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Abstract

Deep neural network-based image denoisers are the key component in high quality
diffusion models. Unlike latent variable models, denoisers are not explicitly
trained to extract latent manifolds. However, recent work suggests that denoisers
implicitly capture the geometry of these manifolds. Given that images lie on a
low-dimensional latent manifold embedded in a high dimensional space, this raises
the question: can we recover a latent manifold from a diffusion model? Here, we
demonstrate that a manifold embedded in a trained denoiser can be extracted and
visualized through manifold extrapolation. We provide a theoretical framework and
an algorithm for performing manifold extrapolation using a denoiser, and we show
that our approach outperforms traditional manifold extrapolation methods. Finally,
we demonstrate that when the latent manifold is simple and low-dimensional, it
can be extracted using manifold extrapolation with only two nearby points.

1 Introduction

The manifold hypothesis suggests that many high-dimensional datasets lie along low-dimensional
latent manifolds [1, 2, 3]. Various methods have been developed to model such latent manifolds,
including manifold learning approaches [4, 5, 6] and latent variable models [7, 8]. The power of
deep neural networks has significantly expanded the capacity of latent variable models, enabling
them to represent complicated data distributions such as natural images [9, 10, 11]. Previous work
has focused on imposing additional constraints on the latent space to extract low-dimensional latent
manifolds from data [12, 13, 14, 15]. However, these models are empirically challenging to train and
scale for large datasets [16, 17, 18, 10, 19, 20]. One approach is to use a deep learning model trained
on a simpler learning objective: denoising. Rather than explicitly modeling the latent manifold,
diffusion models are a different class of generative models that leverage denoising [21, 22, 23, 19].

Why do diffusion models perform so well? Recent studies show that the essential component of
diffusion models—a deep neural network-based denoiser—implicitly captures the geometric structure
of the data manifold [24, 25, 26, 27]. However, these studies do not demonstrate how to visualize,
interpret, or evaluate the implicit manifold learned by a denoiser. Unlike latent variable models,
where the latent space explicitly represents the manifold or its flattened version, we show that the
implicit manifold learned by a denoiser can be visualized through manifold extrapolation. Similar
techniques have been employed to study the geometry of latent variable models [12, 28]. In this work,
we provide a theoretical framework and an algorithm for manifold extrapolation using a denoiser.
We demonstrate that when the latent manifold is simple and low-dimensional, it can be effectively
extrapolated given the denoiser and two points on the manifold.
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2 Method

2.1 Extrapolation on the image manifold

As illustrated Fig. 1.A, an image transformation can be modeled as a manifold extrapolation process.
Let p(x) denote the likelihood function of the image space. The image manifold is defined as the
region with equally high probability, represented as a dark red circle in Fig. 1B.

The extrapolation algorithm can be summarized in two steps. First, move in a direction within the
tangent space TxM of the manifold. However, since the tangent space is only a linear approximation
of the manifold, this movement does not perfectly align with the manifold, leading to a small error
that causes the trajectory to drift off the manifold. Next, to correct for this deviation, a step is taken
in the direction of the gradient of the log-likelihood function ∇ log p(x), which is also known as
the score function. This step pulls the point back toward the manifold, compensating for the error
introduced by the initial movement within the tangent space. This procedure is shown in Alg. 1.

Algorithm 1 Tangent Space Extrapolation

Require: initial real image vectors u0, u1 ∈ RN ; step size η; noise level σ
x0 := u0 + ϵ0 ▷ ϵi is Gaussian noise ∼ N (0, σ2I)
x1 := u1 + ϵ1 ▷ xi denotes image vector in latent (noisy) space
frames := [x0, x1]
for i = 2 . . . steps do

Vi := GetTopKEigenvectors(ϕθ, xi−1) ▷ Vi is K ×N matrix, ϕθ is denoiser (Alg. 4)
vi := xi−1 − xi−2 ∈ RN ▷ new velocity vector between two previous noisy image
pi := V ⊤

i Vivi ▷ projection of velocity vector onto eigenvectors (tangent space)
pi =

∥vi∥2

∥pi∥2
pi ▷ normalize the velocity vector

xpi := xi−1 + ηpi ▷ step in the direction of the projected velocity vector
ui := xpi − ϕθ(xpi) ▷ denoise to go back to the manifold
xi := ui + ϵi ▷ add noise for next step
Append(frames, ui) ▷ save to visualize

end for
return frames

In the following section, we explain how to compute the tangent space and the score function,
detailing the methods used to derive and apply them in the extrapolation process.

