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Abstract001

Achieving human-level translations requires002
leveraging context to ensure coherence and han-003
dle complex phenomena like pronoun disam-004
biguation. Sparsity of contextually rich exam-005
ples in the standard training data has been hy-006
pothesized as the reason for the difficulty of007
context utilization. In this work, we system-008
atically validate this claim in both single- and009
multilingual settings by constructing training010
datasets with a controlled proportions of con-011
textually relevant examples. We demonstrate a012
strong association between training data spar-013
sity and model performance confirming spar-014
sity as a key bottleneck. Importantly, we re-015
veal that improvements in one contextual phe-016
nomenon do no generalize to others. While we017
observe some cross-lingual transfer, it is not018
significantly higher between languages within019
the same sub-family. Finally, we propose and020
empirically evaluate two training strategies de-021
signed to leverage the available data. These022
strategies improve context utilization, resulting023
in accuracy gains of up to 6 and 8 percentage024
points on the ctxPro evaluation in single- and025
multilingual settings respectively.1026

1 Introduction027

Context-Aware Machine Translation (MT) mod-028

els use surrounding sentences (context) to improve029

translation by maintaining coherence and resolving030

ambiguities (Agrawal et al., 2018; Bawden et al.,031

2018; Müller et al., 2018; Voita et al., 2019b). The032

context can be sentences in the source language033

and the previously translated sentences in the target034

language. While many works improved the transla-035

tion quality of the context-aware MT by applying036

standard Transformer (Vaswani et al., 2017) model037

(Sun et al., 2022; Majumde et al., 2022; Gete et al.,038

2023; Post and Junczys-Dowmunt, 2024; Alves039

1https://anonymous.4open.science/r/
data-composition-0C80.

Figure 1: Composition of the English-to-German train-
ing datasets with the Gender phenomenon in Pure
IWSLT and IWSLT+OpenSubtitles settings. Annota-
tions are based on ctxPro (Wicks and Post, 2023), and
the dashed bars represent the contextually-rich datasets.
Note that the horizontal axis starts at 100,000.

et al., 2024; Kocmi et al., 2024), specialized ar- 040

chitectures (Tu et al., 2017; Bawden et al., 2018; 041

Miculicich et al., 2018; Maruf et al., 2019; Huo 042

et al., 2020; Zheng et al., 2021), and decoder-only 043

LLMs (Alves et al., 2024; Kocmi et al., 2024), the 044

reason why the context utilization is challenging 045

for the models remain an open question. 046

The low density of contextually rich (requiring 047

context for correct translation) examples in the 048

training datasets has been suspected as the main 049

reason why MT models have trouble in translating 050

contextual phenomena. For example, Lupo et al. 051

(2022) proposed the two-fold sparsity hypothesis, 052

where the low density of examples in the dataset 053

and the tokens in the examples requiring context 054

increases the difficulty of learning to leverage con- 055

text. Post and Junczys-Dowmunt (2024) show that 056

sparsity in the evaluation datasets makes it difficult 057

to assess the context utilization of the models. We 058

argue that this also points to the sparsity hypothesis 059

in the training data, as the evaluation datasets are 060
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often subsets of the training datasets.061

