient. Note that γ1 (fx, x) can be either a fixed learning rate or a hyper-parameter
consisting of the learning rate, the first and second-order momentum of the gradient. For example,
γ1 (fx, x) is a fixed value in SGD, while it is a variable value concerning the bias-correction terms,
the first and second-order moment estimation in Adam. For the convenience of expression, it is
simplified as γ1 below, and the variation magnitude of xt is defined as△xt = xt+1 − xt.

Although great progress has been made by using various characteristics of gradients to design opti-
mization algorithms, the status of the loss indicating the overall progress of the optimization has not
been fully explored. In this section, we propose a loss-aware gradient adjusting strategy based on
the loss status to enhance the global search capability of algorithms.

3.1 LOSS-AWARE GRADIENT ADJUSTING STRATEGY

As shown in Fig. 1, for some locally optimal solutions (e.g.B) with a small gradient and a long
distance from the globally optimal solution (E), the energy provided by the gradient may not be
enough to support parameters to jump out of the local traps. However, the loss provides additional
information in these states. Inspired by it, the starting point of LGA is to realize the adaptive ad-
justment of parameter optimization capacity by using loss status to perceive the global information.
More concretely, this strategy combines with the current loss status to automatically adjust the up-
dated magnitude of parameters to enhance the search capability of algorithms. The specific design
of LGA is shown in Eq.2.

xt+1 = xt −
[
γ1 · ∇fxt

+ γ2 ·
Ω (fxt)

φ (∇fxt
)

]
(2)

Where γ2 is defined as the learning rate of the loss-incentive correction term, which is related to
the variation of the loss status. We define Ω (fxt) is the estimation of the gap between the current
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loss status and the target status. φ (∇fxt
) is defined as the pre-processing process for ∇fxt

to
avoid ∇fxt

= 0. The essence of this strategy is introducing a correction term containing loss status
information to increase learning incentive in the gradient descent-based algorithms.

As for some specific cases, the expected loss fx∗ may be far from zero (e.g., empirical loss plus a
regularization term or the existence of noise), where although the loss status can bring great incentive
information, the value of this status is low. Ω(·) tackles this problem with truncation processing.
Specifically, if fx /∈ [⌊f̃∗⌋, ⌈f̃∗⌉], ⌊f̃∗⌋ and ⌈f̃∗⌉ are the lower bound and the upper bound of the
range of fxt , respectively, then Ω(fx) = 0, else Ω(fx) = fx − ⌊f̃∗⌋.
Nonetheless, for most real-world problems, it is infeasible to obtain the expectations of the upper
and lower bounds of loss as prior knowledge. Generally, the final values of the objective function
are different for different tasks, so setting universal proper upper and lower bounds are challenging
and not suitable for learning. For the upper bound, since the objective function is usually not upper
bounded and the value of it is to determine the reasonableness of the loss status, so we take the
value of the first loss (⌈f̃∗⌉ = fx0). As for the lower bound, which is used as a measure of the
gap between the current status and the target status, we design a progressive inference mechanism
to infer the reasonable lower bound. Let Ê

[
⌊f̃∗

t ⌋
]

be the estimation of ⌊f̃∗
t ⌋ at t and we wish to

estimate it using a moving average of f(x). The reason for using the moving average is that the
objective function will gradually converge to the target status with increasing epochs. So the larger
the epoch, the higher the reference value of the objective function for estimating the target status.
We initialize the expectation of the lower bound as Ê

[
⌊f̃∗

0 ⌋
]
= 0. The update at step t (t ≥ 1) of

Ê
[
⌊f̃∗

t ⌋
]

can be written as a function of fxt
:

Ê
[
⌊f̃∗

t ⌋
]
=

1

log(t+ 10)
· Ê
[
⌊ ˜f∗

t−1⌋
]
+

(
1− 1

log(t+ 10)

)
· fxt

=

t∑
i=1

(1− 1

log(i+ 10)

)
·
t−1∏
j=1

1

log(j + 10)
· fxi

 (3)

In Eq.3, the weight term
((

1− 1
log(i+10)

)
·
∏t−1

j=1
1

log(j+10)

)
decreases gradually as t increases.

This property enables giving larger weights to recent loss data and fewer weights to distant loss data,
which is following the variation characteristics of the loss status — the loss gradually approximates
the expected value as training proceeds. Taking the estimated expectation of fx into Ω(fx):

Ω (fxt
) =

 fxt − Ê
[
⌊f̃∗

t ⌋
]

fxt − Ê
[
⌊f̃∗

t ⌋
]
≥ ε ∧ fxt ≤ ⌈f̃∗⌉

0 fxt − Ê
[
⌊f̃∗

t ⌋
]
< ε ∨ fxt > ⌈f̃∗⌉

(4)

Where ε is a numerical stability constant, which can ensure there will be a gap between f(xt) and
Ê
[
⌊f̃∗

t ⌋
]

when the loss-incentive correction term acts. Otherwise, if fxt
≈ Ê

[
⌊f̃∗

t ⌋
]
, the incentive

term has essentially no effect for parameters update. Similarly, we define φ(∇fxt
) as follows:

φ (∇fxt) =

{
∇fxt

+ ξ 0 ≤ ∇fxt

∇fxt
− ξ 0 > ∇fxt

(5)

In Eq.5, ξ is also a numerical stability constant, which can keep the denominator of the loss-incentive
correction term in a non-zero state. Algorithm 1 outlines the key point of LGA.