2.2 Parameterization of the score function

The score function can be parameterized as a denoiser. The connection between the score function
and denoiser was first studied as Empirical Bayes by statisticians [29, 30]. This idea was later
popularized and rediscovered in numerous works, and is commonly referred to as Tweedie’s formula
[31, 27, 32, 33, 34, 24, 22]. Consider x = u+ϵ, where u is the clean image vector and ϵ ∼ N (0, σ2I)
is the additive Gaussian noise. The Minimum Mean Square Estimator (MMSE) denoiser is given by
x̂ = E(u|x) =

∫
uP (u|x)du. Tweedie’s formula states:

x̂ = E(u|x) = x− σ2∇ log pσ(x) (1)

where pσ(x) denotes the blurred prior, or the likelihood function of the image with additive noise of
standard deviation σ. This formula suggests that the score function can be parameterized using an
MMSE denoiser, and previous work has shown that convolutional neural networks can effectively
estimate MMSE denoisers [35, 36, 37]. Thus, we can parameterize the score function by training a
neural network ϕθ for the denoising task:

∇ log pσ(x) =
1

σ2
ϕθ(x) s.t. θ = argmin

θ
Ex∼pdata(x)Eϵ∼N (0,σ2I)||ϵ− ϕθ(x+ ϵ)||2 (2)

We use a convolutional neural network with UNet structure [38] and residual connections to model
the denoiser ϕθ, and optimize with the Adam optimizer [39].
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Figure 1: (A) An illustration of the difference between linear extrapolation and manifold extrapolation.
Red represents positive value, and blue represent negative value pixels. Manifold extrapolation
results in a non-linear transform of an image, while a linear transform superimposes two images.
(B) Illustration for the manifold extrapolation algorithm. First, we use the heat map to show the
likelihood function p(x). All real digits have high density and lie on a circles. Noisy images (black
dot at top right corner) has low density. To extrapolate on the manifold, starting at the purple dot,
we first calculate the displacement vector as the difference between current state (purple dot) and
previous state (blue dot). We project this displacement vector onto the tangent space. Next, we move
in the tangent direction (green arrow), but because it is a linear approximation of the image manifold,
we briefly fall off the manifold (green dot). To get back onto the manifold (bottom purple dot), we
take a step in the direction of the gradient. (C) Notation used in (B).

2.3 Extrapolation and tangent space of the manifold

To sample an image, we follow the gradient of the log-likelihood function. This implies that the
gradient will be zero at real images i.e. ∇ log pσ(x) = 0. Consequently, we can define the image
manifold as the set of critical points of pσ(x), that is, M = {x | ∇ logσ p(x) = 0}. Extrapolation is
equivalent to moving to another point on the manifold. Formally, we want to find a displacement
vector v such that ∇ log pσ(x+ v)−∇ log pσ(x) ≈ 0. By Taylor expansion, we have

∇ log pσ(x+ v)−∇ log pσ(x) ≈ ∇2 log pσ(x) · v (3)

To enforce the above quantity to be zero, we want v in nullspace of ∇2 log pσ(x). By corollary 0.1,
the nullspace of Hessian is the tangent space of the image manifold M. Therefore, the extrapolation
direction v should be in the tangent space of the manifold.

Corollary 0.1 Let M = {x : ∇ log p(x) = 0}. Then, TxM = Null(∇2 log p(x)).

Computationally, the tangent space can be determined as the nullspace of the Hessian, where the
Hessian is equivalent to the Jacobian of the score function. Since the score function is parameterized
as a denoising neural network, the Jacobian of the denoiser can be efficiently computed using back-
propagation. To calculate the nullspace of the Jacobian, we compute the eigenvectors corresponding
to zero eigenvalues.

For practical purposes, we focus on the k-smallest eigenvectors, which represent the low-curvature
linear subspace of the log-likelihood function. We hypothesize that the manifold of real images is
rough and bumpy. To avoid getting stuck in local minima, extrapolation is conducted within this
low-curvature subspace rather than strictly within the tangent space. Additionally, since computing
the full Jacobian is computationally intensive, we accelerate the process by calculating only the k
lowest eigenvectors, leveraging the Jacobian Vector Product (JVP) combined with power iteration.
This method, detailed in Algorithm 4, allows efficient approximation while capturing essential
low-curvature directions for robust extrapolation.

