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Abstract

Learning reliably safe autonomous control is one of the core problems in trust-
worthy autonomy. However, training a controller that can be formally verified to
be safe remains a major challenge. We introduce a novel approach for learning
verified safe control policies in nonlinear neural dynamical systems while maxi-
mizing overall performance. Our approach aims to achieve safety in the sense of
finite-horizon reachability proofs, and is comprised of three key parts. The first
is a novel curriculum learning scheme that iteratively increases the verified safe
horizon. The second leverages the iterative nature of gradient-based learning to
leverage incremental verification, reusing information from prior verification runs.
Finally, we learn multiple verified initial-state-dependent controllers, an idea that
is especially valuable for more complex domains where learning a single universal
verified safe controller is extremely challenging. Our experiments on five safe con-
trol problems demonstrate that our trained controllers can achieve verified safety
over horizons that are as much as an order of magnitude longer than state-of-the-art
baselines, while maintaining high reward, as well as a perfect safety record over
entire episodes. Our code is available at https://github. com/jlwu002/VSRL!

1 Introduction

The ability to synthesize safe control policies is one of the core challenges in autonomous systems.
This problem has been explored from numerous directions across multiple disciplines, including
control theory and Al [Achiam et al.,[2017, [Dawson et al.,[2022[]. While considerable progress has
been made, particularly when dynamics are linear [Wabersich and Zeilinger, 2018], the ability to
synthesize controllers that can be successfully verified to be safe while maintaining high performance
in nonlinear dynamical systems remains a major open problem. Indeed, even the subproblem of
safety verification in nonlinear systems is viewed in itself as a major challenge and is an active area
of research, particularly for neural network controllers [Bastani et al.,[2018| |{Ivanov et al.,[2019] /Wei1
and Liu}2022]. State-of-the-art approaches for safe control synthesis, including most that leverage
reinforcement learning [Gu et al.| 2022], typically only offer empirical evaluation of safety, and rely
on safety proofs that hold either asymptotically (rather than for concrete problems) [Xiong et al.|
2024]| or under idealized assumptions which do not hold in practice [Berkenkamp et al., [2017]].

Two common properties are typically leveraged in safety verification: forward invariance and
reachability. The former aims to identify a set of starting subsets of safe states under which one-step
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(forward) dynamics remain in this (forward invariant) set. The latter computes the set of states that
can possibly be reached after K steps of the dynamics for a given control policy, and checks whether
it intersects with the unsafe set. Approaches for synthesizing (including those that do so using
learning) safe policies almost exclusively aim to achieve verified safety through forward invariance.
However, this has proved extremely challenging to employ beyond the simplest dynamics.

We propose the first (to our knowledge) approach for learning K -step verified safe neural network
controllers that also aim to maximize efficiency in systems with neural dynamics. While neural
dynamics are clearly not universal, they can capture or effectively approximate a broad range of
practical dynamical systems [Nagabandi et al., 2018]], and have consequently been the focus of much
prior work in safe control and verification [Dai et al.||2021]]. For example, consider the scenario of a
drone navigating through a series of obstacles to reach a designated goal, requiring K = 50 steps to
safely maneuver through the obstacles. We aim to train a controller that can reach the goal as fast
as possible, while guaranteeing safety for the initial 50 steps, ensuring 1) the drone does not collide
with any obstacles and 2) its angle remains within a predefined safe range.

Our approach combines deep reinforcement learning with state-of-the-art differentiable tools for
efficient reachability bound computation, and contains two key novel ingredients. The first is a novel
curriculum learning scheme for learning a verified safe controller. This scheme takes advantage of the
structure of the K -reachability problem at the root of our safety verification by creating a curriculum
sequence with respect to increasing K. An important insight that is specific to the verification
setting is that verification must work not merely for a fixed K, but for all steps prior, an issue we
address by memorizing subsets of states who either violate, or nearly violate, safety throughout
the entire K -step curriculum learning process. Additionally, to maintain both strong empirical and
verified performance, we propose a novel loss function that integrates overall reward, as well as both
traditional (empirical) safety loss along with the K -reachability bound. Our second innovation is to
learn a collection of controllers that depend on the initial state, in contrast to typical approaches that
focus on learning a single “universal” controller. The ability to allow for learning multiple controllers
makes the verified learning problem considerably easier, as we can “save” controllers that work on a
subset of initial states, and simply try learning a new controller for the rest, guaranteeing incremental
improvement through the learning process. We further improve performance through incremental
verification, which leverages information obtained in previous learning iterations.

We evaluate the proposed approach in five control settings. The first two are lane following and
obstacle avoidance, both pertaining to autonomous driving. The last three involve drone control
with obstacle avoidance. Two of these consider fixed obstacles, while the third aims to avoid even
moving obstacles (with known dynamics). We show that the proposed approach outperforms five
state-of-the-art safe control baselines in the ability to achieve verified safety without significantly
compromising overall reward (efficiency). In particular, our approach learns controllers that can
verify K -step safety for K up to an order of magnitude larger than the prior art and maintains a
perfect safety record for K far above what we verify, something no baseline can achieve.

In summary, we make the following contributions:

1. A framework for safe optimal control that combines both finite-horizon verified (worst-case) and
empirical (average-case) safety constraints.

2. A novel curriculum learning approach that leverages memorization, forward reachability analysis,
and differentiable reachability overapproximation for efficiently learning verified safe policies.

3. An approach for learning a collection of control policies that depend on the initial state which
enables significant improvements in verified safety horizon over large initial state sets Sp.

4. An incremental verification approach that leverages small changes in gradient-based learning to
improve verification efficiency during learning.

5. An extensive experimental evaluation that demonstrates the efficacy of the proposed approach in
comparison with five state-of-the-art safe RL baselines.

