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ABSTRACT

Most existing decentralized learning methods with differential privacy (DP) em-
ploy fixed-level Gaussian noise during training, regardless of gradient conver-
gence, which compromises model accuracy without providing additional privacy
benefits. In this paper, we propose a novel Differentially Private Decentralized
learning approach, termed AdaD2P, which employs Adaptive noise leveraging
the real-time estimation of sensitivity for local updates based on gradient norms
and works for time-varying communication topologies. Compared with existing
solutions, the integration of adaptive noise enables us to enhance model accuracy
while preserving the (ϵ, δ)-DP privacy budget. We prove that AdaD2P achieves

a utility bound of O
(√

d log
(
1
δ

)
/(
√
nJϵ)

)
, where J and n are the number of

local samples and nodes, respectively, and d the dimension of decision variable;
this bound matches that of the distributed counterparts with server-client struc-
tures, without relying on the stringent bounded gradient assumption commonly
used in previous works. Theoretical analysis reveals the inherent advantages of
AdaD2P employing adaptive noise as opposed to constant noise. Extensive exper-
iments on two benchmark datasets demonstrate the superiority of AdaD2P over its
counterparts, especially under a strong level of privacy guarantee.

1 INTRODUCTION

Distributed learning has recently attracted significant attention due to its great potential in enhancing
computing efficiency and has thus been widely adopted in various application domains (Langer et al.,
2020). In particular, it can be typically modeled as a non-convex finite-sum optimization problem
solved by a group of n nodes, as depicted as follows:

min
x∈Rd

f (x) ≜
1

n

n∑
i=1

fi (x), where fi (x) =
1

J

J∑
j=1

fi (x; j), (1)

where J denotes the local dataset size of each node, fi(x; j) denotes the loss function of the j-th
data sample at node i with respect to the model parameter x ∈ Rd, and fi (x) and f (x) denote the
local objective function at node i and the global objective function. All nodes collaborate to seek
the optimal model parameter to minimize f (x), and each node i can only evaluate local stochastic
gradient ∇fi (x; ξi) where ξi ∈ {1, 2, ..., J}.

Bottlenecks such as high communication overhead and the vulnerability of central nodes in param-
eter server-based methods (Li et al., 2014; Zinkevich et al., 2010; McMahan et al., 2017a), motivate
researchers to investigate fully decentralized methods (Lian et al., 2017; Tang et al., 2018; Lian et al.,
2018) to solve Problem (1), where the central node is not required and each node only communicates
with its neighbors. The existing decentralized learning algorithms usually employ undirected graphs
for communication, which can not be easily implemented due to the existence of deadlocks (Ass-
ran et al., 2019). It is desirable to consider more practical scenarios where communication graphs
may be directed and even time-varying. Stochastic gradient push (SGP) proposed in (Assran et al.,
2019), which builds on push-sum protocol (Kempe et al., 2003), is proven to be very effective in
solving (1) over directed and time-varying communication graphs.

In decentralized learning systems, all nodes frequently exchange information such as model pa-
rameters with their neighbors. This raises significant concerns about privacy, as the exposure of
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intermediate parameters could potentially be exploited to compromise the privacy of original data
samples (Wang et al., 2019b). To safeguard each node from potential data privacy attack, differential
privacy (DP), as a theoretical tool to provide rigorous privacy guarantees and quantify privacy loss,
can be integrated into each node within decentralized learning systems to enhance privacy protection.

Figure 1: The evolution of gradi-
ent norm w.r.t the number of itera-
tions for the proposed AdaD2P and
other two strategies (ConstD2P and
ClipD2P) with constant noise.