3 Results

We first evaluate our algorithm on two synthetic datasets: translated MNIST and rotated MNIST.
The latent manifold for an image in each dataset is known: a line segment [0, 1] and a unit circle S1,
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Figure 2: Visualization of the extrapolated video sequence compared to the ground truth video
sequence. Each sub-figure shows the extrapolation result from different datasets: (A) translated
MNIST, (B) rotated MNIST, and (C) the Weizmann Action dataset. The first row in each sub-figure
contains the ground truth video sequence. The second and third rows show the extrapolation results
given the denoiser and the first two frames from the ground truth video. The second row presents the
extrapolation results using our algorithm, while the third row shows the extrapolation results using a
baseline method.

respectively. Finally, we evaluate our algorithm on a dataset of real images: the Weizmann Action
dataset [40], where the underlying manifold is unknown.

3.1 Qualitative results

For the transformed MNIST datasets, the denoiser is trained on a random ordering of transformed
images. For the Weizmann dataset, the the frames are randomly shuffled. Once the denoiser trains
to convergence, we use the first two frames from each video to extrapolate future frames. The
extrapolation results are visualized in Fig. 2. A common approach to interpolate between two images
using a denoiser involves linearly interpolating in the noisy image space and then denoising the
interpolated result [19]. Similarly, we perform linear extrapolation in the noisy space and use this
as a baseline for our manifold extrapolation algorithm (see Algorithm 2. As shown in Fig. 2, the
extrapolated video closely resembles the ground truth video and is qualitatively better than the
extrapolated video produced by the baseline method. Furthermore, We demonstrate that our manifold
extrapolation algorithm can recover the entire latent manifold from the denoiser in Fig. 3.

3.2 Quantitative results

To evaluate how well the model extrapolates, we require a measure of how well the extrapolated video
aligns with the ground truth video. First, we define the distance between two individual video frame
as d(u1, u2) = 1− SSIM(u1, u2), where SSIM(u1, u2) refers to the Structural Similarity Index
[41] between frame u1 and u2. Because the extrapolated video sequence does not perfectly align
with ground truth video sequence, we use Dynamic Time Warping (DTW) to align the two sequences
and evaluate the distance between them. We use DTW-SSID to denote this distance. More detailed
alignment algorithm and the visualization of the alignment can be found in Appendix A.2.

Table 1 demonstrates that our method outperforms both baseline approaches. The experiment setups
that produced these results are detailed in Appendix A.4, A.5, and A.6.
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Table 1: Comparison of methods across different datasets.
For each dataset, the results are averaged over 5 trials. Both
rotated MNIST and translated MNIST are averaged over 10
video sequences. Weizmann Action is averaged over 9 video

sequences. Check Appendix A.4, A.5, and A.6 for more details.

Method Translated
MNIST

Rotated
MNIST

Weizmann
Action

Denoiser Baseline 0.727 0.700 0.158
VAE 0.834 0.840 0.515

Our Method 0.119 0.273 0.142

Figure 3: We represent each ground truth video frame as a blue dot on its latent manifold. The
red arrow represents the direction of movement on the manifold from each extrapolation step. (A)
Extrapolating a rotated MNIST digit, where the latent manifold is a unit circle. (B) Extrapolating a
translated MNIST digit, where the latent manifold is a line segment.

4 Discussion and future work

We demonstrate that our proposed manifold extrapolation method, using deep neural network-based
denoisers, outperforms baseline methods. By capturing the geometric structure of simple latent
manifolds, our method enables smoother and more accurate extrapolation of image sequences with
very few assumptions. This is particularly evident in low-dimensional settings, where our approach
recovers and extends latent manifolds with minimal computational complexity. This method only
requires a pre-trained, differentiable denoiser, and there are no assumptions on the structure of the
neural network, the curvature of the latent space, nor any supervision. The combination of manifold
learning and diffusion models offers a promising direction for future research in image and video
generation, particularly for tasks requiring long-term prediction and temporal consistency.

There are many promising directions to further enhance this work. We have provided a theoretical
framework for how a "good" denoiser can be used for image extrapolation. However, we have not yet
analyzed what defines a "good" denoiser or how the features learned by the denoiser enable effective
extrapolation. A key may lie in further analysis of the generalization abilities of the Jacobians of deep
denoisers as in [25]. Additionally, the standard deviation σ of the added noise is an important part of
the algorithm, and if chosen incorrectly, can affect the extrapolation quality. More analysis is needed
on the effect of σ on denoiser generalization properties.