In this work, we evaluate how the the proportion062

of contextually rich examples in the training data063

of the encoder-deconder context-aware MT models064

affects the overall translation quality measured by065

BLEU (Papineni et al., 2002) and COMET (Rei066

et al., 2020), and performance on the examples re-067

quiring context (using generative and contrastive068

evaluations). To this end, we use ctxPro toolset069

(Wicks and Post, 2023) to extract the relevant ex-070

amples containing the following phenomena: Gen-071

der, Formality, Auxiliary, Inflection, and Animacy.072

We refer the reader to the original ctxPro paper073

for the details of the annotation and phenomena074

(Wicks and Post, 2023). We constructed training075

data by mixing contextually rich and poor exam-076

ples with varying proportions (Figure 1 illustrates077

this for Gender in English-to-German). Moreover,078

we evaluate cross-lingual transfer of context utiliza-079

tion in multilingual models on English-to-X and080

X-to-English where X is {German, French, Polish,081

Russian, and Spanish}. Finally, we explore several082

ways to effectively leverage the available data to083

obtain models that perform well both generally and084

in context-sensitive settings. The contributions of085

this work are:086

1. We empirically validate the sparsity hypothe-087

sis, showing strong relation between the density of088

the contextual phenomena in the training data and089

the resulting performance of the context-aware MT090

models.091

2. We reveal limitations in generalization, show-092

ing that the improvement in one linguistic phe-093

nomenon does not transfer to others. We ob-094

serve limited cross-lingual transfer, not substan-095

tially higher between languages in the same sub-096

family.097

3. We propose and empirically evaluate two train-098

ing strategies designed to improve context utiliza-099

tion by leveraging the available data. We show100

a trade-off between improving context utilization101

and general translation metrics such as BLEU.102

2 Related Work103

Through years many dedicated architectures has104

been proposed for context-aware MT (Miculicich105

et al., 2018; Voita et al., 2019b,a; Bao et al., 2021;106

Chen et al., 2022; Feng et al., 2022; Bulatov et al.,107

2022; Maka et al., 2024) including popular multi-108

encoder (where a separate encoder is responsible109

for processing the context sentences; Jean et al.,110

2017; Miculicich et al., 2018; Maruf et al., 2019; 111

Huo et al., 2020; Zheng et al., 2021), but the stan- 112

dard Transformer model (Vaswani et al., 2017) with 113

the sentences being concatenated (single-encoder; 114

Tiedemann and Scherrer, 2017; Ma et al., 2020; 115

Zhang et al., 2020) exhibited high performance de- 116

spite its relative simplicity (Majumde et al., 2022; 117

Sun et al., 2022; Gete et al., 2023; Post and Junczys- 118

Dowmunt, 2023). While decoder-only LLMs have 119

achieved state-of-the-art results in MT (Alves et al., 120

2024; Kocmi et al., 2024), they require extensive 121

datasets for training and have a large number of 122

parameters that can limit their usefulness in com- 123

putationally constrained environments (e.g., edge 124

devices) and low-resource settings. In recent years, 125

research interest in the architectures other than 126

decoder-only has remained relevant (Mohammed 127

and Niculae, 2024; Warner et al., 2024; Alastruey 128

et al., 2024; Azeemi et al., 2025; Marashian et al., 129

2025; Breton et al., 2025; Clavié et al., 2025). 130

Therefore, we focus this paper on encoder-decoder 131

models. 132

The standard sentence-level metrics (e.g., BLEU 133

(Papineni et al., 2002) do not capture the contextual 134

utilization by the models (Hardmeier, 2012; Wong 135

and Kit, 2012). To address this, several evaluation 136

datasets have been proposed including contrastive 137

(Müller et al., 2018; Bawden et al., 2018; Voita 138

et al., 2019b; Lopes et al., 2020) and generative 139

such as ctxPro (Wicks and Post, 2023) used in this 140

study. Moreover, metrics like CXMI (Fernandes 141

et al., 2021) and PCXMI (Fernandes et al., 2023) 142

can measure how much the model relies on context 143

during translation. 144

The effects of the training dataset on the final 145

model has also been studied extensively (Kaplan 146

et al., 2020; Hoffmann et al., 2022) in different 147

domains (Alabdulmohsin et al., 2023), including 148

document-level MT (Zhuocheng et al., 2023). The 149

studies mostly concentrated on the scale of the 150

training dataset. We, instead, investigate the com- 151

position of the dataset and its effect on the context- 152

aware MT models. 153

Several works proposed methods increasing con- 154

textual capabilities of the models by training the 155

models on annotated data (Jwalapuram et al., 2020; 156

Yin et al., 2021; Mąka et al., 2025) but they tar- 157

get only pronoun disambiguation. Fine-tuning in 158

this case can be seen as similar to domain adapta- 159

tion (Luong and Manning, 2015; Chu et al., 2017) 160

where loss weighting (similar to one of our meth- 161

ods) is an effective strategy (Wang et al., 2017). 162
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3 Effects of Data Composition163

We first measured how the presence of contextu-164

ally rich examples in the training data affects both165

translation quality and the models’ ability to lever-166

age context. To that end, we trained models on167

datasets whose composition we systematically var-168

ied. Specifically, we identified contextual examples169

(containing relevant phenomena) from the avail-170

able datasets using ctxPro toolset (Wicks and Post,171

2023) and constructed a series of datasets with172

varying densities of different phenomena. This173

setup allowed us to assess inter-phenomena as well174

as cross-lingual effects of the composition of the175

training datasets. We used two settings: single lan-176

guage pair (English-to-German) and multilingual.177

For the multilingual setting, we used English-to-178

X and X-to-English language directions, where X179

is {German, French, Polish, Russian, and Span-180

ish} - a subset of directions covered by the ctxPro.181

We utilized two Germanic, Romance, and Slavic182

languages.183

3.1 Datasets184

We base our research on two document-level trans-185

lation datasets: IWSLT 2017 English-to-German186

(Cettolo et al., 2017) and OpenSubtitles 2018 (Li-187

son et al., 2018). For the English-to-German direc-188

tion, we employ both datasets, and for the multilin-189

gual setting, we only use OpenSubtitles. We extract190

contextual annotations from the training subset of191

the IWSLT dataset using the ctxPro toolset. The192

annotated (containing contextually-rich examples)193

subset forms IWSLT-dense dataset, which can be194

further divided based on the target phenomenon:195

Gender, Formality, Auxiliary, Inflection, and An-196

imacy. From the remaining examples we form197

IWSLT-sparse dataset of size 123,000, containing198

no examples annotated with contextual phenom-199

ena. CtxPro released annotations extracted from200

the OpenSubtitles 2018 dataset divided into dev,201

devtest, and test subsets. We set aside the test sub-202

set for the evaluation and used the combined dev203

and devtest subsets for training, forming OS-dense204

dataset. The released ctxPro dataset is not exhaus-205

tive; therefore, we do not create the sparse version206

of the OpenSubtitles dataset. Instead, we randomly207

sample the OpenSubtitles dataset to the desired size208

(referred to as OS-random). In Appendix A we209

present the sizes of the dense component datasets.210

To create the training datasets with varying den-211

sities of contextually rich examples, we sample and212

concatenate examples from both dense and sparse 213

datasets to form a training dataset. For English- 214

to-German, we study two settings: Pure IWSLT 215

(only IWSLT-sparse and IWSLT-dense datasets) 216

and IWSLT + OS (using IWSLT-sparse, IWSLT- 217

dense, and English-to-German OS-rand and OS- 218

dense datasets). These allow us to study two 219

regimes: extremely low sparsity with the first set- 220

ting, and very dense with the second one. We 221

progressively replace examples from sparse and 222

random datasets with the examples sampled from 223

dense datasets. In the multilingual experiments, 224

we formed the baseline training dataset by sam- 225

pling 50,000 examples from OS-rand for all lan- 226

guage directions we considered. For each phe- 227

nomenon in a language direction, we formed the 228

enriched datasets by replacing n examples with 229

the examples sampled from the OS-dense dataset 230

corresponding to the phenomenon and language di- 231

rection. We chose n to be the minimum number of 232

examples (rounded) for a particular phenomenon 233

across language directions maximizing the result- 234

ing density of the training datasets while making 235

the results comparable between language direc- 236

tions. We present the illustration of the composition 237

of the datasets in Figure 1 for Gender on English- 238

to-German and further details in Appendix A. 239

3.2 Training 240

We employed a two-stage training process where 241

first the sentence-level model is trained on more 242

abundant sentence-aligned datasets, followed by 243

the context-aware training on the document-level 244

dataset. Following Mąka et al. (2025), we rely 245

on the publicly available pre-trained sentence-level 246

models, namely OPUS-MT en-de and No Language 247

Left Behind (NLLB-200) with 600M parameters 248

(NLLB Team et al., 2022). We concatenate con- 249

secutive sentences separated by the special [SEP] 250

token on both the source and target sides. Similar 251

to Sun et al. (2022), we create examples with all 252

context sizes (number of previous sentences to con- 253

catenate) from zero to the maximum context size. 254

We set the maximum context size to three as further 255

increases have shown diminishing returns regard- 256

ing context utilization (Post and Junczys-Dowmunt, 257

2023). During inference, the models receive only 258

the source-side context and generate the target-side 259

context before the current sentence. We obtained 260

the translation of the current sentence by splitting 261

the output on the separator token. The training 262

hyper-parameters and additional details can be seen 263
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Figure 2: Measured metrics of BLEU on IWSLT 2017 testset, and ctxPro accuracy on Gender, Formality, and
Auxiliary phenomena (in columns) of the OpusMT en-de models trained on the datasets with varying amounts of
contextually-rich examples of Gender, Formality, and Auxiliary phenomena (in rows). Shows two experimental
settings: Pure IWSLT and combined IWSLT+OS.