Most existing decentralized learning algorithms with differ-
ential privacy guarantee for non-convex problems tend to ei-
ther assume stochastic gradients are bounded by some con-
stant G (Yu et al., 2021; Xu et al., 2021) or employ gradient
clipping strategy with a fixed clipping bound C (Li & Chi,
2023), and they use constant G or C to estimate the l2 sen-
sitivity S of gradient update across all iterations. As a re-
sult, each node injects fixed-level DP Gaussian noises with
a variance proportional to the estimated sensitivity S before
performing local SGD at each iteration. However, our em-
pirical observations indicate that the norm of gradient typi-
cally decay as training progresses and ultimately converges
to a small value (c.f., Figure 1). This observation suggests
that the aforementioned methods estimating l2 sensitivity us-
ing constant G or C for all iterations may be conservative as
gradient norms are often smaller than the constant G or C, es-
pecially in the later stage of training. Therefore, their added
fixed-level Gaussian noise deems unnecessary and will, in-
stead, degrade the model accuracy without providing additional privacy gain. To this end, the fol-
lowing question arises naturally:

“Can we design a decentralized learning method that adjusts the level of DP noise according
to gradient norms during training while maintaining the privacy guarantee?”

To address this question, we develop a new differentially private learning method for non-convex
problems in fully decentralized settings, which can adapt the noise level to the actual privacy require-
ments as the training progresses and thus enhance model accuracy given the same privacy budget.
The key contributions are summarized as follows:

• New efficient algorithm with adaptive DP noise. We propose a differentially private
decentralized learning method with adaptive DP noise (termed AdaD2P) for non-convex
problems, which works for time-varying directed communication topologies. In particular,
each node adds noise with a variance calculated according to the noise scale and the sensi-
tivity estimated based on real-time gradient norms. This adaptive mechanism allows adding
smaller noise and thus enhancing model accuracy without compromising privacy budgets;
importantly, it can be readily integrated into other existing decentralized algorithms.

• Theoretical analysis and utility guarantees. We prove that AdaD2P achieves a utility

bound of O
(√

d log
(
1
δ

)
/(
√
nJϵ)

)
, which matches that of existing distributed methods

with server-client structures (c.f., Table 1). Our proof involves constructing an intricate loop
among the utility gap captured by the running average squared gradient norm, consensus
error and error terms arising from injected DP noise; importantly, the proof does not rely
on the restrictive bounded gradient assumption as commonly used by the previous works.
Besides, we provide theoretical evidence that sheds light on the inherent advantages of
AdaD2P employing adaptive noise compared to that with fixed-level noise.

• Extensive experimental evaluations. Extensive experiments conducted on training
ResNet-18 DNN (resp. 2-layer neural network) on the Cifar-10 (resp. Mnist) dataset in
fully decentralized setting show that, when adhering to a same privacy budget constraint,
our proposed AdaD2P achieves superior model accuracy compared to its counterparts that
employ fixed-level Gaussian noise, particularly in the strong privacy protection region.

2 PRELIMINARY AND RELATED WORK

Differential privacy. Differential privacy (DP) was originally introduced in the seminal work by
Dwork et al.(Dwork et al., 2006) as a foundational concept for quantifying the privacy-preserving
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Algorithm Privacy Utility Architecture Without
Assumption 6

DP-SGD
(ϵ, δ)-DP

√
d log( 1

δ )
Jϵ

single node
%(Abadi et al., 2016) centralized

Distributed DP-SRM1 (ϵ, δ)-DP √
d log( 1

δ )
nJϵ

n nodes
%(Wang et al., 2019a) global server-client

LDP SVRG/SPIDER (ϵ, δ)-DP
√

d log( 1
δ )√

nJϵ

n nodes
%(Lowy et al., 2023) for each node server-client

SoteriaFL-SAGA/SVRG (ϵ, δ)-DP
√

(1+ω)d log( 1
δ )√

nJϵ

n nodes
%(Li et al., 2022) for each node server-client

AdaD2P (ϵ, δ)-DP
√

d log( 1
δ )√

nJϵ

n nodes
"(Algorithm 1) for each node decentralized

1 The global (ϵ, δ)-DP is considered therein, which only protects the privacy for the entire dataset
while we consider (ϵ, δ)-DP for each node i, protecting the local dataset at the node’s level.