3.2 CONVERGENCE ANALYSIS

We analyze the convergence of LGA using the assumption in Kingma & Ba (2014). For any un-
known convex function given, the objective of the optimization algorithms is to obtain the parameter
x∗ that minimizes the value of the objective function. In the convergence analysis of the loss-aware

4



Under review as a conference paper at ICLR 2023

Algorithm 1 The loss-aware gradient adjusting strategy. ∇fxt indicates the gradient information of
the parameters xt at the time step t. ξ and ε indicates a very small positive number. △xt indicates
the variation magnitude of xt.
Require: γ1: The adjustment factor of the algorithm to the descent gradient
Require: γ2: The learning rate of the loss-incentive correction term
Require: fxt

: The objective function with respect to xt

Require: x0: Initial parameter vector under t = 0 (Parameter initialization)
1: while xt not converged do
2: fxt←xt (Get the loss value of the model)
3: ∇fxt←fxt and xt (Get gradients with respect to objective function)
4: if γ1! = constant then
5: γ1←∇fxt

or ∇fxt
⊙∇fxt

(Get the adjustment factor to the descent gradient)
6: end if
7: if

(
fxt

> fxt−1

)
∧ (t ≥ 1) then

8: γ2 = γ2/10 (Update the hyperparameter)
9: end if

10: γ2 ·
Ω(fxt)
φ(∇fxt)

←− ∇fxt
and fxt

(Get the loss-incentive correction term)

11: △xt = γ1 · ∇f(xt) + γ2 ·
Ω(fxt)
φ(∇fxt)

12: xt+1 = xt −△xt (Update parameters)
13: end while
14: return xt+1(Resulting parameters)

gradient adjusting strategy, We define the distance between the parameter xt and x∗ as R(t), and
use R(t) to evaluate the convergence effect of the strategy, which is defined as follows:

R(t) =∥ xt − x∗ ∥2 (6)

In appendix A.1, we prove that LGA can guarantee the convergence of R(t), and give proof of
the validity and rationality of it. In the process of proof, we also use some definitions to simplify
our notation, where we define µ ∈ R+ and L ∈ R+ as the coefficients of the strong convexity
and the smoothness of the objective function, respectively. We define gt as a vector representing
the first-order partial derivative of the objective function concerning the parameter xt. Besides, we
define λt = γ1 + γ2 ·

Ω(fxt )

φ(∇fxt )
2 that represents the integrated learning factor under the optimization

algorithms with LGA. γ2 ·
Ω(fxt )

φ(∇fxt )
2 represents the overall learning compensation of the objective

function for parameters update at t. Through derivation as shown in the appendix, for the update
of parameter xt at any time step, the result of the optimization algorithms can be expressed as
∥ xt − x∗ ∥2= (1 − µ · γ1)t· ∥ x0 − x∗ ∥2 +O(t), while the result of the optimization algorithms
with LGA can be written as ∥ xt − x∗ ∥2=

[∏t
i=1(1− µ · λi)

]
· ∥ x0 − x∗ ∥2 +O(t).

Theorem 3.1 Assuming that the gradient of a convex function fx is bounded and fx∗ = 0, the
distance between any xt generated by algorithms with or without LGA is bounded, and µ, λt ∈ R+

satisfy 0 ≤ 1− µ · λt. For all t ≥ 1, LGA can achieve the following guarantee:

R(t) ≤

[
t∏

i=1

(1− µ · λi)

]
· ∥ x0 − x∗ ∥2

≤ (1− µ · γ1)t· ∥ x0 − x∗ ∥2
(7)

Theorem 3.1 indicates that the distance between the parameters and the global optimum is shortened
by the loss-incentive correction term under the premise of the same time step. In particular, λt(λt ≥
γ1) contains the information of the objective function, which has the property of adaptively adjusting
the update step.
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For the function fx, there exists a constant M for such that ∇2fx ≤ MI. Based on Taylor’s
expansion, we can easily get fxt

− fx∗ ≤ 1
2M ∥ xt − x∗ ∥2≤ 1

2M (1 − µ · γ1)t· ∥ x0 − x∗ ∥2. A
straightforward corollary is the following:

Corollary 3.1 Assuming that the gradient of a convex function fxt
is bounded, fx∗ = 0, the distance

between any xt generated by algorithms with or without LGA is bounded, and µ, λt ∈ R+ satisfy
0 ≤ 1− µ · λt. For all t ≥ 1, we can obtain the following guarantee:

lim
t→∞

[
1

2M
(1− µ · γ1)t· ∥ x0 − x∗ ∥2

]
= 0 (8)

Thus, limt→∞ (fxt − fx∗) = 0 and limt→∞ R(t) = 0. Therefore, LGA can meet the convergence
requirements of the optimization algorithms.

3.3 DISCUSSION ON THE MECHANISM OF LGA

The essence of this strategy is introducing the loss-incentive term γ2 ·
Ω(fxt)
φ(∇fxt)

in the parameter

updates. Ω(fxt) is a variable that is used to measure the magnitude of the output error caused by the
parameters. With this feature, the loss-incentive term can adjust the amplitude of the extra incentive
for parameters. Specifically, by tracking the loss status, this strategy can adjust the incentive degree
for parameter updates. Then the parameters can get different degrees of training incentive accord-
ing to the loss status, which can enhance the search capability of algorithms during training. The
component 1.0

φ(∇fxt)
is used to estimate the probability that parameters fall into the local optimum.

The reason for using the inverse of the gradient here is based on the consideration of the probability
that parameters fall into the local optimum. Concretely, the parameter with a small gradient is more
likely to fall into the local optimum or flat area, especially in the early training period. In this case,
the energy only directly provided by the gradients may not be enough to support the parameters to
find a new state quickly, and the extra energy is more likely to be required. Besides, this component
can dynamically modify the vector directionality of the loss-incentive correction term to ensure that
the loss-incentive term is excited in the direction of the gradient.

As discussed above, the loss-incentive correction term can provide extra energy to jump out of some
local optimum solutions. More concretely, when the parameters fall into some local optimum so-

lutions far from the global optimum, then γ2 ·
Ω(fxt)
φ(∇fxt)

≫ γ1 · ∇fxt and the excitation energy

provided by the loss-incentive correction term can enable the parameters to jump out of those so-
lutions. When the parameters are trapped in a local optimum close to the global optimum or the

gradient is too large, the excitation energy provided by γ2 ·
Ω(fxt)
φ(∇fxt)

is not helpful for the parameters

avoiding the local optimum. Furthermore, if γ2 ·
Ω(fxt)
φ(∇fxt)

≪ γ1 · ∇fxt
, γ1 · ∇fxt

dominates the

parameter update and γ2 ·
Ω(fxt)
φ(∇fxt)

has little influence for parameter updates. If the parameters are

close to the global optimum, then γ2 ·
Ω(fxt)
φ(∇fxt)

≈ 0, which shows that the term has no negative effect

on the convergence of the original optimization algorithm in the case. Taken together, by adding in-
centive based on the loss status, LGA gives the model more chances to escape and find a new local
minimum, rather than be trapped in a local minimum or flat area.