in Appendix B.264

3.3 Single Language Pair Results265

For the models in the English-to-German experi-266

ments, we trained 5 models with different seeds and267

averaged the results. Apart from the constructed268

datasets, we also trained a baseline model on the269

unmodified IWSLT training dataset. To measure270

the general translation quality, we translated the271

IWSLT 2017 English-to-German test subset (with272

BEAM search of 5) and measured BLEU (Pap-273

ineni et al., 2002). Additionally, we translated test274

subsets of the ctxPro dataset (based on OpenSub-275

titles) and measured the accuracy of matching the276

expected word in the translation (using the scripts277

provided with the dataset). The results can be seen278

in Figure 2. Extended results including COMET279

and ContraPro (Müller et al., 2018) accuracy can280

be found in Appendix C.281

We observed a drop in BLEU for the models282

trained on the sparse datasets, even for the datasets283

with mixed OpenSubtitles examples. While the284

reduction was relatively small (less than 2%), it285

returned to the baseline value only when Formality286

IWSLT-dense examples were added to the dataset.287

This could mean that the examples from the IWSLT288

dataset annotated with Formality were particularly289

influential for the model’s general translation abil-290

ity, and mixing in the random examples from Open- 291

Subtitles did not help. 292

For Gender and Formality, increasing their den- 293

sity in the training dataset improved the ctxPro 294

accuracy for the corresponding phenomenon. No- 295

tably, Formality in the IWSLT+OS setting only im- 296

proved when OS-dense examples were added, but 297

exceeded the accuracy of the baseline model even 298

with the most sparse dataset. Adding OS-dense ex- 299

amples improved the accuracy significantly above 300

the baseline (up to 30%). Interestingly, adding 301

dense examples in one phenomenon had minimal 302

effect on the accuracy of the other phenomena, with 303

only a very small increase of Formality for the 304

Gender-enriched dataset and vice versa. Those re- 305

sults show that the generalizability of the models’ 306

ability to handle contextual phenomena is very lim- 307

ited. 308

3.4 Multilingual Results 309

For the multilingual experiments, we trained mod- 310

els (with a single seed due to the computational 311

cost of training and evaluation) on the composed 312

datasets and measured ctxPro accuracy for all avail- 313

able phenomena and language directions included 314

in the experiments. Note that Inflection applies 315

only to English-to-Polish and English-to-Russian, 316

and Animacy only to X-to-English. The results are 317
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Figure 3: Measured ctxPro accuracy on all phenomena for each of the relevant language directions (in columns)
of the models trained on the OpenSubtitles datasets with varying amounts of contextually-rich examples for each
phenomena and language directions (in rows). We show the differences from the baseline model (top row).

presented in Figure 3. Results in terms of BLEU318

and COMET on the testsets sampled from Open-319

Subtitles for each language direction can be seen320

in Appendix C.321

For each model, the highest improvement in322

accuracy was observed for the phenomenon and323

language direction that was added to the training324

dataset (values on the diagonal in the figure). In325

line with the results on the single language pair,326

we did not observe any intra-lingual transfer be-327

tween phenomena. Interestingly, there was some328

transfer between language directions for the same329

phenomenon, which was the strongest for Aux-330

iliary, moderate for Gender, Inflection, and An-331

imacy, and no transfer for Formality. Contrary332

to our expectations, we did not observe notably333

stronger transferability between languages in the334

same linguistic sub-family, with the exception of335

Auxiliary, where the increase in accuracy is slightly336

higher inside Romance and Slavic languages than337

for other languages. Surprisingly, the transferabil-338

ity between Gender and Animacy was not observed,339

even though the phenomena in question are a re-340

flection of each other.341

3.5 Discussion 342

We experimentally confirmed the dataset sparsity 343

hypothesis by showing that the models trained on 344

datasets sparse in contextually rich examples ex- 345

hibit poor context utilization, and increasing the 346

density leads to large improvements for the tested 347

phenomena. Both experiments showed that the 348

models do not generalize context utilization be- 349

tween phenomena. This finding calls for caution 350

when interpreting the results of evaluations tar- 351

geting a single phenomenon (Müller et al., 2018; 352

Lopes et al., 2020). While document-level training 353

datasets typically include a representative (for a par- 354

ticular domain) mixture of contextual phenomena, 355

we found that models can develop strong capabili- 356

ties for some phenomena, while remaining weak on 357

others. Mąka et al. (2025) found attention heads in 358

context-aware MT models responsible for pronoun 359

disambiguation with some cross-lingual behavior, 360

which is in line with the observed transferability 361

between language directions. We hypothesize that 362

the poor transfer between phenomena can be ex- 363

plained by the models developing separate heads 364

for each of them. 365
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4 Methods Exploiting Contextual Data366

Inspired by the fact that increased density in367

contextually-relevant examples of the training368

dataset leads to improvement in context utilization,369

we tested several techniques that could leverage370

the available data more efficiently. We broadly371

divide them into annotation-based and annotation-372

free. Annotations can inform the training process373

but require an external tool (e.g., ctxPro) to mark374

the relevant examples. A straightforward method375

is to simply extract the annotated examples from376

the training dataset and use them to fine-tune the377

model. Annotation-free methods do not rely on378

an external tool and have the advantage of gener-379

alizability beyond the phenomena covered by any380

tool. Crucially, the presented methods aim to im-381

prove contextual capabilities without the need for382

any additional data beyond the standard training383

datasets.384

4.1 Token-level Loss Weighting385

We adapted the weighting of the loss elements386

(Wang et al., 2017), which increases the error sig-387

nal coming from selected examples. Instead of388

weighting the whole examples, we apply a token-389

level approach as phenomena annotations contain390

an expected word or phrase that requires context for391

successful translation. We train the models using392

the weighted negative log-likelihood loss function:393

L = − 1

|Da|
∑

(xi,yi,ai)∼Da

|yi|∑
j=1

w(ai,j)log(ŷi,j),

(1)394

where ŷi,j is the probability of the j-th token in i-th395

example, Da is the annotated training dataset with396

examples containing input and output sequences397

(xi and yi respectively), as well as the token-level398

annotations ai marking the contextually-dependent399

tokens, and wi,j is defined as:400

wi,j =

{
1 + λ, if contextually dependent,
1, otherwise,

(2)401

for each token j in the i-th output sequence, where402

λ is the hyper-parameter.403

4.2 Metric-based Example Selection404

A major issue with using annotations is that, ac-405

cording to our experiments on data composition,406

the model will improve only on the included phe-407

nomena. To mitigate this, we propose to utilize the408

model itself to mark contextually-rich examples. 409

Fernandes et al. (2023) proposed the Point-wise 410

Cross-Mutual Information (PCXMI) metric to mea- 411

sure the context reliance of the translations, which 412

is based on the output probabilities of the context- 413

aware MT model. For a particular example it is 414

calculated as: 415

PCXMI =

|y|∑
j=1

log
q(yj |yt<j , x, C)