Table 1: Comparison of existing differentially private stochastic algorithms for non-convex prob-
lems. Communication compression is employed in SoteriaFL-SAGA/SVRG with ω being the com-
pression parameter. The Big O notation is omitted for simplicity.

capabilities of randomized algorithms. DP has now found widespread applications in a variety of
domains that necessitate safeguarding against unintended information leakage, such as principle
component analysis (Ge et al., 2018), meta learning (Li et al., 2019a), personalized recommen-
dation (Shin et al., 2018), empirical risk minimization (Chaudhuri et al., 2011) and wireless net-
work (Wei et al., 2021b). The standard definition of DP is provided as follows.
Definition 1 ((ϵ, δ)-DP (Dwork et al., 2014)). A randomized mechanism M with domain D and
range R satisfies (ϵ, δ)-differential privacy (or (ϵ, δ)-DP), if for any two adjacent inputs x, x′ ∈ D
differing on a single entry and for any subset of outputs S ⊆ R, it holds that

Pr [M (x) ∈ S] ⩽ eϵPr [M (x′) ∈ S] + δ, (2)

where the privacy budget ϵ denotes the privacy lower bound to measure a randomized query and δ
is the probability of breaking this bound.

A commonly employed technique to ensure a (ϵ, δ)-differential privacy guarantee is through the use
of the Gaussian mechanism as provided below.
Proposition 1 (Gaussian mechanism (Dwork et al., 2014)). Let f : D → R be a real-valued
function with S being f ’s l2 sensitivity. Then, adding Gaussian noise N (0, σ2S2) to f such that

M(x) = f(x) +N (0, σ2S2) satisfies (ϵ, δ)-DP if the noise scale σ ⩾
√

2 log (1.25/δ)

ϵ .

The above proposition illustrates an inverse relationship between the noise scale σ and privacy bud-
get ϵ for a fixed δ, and the fact that the noise variance σ2S2 is dependent on both the noise scale σ
and l2 sensitivity S. For iterative training processes, the cumulative privacy spending can be calcu-
lated using the basic composition theorem (Dwork et al., 2006; Dwork & Lei, 2009) and advanced
composition theorem (Dwork et al., 2010; Bun & Steinke, 2016). To achieve a more precise estimate
of the overall privacy budget throughout the entire training process, Abadi et al. (2016) introduced
the moments accountant method that tracks higher moments. In the rest of this section, we will re-
view existing research works related to achieving differential privacy guarantees in machine learning
and highlight their limitations inherent in decentralized scenarios.

Decentralized learning methods with privacy guarantee. DP guarantee is initially integrated
to centralized (single-node) setting for designing differentially private stochastic learning algo-
rithms (Abadi et al., 2016; Wang et al., 2017; Iyengar et al., 2019; Chen et al., 2020; Wang et al.,
2020). Further, DP guarantee is considered in distributed learning with server-client structures and
the representative works include (McMahan et al., 2017b; Li et al., 2019b; Wang et al., 2019a; Wu
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et al., 2020; Zhang et al., 2020; Wei et al., 2020; Zeng et al., 2021; Wei et al., 2021a; Ding et al., 2021;
Li et al., 2022; Liu et al., 2022; Lowy et al., 2023; Wang et al., 2023; Zhou et al., 2023; Wei et al.,
2023). Recently, there have been few works aiming to achieve DP guarantees for fully decentral-
ized learning algorithms. For example, Cheng et al. (2018; 2019) achieve DP in fully decentralized
learning for only strongly convex problems. Wang & Nedic (2022) achieve DP in fully decentralized
architectures by tailoring gradient methods for deterministic optimization problems. For non-convex
stochastic optimization problems as we consider in this work, Yu et al. (2021) present a differen-
tially private decentralized learning method (DP2-SGD) based on D-PSGD (Lian et al., 2017), which
relies on a fixed communication topology and uses the basic composition theorem to bound the over-
all privacy loss. To have a tight privacy guarantee, Xu et al. (2021) propose a differentially private
asynchronous decentralized learning method (A(DP)2SGD) based on AD-PSGD (Lian et al., 2018),
which provides privacy guarantee in the sense of Rényi differential privacy (RDP) (Mironov, 2017).
However, it should be noted that the aforementioned two algorithms (Yu et al., 2021; Xu et al., 2021)
work only for undirected communication graphs which is often not satisfied in practical scenarios,
and they rely on the bounded gradient assumption. Most recently, Li & Chi (2023) achieve DP
guarantee in decentralized learning for non-convex problems without bounded gradient assumption
by employing gradient clipping strategy with a fixed clipping bound C, while their method is only
applicable to time-invariant communication topologies.