Our method has so far only been applied to simple datasets and transformations. As the space
of transformations present in the data becomes more complex, so does the latent image manifold.
Although diffusion models can be empirically scaled to much larger datasets, the corresponding
manifolds can become entangled, causing extrapolation to be “trapped" in local minima. To improve
the model’s performance on more realistic datasets, different methods should be explored, such as
interpolation strategies, conditional denoisers, and latent diffusion models.
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A Appendix

A.1 Proof of the corollary

Theorem 1 Suppose that U ⊂ Rn is an open subset, F : U → Rn−k is a C1 mapping, and manifold
M can be described as the set of points that satisfy F (z) = 0. If ∇F (c) is onto for c ∈ M, then the
tangent space TcM is the kernel of ∇F (c).

Theorem 1 is proven using implicit function theorem and can be found as Theorem 3.2.4 in [42]. The
corollary 0.1 simply follows from Theorem 1. It can be shown by substituting function F in Theorem
1 as ∇ log p(x).

A.2 Calculating distance between two video sequences

We define the SSIM distance (SSID) between two individual video frames as

ssid(u1, u2) = 1− ssim(u1, u2),

where ssim(u1, u2) represents the Structural Similarity Index Measure (SSIM) [41] between frames
u1 and u2. A distance of ssid = 0 indicates identical frames, ssid = 1 implies no correlation, and
ssid > 1 denotes a significant mismatch.

However, because the extrapolated video may have a different temporal progression compared to the
ground truth video, they are often misaligned in time. To facilitate meaningful comparisons between
the two sequences, even when the generated video is temporally stretched or compressed, we apply
Dynamic Time Warping (DTW) to optimally align the two sequences by warping them non-linearly
in the temporal dimension.

The process proceeds as follows:

1. Frame distance matrix construction: We compute a N1 ×N2 distance matrix D, where
entry dn1,n2

corresponds to the SSIM distance between the n1-th frame of the first video
and the n2-th frame of the second video. Here, N1 and N2 represent the number of frames
in the two video sequences.

2. Optimal path finding: Using the distance matrix D, we identify the optimal alignment
path between the two sequences, which corresponds to a trajectory from dN1,N2

to d0,0 that
minimizes the cumulative SSIM distance. When the algorithm moves to a point (n1, n2),
it decides the next step by evaluating whether to move to (n1 − 1, n2), (n1, n2 − 1), or
(n1 − 1, n2 − 1), based on which of these points has the minimal SSIM distance. SSIM
distance matrix and optimal alignment path are visualised in Fig. 4 (1).

3. Sequence alignment: After determining the optimal path, we adjust the extrapolated
video (with N2 frames) to match the length of the ground truth video (with N1 frames).
This aligning process is visualised in Fig. 4 (2). This DTW-aligned extrapolated video is
then directly comparable to the ground truth video. An example of SSIM distance values
compared to the ground truth video are visualised in Fig. 4 (3).

4. Video distance calculation: Finally, the overall distance between the two videos is calcu-
lated as the average frame-wise distance. We denote this measure as DTW-SSID and use it
to quantify the quality of the extrapolated video sequence.

A.3 Algorithms

We show our algorithms for efficiently calculating the top eigenvectors and extrapolation on the
image manifold.
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Figure 4: (1) Visualisation of DTW Alignment Path on SSIM Distance Matrix. The heatmap shows
the SSIM distances between corresponding frames of the extrapolated video (on the horizontal axis)
and the ground truth video (on the vertical axis). The red line represents the optimal path found using
Dynamic Time Warping (DTW), which minimizes the overall SSIM distance. (2) Frame-to-frame
alignment between video 1 and video 2, according to the DTW alignment path. Blue points represent
frames from video 1, while green represents video 2. The connecting lines illustrate how individual
frames from video 2 (extrapolated) are aligned with video 1 (ground truth) frames. (3) SSIM distance
after alignment. The horizontal axis represents the frame index of the ground truth video and it
matches video 1 frames in (2). In this example, the consistently low SSIM distance values along the
trajectory suggest a strong correlation between the DTW-aligned extrapolated video and ground truth
videos.