Related Work: Safe reinforcement learning has been extensively studied through the lens of
constrained Markov decision process (CMDP)-based approaches, which represent cost functions as
constraints and aim to maximize reward while bounding cost, using approaches such as Lagrangian
and penalty methods, and constrained policy optimization [Achiam et al.l 2017, Stooke et al., 2020,
Ma et al.| 2022, |Jayant and Bhatnagar, |2022} |Yu et al.} 2022, So and Fan} 2023, |Ganai et al., 2024]].



An alternative control-theoretic perspective aims to ensure stability or safety using Lyapunov and
control barrier functions. For example, Dawson et al.| [2022] used a learning-based approach to find
robust control Lyapunov barrier functions; (Chow et al.| [2018]] constructed Lyapunov functions to
solve CMDPs; [Wang et al.| 2023a] proposed soft barrier functions for unknown and stochastic envi-
ronments; and |Alshiekh et al.[[2018]] created safety shielding for safe RL agents. These approaches,
however, provide no practical formal safety guarantee for neural network controllers. In addition,
some work on provably safe RL focuses on the probabilistic setting [Berkenkamp et al.l 2017} Jansen
et al., [2020, Xiong et al.,[2024]] and required statistical assumptions, whereas our work aims for strict
deterministic safety guarantees over a finite horizon.

Among existing works focusing on safe RL with formal guarantees, |[Fulton and Platzer [2018] apply a
theorem prover for differential dynamic logic to guarantee safety during runtime. |[Noren et al.|[2021]
and [Wei et al.|[2022]] consider forward safety invariance for systems with uncertainty. [Kochdumper|
et al.| [2023]] propose to project actions to safe subspace using zonotope abstraction and mixed-integer
programming (MIP). However, these approaches do not readily apply to neural network controllers.
For systems involving neural networks, Wei and Liu|[2022]] applied integer programming formulation
for neural networks to solve an MIP problem to find safe control actions satisfying forward invariance;
Bastani et al.|[2018]] extracted decision-tree-based policies for RL to reduce verification complexity;
and |Ivanov et al.|[2019] used hybrid system verification tools to model deep neural networks. Our
work differs from these and similar approaches because we consider forward reachability guarantees
for neural network controllers in neural nonlinear systems.

We make extensive use of neural network verification tools. Early work in this vein used SMT [Katz
et al., 2017, [Huang et al.,2017]] or MIP-based [Tjeng et al.l 2019] approaches to solve this problem,
but their scalability is extremely limited. Significant progress has been made in developing techniques
to formally verify the properties of large neural networks through overapproximation, such as bound
propagation [Zhang et al.,|2018} |Gowal et al., 2018} [ Xu et al., [2021]], optimization [|Qin et al., 2019,
Dvijotham et al., [2018], [2020], and abstract interpretation [Gehr et al., 2018} |Singh et al.| 2019, |[Katz
et al.| 2019} [Lopez et al.,, 2023]. Recently, most verifiers have adopted branch-and-bound based
approaches to further enhance their performance [Wang et al.|[2021] [Kouvaros and Lomuscio, [2021],
Ferrari et al., 2022, |[Zhang et al.| [2022]. Our approach makes use of differentiable overapproximation
methods known collectively as «,B~-CROWN [Wang et al.,[2021} [Zhang et al., 2022] (implemented
with the auto_LiRPA package), and takes advantage of the particular structure of these verification
approaches in applying incremental verification to significantly speed up safe controller learning.

2 Preliminaries

Constrained Markov Decision Process (CMDP): We consider a deterministic Constrained Markov
Decision Process (CMDP) defined by the tuple (S, A, F,R,~,C1,Co,...,Cpn,d1,da, ... ,dpy),
where: S is a set of states, A is a set of actions, ' : S x A — S is the deterministic state transition
function, R : S x A — R is the reward function, C; : S x A — R is the cost function for the i-th
constraint, d; is the cost limit for the i-th constraint, and y € [0, 1) is the discount factor. A policy
m: S — Ais a mapping from states to actions. A trajectory is a sequence of states and actions
generated by following a policy 7 from some initial state sg € Sg C S, which can be represented as
a sequence T = (sg, ag, S1, a1, $2, a2, ...) where s; € S, ay = w(s;) forall t, s;p1 = F(s¢,a¢), a
reward r, = R(s, a;) and a cost ¢; = Zie[m] C;(st, at) are received after each action.

We denote 7y as the policy that is parameterized by the parameter §. A common goal for CMDP is to
learn a policy 7y that maximizes a discounted sum of rewards 7 (7y) while ensuring that expected
discounted costs J¢, () do not exceed the cost limit d;, Vi € [m]. Formally, CMDP is to solve the
below optimization problem:

max J(mg) st Jo,(mg) < d;, Vi € [m], (1)

where 7 () = Err [0 7 R(s1, a1)] and T, (mg) = Errer [S520 7' il 1)

Verified Safe CMDP: We define the state space as the union of predefined safe and unsafe states,
denoted as S = Sgfe U Synsate- We assume that the transition function F' is represented by a
ReLU neural network, and is known for verification purposes. This assumption is very general, as
many known dynamical systems can be represented exactly or approximately using ReLU neural
networks [Gillespie et al.l 2018} [Pfrommer et al.l 2021} [Dai et al., [2021} |Liu et al., |2024]. Our



objective is to train a controller that not only satisfies safety constraints empirically at decision time,
but also ensures verified safety for the first K steps.

Formally, we aim to solve the following optimization problem:

mgxx J (m9) (2a)
s.t. Jo, (m9) < d;, Vi€ [m] (empirically satisfied) (2b)
St € Sate, V€ [K] (mathematically verified) (2¢)
Si41 = F(s¢,a¢), a0 = mo(51), 50 € So € Seae (2d)

In particular, we aim to solve (2)) for high values of K and large sets of verified safe initial states Sp,
while preserving a high objective value. Note that for a given controller, can also be interpreted
as a set of forward reachability verification problems. However, our interest here extends beyond
mere verification; we aim to train (synthesize) a controller that can be efficiently verified for safety.
For simplicity, we restrict attention to d; = 0 for all ; however, our approach can be directly applied
to arbitrary values of d;.