Learning with Adaptive DP Gaussian noise level. For the aforementioned differentially private
decentralized methods designed for non-convex stochastic optimization problems (Yu et al., 2021;
Xu et al., 2021; Li & Chi, 2023), the injected noise level may exceeds what is actually needed for
privacy requirements as training progresses, especially during the later stages of training, since their
estimated sensitivity based on fixed G (Yu et al., 2021; Xu et al., 2021) or C (Li & Chi, 2023) may
not reflect the actual value of sensitivity. The overestimate of sensitivity may, indeed, lead to a
waste of unnecessary privacy budget during training process (Wei et al., 2023). There has been few
works dedicated to precisely estimate the sensitivity in a real-time manner. For instance, a scheme
of decaying gradient clipping bound has been employed to estimate the sensitivity in differentially
private centralized learning (Du et al., 2021; Wei & Liu, 2021), yielding decreasing amount of noise
injection. In the realm of distributed learning, the similar strategy of adaptive clipping bounds are
utilized in (Andrew et al., 2021) to estimate the sensitivity. Most recently, Wei et al. (2023) use the
minimum value of properly decaying clipping bound and current gradient norm to more accurately
estimate the l2 sensitivity, leading to a less amount of noise injection. However, these distributed
methods (Andrew et al., 2021; Fu et al., 2022; Wei et al., 2023) only focus on the server-client
architecture and no theoretical guarantee on model utility is provided therein. In contrast, we aim
to design a differentially private decentralized learning method which incorporates adaptive noise
levels in fully distributed settings and provide a rigorous theoretical utility guarantee.

3 PROPOSED ALGORITHM

We consider solving Problem (1) over the following general network model.

Network Model. The communication topology is modeled as a sequence of time-varying directed
graph Gk =

(
V, Ek

)
, where V = {1, 2, ..., n} denotes the set of nodes and Ek ⊂ V × V denotes the

set of directed edges/links at iteration k. We associate each graph Gk with a non-negative mixing
matrix P k ∈ Rn×n such that (i, j) ∈ Ek if P k

i,j > 0, i.e., node i receiving a message from node j at
iteration k. Without loss of generality, we assume that each node is an in-neighbor of itself.

The following assumptions are made on the mixing matrix and graph for the above network model
to facilitate the subsequent utility analysis for the proposed algorithm.
Assumption 1 (Stochasicity of Mixing Matrix). The non-negative mixing matrix P k,∀k is column-
stochastic, i.e., 1⊤P k = 1⊤, where 1 is a vector with all of its elements equal to 1.
Assumption 2 (B-strongly Connected). There exists finite, positive integers B and △, such that the
graph with edge set

⋃(l+1)B−1
k=lB Ek is strongly connected and has diameter at most △ for ∀l ⩾ 0.

Algorithm Development. Now we present our proposed AdaD2P, a novel differentially private de-
centralized stochastic learning algorithm for non-convex problems with adaptive DP Gaussian noise
level, which can work over general time-varying directed communication topologies; the complete
pseudocode is summarized in Algorithm 1. At a high level, AdaD2P is comprised of local SGD
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and the averaging of neighboring information, following a framework similar to SGP (Assran et al.,
2019). This framework involves the use of the Push-Sum protocol (Kempe et al., 2003), which can
tackle the unblanceness of directed topologies by asymptotically estimating the Perron–Frobenius
eigenvector of transition matrices. However, the key distinction lies in the injection of adaptive DP
Gaussian noise before preforming local SGD. In particular, each node i maintains three variables
during the learning process: i) the model parameter xk

i ; ii) the scalar Push-Sum weight wk
i and iii)

the de-biased parameter zki = xk
i /w

k
i , with the initialization of x0

i = z0i ∈ Rd and w0
i = 1 for all

nodes i ∈ V . At each iteration k, each node i updates as follows:

x
k+ 1

2
i = xk

i − γ
(
∇fi(z

k
i ; ξ

k
i ) +Nk

i

)︸ ︷︷ ︸
Differentially private local SGD

, xk+1
i =

n∑
j=1

P k
i,jx

k+ 1
2

j , wk+1
i =

n∑
j=1

P k
i,jw

k
j︸ ︷︷ ︸

Neighboring information averaging

, zk+1
i =

xk+1
i

wk+1
i︸ ︷︷ ︸

De-bias

,

where γ > 0 is the step size and ∇fi(z
k
i ; ξ

k
i ) is the gradient evaluated on the de-biased parameter zki

and training sample with index ξki at node i. The injected randomized noise Nk
i ensuring differential

privacy guarantee for node i is drawn from the Gaussian distribution (c.f., (3)) with a variance
calculated according to the noise scale σ and dynamic sensitivity estimated based on gradient norms
It should be noted that gradient norm is a tighter estimation of actual sensitivity for noise injection
than fixed G and C in most cases, especially at the later stage of training (Wei et al., 2023).

Algorithm 1 Differentially Private Decentralized Learning with Adaptive Noise (AdaD2P)

1: Initialization: x0
i = z0i ∈ Rd, w0

i = 1, step size γ > 0, total number of iterations K and
privacy budget (ϵ, δ).

2: for k = 0, 1, 2, ...,K − 1, at node i, do
3: Randomly samples a local training data ξki with the sampling probability 1

J ;
4: Computes stochastic gradient at zki : ∇fi(z

k
i ; ξ

k
i );

5: Draws randomized noise Nk
i from the Gaussian distribution

Nk
i ∼ N

(
0, σ2

∥∥∇fi
(
zki ; ξ

k
i

)∥∥2 Id) , (3)

where the noise scale σ is defined in Proposition 2;
6: Differentially private local SGD:

x
k+ 1

2
i = xk

i − γ(∇fi(z
k
i ; ξ

k
i ) +Nk

i ); (4)

7: Sends
(
x
k+ 1

2
i , wk

i

)
to all out-neighbors ;

8: Receives
(
x
k+ 1

2
j , wk

j

)
from all in-neighbors ;

9: Updates xk+1
i by: xk+1

i =
∑n

j=1 P
k
i,jx

k+ 1
2

j ;
10: Updates wk+1

i by: wk+1
i =

∑n
j=1 P

k
i,jw

k
j ;

11: Updates zk+1
i by: zk+1

i = xk+1
i /wk+1

i .
12: end for

Remark 1. For comparison, we also present two counterparts ConstD2P and ClipD2P, which em-
ploy fixed-level noise with variance calculated according to fixed l2 sensitivity, estimated using uni-
form gradient bound G and fixed gradient clipping bound C respectively. The complete pseudocodes
of ConstD2P and ClipD2P can be found in Algorithm 2 and 3 in the appendix, respectively.

4 THEORETICAL GUARANTEES

In this section, we provide the privacy and utility guarantee for our proposed AdaD2P. In particular,
we show that DP guarantee for each node can be achieved by setting the DP Gaussian noise scale σ
properly according to the given certain privacy budget (ϵ, δ) and the total number of iterations K,
which is summarized in the following proposition.
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Proposition 2 (Privacy guarantee). There exist constants c1 and c2 such that, for any ϵ < c1K
J2 and

δ ∈ (0, 1), (ϵ, δ)-DP can be guaranteed for each node i for AdaD2P, ConstD2P and ClipD2P after
K iterations if we set the noise scale

σ =
c2

√
K log

(
1
δ

)
Jϵ

. (5)

Proof. The proof of the above result can be easily adapted from Theorem 1 in (Abadi et al., 2016)
by knowing the fact that the sampling probability is 1

J for each node i at each iteration.