4 EXPERIMENT

4.1 DATASETS AND BASELINES

Experimental setting. The image classification task is a typical nonlinear problem. To empiri-
cally validate the proposed strategies, we experiment on MNIST dataset (LeCun, 1998), CIFAR-
10 dataset (Krizhevsky et al., 2009), CIFAR-100 dataset (Krizhevsky et al., 2009) and TinyIm-
ageNet (Deng et al., 2009). Besides, we relegate the additional results of the image segmentation
task, the AutoEval task, the video sentence grounding task, and the autoencoder task to the appendix.
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(a) Training loss of different algorithms without LGA.

(b) Training loss of different algorithms with LGA.

Figure 2: Results of LGA at different training stages on MNIST, CIFAR-10 and CIFAR-100.

Table 1: Comparison of different optimization algorithms without and with LGA on MNIST,
CIFAR-10 and CIFAR-100. We report the classifier accuracy (%) of corresponding train sets.

Algorithm MNIST CIFAR-10 CIFAR-100
w/o LGA w/ LGA w/o LGA w/ LGA w/o LGA w/ LGA

SGD 94.95 95.95 81.72 83.40 31.76 31.77
Momentum 98.98 99.04 97.04 97.03 72.59 72.68
ASGD 95.70 96.01 81.16 82.80 31.71 32.19
RMSprop 99.59 99.60 93.50 93.52 34.86 35.66
Adam 99.55 99.57 93.57 93.59 34.98 37.65
Adamax 99.63 99.64 97.21 97.18 55.74 55.84
Adadelta 88.59 91.18 62.12 76.08 22.78 23.07

MNIST has a training set of 60000 28×28 grayscale examples and a test set of 10000 examples
in 10 classes and we use LeNet-5 (LeCun et al., 2015) as the model. CIFAR-10 consists of 60000
32×32 colour images in 10 classes and we use Densenet-40-12 (Huang et al., 2017) as the model.
CIFAR-100 has 100 classes. Each class has 600 color images of size 32×32, of which 500 images
are used as the training set and 100 images as the test set. We use the ResNet50 (He et al., 2016)
for the classification task of it. TinyImageNet contains 200 object classes and each consisting of
500 training images and 50 validation images, and 50 test images. We used the training images and
validation images to build the training and test sets for the classification task based on ResNet50.

Metric. We use the final loss status and accuracy performance as the evaluation criteria. Lower loss
and higher accuracy correspond to better performance and vice versa.

Baselines. We use SGD, Momentum, ASGD, Adadelta, RMSprop, Adam, and Adamax for base-
lines. In practice, we use the same parameter initialization and the same random seed for each
optimization algorithm when comparing the performance of the algorithms with or without LGA.

4.2 EXPERIMENTAL RESULTS

To empirically evaluate the proposed strategy, we employ a learning rate of 0.001, ε = 0.1, ξ = 0.01
and carry out 5 experiments for any combination between the original algorithms and the proposed
strategy on all datasets except TinyImageNet (a learning rate of 0.01 and 1 experiment), and report
the average score as the experiment results. For all experiments, the batch size is set to 16 for
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Table 2: Results on MNIST under different learning rates. The epochs of all algorithms are set to
20. We report the classifier accuracy (%) of the train set.

ALGORITHM
W/O LGA W/ LGA

1E-1 1E-2 1E-3 1E-4 1E-1 1E-2 1E-3 1E-4

SGD 99.57 98.30 95.95 28.06 99.81 99.07 95.95 86.44
MOMENTUM 28.29 99.51 98.98 95.32 28.32 99.87 99.04 96.03
ASGD 99.84 98.33 95.70 28.59 99.85 99.07 96.01 87.63
RMSPROP 10.49 97.02 99.59 99.09 10.62 99.60 98.84 99.08
ADAM 10.44 97.71 95.55 99.05 10.45 97.91 95.57 99.01
ADAMAX 95.25 99.34 99.30 97.87 95.97 99.52 99.64 97.88
ADADELTA 99.56 96.08 88.59 17.77 99.57 97.44 91.18 83.17

Table 3: Results of different optimization algorithms on MNIST, CIFAR-10 and CIFAR-100. The
epochs of original algorithms are set to 20, 100 and 100 respectively during training. while the
epochs of algorithms with LGA depends on when the accuracy performance of the original algo-
rithm is achieved or the epoch reaches the threshold. We report the classifier accuracy (%) of test
sets and the ratio of epoch ( w/

w/o ∈ (0, 1]).

Dataset Algorithm SGD Momentum ASGD RMSprop Adam Adamax Adadelta

MNIST
w/o LGA 95.47 98.78 96.02 98.91 99.01 99.03 89.62
w/ LGA 95.53 98.79 96.10 98.98 99.02 99.10 89.96
Ratio 0.76 0.89 0.9 0.29 0.48 0.69 0.63

CIFAR10
w/o LGA 75.71 85.97 75.21 85.57 87.90 88.72 62.12
w/ LGA 76.03 86.19 75.31 87.62 88.19 88.96 62.18
Ratio 0.85 0.69 0.82 0.58 0.45 0.64 0.82

CIFAR100
w/o LGA 40.29 70.49 40.26 45.07 46.00 66.52 29.03
w/ LGA 40.30 70.84 40.06 45.12 46.25 66.70 29.32
Ratio 0.98 0.86 0.98 0.74 0.60 0.95 0.86

TinyImageNet, 64 for MNIST, 128 for CIFAR-10, and CIFAR-100. The epoch is set to 20 for
MNIST and the models are trained for 100 epochs for CIFAR-10, CIFAR-100, and TinyImageNet.
The hyper-parameter γ2 is set 1e−8 for 10 classification task (MNIST and CIFAR-10), 1e−9 for 100
classification task (CIFAR-100) and 1e−10 for 200 classification tasks (TinyImageNet). We focus
on the performance of our strategy under the same initialization condition settings.