In this work, we primarily utilize the a;,3-CROWN toolbox [Xu et al., 2021}, Wang et al., 2021]]
for neural network (NN) verification; however, our training framework is general and, in princi-
ple, can work with any differentiable verification technique. Let F¥™ denote the k-step forward
function (iterative composition of F') under policy my. For example, s1 = F17 (s) = F(s,my(s)),
F?70(s) = F(s1,mg(s1)), and so on. Correspondingly, we represent the k-step forward reachable re-
gions returned by the NN verifier for an initial state set S as Fg(;grfd(S ), which is typically represented
as a box.

3 Approach

The problem of learning verified safe control over a target horizon K entails three key technical chal-
lenges. The first is that as K grows, the differentiable overapproximation techniques for reachability
verification become looser, making it difficult to verify K beyond very small horizons. Second, while
control policies 7 depend on state, it is difficult to find a single universal controller that can achieve
verified safety for each starting state in Sy. Our approach addresses these challenges through three
technical advances: 1) curriculum learning with memorization and 2) incremental verification, which
enable learning verified safe controllers over longer horizons K, and 3) iterative learning a collection
of controllers customized for subsets of Sy, which addresses the third challenge above.

Curriculum Learning with Memorization: Curriculum learning is an iterative training strategy
where the difficulty of the task increases as training progresses [Bengio et al., 2009, Wu and Vorobey
chik| [2022]]. At a high level, for a problem targeting K -step verified safety, training can be divided
into K phases, with each phase k aiming to achieve verified safety at the corresponding k-th forward
step. In the k-th phase, we conduct formal verification against the k-th step safety, filter out regions
that cannot be verified, and use them for further training. As k increases, the task difficulty also
increases, mainly due to the forward NN F*7™ becoming deeper. For a deeper NN and a fixed
branching budget, the output bounds become looser [Wang et al.,|2021]], increasing the likelihood of
intersections with unsafe regions. However, the ability to verify safety in prior steps enables us to
tailor a controller that closely aligns with the fixed NN dynamics, thereby achieving tighter bounds.
This process captures the essence of curriculum learning.

Nevertheless, our approach deviates from traditional curriculum learning in a way that is quite
consequential for our setting: we aim to ensure that a controller is verified as safe not only for the
k-th step but also maintains safety for all prior steps. Consequently, during our curriculum learning
process, we store states that are close to being unsafe in each phase in a buffer, effectively memorizing
information about regions that potentially violate safety. These states, along with the unverified states
at the current phase, are then incorporated into the training process, helping to ensure safety across
the entire K -step horizon. Our curriculum training framework is detailed in Algorithm [I]

The process begins by initializing the policy 7y with a pre-trained policy using safe RL algorithms
(Line[3). We then split the initial region Sy into a grid Gy (Line[d). We assume Sy is a m-dimensional
box centered at s, € R™ with a radius r € R™, i.e., So = [s. — T, 8. + r|]. We prioritize splitting
the dimensions that are directly implicated in safety constraints, thereby taking advantage of the



Algorithm 1 Curriculum Learning with Memorization

1: Input: target safety horizon K, initial region Sy, unsafe region Sypsafe, max attempt 7max
2: Output: controller 7y

3: Initialize 7y with pre-trained policy, buffer B = {}

4: Split initial region Sy into grid Gy

5: fork=1,2,..., K do

6 Tyrain < 0

70 Sye F]f(’,:[fd(go) N Sunsate // optionally use Branch-and-Bound to refine G

8:  while 1y < Ny and Sy # 0 do

9: Safe RL training with loss function £(z) = Lsaterr () + ALBound (Sue U B)
10: Nrain < 77grain +1
11: Suc — FB(;:—rfd(go) N Sunsafe

12:  end while )
13:  Filter regions Sy, C Gy such that dist(Fg(;gfd(Sk), Sunsafe) < €, store (Sg, k) in buffer B
14: end for

typical structure of safety constraints that only pertain to a small subset of state variables. For
instance, in drone control for obstacle avoidance, we prioritize splitting the location and angle axes.
Next, we design a cost function C'g for regions where Cr(S) = 0 if S N Sypsate = 0, and Cr(S) >
0 otherwise. A positive C'r means region S intersects with Synefe, While Cr = 0 indicates S is
safe. For example, if the task is to avoid the region [a, b], and the output bounds are given by
xp = [T, Tup), we can define Cr(zp) = max(xyp — a,0) - max(b — x, 0). We then calculate the
gradient OC g (Fyn°,(So))/Or for a chosen value of ¢ and proceed to split along the dimensions with
the largest gradient values, as a larger gradient indicates a higher likelihood of reducing the cost Cg.
We continue this process, keeping the total number of grid splits within a predetermined budget, and
stop splitting once the budget is reached.

For each training phase k, we monitor the training rounds (7y.,;,) as well as the k-step forward
reachable regions returned by the verifier that are identified as unsafe (S,.). Each phase is conducted
for a maximum of ny,, rounds or until verified k-step safety is achieved, that is, when S,. = 0
(Line . At the end of each training phase, we also filter out regions Sj, C Gy where F]f(;:lfd(Sk) are
within e distance to the unsafe regions. These regions are then stored in the buffer B (Line[I3). We
include these critical regions in the training set for each reinforcement learning update to enhance
verified safety across the entire horizon. During this process, we optionally use the Branch-and-Bound
algorithm [Everett et al.,[2020, Wang et al., 2021] to refine Gy up to a predetermined branching limit,
which helps achieve tighter bounds.

