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Abstract

Achieving human-level translations requires
leveraging context to ensure coherence and han-
dle complex phenomena like pronoun disam-
biguation. Sparsity of contextually rich exam-
ples in the standard training data has been hy-
pothesized as the reason for the difficulty of
context utilization. In this work, we system-
atically validate this claim in both single- and
multilingual settings by constructing training
datasets with a controlled proportions of con-
textually relevant examples. We demonstrate a
strong association between training data spar-
sity and model performance confirming spar-
sity as a key bottleneck. Importantly, we re-
veal that improvements in one contextual phe-
nomenon do no generalize to others. While we
observe some cross-lingual transfer, it is not
significantly higher between languages within
the same sub-family. Finally, we propose and
empirically evaluate two training strategies de-
signed to leverage the available data. These
strategies improve context utilization, resulting
in accuracy gains of up to 6 and 8 percentage
points on the ctxPro evaluation in single- and
multilingual settings respectively.'

1 Introduction

Context-Aware Machine Translation (MT) mod-
els use surrounding sentences (context) to improve
translation by maintaining coherence and resolving
ambiguities (Agrawal et al., 2018; Bawden et al.,
2018; Miiller et al., 2018; Voita et al., 2019b). The
context can be sentences in the source language
and the previously translated sentences in the target
language. While many works improved the transla-
tion quality of the context-aware MT by applying
standard Transformer (Vaswani et al., 2017) model
(Sun et al., 2022; Majumde et al., 2022; Gete et al.,
2023; Post and Junczys-Dowmunt, 2024; Alves
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Figure 1: Composition of the English-to-German train-
ing datasets with the Gender phenomenon in Pure
IWSLT and IWSLT+OpenSubtitles settings. Annota-
tions are based on ctxPro (Wicks and Post, 2023), and
the dashed bars represent the contextually-rich datasets.
Note that the horizontal axis starts at 100,000.

et al., 2024; Kocmi et al., 2024), specialized ar-
chitectures (Tu et al., 2017; Bawden et al., 2018;
Miculicich et al., 2018; Maruf et al., 2019; Huo
et al., 2020; Zheng et al., 2021), and decoder-only
LLMs (Alves et al., 2024; Kocmi et al., 2024), the
reason why the context utilization is challenging
for the models remain an open question.

The low density of contextually rich (requiring
context for correct translation) examples in the
training datasets has been suspected as the main
reason why MT models have trouble in translating
contextual phenomena. For example, Lupo et al.
(2022) proposed the two-fold sparsity hypothesis,
where the low density of examples in the dataset
and the tokens in the examples requiring context
increases the difficulty of learning to leverage con-
text. Post and Junczys-Dowmunt (2024) show that
sparsity in the evaluation datasets makes it difficult
to assess the context utilization of the models. We
argue that this also points to the sparsity hypothesis
in the training data, as the evaluation datasets are
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often subsets of the training datasets.

In this work, we evaluate how the the proportion
of contextually rich examples in the training data
of the encoder-deconder context-aware M T models
affects the overall translation quality measured by
BLEU (Papineni et al., 2002) and COMET (Rei
et al., 2020), and performance on the examples re-
quiring context (using generative and contrastive
evaluations). To this end, we use ctxPro toolset
(Wicks and Post, 2023) to extract the relevant ex-
amples containing the following phenomena: Gen-
der, Formality, Auxiliary, Inflection, and Animacy.
We refer the reader to the original ctxPro paper
for the details of the annotation and phenomena
(Wicks and Post, 2023). We constructed training
data by mixing contextually rich and poor exam-
ples with varying proportions (Figure 1 illustrates
this for Gender in English-to-German). Moreover,
we evaluate cross-lingual transfer of context utiliza-
tion in multilingual models on English-to-X and
X-to-English where X is { German, French, Polish,
Russian, and Spanish}. Finally, we explore several
ways to effectively leverage the available data to
obtain models that perform well both generally and
in context-sensitive settings. The contributions of
this work are:

1. We empirically validate the sparsity hypothe-
sis, showing strong relation between the density of
the contextual phenomena in the training data and
the resulting performance of the context-aware MT
models.