Results of the training sets. As shown in Fig.2, most algorithms with LGA can obtain better
performances, especially in short-term conditions. The most likely reason for the situation is that
some parameters fall into the local optimum solutions during training and cannot quickly escape it
due to not enough update energy provided by optimization algorithms. Whereas, LGA can provide
extra energy connecting with the loss status to help parameters escape some local optimum solu-
tions. Compared with other algorithms, some algorithms (e.g., Adam) with LGA do not produce

significant improvement, and the reason for this phenomenon is due to γ2 ·
Ω(fxt)
φ(∇fxt)

≪ γ1 · ∇fxt

in Adam, then γ2 ·
Ω(fxt)
φ(∇fxt)

has little positive influence on the parameter update, which is also re-

flected in Table 1. Besides, We observe that LGA does not yield noticeable system improvement in
CIFAR-100. There are two reasons for this state of affairs: 1) γ2 is set smaller; 2) for the dataset
with more categories, the training data may vary greatly from batch to batch, which will make the
model sensitive to parameter changes in the early stages of training and then limits the setting of
γ2. However, it does not affect the role of the loss-incentive correction term in improving the search
capability of algorithms (see Table 1 and Table 2).

Table 1 shows the results of the comparison of the performance of different optimization algorithms
without and with LGA on MNIST, CIFAR-10, and CIFAR-100. This table shows impressive results
that most of the algorithms with LGA achieve better performance on the training set, which is
consistent with the notion that LGA can effectively enhance the search capability of algorithms.

Table 2 shows that most algorithms with LGA can obtain better performance compared to the origi-
nal algorithms under different learning rates. Especially, LGA makes algorithms only including the
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Table 4: Results of different optimization algorithms on TinyImageNet. The epochs of algorithms
with LGA depends on when the accuracy performance of the original algorithm is achieved or the
epoch reaches the threshold (100). The classifier accuracy (%) of the validation set and the ratio of
epoch ( w/

w/o ∈ (0, 1]) are reported.

ALGORITHM SGD MOMENTUM ASGD ADAM ADAMMAX

W/O LGA 48.59 48.57 48.18 41.44 25.56
W/ LGA 49.67 50.45 48.23 41.49 26.30
RATIO 0.55 0.14 0.50 0.66 0.16

Table 5: Comparison of different optimization algorithms under different learning rate schedulers
on MNIST. We report the classifier accuracy (%) of train sets, the corresponding standard deviation
(σ) and mean (µ). Higher accuracy, higher µ and smaller σ correspond to better performance.

Algorithm CosineAnnealingLR ExponentialLR ReduceLROnPlateau StepLR
w/o LGA w/ LGA w/o LGA w/ LGA w/o LGA w/ LGA w/o LGA w/ LGA

SGD 91.16 94.20 91.16 93.21 94.95 95.95 76.68 90.93
Momentum 98.67 98.72 98.67 98.48 98.98 99.07 97.87 97.98
ASGD 92.73 94.22 92.73 93.51 95.70 96.01 81.86 91.60
RMSprop 99.98 99.98 99.98 99.95 99.66 99.60 99.86 99.87
Adam 99.98 99.98 99.98 99.98 99.55 99.65 99.81 99.81
Adamax 99.61 99.62 99.61 99.93 99.63 99.64 99.08 99.10
Adadelta 76.47 88.42 76.47 99.44 88.59 91.18 52.18 85.46
µ 94.09 96.45 94.09 96.01 96.72 97.30 86.76 94.96
σ 7.94 4.05 7.94 4.40 3.79 2.94 16.64 5.23

first-order momentum of gradients far surpass the original performance in a small learning rate, such
as SGD and ASGD under the condition that the learning rate is equal to 1e−4. Besides, the result
further shows that LGA can provide some robustness against choosing a small learning rate and en-
hance the optimization capacity of parameters with a large learning rate. Taken together, the above
results suggest LGA can take advantage of the loss status to escape some local optimum solutions
to achieve a better state during training.

Results of the test sets. In Table 3, we report the performance of LGA on several typical optimiza-
tion algorithms. We clearly observe that most algorithms with LGA can accomplish the training
task better and faster (the computational cost of LGA is about 6% of the original algorithm to the
computational time) under the same initialization condition settings. Additionally, we report the best
performance and the final performance of different algorithms in Table 6 and Table 7, respectively.
These data indicate our method effectively improves the performance of algorithms.

To further verify the effectiveness of LGA, we experimented on the TinyImageNet with ResNet50
and experimented on the MNIST under different learning rate schedulers. As shown in Table 4, the
algorithms with LGA accomplish the training faster and better under the condition of achieving the
same test accuracy, on TinyImageNet which indicates that LGA provides an effective incentive for
parameters during training by tracking the loss status. In Table 5, we compare the performance of
several typical learning rate schedulers on MNIST. The algorithms with LGA mostly outperform
the original algorithms. The results of µ and σ indicate that LGA performs better and achieves more
consistent performance for different optimizers. Further, LGA can extract and make good use of the
gradient experience and the loss status for the parameter updates.

5 CONCLUSION

In this paper, we propose a novel loss-aware gradient adjusting strategy based on the loss status,
which tracks the loss status to modify the magnitude of the parameter updates and then improves
the search capability of algorithms. The strategy has been evaluated in a wide range of experiments,
and has shown good effectiveness and stability for different optimization algorithms. Our strategy
has the potential to be extended for application to other tasks, which will be studied in the future.
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A APPENDIX

A.1 CONVERGENCE PROOF FOR ADAPTIVE GRADIENT STRATEGY.

We define the objective function f which is convex for x ∈ Rd, µ ∈ R+ and L ∈ R+ is defined as
the coefficients of the strong convexity and the smoothness of the objective function, respectively.

Lemma 1 For ∀x, y ∈ Rd, fy ≤ fx + (∇fx)T · (y − x) + L
2 ∥ x− y ∥2.