For each RL update, we use a loss function that integrates the standard safe RL loss with a k-phase
loss for bounds (Line [9), where

£(z) = Lsutern(x) + Mpouna(Suc U B) (%)
EBound(Suc U B) = CR(Fl;C(;:rfd(SuC)) + Z CR(Fl;i)Tlrjgd(Sl)) (3b)
(Si,i)EB

Here, Lsafery is the standard safety RL loss, and Lpoung denotes the loss that incentivizes ensuring
the output bounds returned by the verifier remain within the safe region. If both S, is k-step safe
and V(S;,1) € B, S; is i-step safe, then Lpoynd(Sue U B) = 0, otherwise, Lpound(Suec U B) > 0.
In practice, we clip Lgound(Suc U B) to ensure it remains within a reasonable range for training
stability. The regularization parameter ) is calculated based on the magnitude of Lgaeerr. and Lpound,
with A = min(Amax, @r - LsaferL/LBound)> Where Apax and a,. are hyperparamters. This approach
helps maintain the effectiveness of bound training, especially when Lpoyng is small. Furthermore, we
cluster elements in B into categories so that we do not need to construct a computational graph for
all ¢+ < k. Specifically, we merge all S; for i; < ¢ < i into the i2 category, meaning the elements in
B are now (U;, <i<i,Si, 11, 12) instead of (S;, ).

It is important to note that while our training scheme targets K -step verified safety, the policy returned
by Algorithm |1| does not necessarily guarantee it. We address this issue by learning initial-state-
dependent controllers as described below. Furthermore, the computation of Lgyng is computationally
intensive. Its backpropagation requires constructing computational graphs for the k-th step forward



NN Fg(;l’;fd, as well as for all i-th step forward NNs corresponding to each (.S;, %) € B. These NNs
become increasingly deep as k grows, causing the computational graphs to consume memory beyond
the typical GPU memory limits. We will address this next.

Incremental Verification: Above we discussed the challenge presented by the backpropagation of
Lbound>, Which is GPU-memory intensive and does not scale efficiently as the target K -step horizon
increases. To mitigate these issues, we propose the use of incremental verification to enhance
computational efficiency and reduce memory consumption. While incremental verification is well-
explored in the verification literature [Wang et al.| [2023b]], |Althoff| [2015]], to our knowledge, we are
the first to apply it in training provably safe controllers.

At a high level, to calculate the reachable region for a kg Step, we decompose the verification into
multiple phases. We begin by splitting the kiaree horizon into intervals defined by 0 < £y < kg <
-+ < kp = Karger. We first calculate the reachability region for the k; step and then use its output
bounds as input to calculate the reachable region for the k; 1 step. This approach ensures that the
computational graph is only built for the (k;11 — k;) step horizon when using «,3~-CROWN.

Unlike traditional incremental verification, which typically calculates the reachable region from k to
k + 1, we incrementally verify and backpropagate several steps ahead in a single training iteration
(i.e., from k; to k; 1, where k; 1 — k; > 1). This generalized version of incremental verification is
essential for training, as it significantly accelerates the process and reduces the likelihood of becoming
trapped in "local optima," where inertia from the policy obtained for &k prevents successful verification
for k 4+ 1 (e.g., due to proximity to the unsafe region with velocity directed toward it).

For the bounds used in neural network training, we effectively build the computational graph and
perform backpropagation using a neural network sized for (k,, — k,,—1) steps’ reachability, which
is independent of Kiyger. This significantly reduces GPU memory usage. Since F*7o is an iterative
composition of F' under the same policy 7y, the bound for k,,_; steps tends to be tight. Moreover,
when training 7y to tighten these bounds, the overall bound for the entire Kiger horizon becomes
increasingly tight.

Initial-State-Dependent Controller: While curriculum learning above includes verification steps,
it does not guarantee verified safety for the controller over the entire K -step horizon. In this section,
we propose using an initial-state-dependent controller to address this issue. For example, in a vehicle
avoidance scenario, different initial conditions, such as varying speeds and positions, may correspond
to different control strategies. We introduce a mapping function % : Sy — ©, which maps each initial
state so € S to a specific policy 7y, (s,)- The underlying idea is that training a verifiable safe policy
mp over the entire set of initial states Sy is inherently challenging. However, by mapping each initial
state to a specific set of parameters, we can significantly enhance the expressivity of the policy. This
approach is particularly effective in addressing and eliminating corner cases in unverifiable regions.

At a high level, the mapping and parameter set © are obtained by first performing comprehensive
verification for the controller output from Algorithm[I|over the entire K-step horizon. We then filter
unverified regions, cluster them, and fine-tune the controller parameters 6 for each cluster. We store
these fine-tuned parameters in the parameter set ©. This iterative refinement process continues until
for every so € Sp, there exists a f € O such that 7y is verified safe for the entire K -step horizon.
The detailed algorithm is presented in Algorithm 2]

The algorithm starts with verifying the policy my obtained from Algorithm [I] The function
VERIFYSAFE(7g, Sp, K) (Line E]) performs verification of policy 7y for initial states Sy for the
entire horizon K. This verification process identifies and categorizes regions into verified safe areas,
S, and areas identified as unsafe, Sy, .. Notably, the union of these regions covers all initial
states, meaning SV, U SY . = Sy. After verifying that any state sy € SY,. is guaranteed to be safe
under policy my, we record (stafe, 7y ) in the mapping dictionary H (Line.

Next, we address the unsafe regions SV .. that lack a corresponding verified safe controller. We first
cluster them based on the type of safety violation (Line[7). The reason for clustering is that regions
with similar safety violations are more likely to be effectively verified safe by the same controller. For
instance, in a scenario involving navigation around two obstacles, we could potentially identify up to
three clusters: the first corresponding to grids that can lead to collisions with obstacle 1, the second
includes grids associated with collisions with obstacle 2, and the third is the set of grids that may
lead to collisions with both. Given the finite number of safety constraints, the number of possible
clusters is also finite. Although the theoretical maximum number of clusters grows exponentially



Algorithm 2 Initial-State-Dependent Controller

1: Input: target safety horizon K, policy 7y
: Output: mapping dictionary H, which includes the mapping h and parameter set ©
: Initialize H = {}
: (SYe, SY i) < VERIFYSAFETY (g, S, K)

2
3
4
5: Store (SY.,6) in mapping dictionary H
6
7
8

safe?