q(yj |yt<j , x)
, (3) 416

where C is the context, and q represents the 417

context-aware MT model (returning token prob- 418

abilities, noted as q(yj |yt<j , x, C)) that is trained 419

to also be used as a sentence-level model (noted 420

as q(yj |yt<j , x)). We introduce a slightly modi- 421

fied metric that computes the maximum token-level 422

PCXMI for a given example: 423

MaxPCXMI = max
j

(
log

q(yj |yt<j , x, C)

q(yj |yt<j , x)

)
.

(4) 424

We motivate it by the fact that an example with even 425

a single token being dependent on context can be 426

considered a contextually-rich example (certainly 427

the case for pronouns), which is better captured by 428

our metric. The proposed method consists of the 429

following steps: 430

1. train the model on context-aware data, 431

2. calculate the metric using the trained model for 432

the examples in the training dataset, 433

3. select top k examples (a hyper-parameter), 434

4. fine-tune the model on the selected subset. 435

While the method can be seen as similar to cur- 436

riculum learning (Zhang et al., 2018), we select 437

the examples that the model is already competent 438

at translating using context. Intuitively, this is a 439

positive feedback where the model learns to gener- 440

alize to the difficult examples by becoming better 441

at what it already knows. 442

5 Experiments 443

We experimentally evaluated Token-level Loss 444

Weighting and Metric-based Example Selection 445

for fine-tuning and compared them to the following 446

baselines: 447

• Fine-tuning (annotation-based) - simply fine- 448

tuning the model on the annotated data after the 449

context-aware training. 450

• CoWord Dropout (annotation-free; Fernandes 451

et al., 2021) - masking random tokens in the current 452
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Figure 4: Accuracy of ctxPro English-to-German phenomena (Gender, Formality, and Auxiliary) against BLEU on
the IWSLT 2017 en-de testset of the trained models. Labels show: the number of epochs ("e"), CoWord Dropout
probability ("p"), number of tuned heads("h"), and weighting strength ("λ") hyper-parameters.

source sentence to force the model to use context453

for translation, the probability of masking a token454

is controlled by the hyper-parameter p.455

• Adapted Divide and Rule (annotation-free;456

Lupo et al., 2022) - splitting the current source457

and target sentences in the middle and appending458

the first parts to the context. Notably, this method459

was introduced for the multi-encoder architecture460

and trained only the contextual parameters. We461

adapt it to the single-encoder architectures we use462

in this study and do not freeze the parameters of463

the model.464

• Head-tuning (annotation-based; Mąka et al.,465

2025) - training selected attention heads to attend466

the context cue, therefore, available only for Gen-467

der.468

We evaluated all methods in the single language469

pair (English-to-German) setting and annotation-470

free methods in the multilingual setting (due to471

the lack of exhaustive annotations for the dataset).472

We used the same base sentence-level models:473

OpusMT en-de and NLLB-200 600M, respectively.474

For English-to-German, we trained on the full475

IWSLT 2017 en-de dataset with ctxPro annota-476

tions, and for multilingual, we sampled 50,000477

examples for each language direction from the OS-478

rand dataset. We used the same hyper-parameters479

shared by all methods as in previous experiments480

(see Appendix B for more details) for both train-481

ing and fine-tuning with the exception of Head-482

tuning where we applied the hyper-parameters from483

the original paper. In the English-to-German set-484

ting, we repeated the training 5 times with different485

seeds and averaged the results. In the multi-lingual486

setting, we performed a single training run for all487

models with the same seed. Fine-tuning used the488

base model trained with the corresponding seed.489

5.1 Single Language Pair Results 490

We tested several parameters for most methods. 491

For fine-tuning-based models, we trained for e ∈ 492

{1, 2, 5} epochs and utilized only the examples 493

with the maximum context size. For Weighting we 494

set the λ parameter to 2, 5, and 10. In addition to 495

the values of p for CoWord Dropout recommended 496

by the authors (0.1, 0,2), we also included the value 497

of 0.3. For Metric-based example selection, we set 498

k=30,000 based on the number of annotated exam- 499

ples in the dataset, and used the MaxPCXMI metric 500

(in Appendix D we present the comparison to the 501

PCXMI metric). For Head-tuning we selected top 502

h ∈ {1, 2, 3} heads from Mąka et al. (2025). Re- 503

sults in terms of accuracy on the ctxPro dataset and 504

BLEU on the IWSLT testset can be seen in Figure 4. 505

Extended results are presented in Appendix D. 506

It can be seen that with four metrics, the mod- 507

els’ performance varies, and improvement in one 508

metric comes at a cost of a reduction in another. 509

In particular, we observe a negative relation be- 510

tween ctxPro accuracies and BLEU for all methods 511

with the increase of the hyper-parameters. Metric- 512

based example selection achieved highest improve- 513

ment in Formality and outperformed the annotation- 514

based selection for fine-tuning in Formality and 515

Auxiliary, and achieved similar results for Gen- 516

der, with a smaller decrease in BLEU. Head-tuning 517

showed improvement only on Gender but with 518

smaller drop in BLEU. Methods applied during 519

training (Weighting, CoWord Dropout, and Divide 520

and Rule) showed a smaller reduction in BLEU 521

compared to fine-tuning. We attribute this to the 522

smaller discrepancy in the dataset distribution be- 523

tween training and evaluation. Weighting outper- 524

formed CoWord Dropout on Gender and Auxiliary. 525

Conversely, CoWord Dropout achieved the highest 526

accuracy on Auxiliary (with Weighting being the 527
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Model BLEU Gender Formality Auxiliary Inflection Animacy
Adapted D&R -0.05 -0.06 -0.19 -0.16 -0.03 +0.07
CoWord p=0.1 -0.09 +0.02 -0.16 +0.35 -0.10 +0.16
CoWord p=0.2 -0.11 +0.07 -0.28 +0.65 -0.21 +0.01
CoWord p=0.3 -0.08 +0.01 -0.42 +0.97 -0.29 -0.27
MaxPCXMI e=1 -0.42 +1.13 +0.05 +3.41 +0.44 +1.08
MaxPCXMI e=2 -0.45 +1.42 +0.05 +4.25 +0.57 +1.10
MaxPCXMI e=5 -0.50 +1.93 +0.11 +5.80 +0.76 +1.64