Remark 2. The above theorem demonstrates that the variance of injected Gaussian noise for each
node i at each iteration k for AdaD2P is

E
[∥∥Nk

i

∥∥2] (3)
= dσ2

∥∥∇fi
(
zki ; ξ

k
i

)∥∥2 (5)
=

dc22 log
(
1
δ

)
J2ϵ2︸ ︷︷ ︸

β

·K
∥∥∇fi

(
zki ; ξ

k
i

)∥∥2 , (6)

which is proportional to the real-time gradient norm
∥∥∇fi

(
zki ; ξ

k
i

)∥∥.

Next, we make the following blanket assumptions for the utility analysis of AdaD2P.

Assumption 3 (L-smooth). For each function fi, i ∈ V , there exists a constant L > 0 such that
∥∇fi (x)−∇fi (y)∥ ⩽ L ∥x− y∥.

Assumption 4 (Unbiased gradient). For ∀x ∈ Rd, the expectation of stochastic gradients of node i
is its aggregated gradient, i.e.,

E [∇fi (x; ξi)] = ∇fi (x) . (7)

Assumption 5 (Bounded variance). There exist finite positive constants ζ2 and b2 such that for any
node i and ∀x ∈ Rd,

E [∥∇fi (x; ξi)−∇fi (x)∥] ⩽ ζ2 (8)

and
∥∇fi (x)−∇f (x)∥2 ⩽ b2. (9)

With the above assumptions, by properly choosing the total number of iterations K and the step
size γ, we can obtain the utility guarantee of AdaD2P (Algorithm 1) without relying on the bounded
gradient assumption, which is presented in the following Theorem 1.

Theorem 1 (Utility guarantee). Suppose Assumptions 1-5 hold and J ⩾ n
3
2 c2

√
d log

(
1
δ

)
/ϵ for a

given privacy budget (ϵ, δ). There exist constants C and q ∈ [0, 1), which depend on the diameter of
the network △ and the sequence of mixing matrices P k, such that, if we set γ = 1/( Jϵ

c2

√
nd log( 1

δ )
+

γ̂(C, q)−1), K = J2ϵ2

dc22 log( 1
δ )

and the noise scale σ = c2

√
K log

(
1
δ

)
/ (Jϵ), AdaD2P can achieve

(ϵ, δ)-DP guarantee for each node and has the following utility bound

1

K

K−1∑
k=0

E
[∥∥∇f

(
x̄k
)∥∥2] ⩽ O


√
d log

(
1
δ

)
√
nJϵ

 , (10)

where C and q can be found in Lemma 4 and the definition of constant γ̂(C, q) can be found at (46)
in the appendix, respectively. The Big O notation hides all constants involved in our setting, e.g.,
L, ζ, b, C, q,

∑n
i=1

∥∥x0
i

∥∥2andf
(
x̄0
)
− f∗, where f∗ = min

x∈Rd
f (x).

Proof. The complete proof can be found in Section A.3 in the appendix.

Remark 3. Table 1 provides a detailed comparison of our AdaD2P with existing centralized/server-
client algorithms, where the bounded gradient assumption is all assumed in their utility analysis,

except our AdaD2P. AdaD2P achieves a utility bound of O
(√

d log
(
1
δ

)
/(
√
nJϵ)

)
, matching that
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of distributed methods with server-client structures, such as LDP SVRG/SPIDER, and SoteriaFL-
SAGA/SVRG without communication compression (ω = 0). Furthermore, AdaD2P recovers the
utility bound of centralized DP-SGD with n = 1. For completeness, we provide the derivation of the
utility bound of the baseline centralized DP-SGD in Section A.6 in the appendix.

Now, we provide the theoretical rationale behind the superior model performance of AdaD2P in
comparison to ConstD2P under the same level of privacy protection. To this end, we split the upper
bound of the metric (utility gap) into two distinct components: the standard term associated with
SGP (Assran et al., 2019) and the term related to privacy noise, without specifying the value of K.
As a result, we derive the following result for the proposed AdaD2P algorithm.