2. We reveal limitations in generalization, show-
ing that the improvement in one linguistic phe-
nomenon does not transfer to others. We ob-
serve limited cross-lingual transfer, not substan-
tially higher between languages in the same sub-
family.

3. We propose and empirically evaluate two train-
ing strategies designed to improve context utiliza-
tion by leveraging the available data. We show
a trade-off between improving context utilization
and general translation metrics such as BLEU.

2 Related Work

Through years many dedicated architectures has
been proposed for context-aware MT (Miculicich
et al., 2018; Voita et al., 2019b,a; Bao et al., 2021;
Chen et al., 2022; Feng et al., 2022; Bulatov et al.,
2022; Maka et al., 2024) including popular multi-
encoder (where a separate encoder is responsible
for processing the context sentences; Jean et al.,

2017; Miculicich et al., 2018; Maruf et al., 2019;
Huo et al., 2020; Zheng et al., 2021), but the stan-
dard Transformer model (Vaswani et al., 2017) with
the sentences being concatenated (single-encoder;
Tiedemann and Scherrer, 2017; Ma et al., 2020;
Zhang et al., 2020) exhibited high performance de-
spite its relative simplicity (Majumde et al., 2022;
Sun et al., 2022; Gete et al., 2023; Post and Junczys-
Dowmunt, 2023). While decoder-only LLMs have
achieved state-of-the-art results in MT (Alves et al.,
2024; Kocmi et al., 2024), they require extensive
datasets for training and have a large number of
parameters that can limit their usefulness in com-
putationally constrained environments (e.g., edge
devices) and low-resource settings. In recent years,
research interest in the architectures other than
decoder-only has remained relevant (Mohammed
and Niculae, 2024; Warner et al., 2024; Alastruey
et al., 2024; Azeemi et al., 2025; Marashian et al.,
2025; Breton et al., 2025; Clavié et al., 2025).
Therefore, we focus this paper on encoder-decoder
models.

The standard sentence-level metrics (e.g., BLEU
(Papineni et al., 2002) do not capture the contextual
utilization by the models (Hardmeier, 2012; Wong
and Kit, 2012). To address this, several evaluation
datasets have been proposed including contrastive
(Miiller et al., 2018; Bawden et al., 2018; Voita
et al., 2019b; Lopes et al., 2020) and generative
such as ctxPro (Wicks and Post, 2023) used in this
study. Moreover, metrics like CXMI (Fernandes
et al., 2021) and PCXMI (Fernandes et al., 2023)
can measure how much the model relies on context
during translation.

The effects of the training dataset on the final
model has also been studied extensively (Kaplan
et al., 2020; Hoffmann et al., 2022) in different
domains (Alabdulmohsin et al., 2023), including
document-level MT (Zhuocheng et al., 2023). The
studies mostly concentrated on the scale of the
training dataset. We, instead, investigate the com-
position of the dataset and its effect on the context-
aware MT models.

Several works proposed methods increasing con-
textual capabilities of the models by training the
models on annotated data (Jwalapuram et al., 2020;
Yin et al., 2021; Maka et al., 2025) but they tar-
get only pronoun disambiguation. Fine-tuning in
this case can be seen as similar to domain adapta-
tion (Luong and Manning, 2015; Chu et al., 2017)
where loss weighting (similar to one of our meth-
ods) is an effective strategy (Wang et al., 2017).



3 Effects of Data Composition

We first measured how the presence of contextu-
ally rich examples in the training data affects both
translation quality and the models’ ability to lever-
age context. To that end, we trained models on
datasets whose composition we systematically var-
ied. Specifically, we identified contextual examples
(containing relevant phenomena) from the avail-
able datasets using ctxPro toolset (Wicks and Post,
2023) and constructed a series of datasets with
varying densities of different phenomena. This
setup allowed us to assess inter-phenomena as well
as cross-lingual effects of the composition of the
training datasets. We used two settings: single lan-
guage pair (English-to-German) and multilingual.
For the multilingual setting, we used English-to-
X and X-to-English language directions, where X
is {German, French, Polish, Russian, and Span-
ish} - a subset of directions covered by the ctxPro.
We utilized two Germanic, Romance, and Slavic
languages.