Table 1: The averaged (over language directions) difference from the baseline in terms of BLEU on OpenSubtitles
2018 testsets and ctxPro phenomena accuracies for the tested methods. Number of epochs is noted as "e", and
CoWord Dropout probability as "p".

second-best) but did not show any improvement for528

Gender and Formality. Notably, the highest reduc-529

tion in BLEU was around 1% compared to the base-530

line. Lack of improvement exhibited by Adapted531

Divide and Rule can be attributed to our adapta-532

tion implementation, which did not utilize param-533

eter freezing as in the original paper. Among all534

methods, metric-based example selection achieved535

the highest average ctxPro accuracy across phe-536

nomena, while token-level loss weighting was the537

most effective among annotation-based approaches,538

demonstrating that both proposed techniques can539

substantially improve context utilization.540

5.2 Multilingual Results541

We trained models based on NLLB-200 600M on542

all relevant language-directions using annotation-543

free methods to assess their performance in the544

multilingual setting. For CoWord Dropout, we545

used the same values of p (0.1, 0.2, and 0.3), and for546

Metric-based example selection, we set k=10,000547

per language direction and the number of epochs548

equal to 1, 2, and 5. The results aggregated over549

language directions can be seen in Table 1 and550

extended results in Appendix D.551

Fine-tuning on examples selected by Max-552

PCXMI outperformed all baselines in terms of553

ctxPro accuracy across phenomena, with the high-554

est improvement of 5.8, 1.9, and 1.6 percentage555

points (on average) for Auxiliary, Gender, and556

Animacy, respectively. Contrary to the English-557

to-German experiments, no improvement (on av-558

erage) was observed for Formality. This was559

caused by a drop of up to 1 percentage point560

in the English-to-French direction, which offset561

small gains in other language directions. These562

accuracy improvements came at the cost of a563

greater reduction in BLEU compared to other meth-564

ods, and both trends—accuracy gains and BLEU565

drops—intensified with more fine-tuning epochs, 566

mirroring the patterns seen in the single-language- 567

direction experiments. 568

6 Conclusions 569

This work provided a systematic empirical eval- 570

uation of the influence of training data composi- 571

tion, in terms of contextually rich examples, on the 572

context utilization capabilities for encoder-decoder 573

MT models. By systematically adapting the propor- 574

tion of contextually rich examples in the training 575

data, we demonstrated that such data sparsity is 576

the key bottleneck in learning to leverage context 577

efficiently in MT models. Crucially, we found that 578

(1) models do not generalize well across different 579

contextual phenomena (e.g. gender or formality) 580

and (2) while there is some cross-lingual transfer, 581

it was not significantly higher between languages 582

in the same linguistic sub-family. 583

Motivated by these findings, we proposed two 584

methods designed to mitigate the effect of data spar- 585

sity in context-aware MT: token-level loss weight- 586

ing (based on token-level annotations of context- 587

dependent words) and metric-based instance selec- 588

tion (fine-tuning on most contextually important 589

examples). Both methods significantly improved 590

context utilization without the need for extensive 591

architectural changes or additional annotated data. 592

Notably, the metric based method showed strong 593

gains across multiple phenomena and language di- 594

rections. 595

In practical terms, data composition and targeted 596

training should be considered as potential solutions 597

to developing strong context-aware MT models. 598

In future work, we will evaluate our findings for 599

decoder-only models and combine the strengths of 600

weighting and metric-based example selection. 601
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7 Limitations602

While we investigate many language directions and603

three sub-families, all of them come from the Indo-604

European family. This limitation was imposed by605

the language directions covered by ctxPro toolset.606

Additionally, for the single language pair setting,607

we only tested English-to-German direction. We608

suspect that the uncovered effects of data composi-609

tion go beyond the tested language pairs, but this610

claim has not been tested experimentally.611

Similarly, we only tested encoder-decoder archi-612

tectures with the single encoder (standard Trans-613

former). Both multi-encoder and decoder-only614

models lay beyond the scope of this study. Fur-615

thermore, we leveraged only the publicly available616

pre-trained sentence-level models as the basis for617

context-aware training. We argue that this increases618

reproducibility as the models are freely available619

for further investigation by other researchers. Nev-620

ertheless, we did not experiment in this study on the621

models trained from randomly initialized weights.622
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A Composition of the Datasets 1006

In this section, we describe how the constructed 1007

datasets were created. For the Pure IWSLT setting, 1008

we start with the IWSLT-sparse (123,000 exam- 1009

ples with no annotations) and progressively replace 1010

it with the examples sampled from IWSLT-dense. 1011

The steps are based on the size of the IWSLT-dense 1012

dataset for a particular phenomenon: 3,000 and 1013

6,915 (full size) for Gender, 10,000 and 21,977 1014

(full size) for Formality, and 19 (full size) for Aux- 1015

iliary. For the IWSLT + OS setting, we start with 1016

the datasets formed by combining IWSLT-sparse 1017

with examples sampled from OS-rand. To maxi- 1018

mize the density of the resulting datasets, we set 1019

the number of examples sampled from OS-rand to 1020

be dependent on the phenomenon and equal to the 1021

(rounded) size of the OS-dense datasets: 12,000 1022

for Gender, 17,000 for Formality, and 1,200 for 1023

Auxiliary. We start by replacing examples from 1024

IWSLT-sparse (we retain the steps from the Pure 1025

IWSLT setting). After reaching the maximum den- 1026

sity in the IWSLT portion of the dataset, we start 1027

replacing OS-rand with OS-dense in the following 1028

steps: 4,000, 8,000, and 12,000 for Gender, 6,000, 1029

12,000, and 17,000 for Formality, and 400, 800, 1030

and 1,200 for Auxiliary. 1031

Tables 2, 3, and 4 show the composition of the 1032

training datasets we used in the experiments for 1033

Gender, Formality, and Auxiliary phenomena, re- 1034

spectively. Each example was encoded with the 1035

context size ranging from zero to the maximum 1036

context size (three in our experiments), increasing 1037

the size of the datasets four times. 1038

In the multilingual experiments, we formed the 1039

baseline training dataset by sampling 50,000 ex- 1040

amples from OpenSubtitles (OS-rand) for each 1041

language direction we considered. For each phe- 1042

nomenon in a language direction, we replaced 1043

examples with the rich ones: 6,900 for Gender, 1044

10,000 for Formality, 1,200 for Auxiliary, 10,000 1045
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for Inflection, and 4,000 for Animacy.1046