Proposition 3. Suppose Assumptions 1-5 hold. If the step size γ ⩽ min
{

1−q
6LC , 1

L

}
and the noise

scale σ = c2

√
K log

(
1
δ

)
/ (Jϵ), AdaD2P (Algorithm 1) can achieve (ϵ, δ)-DP guarantee for each

node after K iterations and has the following error bound

1

K

K−1∑
k=0

E
[∥∥∇f

(
x̄k
)∥∥2] ⩽ Ξ +

(
12γ2L2C2β

(1− q)
2 +

2γLβ

n

)
K−1∑
k=0

1

n

n∑
i=1

E
[∥∥∇fi

(
zki ; ξ

k
i

)∥∥2]
︸ ︷︷ ︸

caused by adaptive privacy noise

,

(11)

where Ξ =
4(f(x̄0)−f∗)

γK + 2γL
n ζ2 + 12γ2L2C2

(1−q)2

(
ζ2 + 3b2

)
+ 12L2C2

(1−q)2nK

∑n
i=1

∥∥x0
i

∥∥2 is the standard
error term of SGP algorithm, and β is defined at (6).

Proof. The complete proof can be found in Section A.4 in the appendix.

Next, we provide a similar result for ConstD2P (Algorithm 2) which employs fixed-level noise
relying on the following bounded gradient assumption.
Assumption 6 (Bounded gradient). For any z ∈ Rd and ξi ∈ {1, 2, ..., J}, there exists finite positive
constant G such that

∥∇fi (z; ξi)∥ ⩽ G. (12)
Proposition 4. Under the same condition of Proposition 3 and suppose Assumption 6 holds,
ConstD2P (Algorithm 2) can achieve (ϵ, δ)-DP guarantee for each node after K iterations and

1

K

K−1∑
k=0

E
[∥∥∇f

(
x̄k
)∥∥2] ⩽ Ξ +

(
12γ2L2C2β

(1− q)
2 +

2γLβ

n

)
K−1∑
k=0

1

n

n∑
i=1

G2

︸ ︷︷ ︸
caused by fixed privacy noise

. (13)

Proof. The complete proof can be found in Section A.5 in the appendix.

Remark 4 (Insights for the adavantage of AdaD2P). The comparison between the upper bounds in
(11) and (13) reveals a significant difference in the components related to privacy noise. In par-
ticular, as the stochastic gradient norm tends to decay throughout the training process, it becomes
evident that the component related to privacy noise in AdaD2P is much tighter compared to that of
ConstD2P. This insight sheds light on the reason behind AdaD2P outperforming ConstD2P under
the same level of privacy protection, as demonstrated in the experiments in Section 5.

5 EXPERIMENTS

We conduct several experiments to verify the performance of AdaD2P (Algorithm 1), with com-
parison to the counterparts algorithms ConstD2P (Algorithm 2) and ClipD2P (Algorithm 3) which
both employ fixed-level noise. All experiments are deployed in a high performance server with Intel
Xeon E5-2680 v4 CPU @ 2.40GHz and 8 Nvidia RTX 3090 GPUs, and are implemented with dis-
tributed communication package torch.distributed in PyTorch (Paszke et al., 2017), where a process
serves as a node, and inter-process communication is used to mimic communication among nodes.

Experimental setup. We compare three algorithms in fully decentralized setting composed of 20
nodes, on two non-convex learning tasks (i.e., deep CNN ResNet-18 training and shallow 2-layer
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neural network training). For all experiments, we split shuffled datasets evenly to 20 nodes and
use time-varying directed exponential graph (refer to Section C in the appendix for its definition) as
communication topology for three algorithms. The learning rate is set as 0.05 for ResNet-18 training
and 0.03 for 2-layer neural network training. It is worth noting that bounded gradient (Assumption 6)
is required for ConstD2P (Algorithm 2). To obtain this upper bound G, we run non-private SGP
algorithm (no privacy noise) 5 times in advance and use maximum norm of stochastic gradient of
the training process to be the estimate of G. In addition, according to Proposition 2, we know that
when fixing δ (usually set as 10−5), the privacy budget ϵ depends on the noise scale σ and the total
number of iterations K. That is to say, if we run three algorithms for the same total iterations with
the same noise scale σ, the privacy protection levels for three algorithms are the same.