3.1 Datasets

We base our research on two document-level trans-
lation datasets: IWSLT 2017 English-to-German
(Cettolo et al., 2017) and OpenSubtitles 2018 (Li-
son et al., 2018). For the English-to-German direc-
tion, we employ both datasets, and for the multilin-
gual setting, we only use OpenSubtitles. We extract
contextual annotations from the training subset of
the IWSLT dataset using the ctxPro toolset. The
annotated (containing contextually-rich examples)
subset forms IWSLT-dense dataset, which can be
further divided based on the target phenomenon:
Gender, Formality, Auxiliary, Inflection, and An-
imacy. From the remaining examples we form
IWSLT-sparse dataset of size 123,000, containing
no examples annotated with contextual phenom-
ena. CtxPro released annotations extracted from
the OpenSubtitles 2018 dataset divided into dev,
devtest, and test subsets. We set aside the test sub-
set for the evaluation and used the combined dev
and devtest subsets for training, forming OS-dense
dataset. The released ctxPro dataset is not exhaus-
tive; therefore, we do not create the sparse version
of the OpenSubtitles dataset. Instead, we randomly
sample the OpenSubtitles dataset to the desired size
(referred to as OS-random). In Appendix A we
present the sizes of the dense component datasets.

To create the training datasets with varying den-
sities of contextually rich examples, we sample and

concatenate examples from both dense and sparse
datasets to form a training dataset. For English-
to-German, we study two settings: Pure IWSLT
(only IWSLT-sparse and IWSLT-dense datasets)
and IWSLT + OS (using IWSLT-sparse, IWSLT-
dense, and English-to-German OS-rand and OS-
dense datasets). These allow us to study two
regimes: extremely low sparsity with the first set-
ting, and very dense with the second one. We
progressively replace examples from sparse and
random datasets with the examples sampled from
dense datasets. In the multilingual experiments,
we formed the baseline training dataset by sam-
pling 50,000 examples from OS-rand for all lan-
guage directions we considered. For each phe-
nomenon in a language direction, we formed the
enriched datasets by replacing n examples with
the examples sampled from the OS-dense dataset
corresponding to the phenomenon and language di-
rection. We chose n to be the minimum number of
examples (rounded) for a particular phenomenon
across language directions maximizing the result-
ing density of the training datasets while making
the results comparable between language direc-
tions. We present the illustration of the composition
of the datasets in Figure 1 for Gender on English-
to-German and further details in Appendix A.

3.2 Training

We employed a two-stage training process where
first the sentence-level model is trained on more
abundant sentence-aligned datasets, followed by
the context-aware training on the document-level
dataset. Following Maka et al. (2025), we rely
on the publicly available pre-trained sentence-level
models, namely OPUS-MT en-de and No Language
Left Behind (NLLB-200) with 600M parameters
(NLLB Team et al., 2022). We concatenate con-
secutive sentences separated by the special [SEP]
token on both the source and target sides. Similar
to Sun et al. (2022), we create examples with all
context sizes (number of previous sentences to con-
catenate) from zero to the maximum context size.
We set the maximum context size to three as further
increases have shown diminishing returns regard-
ing context utilization (Post and Junczys-Dowmunt,
2023). During inference, the models receive only
the source-side context and generate the target-side
context before the current sentence. We obtained
the translation of the current sentence by splitting
the output on the separator token. The training
hyper-parameters and additional details can be seen
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Figure 2: Measured metrics of BLEU on IWSLT 2017 testset, and ctxPro accuracy on Gender, Formality, and
Auxiliary phenomena (in columns) of the OpusMT en-de models trained on the datasets with varying amounts of
contextually-rich examples of Gender, Formality, and Auxiliary phenomena (in rows). Shows two experimental

settings: Pure IWSLT and combined IWSLT+OS.

in Appendix B.