: while SY . # () do

{81,82,...,Sr} + CLUSTERREGION(SY _.) // cluster based on safety violation
. fori=1,2,...,1do
9: mg: < TRAINPOLICY (7g, S;, K)
10: (Siafe.i> Sunsate,i) < VERIFYSAFETY (mg/, S;, K)
11: Store (Sy, ;» 0) in mapping dictionary H

12:  end for
. 14 |4
13: Sunsafe <~ Uz Sunsafe,i

14: end while

with the number of safety constraints, in practice, this number is significantly smaller. This is due
to the fact that the controller, being pretrained, is less likely to violate multiple or all constraints
simultaneously. We then fine-tune the controller for the initial states in each cluster using Algorithm/[T]
This fine-tuning process is typically fast, as the initial policy is already well-trained. We store each
initial state region and its corresponding verified safe policy in the mapping dictionary H. This
clustering and fine-tuning process continues until a verified safe policy exists for every sg € Sg.

At decision time, given an initial state so, we first identify the pair (SY;., 79) in the mapping dictionary

H where sy € SY,., then use the corresponding verified safe controller 7. Note that the soundness
of the algorithm directly follows from our use of the sound verification tool «,3-CROWN.

4 Experiments

4.1 Experiment Setup

We evaluate our proposed approach in five control settings: Lane Following, Vehicle Avoidance, 2D
Quadrotor (with both fixed and moving obstacles), and 3D Quadrotor [Kong et al.,[2015 |Dai et al.,
2021]]. The dynamics of these environments are approximated using NN with ReLU activations. We
use a continuous action space for those discrete-time systems. In each experiment, we specify the
initial region &y for which we wish to achieve verified safety. We then aim to achieve the maximum
K for which safety can be verified. We evaluate the approaches using four metrics: 1) Verified-K:
the percentage of regions in Sy that can be verified for safety over K steps; 2) Verified-Max: the
maximum number of steps for which all states in Sy can be verified as safe; 3) Emp-k: the percentage
of regions in Sy that are empirically safe for k steps, obtained by sampling 107 datapoints from the
initial state Sy. This is evaluated for both £ = K (the number of steps we are able to verify safety
for) and k = T (total episode length); 4) Avg Reward: the average reward over 10 episodes, with
both mean and standard deviations reported. Note that the average reward is computed over the entire
episode horizon for each environment, independently of the verification horizon, as in conventional
reinforcement learning.

We compare the proposed verified safe RL (VSRL) approach to six baselines: 1) PPO-Lag, which
utilizes constrained PPO with the standard Lagrangian penalty [[Achiam et al.|[2017]]; 2) PPO-PID,
which employs constrained PPO with PID Lagrangian methods [Stooke et al.,[2020]; 3) CAP, which
adopts model-based safe RL with an adaptive penalty [Ma et al., [2022]]; 4) MBPPO, which applies
model-based safe RL with constrained PPO [Jayant and Bhatnagar, [2022]; 5) CBF-RL, which is a
Control Barrier Function (CBF)-based safe reinforcement learning approach [Emam et al.| 2022];
and 6) RESPO, which implements safe RL using iterative reachability estimation [Ganai et al., 2024]].

Next, we describe the four autonomous system environments in which we run our experiments.
Further experimental setup details are provided in Appendix[A.2]



Table 1: Results for verified safety, empirical safety and average reward. The percentage results are

truncated instead of rounded, to prevent missing unsafe violations.

Lane Following

Verified-80(1)  Verified-Max(1) Emp-80(1) Emp-500(1) Avg Reward(?)
PPO-Lag 98.6 7 99.9 99.9 326 +6
PPO-PID 88.5 8 99.9 99.9 32746
CAP 99.5 7 99.9 99.9 357 +4
MBPPO  99.7 8 99.9 99.9 382+5
CBF-RL  98.7 7 99.9 99.9 331+7
RESPO 99.8 7 99.9 99.9 383+ 7
VSRL 100.0 80 100.0 100.0 21445

Vehicle Avoidance (Moving Obstacles)

Verified-50(1)  Verified-Max(1) Emp-50(1) Emp-500(1) Avg Reward(?)
PPO-Lag 72.8 6 87.8 87.8 303 £ 12
PPO-PID 72.0 6 89.4 89.4 287 £+ 22
CAP 73.3 13 89.5 89.5 393 + 35
MBPPO  82.6 6 94.2 94.2 375+ 10
CBF-RL 73.0 6 89.3 89.3 301 +15
RESPO 74.5 9 89.6 89.6 391 + 20
VSRL 100.0 50 100.0 100.0 401 +4

2D Quadrotor (Fixed Obstacles)

Verified-50(1) Verified-Max(1) Emp-50(17) Emp-500(1) Avg Reward(1)
PPO-Lag 0.0 5 83.4 83.4 405 £+ 30
PPO-PID 0.0 4 99.3 97.5 411 + 25
CAP 0.0 3 99.5 99.5 393 +£ 12
MBPPO  58.9 9 99.9 84.5 399 + 11
CBF-RL 0.0 5 89.9 89.7 408 + 17
RESPO 60.4 14 99.9 99.9 339+ 19
VSRL 100.0 50 100.0 100.0 401 £ 20

2D Quadrotor (Moving Obstacles)

Verified-50(1)  Verified-Max(1) Emp-50(17) Emp-500(1) Avg Reward(1)
PPO-Lag 0.0 3 99.7 99.7 3711 +7
PPO-PID 0.0 2 99.7 99.7 37145
CAP 57.1 8 99.2 99.2 362+ 3
MBPPO 0.0 4 99.3 99.3 374+6
CBF-RL 0.0 4 99.3 99.3 369+ 6
RESPO 0.0 6 99.1 99.1 373+6
VSRL 100.0 50 100.0 100.0 364 +4