Algorithm 2 Baseline Extrapolation

Require: initial real image vectors u0, u1 ∈ RN ; step size η; noise level σ
x0 := u0 + ϵ0 ▷ ϵi is Gaussian noise ∼ N (0, σ2I)
x1 := u1 + ϵ1 ▷ xi denotes image vector in latent (noisy) space
frames := [x0, x1]
for i = 2 . . . steps do

vi := xi−1 − xi−2 ∈ RN ▷ new velocity vector between two previous noisy image
xvi := xi−1 + ηvi ▷ step in the direction of the velocity vector
ui := xvi − ϕθ(xvi) ▷ denoise to visualize
Append(frames, ui)
xi := ui + ϵi ▷ add noise for next step

end for
return frames

Algorithm 3 VAE Extrapolation

Require: initial real image vectors u0, u1 ∈ RN ; step size η
x0 := encode(u0) ▷ xi denotes image vector in latent space
x1 := encode(u1)
frames := [x0, x1]
for i = 2 . . . steps do

vi := xi−1 − xi−2 ∈ RN ▷ new velocity vector between two latent vectors
xvi := xi−1 + ηvi ▷ step in the direction of the velocity vector
ui := decode(xvi) ▷ decode to visualize
Append(frames, ui)

end for
return frames
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Algorithm 4 GetTopKEigenvectors

Require: denoiser ϕθ; noisy image x ∈ Rd; number of eigenvectors to return K; placeholder array
for eigenvector, initialized as V = [x, x, ...x]
for i in 1 . . . steps do

v0 = x
while ||vt − vt−1|| > ϵ do

vt =
JVP(ϕθ,vt−1)−V V tvt−1

||vt−1|| ▷ Recursively applying Jacobian Vector Product
end while
Append vt to V

end for
return V ▷ K ×N matrix

A.4 Dataset preparation

MNIST Rotation The first ten digit images from the MNIST dataset were cropped from their
original size of 28x28 pixels to 20x20 pixels. Each image was subsequently rotated with a step size
of 3.6 degrees, resulting in 100 discrete frames per image. This process yielded ten videos, each
containing 100 frames of a rotating digit. These 10x100 frames were used to train the denoiser
models, with 200 frames randomly selected as the test set. The ten videos also served as ground truth
and were compared to the extrapolation results.

MNIST Translation The first ten digit images from the MNIST dataset were cropped from their
original size of 28x28 pixels to 20x20 pixels. Each image was then translated horizontally in
increments of 0.12 pixels, producing 100 discrete frames per image, covering a translation range from
-6 to +6 pixels. This process generated ten videos, each consisting of 100 frames of a translating digit.
These 1,000 frames were used to train the denoiser models, with 200 frames randomly selected as the
test set. The ten videos also served as ground truth and were compared to the extrapolation results.

Weizmann Action All video frames from the Weizmann Action dataset were used as the training
set, with 200 frames randomly selected for the test set.

A.5 Model details

UNet

We use a UNet of the same architecture and training procedure as in [25], with 512 latent dimensions.

VAE

We use a basic convolutional VAE with the following architecture:

VAE encoder
Conv 3× 3× 32 (stride 2), batch norm, leaky ReLU
Conv 3× 3× 64 (stride 2), batch norm, leaky ReLU
Conv 3× 3× 128 (stride 2), batch norm, leaky ReLU
Conv 3× 3× 256 (stride 2), batch norm, leaky ReLU
Conv 3× 3× 512 (stride 2), batch norm, leaky ReLU

FC 512

The decoder is transpose convolutions in the reverse order, and a final convolution layer that differs
in dimension for each dataset. As with the UNet used in the main experiments, the latent dimension
is 512. We optimize using Adam [39] with a learning rate of 0.005.

A.6 Extrapolation details

This section outlines the extrapolation setups used to generate Table 1. For each dataset, the final
value was obtained by averaging the results of 5 trials. The following settings are for the denoiser
method.
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MNIST Rotation Each of the 10 ground truth videos contained 100 frames. The first and second
frames of each video were provided to the extrapolators, which generated 53 subsequent frames. The
step size was set to η = 1, and the noise level was σ = 25/255.

MNIST Translation Each of the 10 ground truth videos contained 100 frames. The first and second
frames of each video were provided to the extrapolators, which generated 40 subsequent frames. The
step size was set to η = 0.3, and the noise level was σ = 15/255.

Weizmann Action Each of the 9 ground truth videos contained 5 frames. The first and second
frames of each video were provided to extrapolators, which then generated 6 frames. The step size
was η = 0.15, and the noise level was σ = 15/255.

For the VAE, the same settings as above were used, but with step sizes of η = 0.8 for rotated MNIST,
η = 0.9 for translated MNIST, and η = 0.3 for Weizmann.
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