3.3 Single Language Pair Results

For the models in the English-to-German experi-
ments, we trained 5 models with different seeds and
averaged the results. Apart from the constructed
datasets, we also trained a baseline model on the
unmodified IWSLT training dataset. To measure
the general translation quality, we translated the
IWSLT 2017 English-to-German test subset (with
BEAM search of 5) and measured BLEU (Pap-
ineni et al., 2002). Additionally, we translated test
subsets of the ctxPro dataset (based on OpenSub-
titles) and measured the accuracy of matching the
expected word in the translation (using the scripts
provided with the dataset). The results can be seen
in Figure 2. Extended results including COMET
and ContraPro (Miiller et al., 2018) accuracy can
be found in Appendix C.

We observed a drop in BLEU for the models
trained on the sparse datasets, even for the datasets
with mixed OpenSubtitles examples. While the
reduction was relatively small (less than 2%), it
returned to the baseline value only when Formality
IWSLT-dense examples were added to the dataset.
This could mean that the examples from the IWSLT
dataset annotated with Formality were particularly
influential for the model’s general translation abil-

ity, and mixing in the random examples from Open-
Subtitles did not help.

For Gender and Formality, increasing their den-
sity in the training dataset improved the ctxPro
accuracy for the corresponding phenomenon. No-
tably, Formality in the IWSLT+OS setting only im-
proved when OS-dense examples were added, but
exceeded the accuracy of the baseline model even
with the most sparse dataset. Adding OS-dense ex-
amples improved the accuracy significantly above
the baseline (up to 30%). Interestingly, adding
dense examples in one phenomenon had minimal
effect on the accuracy of the other phenomena, with
only a very small increase of Formality for the
Gender-enriched dataset and vice versa. Those re-
sults show that the generalizability of the models’
ability to handle contextual phenomena is very lim-
ited.

3.4 Multilingual Results

For the multilingual experiments, we trained mod-
els (with a single seed due to the computational
cost of training and evaluation) on the composed
datasets and measured ctxPro accuracy for all avail-
able phenomena and language directions included
in the experiments. Note that Inflection applies
only to English-to-Polish and English-to-Russian,
and Animacy only to X-to-English. The results are
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Figure 3: Measured ctxPro accuracy on all phenomena for each of the relevant language directions (in columns)
of the models trained on the OpenSubtitles datasets with varying amounts of contextually-rich examples for each
phenomena and language directions (in rows). We show the differences from the baseline model (top row).

presented in Figure 3. Results in terms of BLEU
and COMET on the testsets sampled from Open-
Subtitles for each language direction can be seen
in Appendix C.

For each model, the highest improvement in
accuracy was observed for the phenomenon and
language direction that was added to the training
dataset (values on the diagonal in the figure). In
line with the results on the single language pair,
we did not observe any intra-lingual transfer be-
tween phenomena. Interestingly, there was some
transfer between language directions for the same
phenomenon, which was the strongest for Aux-
iliary, moderate for Gender, Inflection, and An-
imacy, and no transfer for Formality. Contrary
to our expectations, we did not observe notably
stronger transferability between languages in the
same linguistic sub-family, with the exception of
Auxiliary, where the increase in accuracy is slightly
higher inside Romance and Slavic languages than
for other languages. Surprisingly, the transferabil-
ity between Gender and Animacy was not observed,
even though the phenomena in question are a re-
flection of each other.

3.5 Discussion

We experimentally confirmed the dataset sparsity
hypothesis by showing that the models trained on
datasets sparse in contextually rich examples ex-
hibit poor context utilization, and increasing the
density leads to large improvements for the tested
phenomena. Both experiments showed that the
models do not generalize context utilization be-
tween phenomena. This finding calls for caution
when interpreting the results of evaluations tar-
geting a single phenomenon (Miiller et al., 2018;
Lopes et al., 2020). While document-level training
datasets typically include a representative (for a par-
ticular domain) mixture of contextual phenomena,
we found that models can develop strong capabili-
ties for some phenomena, while remaining weak on
others. Maka et al. (2025) found attention heads in
context-aware MT models responsible for pronoun
disambiguation with some cross-lingual behavior,
which is in line with the observed transferability
between language directions. We hypothesize that
the poor transfer between phenomena can be ex-
plained by the models developing separate heads
for each of them.