3D Quadrotor (Fixed Obstacles)

Verified-15(1)  Verified-Max(1) Emp-15(17) Emp-500(1) Avg Reward(1)
PPO-Lag 0.0 3 85.2 81.2 132 £ 11
PPO-PID 0.0 3 89.4 88.3 145 +12
CAP 0.0 4 63.6 59.2 141 £ 11
MBPPO 41.1 1 75.4 73.1 132+9
CBF-RL 0.0 2 82.3 79.2 140 + 10
RESPO 0.0 1 65.7 21.3 79+8
VSRL 100.0 15 100.0 100.0 122+ 14




Lane Following: Our lane following environment follows the discrete-time bicycle model [Kong
et al., 2015]]. The model inputs are 3-dimensional (x, 0, v), where x is the lateral distance to the
center of the lane, 6 is the angle relative to the center of the lane, and v represents the speed. The
objective is to maintain a constant speed while following the lane, meaning the system equilibrium
point is (z,0,v) = (0,0, Vurget). The safety constraints are 1) x stays within a maximum distance
from the lane center (||z|| < dmax), 2) € remains within a predefined range (||0]] < 0max), and 3) v
does not exceed the maximum threshold (v < Vyay)-

Vehicle Avoidance: Our vehicle avoidance environment features a vehicle moving on an z-y plane,
with 4-dimensional inputs (z,y, 6, v). Here, (x, y) represents the location of the vehicle on the plane,
0 is the angle relative to the y-axis, and v is the speed. In this setting, we have five moving obstacles,
each moving from one point to another at constant speed. Each obstacle is represented as a square.
Additionally, safety constraints are set for the speed (v < vnmax) and angle (]|6]] < Omax). The task is
to navigate the vehicle to a designated location while following safety constraints.

2D Quadrotor: For the 2D quadrotor environment, we follow the settings in|Dai et al.|[2021]]. The
input is 6-dimensional (y, z,0, 9, 2, 0) where (y, z) represents the position of the quadrotor on the
y-z plane, and 6 represents the angle. The action space is 2-dimensional and continuous; the actions
are clipped within a range to reflect motor constraints. Our safety criteria include an angle constraint
(]I10]] < 6max) and a minimum height constraint to prevent collision with the ground (y > Ymin). We
consider two scenarios for obstacles: fixed and moving. For fixed obstacles, there are five rectangular
obstacles positioned in the -z plane. For moving obstacles, there are five obstacles that moves from
one point to another at constant speed, each represented as a square.

3D Quadrotor: Our 3D quadrotor environment features a 12-dimensional input space, represented
as (z,y,2,¢,0,¢, 1,79, 2wy, wy,w). The action space is 4-dimensional and continuous; the actions
are clipped within a range to reflect motor constraints. Here, (x,y, z) denotes the location of the
quadrotor in space, ¢ is the roll angle, 6 is the pitch angle, and v is the yaw angle, w,, w,, w, represent
the angular velocity around the x, y, and z axes, respectively. The task is to navigating towards the
goal while adhering to safety constraints, which include avoiding five obstacles represented as 3D
rectangles. The details for the environment settings are deferred to the Appendix.

4.2 Results

As shown in Table ] our approach significantly outperforms all baselines in terms of verified safety,
as well as empirical safety over the entire episode horizon. Furthermore, the only environment in
which VSRL exhibits a significant decrease in reward compared to baselines is lane following; for
the rest, it achieves reward comparable to, or better than the baselines.

Specifically, in the lane following environment, the proposed VSRL approach achieves verified
80-step safety using a single controller (i.e., |©| = 1). This is an order of magnitude higher K than
all baselines (which only achieve K < 8). While all baselines obtain a safety record of over 99.9%
over the entire episode (K = 500), our approach empirically achieves perfect safety.

For vehicle avoidance, we achieve verified 50-step safety using two controllers (i.e., |©] = 2); in
contrast, the best baseline yields only K = 13. We also observe considerable improvements in both
verified and empirical safety over the baseline approaches: for example, the best verified baseline
(CAP) violates safety over 10% of the time over the full episode length, whereas VSRL maintains a
perfect safety record. In this case, VSRL also achieves the highest reward.

For the 2D Quadrotor environment with fixed and moving obstacles, we are able to achieve verified
50-step safety using four and two controllers, respectively. The best baseline achieves only K = 14
in the case of fixed and K = 8 in the case of moving obstacles (notably, different baselines are best
in these cases).

Finally, in the most complex 3D Quadrotor environment, we achieve verified safety for K = 15,
but empirically maintain a perfect safety record for the entire episode durection. The best baseline
achieves verified safety for only K = 4, but is empirically unsafe over 40% of the time during an
episode. Even the best safety record of any baseline is unsafe nearly 12% of the time, and we can
only verify its safety over a horizon K = 3.

Ablation Study: We evaluate the importance of both incremental verification and using multiple
initial-state-dependent controllers as part of VSRL. As shown in the Appendix (Section|A.I), the



former significantly reduces average verification time during training, whereas the latter enables us to
greatly boost the size of the initial state region Sy for which we are able to achieve verify safety.