(NLLB Team et al., 2022).1047

B Details of Context-aware Training1048

We implemented all experiments in Hugging-1049

face transformers framework (Wolf et al., 2020).1050

We trained the models with Adafactor optimizer1051

(Shazeer and Stern, 2018) on a single GPU1052

(NVIDIA GeForce RTX 3090 24GB and NVIDIA1053

H100 80GB for the models based on OpusMT1054

en-de and NLLB-200 600M, respectively) for 101055

epochs. OpusMT en-de2 and NLLB-200 600M31056

contain 163M and 615M parameters, respectively.1057

The hyper-parameters are presented in Table 5. We1058

tuned the hyper-parameters (learning rate, batch1059

size, number of epochs) during the preliminary ex-1060

periments on OpusMT en-de model with context1061

size of one trained on IWSLT 2017 English-to-1062

German dataset.1063

C Extended Data Composition Results1064

In this section, we present the extended results1065

of the data composition experiments. For single1066

language pair setting, we measured COMET (Rei1067

et al., 2020) (based on Unbabel/wmt22-comet-da)1068

on the IWSLT 2017 en-de testset and evaluated1069

the models on the ContraPro (Müller et al., 2018)1070

contrastive evaluation. The results for the Pure1071

IWSLT and IWSLT+OS settings can be found in1072

Tables 6 and 7, respectively.1073

For the multilingual setting, we measured BLEU1074

(we used the sacreBLEU library (Post, 2018) using1075

the default parameters) and COMET on the testsets1076

formed by sampling 20,000 examples from Open-1077

Subtitles 2018 for each language direction. The1078

results can be seen in Tables 8 and 9 for BLEU and1079

COMET, respectively.1080

D Extended Fine-tuning Results1081

For the English-to-German experiment, apart1082

from BLEU and ctxPro accuracy, we also mea-1083

sured COMET (Rei et al., 2020) (based on1084

Unbabel/wmt22-comet-da) on the IWSLT 20171085

en-de testset and the accuracy on the ContraPro1086

contrastive evaluation. The results (including1087

BLEU and ctxPro accuracies) can be seen in Ta-1088

ble 10.1089

2https://huggingface.co/Helsinki-NLP/
opus-mt-en-de

3https://huggingface.co/facebook/
nllb-200-distilled-600M

Next, we present the results of Metric-based se- 1090

lection of examples for fine-tuning for two metrics: 1091

PCXMI (Fernandes et al., 2023) and MaxPCXMI 1092

(ours). We fine-tuned the models for 1, 2, and 5 1093

epochs and repeated the experiment 5 times with 1094

different seeds (using the base context-aware model 1095

trained with the corresponding seed). The averaged 1096

results can be seen in Figure 5. Selecting exam- 1097

ples based on MaxPCXMI outperforms PCXMI 1098

in Gender and Formality at a lower reduction in 1099

BLEU. PCXMI achieves a better increase in Auxil- 1100

iary but reduces BLEU even below the level of the 1101

annotation-based method. 1102

The un-aggregated results of the trained mod- 1103

els for each language direction in the multilingual 1104

experiment can be seen in Figure 6 and Tables 11 1105

and 12 for ctxPro accuracies, BLEU and COMET, 1106

respectively. 1107
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Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total
Pure IWSLT 123,000 0 0 0 123,000

120,000 3,000 0 0 123,000
116,085 6,915 0 0 123,000

IWSLT+OS 123,000 0 12,000 0 135,000
120,000 3,000 12,000 0 135,000
116,085 6,915 12,000 0 135,000
116,085 6,915 8,000 4,000 135,000
116,085 6,915 4,000 8,000 135,000
116,085 6,915 0 12,000 135,000

Table 2: Number of examples from datasets that were used to compose training datasets (in rows) for the Gender
phenomenon in the single language direction (English-to-German) setting.

Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total
Pure IWSLT 123,000 0 0 0 123,000

113,000 10,000 0 0 123,000
101,023 21,977 0 0 123,000

IWSLT+OS 123,000 0 17,000 0 140,000
113,000 10,000 17,000 0 140,000
101,023 21,977 17,000 0 140,000
101,023 21,977 11,000 6,000 140,000
101,023 21,977 5,000 12,000 140,000
101,023 21,977 0 17,000 140,000

Table 3: Number of examples from datasets that were used to compose training datasets (in rows) for the Formality
phenomenon in the single language direction (English-to-German) setting.

Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total
Pure IWSLT 123,000 0 0 0 123,000

122,981 19 0 0 123,000
IWSLT+OS 123,000 0 1,200 0 124,200

122,981 19 1,200 0 124,200
122,981 19 800 400 124,200
122,981 19 400 800 124,200
122,981 19 0 1,200 124,200

Table 4: Number of examples from datasets that were used to compose training datasets (in rows) for the Auxiliary
phenomenon in the single language direction (English-to-German) setting.