Lemma 2 For ∀x, y ∈ Rd, fy ≥ fx + (∇fx)T · (y − x) + µ
2 ∥ x− y ∥2.

The above lemma can be used to prove the upper bound of the proposed strategy. And the proposed
strategy can be written as follows:

xt+1 = xt −
[
γ1 · ∇fxt

+ γ2 ·
Ω (fxt

)

φ (∇fxt
)

]
In the equation above, ∇fxt

is defined as the first-order partial derivative of fxt
with respect to the

parameter x at t. We also define γ1 as the adjustment factor of the algorithm to the descent gradient.
γ1 is not just the learning rate, it could be a hyper-parameter composed of the learning rate, the
first-order momentum of gradients, and the second-order momentum of gradients. γ2 is defined as
the learning rate of the loss-incentive correction term, which is related to the change of fxt (Section
3.1). We define the distance between the parameter xt and x∗ (the global optimum) at time t as
R(t), and use R(t) to evaluate the convergence effect of the strategy, which is defined as follows:

R(t) =∥ xt − x∗ ∥2

Theorem A.1 Assuming that the gradient of a convex function fx is bounded and fx∗ = 0, the
distance between any xt generated by algorithms with or without the adaptive gradient strategy is
bounded, and µ, λt ∈ R+ satisfy 0 ≤ 1 − µ · λt. For all t ≥ 1, the adaptive gradient strategy can
achieve the following guarantee:

R(t) ≤

[
t∏

i=1

(1− µ · λi)

]
· ∥ xt − x∗ ∥2

≤ (1− µ · γ1)t· ∥ xt − x∗ ∥2
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Proof A.1 We will prove the convergence for adaptive gradient strategy. The policy equation can
be converted to the following.

xt+1 = xt −
[
γ1 · ∇fxt

+ γ2 ·
Ω (fxt

)

φ (∇fxt
)

]
Let gt = ∇fxt

. Then we have

gt = (xt − xt+1) ·
1

γ1 + γ2 ·
Ω(fxt )

φ(∇fxt)
2

To construct the relationship between xt and x∗, let’s multiply both sides of this equation by the
same term (xt − x∗),

gTt · (xt − x∗) =

(xt − xt+1) ·
1

γ1 + γ2 ·
Ω(fxt )

φ(∇fxt)
2


T

· (xt − x∗)

To simplify the notation, we define λt = γ1 + γ2 ·
Ω(fxt ))

φ(∇fxt)
2 , λt ≥ γ1 > 0.

gTt · (xt − x∗) =
1

λt
(xt − xt+1)

T · (xt − x∗)

=
1

2λt
·
[
∥ xt − xt+1 ∥2 + ∥ xt − x∗ ∥2 − ∥ xt+1 − x∗ ∥2

]
=

1

2λt
·
[
λ2
t · ∥ gt ∥2 + ∥ xt − x∗ ∥2 − ∥ xt+1 − x∗ ∥2

]
=

λt

2
· ∥ gt ∥2 +

1

2λt
· ∥ xt − x∗ ∥2 − 1

2λt
· ∥ xt+1 − x∗ ∥2

Based on Taylor’s expansion and the strong convexity of the objective function (Lemma 2), fx∗ ≥
fxt

+ (∇fxt
)T · ∥ x∗ − xt ∥ +µ

2 · ∥ x
∗ − xt ∥2, then we can lower bound of gTt · (xt − x∗).

gTt · (xt − x∗) = −(∇fxt
)T · (x∗ − xt) ≥ f(xt)− f(x∗) +

µ

2
· ∥ x∗ − xt ∥2

The following inequality holds by using the lower bound.

fxt
− fx∗ +

µ

2
· ∥ x∗ − xt ∥2≤

λt

2
· ∥ gt ∥2 +

1

2λt
·
[
∥ xt − x∗ ∥2 − ∥ xt+1 − x∗ ∥2

]
Rearrange the inequality and substitute ∥ xt+1 − x∗ ∥2 with R(t+ 1),

R(t+ 1) =∥ xt+1 − x∗ ∥2≤ 2λt · (fx∗ − fxt
) + λ2

t · ∥ gt ∥2 +(1− µ · λt)· ∥ x∗ − xt ∥2

Regard
[
2λt · (fx∗ − fxt

) + λ2
t · ∥ gt ∥2

]
as noise O(t), we can upper bound of the terms.

2λt · (fx∗ − fxt
) + λ2

t · ∥ gt ∥2 ≤ 2λt · (fxt+1 − fxt
) + λ2

t · ∥ gt ∥2

≤
(
−λ2

t · ∥ gt ∥2
)
+ λ2

t · ∥ gt ∥2

= 0

Use the upper bound on R(t), we have

R(t+ 1) =∥ xt+1 − x∗ ∥2

≤ (1− µ · λt)· ∥ x∗ − xt ∥2

≤

{
1− µ ·

[
γ1 + γ2 ·

Ω(fxt
)

φ (∇fxt
)
2

]}
· ∥ x∗ − xt ∥2

12
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Therefore, the above equation indicates that the ability of parameters to approximate the global
optimum is improved by the loss incentive correction term under the premise of the same time step.
In other words, the strategy can accelerate the convergence rate of parameters.

From λt ≥ γ1 > 0, we can get it 1− µ · λt ≤ 1− µ · γ1. Thus, we have the following inequality.

R(t) =∥ xt − x∗ ∥2

≤ (1− µ · λt)· ∥ xt−1 − x∗ ∥2

≤ (1− µ · λt) · (1− µ · λt−1)· ∥ xt−2 − x∗ ∥

≤

[
t∏

i=1

(1− µ · λi)

]
· ∥ x0 − x∗ ∥2

≤ (1− µ · γ1)t· ∥ x0 − x∗ ∥2

For the function fx, there exists a constant M for such that ∇2fx ≤ MI. Based on Taylor’s
expansion, for t at any time, we can easily get fxt − fx∗ ≤ 1

2M · ∥ xt−x∗ ∥2≤ 1
2M · (1−µ · γ1)t· ∥

x0 − x∗ ∥2. Combined with the above analysis, the adaptive gradient strategy can achieve the
following guarantee:

lim
t→∞

(fxt
− fx∗) = lim

t→∞

[
1

2M
· ∥ xt − x∗ ∥2

]
= lim

t→∞

[
1

2M
· (1− µγ1)

t· ∥ x0 − x∗ ∥2
]

= 0

Thus, limt→∞ (fxt − fx∗) = 0 and limt→∞ R(t) = 0. Thereby, under the conditions above, the
adaptive gradient strategy can meet the convergence requirements of the optimization algorithms.