4 Methods Exploiting Contextual Data

Inspired by the fact that increased density in
contextually-relevant examples of the training
dataset leads to improvement in context utilization,
we tested several techniques that could leverage
the available data more efficiently. We broadly
divide them into annotation-based and annotation-
free. Annotations can inform the training process
but require an external tool (e.g., ctxPro) to mark
the relevant examples. A straightforward method
is to simply extract the annotated examples from
the training dataset and use them to fine-tune the
model. Annotation-free methods do not rely on
an external tool and have the advantage of gener-
alizability beyond the phenomena covered by any
tool. Crucially, the presented methods aim to im-
prove contextual capabilities without the need for
any additional data beyond the standard training
datasets.

4.1 Token-level Loss Weighting

We adapted the weighting of the loss elements
(Wang et al., 2017), which increases the error sig-
nal coming from selected examples. Instead of
weighting the whole examples, we apply a token-
level approach as phenomena annotations contain
an expected word or phrase that requires context for
successful translation. We train the models using
the weighted negative log-likelihood loss function:

|yil

5 o wlaig)log(diy),

| a‘ (zivyi)ai)"’Da j=1
(1

where §; ; is the probability of the j-th token in i-th
example, D, is the annotated training dataset with
examples containing input and output sequences
(z; and y; respectively), as well as the token-level
annotations a; marking the contextually-dependent
tokens, and w; ; is defined as:

L=-

1+ A, if contextually dependent,
wij = ()

1, otherwise,

for each token j in the i-th output sequence, where
A is the hyper-parameter.

4.2 Metric-based Example Selection

A major issue with using annotations is that, ac-
cording to our experiments on data composition,
the model will improve only on the included phe-
nomena. To mitigate this, we propose to utilize the

model itself to mark contextually-rich examples.
Fernandes et al. (2023) proposed the Point-wise
Cross-Mutual Information (PCXMI) metric to mea-
sure the context reliance of the translations, which
is based on the output probabilities of the context-
aware MT model. For a particular example it is
calculated as:

[yl
PCXMI = log
j=1

Q(yj|yt<j’ z,C)

3
q(yjlye<j, x) ©)

where C' is the context, and ¢ represents the
context-aware MT model (returning token prob-
abilities, noted as ¢(y;|yi<;, z, C')) that is trained
to also be used as a sentence-level model (noted
as q(y;|yi<j,x)). We introduce a slightly modi-
fied metric that computes the maximum token-level
PCXMI for a given example:

MazPCXMI = max (zogw).
J q(y5lye<ss )

“
We motivate it by the fact that an example with even
a single token being dependent on context can be
considered a contextually-rich example (certainly
the case for pronouns), which is better captured by
our metric. The proposed method consists of the
following steps:

1. train the model on context-aware data,

2. calculate the metric using the trained model for
the examples in the training dataset,

3. select top k examples (a hyper-parameter),
4. fine-tune the model on the selected subset.

While the method can be seen as similar to cur-
riculum learning (Zhang et al., 2018), we select
the examples that the model is already competent
at translating using context. Intuitively, this is a
positive feedback where the model learns to gener-
alize to the difficult examples by becoming better
at what it already knows.

S Experiments

We experimentally evaluated Token-level Loss
Weighting and Metric-based Example Selection
for fine-tuning and compared them to the following
baselines:

* Fine-tuning (annotation-based) - simply fine-
tuning the model on the annotated data after the
context-aware training.

* CoWord Dropout (annotation-free; Fernandes
et al., 2021) - masking random tokens in the current
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Figure 4: Accuracy of ctxPro English-to-German phenomena (Gender, Formality, and Auxiliary) against BLEU on
the IWSLT 2017 en-de testset of the trained models. Labels show: the number of epochs ("e"), CoWord Dropout
probability ("p"), number of tuned heads("h"), and weighting strength ("\") hyper-parameters.

source sentence to force the model to use context
for translation, the probability of masking a token
is controlled by the hyper-parameter p.

* Adapted Divide and Rule (annotation-free;
Lupo et al., 2022) - splitting the current source
and target sentences in the middle and appending
the first parts to the context. Notably, this method
was introduced for the multi-encoder architecture
and trained only the contextual parameters. We
adapt it to the single-encoder architectures we use
in this study and do not freeze the parameters of
the model.

* Head-tuning (annotation-based; Maka et al.,
2025) - training selected attention heads to attend
the context cue, therefore, available only for Gen-
der.