Figure 5: Accuracy of ctxPro English-to-German phenomena (Gender, Formality, and Auxiliary) against BLEU
on the IWSLT 2017 en-de testset of the fine-tuned models with Metric-based (PCXMI and MaxPCXMI) and
annotation-based (for comparison) selection of examples. Labels show the number of epochs ("e").
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Figure 6: Measured ctxPro accuracy on all phenomena for each of the relevant language directions (in columns) of
tested methods (in rows).
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Hyper-parameter Value
Optimizer Adafactor
Learning Rate 1e-5
LR Scheduler Inverse Sqrt
LR Warmup Ratio 0.1
Weight Decay 0.01
Batch Size 32a

Gradient Accumulation Steps 16a

Num Epoch 10
Precission fp16
Seeds 1,2,3,4,5b

Max Length 512 / 1024c

Max Context Size 3
Beam size 5

Table 5: The hyper-parameters of the context-aware
training and fine-tuning.
a For the cases where the CUDA Out Of Memory error
occurred, we reduced the batch size to 16 and increased
the Gradient Accumulation Steps to 32, keeping the
same effective size of the batch.
b For the multilingual setting, we used only one seed of
1.
c For models based on OpusMT en-de and NLLB-200
600M respectively.

Dataset Count COMET ContraPro
Sparse 0 0.8415 69.23
Gender 3,000 0.8417 74.70

6,915 0.8417 78.45
Formality 10,000 0.8429 69.55

21,977 0.8430 70.02
Auxiliary 19 0.8413 69.14

Table 6: Performance in terms of COMET on IWSLT
2017 en-de testset and ContraPro accuracy for the mod-
els in the Pure IWSLT setting trained on datasets with
different numbers of examples annotated with different
phenomena.

Dataset Count COMET ContraPro
Gender 0 0.8417 70.28

3,000 0.8417 75.03
6,915 0.8420 78.52

10,915 0.8419 83.58
14,915 0.8418 84.77
18,915 0.8420 85.24

Formality 0 0.8416 70.15
10,000 0.8426 70.59
21,977 0.8428 71.12
27,977 0.8429 71.04
33,977 0.8429 70.85
38,977 0.8430 71.03

Auxiliary 0 0.8414 69.47
19 0.8415 69.39

419 0.8415 69.60
819 0.8415 69.75

1,219 0.8416 69.79

Table 7: Performance in terms of COMET on IWSLT
2017 en-de testset and ContraPro accuracy for the mod-
els in the IWSLT+OS setting trained on datasets with
different numbers of examples annotated with different
phenomena.

16



Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 26.50 37.68 29.39 21.98 24.49 32.04 41.99 32.84 29.42 31.35
Gender
En-De 26.66 37.61 29.27 21.85 24.46 31.98 42.03 32.87 29.54 31.32
En-Es 26.88 37.60 29.33 22.12 24.52 32.03 41.96 32.86 29.46 31.36
En-Fr 26.75 37.53 29.16 22.05 24.41 32.01 41.97 32.87 29.50 31.33
En-Pl 26.80 37.57 29.21 21.54 24.48 32.05 42.00 32.86 29.53 31.34
En-Ru 26.78 37.60 29.56 21.91 24.45 32.01 42.04 32.81 29.52 31.41
Formality
En-De 26.61 37.27 29.29 21.75 24.44 31.98 42.05 32.85 29.52 31.31
En-Es 26.58 37.29 29.43 21.65 24.57 32.01 42.04 32.84 29.49 31.39
En-Fr 26.70 37.63 29.67 21.89 24.48 32.02 41.99 32.92 29.52 31.37
En-Pl 26.62 37.38 29.44 21.83 24.35 32.03 42.00 32.88 29.44 31.23
En-Ru 26.88 37.53 29.36 22.05 24.22 32.04 42.03 32.91 29.50 31.39
Auxiliary
En-De 26.86 37.57 29.26 21.77 24.48 32.01 42.08 32.91 29.51 31.42
En-Es 26.88 37.44 29.38 22.01 24.46 32.09 41.98 32.85 29.46 31.40
En-Fr 26.94 37.53 29.56 21.97 24.42 32.01 41.99 32.83 29.51 31.28
En-Pl 26.65 37.69 29.33 21.70 24.47 32.04 42.05 32.82 29.47 31.26
En-Ru 26.73 37.50 29.35 22.03 24.55 32.08 41.95 32.84 29.51 31.36
Inflection
En-Pl 26.95 37.58 29.41 21.68 24.59 32.07 41.98 32.87 29.49 31.40
En-Ru 26.80 37.63 29.31 21.90 24.43 32.06 42.04 32.85 29.51 31.30
Animacy
De-En 26.80 37.43 29.32 21.84 24.65 32.05 42.05 32.84 29.48 31.41
Es-En 26.83 37.59 29.39 22.20 24.50 32.02 41.97 32.81 29.51 31.27
Fr-En 26.93 37.70 29.23 21.85 24.55 32.04 42.02 32.88 29.46 31.27
Pl-En 26.71 37.55 29.35 21.89 24.46 32.09 42.01 32.88 29.44 31.35
Ru-En 26.83 37.51 29.35 21.73 24.48 32.00 41.95 32.86 29.48 31.35

Table 8: BLEU scores for the models trained on datasets with different densities of annotated examples in the
multilingual setting on the test subsets of the OpenSubtitles 2018 datasets for all relevant language pairs.