A.2 ANALYSIS UNDER ADAM

In the work of Kingma & Ba (2014), the authors made the following assumptions: 1) the function
f is convex and has bounded gradient (∥∇f∥2 ≤ G, ∥∇f∥∞ ≤ G∞), 2) the distance between any
xt is bounded (∥xi − xj∥2 ≤ D, i and j ∈ 1, · · · , T , all x ∈ Rd). α is the stepsize, β1 = 0.9 and
β2 = 0.999 are the exponential decay rates for the moment estimates. g2t indicates the elementwise
square gt ⊙ gt in Adam. Besides, the corresponding functions are set as follows.

The estimation to the first-order momentum:

mt = β1 ·mt−1 + (1− β1) · gt

= (1− β1)

t∑
s=1

(βt−s
1 )gt

The estimation to the second-order momentum:

vt = β1 · vt−1 + (1− β1) · g2t

= (1− β2)

t∑
s=1

(βt−s
2 )g2t

After the bias correction, the first-order momentum and the second-order momentum

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

We also focus on the i-th dimension of the parameter vector xt ∈ Rd. From the update rules
presented in Adam, subtract the scalar x∗

,i, then the distance (S1t,i) between xt+1,i and x∗
,i can be

13
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written as:

S1t,i = (xt+1,i − x∗
,i)

2

=

[
(xt,i − x∗

,i)−

(
αt ·

1

1− βt
1

· β1 ·mt−1,i + (1− β1) · gt,i√
ˆvt,i

)]2

Similarly, we can have the distance (S2t,i) between xt+1,i and x∗
,i in Adam with LGA:

S2t,i = (xt+1,i − x∗
,i)

2

=

[
(xt,i − x∗

,i)−

(
αt ·

1

1− βt
1

· β1 ·mt−1,i + (1− β1) · gt,i√
ˆvt,i

+ γ2 ·
Ω (fxt)

φ (∇fxt
)

)]2

Then the difference (∆S) between the Adam without LGA and the Adam with LGA is following:

∆St,i = S1t,i − S2t,i

= γ2 ·
Ω (fxt

)

φ (∇fxt,i)
·

[
2 · (xt,i − x∗

,i)− 2 · αt ·
1

1− βt
1

· β1 ·mt−1,i + (1− β1) · gt,i√
ˆvt,i

− γ2 ·
Ω (fxt

)

φ (∇fxt,i)

]

For t > 1,
(
γ2 ·

Ω(fxt)
φ(∇fxt,i)

)2

≥ 0, (1− β1) > 0, (1− βt
1) > 0, Ω(fxt

) ≥ 0, at = α√
t
> 0:

∆St,i = S1t,i − S2t,i

= γ2 ·
Ω (fxt

)

φ
(
∇fxt,i

) · [2 · (xt,i − x∗
,i)− 2 · αt ·

1

1− βt
1

· β1 ·mt−1,i + (1− β1) · gt,i√
ˆvt,i

− γ2 ·
Ω (fxt

)

φ
(
∇fxt,i

)]

≤ 2γ2
Ω (fxt

)

φ
(
∇fxt,i

) (xt,i − x∗
,i)− 2αt

Ω (fxt
)

φ
(
∇fxt,i

) · 1

1− βt
1

· β1 ·mt−1,i + (1− β1) · gt,i√
ˆvt,i

= 2γ2
Ω (fxt

)

φ
(
∇fxt,i

) (xt,i − x∗
,i)− 2αt

Ω (fxt
)

φ
(
∇fxt,i

) ·( 1

1− βt
1

· β1 ·mt−1,i√
ˆvt,i

+
1

1− βt
1

· (1− β1) · gt,i√
ˆvt,i

)

≤ 2γ2
Ω (fxt

)

φ
(
∇fxt,i

) (xt,i − x∗
,i)− 2αt

Ω (fxt
)

φ
(
∇fxt,i

) ·( 1

1− βt
1

· β1 ·mt−1,i√
ˆvt,i

)

From the assumption, ∥xi − xj∥2 ≤ D, we have:

∣∣∣∣∣2γ2 Ω (fxt
)

φ
(
∇fxt,i

) (xt,i − x∗
,i)

∣∣∣∣∣ ≤ 2γ2

∣∣∣∣∣ Ω (fxt
)

φ
(
∇fxt,i

) ∣∣∣∣∣√D
14
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We focus on β1·mt−1,i√
ˆvt,i

and make the following transformations for mt,i:

|mt,i| =
t∑

s=1

(1− β1)(β
t−s
1 ) · |gs,i|

=

t∑
s=1

(1− β1)(β
t−s
1 )√

(1− β2)(β
t−s
2 )

·
√

(1− β2)(β
t−s
2 ) |gs,i|

=
1− β1√
1− β2

t∑
s=1

βt−s
1√
βt−s
2

·
√
(1− β2)(β

t−s
2 ) |gs,i|

≤ 1− β1√
1− β2

t∑
s=1

√
(1− β2)(β

t−s
2 ) |gs,i|

=
1− β1√
1− β2

√
vt,i

=
1− β1√
1− β2

√
(1− βt

2) ˆvt,i

Disregarding the case where the gradient is mutated, mt,i ≈ mt−1,i, then we have:∣∣∣∣∣−2αt
Ω (fxt

)

φ
(
∇fxt,i

) ·( 1

1− βt
1

· β1 ·mt−1,i√
ˆvt,i

)∣∣∣∣∣ ≤ 2αt

∣∣∣∣∣ Ω (fxt
)