5 Conclusion

We present an approach for learning neural network control policies for nonlinear neural dynamical
systems. In contrast to conventional methods for safe control synthesis which rely on forward
invariance-based proofs, we opt instead for the more pragmatic finite-step reachability verification.
This enables us to make use of state-of-the-art differentiable neural network overapproximation
tools that we combine with three key innovations. The first is a novel curriculum learning approach
for maximizing safety horizon. The second is to learn multiple initial-state-dependent controllers.
The third is to leverage small changes in iterative gradient-based learning to enable incremental
verification. We show that the proposed approach significantly outperforms state of the art safe RL
baselines on several dynamical system environments, accounting for both fixed and moving obstacles.
A key limitation of our approach is the clearly weaker safety guarantees it provides compared to
forward invariance. Nevertheless, our results demonstrate that finite-step reachability provides a more
pragmatic way of achieving verified safety that effectively achieves safety over the entire episode
horizon in practice, providing an alternative direction for advances in verified safe RL to the more
typical forward-invariance-based synthesis.
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A Appendix

A.1 Ablation Study

In this section, we conduct an ablation study to evaluate the importance of both incremental verifica-
tion and the use of multiple initial-state-dependent controllers as part of the VSRL approach.

Table 2: Runtime (in seconds) for 20 training epochs with and without incremental verification.

Lane Following
5-step (}) 10-step (4) 15-step (}) 20-step ({)

w/ Incr. Veri. 94 94 17.4 24.8
w/o Incr. Veri. 9.6 38.1 105.9 185.5

Vehicle Avoidance
5-step (}) 10-step () 15-step (}) 20-step ({)

w/ Incr. Veri. 14.0 16.1 19.8 25.5
w/o Incr. Veri. 14.1 47.6 110.5 187.1

2D Quadrotor
5-step (}) 10-step () 15-step (}) 20-step ({)

w/ Incr. Veri. 8.4 13.7 15.9 19.6
w/o Incr. Veri. 8.8 35.8 86.8 152.1

3D Quadrotor
5-step (1) G-step ()  7-step({)  8-step ()

w/ Incr. Veri. 31.0 31.9 36.7 49.9
w/o Incr. Veri. 30.9 61.6 149.9 403.6

Table 2] presents the ablation study results for incremental verification. To ensure a fair comparison, we
record the runtime for 20 training epochs with only one region from the grid split for all environments.
In practice, this process can be run on GPUs in parallel for multiple regions. Given that the neural
network structures for the 2D Quadrotor environment with both moving and fixed obstacles are the
same, the runtime results are similar; therefore, we report these collectively as 2D Quadrotor. The
results indicate that incremental verification significantly reduces the average verification time during
training. Without incremental verification, the verification time increases rapidly as the number of
steps increases.

Table 3: Percentage of regions in Sy that can be verified for safety for K steps (Verified-K).

Veh. Avoid. (1) 2D-Quad (F) (1) 2D-Quad (M) (1) 3D-Quad (F) (1)

Single Ctrl.  99.0 97.6 96.9 74.7
Multi Ctrl.  100.0 100.0 100.0 100.0

Table [3] shows the ablation study results for using multiple initial-state-dependent controllers. We
report results for the Vehicle Avoidance environment (Veh. Avoid.), 2D Quadrotor with fixed obstacles
(2D-Quad (F)), moving obstacles (2D-Quad (M)), and 3D Quadrotor (3D-Quad (F)). We exclude the
Lane Following environment from this comparison, as only one controller was used there to achieve
100% verified safety. The results demonstrate that using multiple controllers significantly enhances
the ability to achieve verified safety across a larger initial state region Sy.

A.2 Experiment Setup

Lane Following Our lane following environment follows the discrete-time bicycle model [Kong
et al.,[2015]

z =wcos(0+ f)
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y=wvsin(f + 5)
0= lgsin(ﬁ)

vV=a

B =tan! ( b tan(df))

l Ft Iy
where we set the wheel base of the vehicle to 2.9m. The model inputs are 3-dimensional (z, 6, v),
where z is the lateral distance to the center of the lane, 6 is the angle relative to the center of the lane,
and v represents the speed. The objective is to maintain a constant speed while following the lane,
meaning the system equilibrium point is (z, 8, v) = (0, 0, Vtaret). The safety constraints are

1. x stays within a maximum distance from the lane center (||z|| < dmax),
2. 6 remains within a predefined range (||6|| < Omax),
3. v does not exceed the maximum threshold (v < vpax)-

The parameters are set as dpmax = 0.7, Omax = 7/4, and vpmax = 5.0. The initial regions Sy is
x € [-0.5,0.5],8 € [-0.2,0.2],v € [0.0,0.5]. The reward received at each step is measured as the
distance to the equilibrium point. More specifically, for a state that is of distance d to the target
equilibrium point, the reward is e ~¢. For VSRL training, our controller is initialized using a controller
pretrained with a safe RL algorithm. When training with the bound loss, we add a large penalty on
unsafe states to incentivize maintaining safety throughout the entire trajectory. For branch and bound
during verification, we set the precision limit as 0.025, which means as soon as the precision of the
grid region reaches this precision, we stop branching. For the dynamics approximation, we use an
NN with two layers of ReLU each of size 8.

Vehicle Avoidance Our vehicle avoidance environment features a vehicle moving on an x-y plane,
with 4-dimensional inputs (z,y, 8, v). Here, (z,y) represents the location of the vehicle on the plane,
0 is the angle relative to the y-axis, and v is the speed. In this setting, we have five moving obstacles,
each moving from one point to another at a constant speed for the duration of 500 steps. The five
obstacles are: 1) moving from (x,y) = (—0.6,1.0) to (z,y) = (—0.35,2.0); 2) moving from
(z,y) = (0.6,0.0) to (z,y) = (0.75,1.0); 3) moving from (x,y) = (0.0, 1.0) to (z,y) = (0.0,2.0);
4) moving from (x,y) = (—0.85,1.0) to (z,y) = (—1.6,1.5); 5) moving from (z,y) = (0.75,0.0)
to (x,y) = (0.85,0.0). Each obstacle is represented as a square with a diameter of 0.1. Additionally,
safety constraints are set for the speed (v < vVmax) and angle (]|0]] < Gmax), Where vy = 5.0
and Oy, = m/2. The task is to navigate the vehicle to a designated location while following
safety constraints. The agent starts near the origin within an area defined by z,y € [—0.5,0.5],
6 € [-0.2,0.2],and v € [0, 0.1}, and the goal is (Ztarget, Yrarget) = (1.0, 2.0). The branching precision
limit is 0.025 and for dynamics approximation, we use a NN with two layers of ReLU each of size
10.