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 0.8023 0.8459 0.8005 0.8171 0.8321 0.8182 0.8522 0.8192 0.8009 0.8086
Gender
En-De 0.8025 0.8456 0.8001 0.8171 0.8325 0.8182 0.8522 0.8189 0.8011 0.8085
En-Es 0.8025 0.8462 0.8004 0.8172 0.8326 0.8181 0.8521 0.8193 0.8011 0.8086
En-Fr 0.8023 0.8456 0.8000 0.8172 0.8322 0.8182 0.8521 0.8192 0.8011 0.8085
En-Pl 0.8025 0.8458 0.8004 0.8176 0.8324 0.8182 0.8522 0.8193 0.8011 0.8084
En-Ru 0.8021 0.8456 0.7999 0.8168 0.8321 0.8182 0.8523 0.8189 0.8009 0.8086
Formality
En-De 0.8023 0.8456 0.8002 0.8168 0.8324 0.8181 0.8522 0.8190 0.8010 0.8084
En-Es 0.8026 0.8455 0.8003 0.8171 0.8325 0.8182 0.8523 0.8191 0.8011 0.8087
En-Fr 0.8024 0.8458 0.8008 0.8173 0.8321 0.8183 0.8522 0.8192 0.8011 0.8087
En-Pl 0.8024 0.8456 0.8005 0.8176 0.8325 0.8185 0.8523 0.8192 0.8009 0.8085
En-Ru 0.8022 0.8456 0.8001 0.8171 0.8318 0.8183 0.8524 0.8190 0.8009 0.8085
Auxiliary
En-De 0.8023 0.8458 0.8001 0.8171 0.8321 0.8185 0.8524 0.8190 0.8011 0.8085
En-Es 0.8024 0.8458 0.8006 0.8174 0.8327 0.8185 0.8522 0.8191 0.8011 0.8085
En-Fr 0.8025 0.8455 0.7999 0.8165 0.8322 0.8181 0.8521 0.8189 0.8010 0.8085
En-Pl 0.8026 0.8458 0.8001 0.8170 0.8321 0.8183 0.8522 0.8191 0.8009 0.8083
En-Ru 0.8024 0.8457 0.8001 0.8169 0.8326 0.8183 0.8520 0.8190 0.8009 0.8085
Inflection
En-Pl 0.8025 0.8458 0.8004 0.8162 0.8323 0.8184 0.8522 0.8191 0.8010 0.8087
En-Ru 0.8021 0.8457 0.7999 0.8168 0.8309 0.8184 0.8523 0.8190 0.8010 0.8084
Animacy
De-En 0.8026 0.8458 0.8003 0.8174 0.8324 0.8184 0.8524 0.8188 0.8010 0.8085
Es-En 0.8025 0.8459 0.8005 0.8171 0.8328 0.8184 0.8522 0.8191 0.8009 0.8086
Fr-En 0.8021 0.8458 0.8000 0.8168 0.8325 0.8181 0.8523 0.8191 0.8008 0.8083
Pl-En 0.8021 0.8456 0.8004 0.8171 0.8322 0.8183 0.8522 0.8192 0.8008 0.8085
Ru-En 0.8022 0.8455 0.8003 0.8172 0.8321 0.8182 0.8521 0.8189 0.8008 0.8083

Table 9: COMET scores for the models trained on datasets with different densities of annotated examples in the
multilingual setting on the test subsets of the OpenSubtitles 2018 datasets for all relevant language pairs.
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Model BLEU COMET Gender Formality Auxiliary ContraPro
Baseline 33.93 0.8431 60.52% 38.63% 6.81% 78.88%
Fine-tuning e=1 33.60 0.8416 66.79% 39.30% 6.30% 83.02%
Fine-tuning e=2 33.59 0.8416 67.49% 39.34% 6.37% 83.78%
Fine-tuning e=5 33.60 0.8415 68.20% 39.49% 6.48% 84.50%
Head-tuning h=1 33.89 0.8428 63.28% 38.64% 6.43% 82.61%
Head-tuning h=2 33.85 0.8427 64.04% 38.58% 6.44% 83.40%
Head-tuning h=3 33.80 0.8425 64.75% 38.27% 6.45% 84.36%
Weighting λ=2 33.94 0.8430 64.35% 39.14% 7.18% 83.10%
Weighting λ=5 33.83 0.8430 65.72% 39.48% 7.67% 84.63%
Weighting λ=10 33.74 0.8426 66.24% 39.81% 8.10% 85.11%
Adapted D&R None 33.95 0.8429 60.77% 38.17% 7.01% 78.66%
CoWord p=0.1 33.98 0.8435 60.54% 38.72% 7.79% 78.65%
CoWord p=0.2 33.95 0.8436 60.47% 38.72% 8.22% 78.52%
CoWord p=0.3 33.88 0.8433 60.29% 38.68% 8.59% 78.39%
MaxPCXMI e=1 33.71 0.8420 66.16% 41.11% 6.84% 82.95%
MaxPCXMI e=2 33.70 0.8418 66.86% 41.44% 6.99% 83.79%
MaxPCXMI e=5 33.62 0.8414 67.31% 41.82% 7.18% 84.39%

Table 10: Performance in terms of BLEU and COMET on IWSLT 2017 en-de testset and ctxPro and ContraPro
accuracy for the different methods. Number of epochs is noted as "e", and CoWord Dropout probability as "p",
number of tuned heads as "h", and weighting strength as "λ".

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 26.50 37.68 29.39 21.98 24.49 32.04 41.99 32.84 29.42 31.35
Adapted D&R 26.50 37.00 29.48 22.00 24.44 32.05 42.01 32.88 29.50 31.30
CoWord p=0.1 26.72 37.48 28.86 21.89 24.27 32.10 41.97 32.77 29.41 31.31
CoWord p=0.2 26.45 37.31 29.27 22.01 24.25 32.05 41.88 32.75 29.35 31.30
CoWord p=0.3 26.58 37.61 29.48 21.95 24.15 32.11 41.82 32.68 29.28 31.22
MaxPCXMI e=1 26.00 37.04 28.71 21.23 24.02 31.89 41.78 32.73 29.35 30.76
MaxPCXMI e=2 26.04 37.02 28.59 21.34 23.90 31.81 41.81 32.71 29.31 30.68
MaxPCXMI e=5 26.09 36.93 28.74 21.29 23.85 31.78 41.65 32.62 29.22 30.46

Table 11: BLEU scores for the methods in the multilingual setting on the test subsets of the OpenSubtitles 2018
datasets for all relevant language pairs.

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 0.8023 0.8459 0.8005 0.8171 0.8321 0.8182 0.8522 0.8192 0.8009 0.8086
Adapted D&R 0.8026 0.8456 0.8000 0.8175 0.8322 0.8183 0.8522 0.8191 0.8011 0.8085
CoWord p=0.1 0.8023 0.8454 0.7994 0.8167 0.8317 0.8182 0.8521 0.8188 0.8006 0.8086
CoWord p=0.2 0.8015 0.8453 0.7994 0.8166 0.8316 0.8178 0.8518 0.8187 0.8002 0.8083
CoWord p=0.3 0.8014 0.8453 0.7990 0.8164 0.8313 0.8176 0.8516 0.8183 0.7996 0.8083
MaxPCXMI e=1 0.7990 0.8433 0.7963 0.8125 0.8296 0.8155 0.8501 0.8170 0.7988 0.8057
MaxPCXMI e=2 0.7987 0.8431 0.7958 0.8123 0.8296 0.8150 0.8499 0.8167 0.7982 0.8053
MaxPCXMI e=5 0.7974 0.8427 0.7947 0.8109 0.8285 0.8137 0.8490 0.8158 0.7970 0.8043

Table 12: COMET scores for the methods in the multilingual setting on the test subsets of the OpenSubtitles 2018
datasets for all relevant language pairs.
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