φ
(
∇fxt,i

) ·( 1

1− βt
1

·
1−β1√
1−β2

√
(1− βt

2) ˆvt,i√
ˆvt,i

)∣∣∣∣∣
= 2αt

∣∣∣∣∣ Ω (fxt)

φ
(
∇fxt,i

) ∣∣∣∣∣ ·
(

1

1− βt
1

· 1− β1√
1− β2

√
1− βt

2

)
We can use absolute value inequality to get the upper bound for the |∆St,i|:

|∆St,i| ≤ 2γ2

∣∣∣∣∣ Ω (fxt
)

φ
(
∇fxt,i

) ∣∣∣∣∣√D + 2αt

∣∣∣∣∣ Ω (fxt
)

φ
(
∇fxt,i

) ∣∣∣∣∣ ·
(

1

1− βt
1

· 1− β1√
1− β2

√
1− βt

2

)
γ2

|φ(gt)| ≪
αt

|φ(gt)| under the setting of LGA. Therefore, we can have the following regret bound:

|∆St,i| ≤ 2αt

∣∣∣∣∣ Ω (fxt)

φ
(
∇fxt,i

) ∣∣∣∣∣ ·
(

1

1− βt
1

· 1− β1√
1− β2

√
1− βt

2

)
From the setting of LGA and Adam,

∣∣φ (∇fxt,i

)∣∣ ≥ ξ and β1, β2 ∈ [0, 1), so
∣∣∣∣ 1

φ(∇fxt,i)

∣∣∣∣ ≤ 1
ξ and

1
1−βt

1
· 1−β1√

1−β2

√
1− βt

2 < 1
1−β1

1√
1−β2

. Then

|∆St,i| ≤ 2αt

∣∣∣∣∣ Ω (fxt)

φ
(
∇fxt,i

) ∣∣∣∣∣ · 1

1− β1

1√
1− β2

≤ 2
αt

ξ

1

1− β1

1√
1− β2

· Ω(fxt
)

We derive the regret bound by summing across all the dimensions for i ∈ 1, · · · , d in the upper
bound of ∆St, and ∆S have the following regret bound for t ∈ 1, · · · , T :

∆S =

T∑
t=1

d∑
i=1

∆St,i

≤
T∑

t=1

d · 2αt

ξ

1

1− β1

1√
1− β2

· Ω(fxt
)

=
2dα

ξ(1− β1)
√
1− β2

T∑
t=1

Ω(fxt)√
t
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Ω(fxt
) will gradually converge to 0 during training, then limT→∞

∆S
T = 0. Essentially, ∆St can

be regarded as a noise generated by LGA during training and is closely related to the loss status and
gradient. When the loss has not been sufficiently reduced and the gradient is close to zero, then the
LGA will make a big noise to gives the model more chances to escape and find new local optimum.
If the loss has been sufficiently reduced or the gradient is too large, LGA will not generate noise to
affect the optimization of the original algorithms.

A.3 COMPARISON RESULTS ON THE PERFORMANCE OF ALGORITHMS IN TEST SETS

The results of comparison of the best performance and the final performance of different optimiza-
tion algorithms without and with LGA on MNIST, CIFAR-10 and CIFAR-100 are shown in Table 6
and Table 7, respectively, which look similar to the results shown in Table 1.

Table 6: Comparison of the best performance of different optimization algorithms without and with
LGA on MNIST, CIFAR-10, and CIFAR-100. The classifier accuracy (%) of test sets is reported.

Algorithm MNIST CIFAR-10 CIFAR-100
w/o LGA w/ LGA w/o LGA w/ LGA w/o LGA w/ LGA

SGD 95.47 96.28 75.75 77.60 40.32 40.50
Momentum 98.78 98.80 86.22 86.70 70.49 71.12
ASGD 96.02 96.25 75.25 77.30 40.26 40.23
RMSprop 98.95 99.04 88.00 88.12 45.07 45.84
Adam 99.01 99.03 88.28 88.55 47.91 47.98
Adamax 99.07 99.12 89.03 89.19 66.60 66.64
Adadelta 89.62 91.93 62.12 76.19 29.27 29.64

Table 7: Comparison of different optimization algorithms without and with LGA on MNIST,
CIFAR-10, and CIFAR-100. The epochs are set to 20, 100, and 100 respectively during training.
We report the classifier accuracy (%) of corresponding test sets.

Algorithm MNIST CIFAR-10 CIFAR-100
w/o LGA w/ LGA w/o LGA w/ LGA w/o LGA w/ LGA

SGD 95.47 96.28 75.71 77.55 40.29 40.50
Momentum 98.78 98.80 85.97 86.70 70.49 71.12
ASGD 96.02 96.25 75.21 77.15 40.26 40.23
RMSprop 98.91 98.84 87.57 87.59 45.07 45.07
Adam 99.01 98.99 87.90 87.90 46.00 47.98
Adamax 99.03 99.03 88.72 89.07 66.52 66.64
Adadelta 89.62 91.93 62.12 76.08 29.03 29.30

A.4 EXPERIMENTAL RESULTS ON CIFAR-10 UNDER DIFFERENT LEARNING RATES

We provide additional results using different learning rates on CIFAR-10 in Table 8. These data sup-
port the conclusion LGA can effectively provide some robustness against choosing a small learning
rate and enhance the optimization capacity of parameters with a large learning rate.

A.5 EXPERIMENTAL RESULTS ON IMAGE SEGMENTATION TASK

Image segmentation is the task of partitioning a natural image into multiple contiguous re-
gions. We practice our method in the work of https://github.com/kenandaoerdect/
Image-segmentation-using-pytorch, where the source code of the work and the dataset
are available. The results are shown in Table 9.
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Table 8: Comparison of different optimization algorithms without and with LGA on CIFAR-10
under different learning rates. We report the classifier accuracy (%) of corresponding test sets.