2D Quadrotor For the 2D quadrotor environment, we follow the settings in Dai et al.|[2021]].

~7 9
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m

. cos(0
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We use a timestep dt = 0.02, the mass of the quadrotor is set to m = 0.486, the length to [ = 0.25,
the inertia to I = 0.00383, and gravity to g = 9.81. The input is 6-dimensional (y, z, 0,3, %, 0),
where (y, z) represents the position of the quadrotor on the y-z plane, and 6 represents the angle. The
action space is 2-dimensional and continuous; the actions are clipped within a range to reflect motor
constraints. Our safety criteria are

1. angle 6 remains within a predefined range (||0|| < Omax),
2. a minimum height constraint to prevent collision with the ground (y > Ymin ),
3. avoid obstacles.

Here we set Oax = 7/3 and ymin = —0.2. The task is for the quadrotor to navigate towards the goal
while following safety constraints. We consider two scenarios for obstacles: fixed and moving. For
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fixed obstacles, there are five rectangular obstacles positioned in the y-z plane. We use (27, Zv, Y1, Yu)
to represent the two dimensional box, and the obstacles are: (x;, z., yi, yu) = (—0.3,—0.1,0.4,0.6),
(mh L, Yi, yu) = (_127 —0.8,0.2, 04)’ (l’l, Ly Yl yu) = (007 0.1,0.5, 10)’ (xla Ly Yi, yu) =
(0.6,0.7,0.0,0.2), (x1, Tw, Y1, ¥x) = (—0.8,—0.7,0.7,0.9). For moving obstacles, there are five
obstacles that moves from one point to another at constant speed for the duration of 500 steps, each
represented as a square of diameter 0.1. The obstacles are: 1) moving from (x,y) = (0.6,0.0)
to (z,y) = (0.6,0.1); 2) moving from (z,y) = (—0.5,0.2) to (x,y) = (—0.4,0.3); 3) moving
from (z,y) = (—0.3,0.4) to (x,y) = (—0.4, 0.5); 4) moving from (x,y) = (—0.1,0.3) to (z,y) =
(0.0,0.4); 5) moving from (z,y) = (—0.7,0.5) to (z,y) = (—0.4,0.6). The initial region for the
quadrotor is defined with « € [—0.5, 0.5] and the remaining state variables within [—0.1,0.1]. The
target goal is set to (z,y) = (0.6,0.6). We set the branching limit to 0.0125 and for dynamics
approximation we use a NN with two layers of ReLU each of size 6.

3D Quadrotor Our 3D quadrotor environment features a 12-dimensional input space, represented
as (z,y,2,6,0,¢,%,9, 2,wy, wy,w,). The action space is 4-dimensional and continuous; the actions
are clipped within a range to reflect motor constraints. Here, (x,y, z) denotes the location of the
quadrotor in space, ¢ is the roll angle, 6 is the pitch angle, and v is the yaw angle, w,,w,,w,
represent the angular velocity around the z, y, and z axes, respectively. The environment setting and
neural network dynamics approximation follows the setup in|Dai et al.|[2021]], with the modification
of using ReLU activations instead of LeakyReLU. The system dynamics is:

! 1 1 1
0 L 0 —-L

plant_input = | L 0 I o | v
L Kz —Kz Kz —Kz
R = rpy2rotmat(¢, 8, 1)
[0 0
pP=|0|+R- 0
l—g plant_input[0]/m
. —w X (I -w) + plant_input[1 :]
w= Vi
b 1 sin(¢)-tan(f) cos(¢) - tan(6)
gl = 1|0 C(_)s((f)) —sir(lqg;zﬁ) W
. sin cos
1/] _0 cos(0) cos(0)
The dynamics neural network has two ReLU layers, each with a size of 16 and dt = 0.02.

We set the branching precision limit to 0.00625. The task is to navigating towards the goal
while avoiding five obstacles represented as 3D rectangles. The locations of the obstacles
are (—0.5,0.5,-0.2,0.2,-0.65, —0.55), (—0.7,—-0.6,—0.1,0.1, —0.5,—0.4), (0.5, 0.6, —0.2, 0.2,
-0.4,-0.3),(—0.8,—-0.6,0.2,0.4,—-0.3,—-0.2), (0.8, —0.6, —0.4, —0.2, —0.2, —0.1), where the
first obstacle is to avoid controller collide with the ground. We set the goal at (z,y,z) =
(0.0,0.0,0.0), and the initial region is defined with x € [-0.5,0.5], y € [-0.1,0.1], and
z € [—0.5, —0.3], with the remaining variables confined to the range [—0.05, 0.05]. The reward is
calculated based on the distance to the goal, where the agent receives a higher reward for being closer
to the goal. The environment episodes end if either the magnitude of ¢ or 8 exceeds /3.

A.3 Compute Resources

Our code runs on an AMD Ryzen 9 5900X CPU with a 12-core processor and an NVIDIA GeForce
RTX 3090 GPU.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Introduction Section
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we discuss the primary limitation of the work in the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of the experimental setup both in Section[A.2]and in the
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will provide all code and data on github, along with documentation, to
facilitate reproduction of the experiments if the paper is accepted for publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide this information in Section[d]and the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report confidence intervals in the results table in the experiments (see
Section [).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Justification: We provide this information in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: All aspects of the paper and research conform in all respects to the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As mentioned in the introduction, ability to synthesize safe controllers is a
core challenge in autonomous systems (such as autonomous cars). As such, our work is
expected to have positive broader impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper is about safe reinforcement learning, and poses no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper references the Auto_Lirpa codebase and associated research papers
describing it.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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