We evaluated all methods in the single language
pair (English-to-German) setting and annotation-
free methods in the multilingual setting (due to
the lack of exhaustive annotations for the dataset).
We used the same base sentence-level models:
OpusMT en-de and NLLB-200 600M, respectively.
For English-to-German, we trained on the full
IWSLT 2017 en-de dataset with ctxPro annota-
tions, and for multilingual, we sampled 50,000
examples for each language direction from the OS-
rand dataset. We used the same hyper-parameters
shared by all methods as in previous experiments
(see Appendix B for more details) for both train-
ing and fine-tuning with the exception of Head-
tuning where we applied the hyper-parameters from
the original paper. In the English-to-German set-
ting, we repeated the training 5 times with different
seeds and averaged the results. In the multi-lingual
setting, we performed a single training run for all
models with the same seed. Fine-tuning used the
base model trained with the corresponding seed.

5.1 Single Language Pair Results

We tested several parameters for most methods.
For fine-tuning-based models, we trained for e €
{1,2,5} epochs and utilized only the examples
with the maximum context size. For Weighting we
set the \ parameter to 2, 5, and 10. In addition to
the values of p for CoWord Dropout recommended
by the authors (0.1, 0,2), we also included the value
of 0.3. For Metric-based example selection, we set
k=30,000 based on the number of annotated exam-
ples in the dataset, and used the MaxPCXMI metric
(in Appendix D we present the comparison to the
PCXMI metric). For Head-tuning we selected top
h € {1,2,3} heads from Maka et al. (2025). Re-
sults in terms of accuracy on the ctxPro dataset and
BLEU on the IWSLT testset can be seen in Figure 4.
Extended results are presented in Appendix D.

It can be seen that with four metrics, the mod-
els’ performance varies, and improvement in one
metric comes at a cost of a reduction in another.
In particular, we observe a negative relation be-
tween ctxPro accuracies and BLEU for all methods
with the increase of the hyper-parameters. Metric-
based example selection achieved highest improve-
ment in Formality and outperformed the annotation-
based selection for fine-tuning in Formality and
Aucxiliary, and achieved similar results for Gen-
der, with a smaller decrease in BLEU. Head-tuning
showed improvement only on Gender but with
smaller drop in BLEU. Methods applied during
training (Weighting, CoWord Dropout, and Divide
and Rule) showed a smaller reduction in BLEU
compared to fine-tuning. We attribute this to the
smaller discrepancy in the dataset distribution be-
tween training and evaluation. Weighting outper-
formed CoWord Dropout on Gender and Auxiliary.
Conversely, CoWord Dropout achieved the highest
accuracy on Auxiliary (with Weighting being the



Model BLEU Gender Formality Auxiliary Inflection Animacy
Adapted D&R -0.05 -0.06 -0.19 -0.16 -0.03 +0.07
CoWord p=0.1 -0.09 +0.02 -0.16 +0.35 -0.10 +0.16
CoWord p=0.2 -0.11 +0.07 -0.28 +0.65 -0.21 +0.01
CoWord p=0.3 -0.08 +0.01 -0.42 +0.97 -0.29 -0.27
MaxPCXMI e=1 -0.42 +1.13 +0.05 +3.41 +0.44 +1.08
MaxPCXMle=2  -0.45 +1.42 +0.05 +4.25 +0.57 +1.10
MaxPCXMle=5 -0.50 +1.93 +0.11 +5.80 +0.76 +1.64

Table 1: The averaged (over language directions) difference from the baseline in terms of BLEU on OpenSubtitles

2018 testsets and ctxPro phenomena accuracies for the tested methods. Number of epochs is noted as

CoWord Dropout probability as "p".

second-best) but did not show any improvement for
Gender and Formality. Notably, the highest reduc-
tion in BLEU was around 1% compared to the base-
line. Lack of improvement exhibited by Adapted
Divide and Rule can be attributed to our adapta-
tion implementation, which did not utilize param-
eter freezing as in the original paper. Among all
methods, metric-based example selection achieved
the highest average ctxPro accuracy across phe-
nomena, while token-level loss weighting was the
most effective among annotation-based approaches,
demonstrating that both proposed techniques can
substantially improve context utilization.