ALGORITHM
W/O LGA W/ LGA

1E-1 1E-2 1E-3 1E-4 1E-1 1E-2 1E-3 1E-4

SGD 87.59 86.44 75.71 43.32 88.21 86.69 77.55 59.40
MOMENTUM 79.82 89.28 85.97 75.83 84.20 88.82 86.70 77.59
ASGD 86.92 85.11 75.21 46.15 87.50 85.78 77.15 59.96
RMSPROP 18.79 43.66 87.57 84.61 18.13 69.61 87.59 85.79
ADAM 18.33 68.46 87.90 85.9 19.61 68.17 87.90 87.19
ADAMAX 42.60 84.46 88.72 82.41 52.24 84.80 89.07 82.61
ADADELTA 87.46 81.29 68.12 36.29 87.99 81.34 76.08 51.29

Table 9: Results of different optimization algorithms on image segmentation task. The epochs of
algorithms are set to 50 during training. We report the train loss as the metric of the performance of
algorithms and the ratio of the epoch when the algorithms with LGA achieve the final performance
of the original algorithms to the epoch of the original algorithms is reported ( w/

w/o ∈ (0, 1]). The
lower loss and the lower ratio, the more effective LGA is.

Algorithm SGD Momentum ASGD RMSprop Adam Adamax Adadelta
w/o LGA 0.218 0.181 0.058 0.220 0.373 0.317 0.261
w/ LGA 0.102 0.089 0.055 0.172 0.373 0.317 0.103
Ratio 0.23 0.17 0.23 0.23 0.16 0.23 0.43

A.6 EXPERIMENTAL RESULTS ON VIDEO SENTENCE GROUNDING TASK

A newly proposed cross-modality task, namely video sentence grounding, is chosen as a additional
benchmark to further evaluate the efficiency of our method,. Video sentence grounding is pro-
posed to localize the target moment of a given video which is specified by a natural language
query. We evaluate our method on a recent work (Zhang et al., 2020) and a widely used dataset
TACoS (Rohrbach et al., 2012) with a split (Gao et al., 2017) of 10146, 4589 and 4083 moment-
query pairs for training, validation and testing respectively.We report the experimental results of the
loss in Table 10.

Table 10: Comparison of different optimization algorithms on video sentence grounding task. The
epochs of algorithms are set to 50 during training. We report the train loss as the metric of the perfor-
mance of algorithms and the ratio of the epoch when the algorithms with LGA achieve the final per-
formance of the original algorithms to the epoch of the original algorithms is reported ( w/

w/o ∈ (0, 1]).

Algorithm SGD Momentum ASGD RMSprop Adam Adadelta
w/o LGA 15.78 12.56 15.60 5.73 5.75 15.60
w/ LGA 14.15 12.09 13.98 5.65 5.75 14.30
Ratio 0.23 0.47 0.37 0.93 0.96 0.23

A.7 EXPERIMENTAL RESULTS ON AUTOEVAL TASK

AutoEval is a task that predicts model accuracy based on only unlabeled test sets. In the work of
Deng et al. (2021), they train semantic classification and rotation prediction in a multi-task way and
then study the statistical correlation between semantic classification and rotation prediction under
varying environments. We experiment with our method on the above work on MNIST and report
the loss function of semantic classification, the loss function of rotation prediction, the accuracy of
the semantic classification, and the accuracy of rotation on the training set in Table 13.
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Table 11: Comparison of different optimization algorithms on AutoEval task. The epochs of algo-
rithms are set to 50 during training based on LeNet-5. The loss function of semantic classification
(losscls) and the loss function of rotation prediction (lossrot) are reported. The lower losscls and
lossrot, the more effective LGA is.

Metric Algorithm SGD Momentum ASGD RMSprop Adam Adamax Adadelta

losscls
w/o LGA 0.027 0.002 0.030 0.148 0.020 0.017 52.314
w/ LGA 0.019 0.002 0.019 0.136 0.010 0.013 37.760

lossrot
w/o LGA 0.019 0.006 0.022 0.099 0.011 0.014 1.624
w/ LGA 0.017 0.005 0.017 0.046 0.013 0.012 1.350

A.8 EXPERIMENTAL RESULTS ON AUTOENCODER

Training autoencoders on benchmark datasets is considered as a standard problem for evaluat-
ing optimization methods on neural networks. It is especially for evaluating the escape from
local optimal solutions. We practice our method in MNIST and CIFAR-10 following the work
of https://blog.csdn.net/nanke_4869/article/details/113497459 and the
work of https://github.com/chenjie/PyTorch-CIFAR-10-autoencoder. The
results are shown in Table 12.

Table 12: Comparison of different optimization algorithms. The final loss function is reported.

Dataset Algorithm SGD Momentum ASGD RMSprop Adam Adamax Adadelta

Mnist w/o LGA 0.182 0.079 0.177 0.077 0.072 0.071 0.180
w/ LGA 0.166 0.080 0.165 0.076 0.072 0.071 0.167

CIFAR-10 w/o LGA 0.691 0.582 0.691 0.566 0.562 0.561 0.691
w/ LGA 0.587 0.564 0.590 0.566 0.562 0.560 0.591

A.9 EFFECTS OF THE ESTIMATION OF THE LOWER BOUND

To study the proposed lower bound estimation, we compare our method to two common estimation
operations. First, directly averaging all the loss status; second, summing up the loss status with
momentum strategy, and the momentum is set to 0.9. Table 13 presents the experimental results
of LGA with different estimation method on MNIST and CIFAR-10. We see that, the proposed
estimation method outperforms the two variants.

Table 13: LGA with different estimation methods. The final loss function is reported.

Dataset Algorithm SGD Momentum ASGD RMSprop Adam Adadelta

Mnist
LGA(average) 0.0318 0.0050 0.0313 0.1053 0.0695 0.0839

LGA(momentum) 0.0318 0.0050 0.0312 0.1300 0.0694 0.0836
LGA 0.0316 0.0049 0.0310 0.1324 0.0700 0.0835

CIFAR-10
LGA(average) 1.4087 0.5079 1.4015 0.1823 0.0856 1.6784

LGA(momentum) 0.4878 0.0885 0.4737 0.1844 0.1847 0.9670
LGA 0.4878 0.0878 0.4705 0.1817 0.1889 0.9633
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