5.1 DEEP CNN RESNET-18 TRAINING

The first task is to train CNN model ResNet-18 (He et al., 2016) on Cifar-10 dataset (Krizhevsky
et al., 2009). In this setting, the value of G is estimated to be 8.5 using our aforementioned approach.
For ClipD2P (Algorithm 3), we test the fixed clipping bound C with three different values chosen
from the set {2, 3, 5}. We run three algorithms for 3500 iterations.

(a) (b) (c)

(d) (e) (f)

Figure 2: Performance comparison of training ResNet-18 for AdaD2P with ConstD2P and ClipD2P
under the same noise scale: σ = 0.002 for (a) (b) (c); σ = 0.04 for (d) (e) (f).

Performance comparison under the same level of privacy protection. We first set a relatively
small σ = 0.002 for all three algorithms, which indicates a relatively modest level of privacy protec-
tion. The results depicted in Figures 2(a), 2(b) and 2(c) illustrate that, AdaD2P outperforms the other
two algorithms, in terms of the convergence of gradient norm, training loss and model accuracy. It
is evident that when approaching the end of training, the gradient norm converges to a very small
value near 0 for AdaD2P, which results in a very minor amount of added noise, contributing posi-
tively to model accuracy further. In contrast, the other two algorithms inject fixed-level noise even
during the later stages of the training process, leading to a degradation in model accuracy. -When
setting a relatively larger σ = 0.04 which implies a relatively higher level of privacy protection, it
follows from Figures 2(d), 2(e) and 2(f) that AdaD2P still outperforms the other two algorithms, and
shows more pronounced advantage in model accuracy (achieves a 30% higher model accuracy than
ConstD2P). In appendix D, we present additional experimental results of using other values of σ,
and we have the same experimental observations.

Trade off between model utility and privacy protection level. We vary the value of noise scale
σ from the set {0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.04}, for AdaD2P. The results presented in

8
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(a) (b) (c)

Figure 3: Performance comparison of training ResNet-18 for AdaD2P under different noise scale σ
in terms of (a) training loss and (b) testing accuracy; (c) Performance comparison of three algorithms
with non-private (no noise) SGP algorithm under the noise scale σ = 0.001

.

Figures 3(a) and 3(b) show that, as noise scale σ increases which imply stronger privacy protection,
the model utility (testing accuracy) deteriorates, illustrating the trade off between model utility and
privacy protection level. Moreover, it follows from Figure 3(c) that when the noise scale is set as
σ = 0.001, AdaD2P is able to achieve model performance almost without accuracy loss compared
to non-private SGP, while ConstD2P and ClipD2P still suffer from significant accuracy loss.

5.2 SHALLOW 2-LAYER NEURAL NETWORK TRAINING

Next we consider a simple shallow 2-layer neural network training task on Mnist (Deng, 2012)
dataset. For this task, the value of G is estimated to be 3.5 using the same approach. We set the
clipping bound C = 1 for ClipD2P and run three algorithms for the same 2200 iterations, and
compare their performance under the same noise scale σ. It follows from the experimental results in
Figure 4 that: under the same level of privacy protection (same σ), AdaD2P outperforms the other
two algorithms, and the advantage in model accuracy becomes more pronounced at a higher level
of privacy protection (larger σ), verifying the superior performance of adaptive noise mechanism.
Additional experimental tests for various σ values are provided in appendix D, and we can observe
the same experimental phenomenon.

(a) (b) (c) (d)

Figure 4: Performance comparison of training 2-layer neural network for AdaD2P with ConstD2P
and ClipD2P under the same noise scale: σ = 0.02 for (a) (b); σ = 0.05 for (c) (d).

6 CONCLUSION

In this paper, we proposed a differentially private decentralized learning method for non-convex
problems (termed AdaD2P), which employs adaptive noise level and works for general time-varying
communication topologies. Without relying on the bounded gradient assumption, we proved that
AdaD2P achieves a utility bound which matches that of distributed counterparts with server-client
structures. Theoretical analysis revealed the inherent advantages of AdaD2P employing adaptive
noise as opposed to constant noise. We conducted extensive experiments to verify the superior
performance of AdaD2P compared to its counterparts which employ fixed-level noise.
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