5.2 Multilingual Results

We trained models based on NLLB-200 600M on
all relevant language-directions using annotation-
free methods to assess their performance in the
multilingual setting. For CoWord Dropout, we
used the same values of p (0.1, 0.2, and 0.3), and for
Metric-based example selection, we set k=10,000
per language direction and the number of epochs
equal to 1, 2, and 5. The results aggregated over
language directions can be seen in Table 1 and
extended results in Appendix D.

Fine-tuning on examples selected by Max-
PCXMI outperformed all baselines in terms of
ctxPro accuracy across phenomena, with the high-
est improvement of 5.8, 1.9, and 1.6 percentage
points (on average) for Auxiliary, Gender, and
Animacy, respectively. Contrary to the English-
to-German experiments, no improvement (on av-
erage) was observed for Formality. This was
caused by a drop of up to 1 percentage point
in the English-to-French direction, which offset
small gains in other language directions. These
accuracy improvements came at the cost of a
greater reduction in BLEU compared to other meth-
ods, and both trends—accuracy gains and BLEU

nan

e", and

drops—intensified with more fine-tuning epochs,
mirroring the patterns seen in the single-language-
direction experiments.

6 Conclusions

This work provided a systematic empirical eval-
uation of the influence of training data composi-
tion, in terms of contextually rich examples, on the
context utilization capabilities for encoder-decoder
MT models. By systematically adapting the propor-
tion of contextually rich examples in the training
data, we demonstrated that such data sparsity is
the key bottleneck in learning to leverage context
efficiently in MT models. Crucially, we found that
(1) models do not generalize well across different
contextual phenomena (e.g. gender or formality)
and (2) while there is some cross-lingual transfer,
it was not significantly higher between languages
in the same linguistic sub-family.

Motivated by these findings, we proposed two
methods designed to mitigate the effect of data spar-
sity in context-aware MT: token-level loss weight-
ing (based on token-level annotations of context-
dependent words) and metric-based instance selec-
tion (fine-tuning on most contextually important
examples). Both methods significantly improved
context utilization without the need for extensive
architectural changes or additional annotated data.
Notably, the metric based method showed strong
gains across multiple phenomena and language di-
rections.

In practical terms, data composition and targeted
training should be considered as potential solutions
to developing strong context-aware MT models.
In future work, we will evaluate our findings for
decoder-only models and combine the strengths of
weighting and metric-based example selection.



7 Limitations

While we investigate many language directions and
three sub-families, all of them come from the Indo-
European family. This limitation was imposed by
the language directions covered by ctxPro toolset.
Additionally, for the single language pair setting,
we only tested English-to-German direction. We
suspect that the uncovered effects of data composi-
tion go beyond the tested language pairs, but this
claim has not been tested experimentally.
Similarly, we only tested encoder-decoder archi-
tectures with the single encoder (standard Trans-
former). Both multi-encoder and decoder-only
models lay beyond the scope of this study. Fur-
thermore, we leveraged only the publicly available
pre-trained sentence-level models as the basis for
context-aware training. We argue that this increases
reproducibility as the models are freely available
for further investigation by other researchers. Nev-
ertheless, we did not experiment in this study on the
models trained from randomly initialized weights.
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A Composition of the Datasets

In this section, we describe how the constructed
datasets were created. For the Pure IWSLT setting,
we start with the IWSLT-sparse (123,000 exam-
ples with no annotations) and progressively replace
it with the examples sampled from IWSLT-dense.
The steps are based on the size of the IWSLT-dense
dataset for a particular phenomenon: 3,000 and
6,915 (full size) for Gender, 10,000 and 21,977
(full size) for Formality, and 19 (full size) for Aux-
iliary. For the IWSLT + OS setting, we start with
the datasets formed by combining IWSLT-sparse
with examples sampled from OS-rand. To maxi-
mize the density of the resulting datasets, we set
the number of examples sampled from OS-rand to
be dependent on the phenomenon and equal to the
(rounded) size of the OS-dense datasets: 12,000
for Gender, 17,000 for Formality, and 1,200 for
Auxiliary. We start by replacing examples from
IWSLT-sparse (we retain the steps from the Pure
IWSLT setting). After reaching the maximum den-
sity in the IWSLT portion of the dataset, we start
replacing OS-rand with OS-dense in the following
steps: 4,000, 8,000, and 12,000 for Gender, 6,000,
12,000, and 17,000 for Formality, and 400, 800,
and 1,200 for Auxiliary.

Tables 2, 3, and 4 show the composition of the
training datasets we used in the experiments for
Gender, Formality, and Auxiliary phenomena, re-
spectively. Each example was encoded with the
context size ranging from zero to the maximum
context size (three in our experiments), increasing
the size of the datasets four times.

In the multilingual experiments, we formed the
baseline training dataset by sampling 50,000 ex-
amples from OpenSubtitles (OS-rand) for each
language direction we considered. For each phe-
nomenon in a language direction, we replaced
examples with the rich ones: 6,900 for Gender,
10,000 for Formality, 1,200 for Auxiliary, 10,000
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for Inflection, and 4,000 for Animacy.
(NLLB Team et al., 2022).

B Details of Context-aware Training

We implemented all experiments in Hugging-
face transformers framework (Wolf et al., 2020).
We trained the models with Adafactor optimizer
(Shazeer and Stern, 2018) on a single GPU
(NVIDIA GeForce RTX 3090 24GB and NVIDIA
H100 80GB for the models based on OpusMT
en-de and NLLB-200 600M, respectively) for 10
epochs. OpusMT en-de” and NLLB-200 600M?
contain 163M and 615M parameters, respectively.
The hyper-parameters are presented in Table 5. We
tuned the hyper-parameters (learning rate, batch
size, number of epochs) during the preliminary ex-
periments on OpusMT en-de model with context
size of one trained on IWSLT 2017 English-to-
German dataset.

C Extended Data Composition Results

In this section, we present the extended results
of the data composition experiments. For single
language pair setting, we measured COMET (Rei
etal., 2020) (based on Unbabel /wmt22-comet-da)
on the IWSLT 2017 en-de testset and evaluated
the models on the ContraPro (Miiller et al., 2018)
contrastive evaluation. The results for the Pure
IWSLT and IWSLT+OS settings can be found in
Tables 6 and 7, respectively.

For the multilingual setting, we measured BLEU
(we used the sacreBLEU library (Post, 2018) using
the default parameters) and COMET on the testsets
formed by sampling 20,000 examples from Open-
Subtitles 2018 for each language direction. The
results can be seen in Tables 8 and 9 for BLEU and
COMET, respectively.

D Extended Fine-tuning Results

For the English-to-German experiment, apart
from BLEU and ctxPro accuracy, we also mea-
sured COMET (Rei et al.,, 2020) (based on
Unbabel/wmt22-comet-da) on the IWSLT 2017
en-de testset and the accuracy on the ContraPro
contrastive evaluation. The results (including
BLEU and ctxPro accuracies) can be seen in Ta-
ble 10.

2https://huggingface.co/Helsinki—NLP/
opus-mt-en-de

3https://huggingface.co/facebook/
nllb-200-distilled-600M
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Next, we present the results of Metric-based se-
lection of examples for fine-tuning for two metrics:
PCXMI (Fernandes et al., 2023) and MaxPCXMI
(ours). We fine-tuned the models for 1, 2, and 5
epochs and repeated the experiment 5 times with
different seeds (using the base context-aware model
trained with the corresponding seed). The averaged
results can be seen in Figure 5. Selecting exam-
ples based on MaxPCXMI outperforms PCXMI
in Gender and Formality at a lower reduction in
BLEU. PCXMI achieves a better increase in Auxil-
iary but reduces BLEU even below the level of the
annotation-based method.

The un-aggregated results of the trained mod-
els for each language direction in the multilingual
experiment can be seen in Figure 6 and Tables 11
and 12 for ctxPro accuracies, BLEU and COMET,
respectively.


https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/facebook/nllb-200-distilled-600M
https://huggingface.co/facebook/nllb-200-distilled-600M

Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total

Pure IWSLT 123,000 0 0 0 123,000
120,000 3,000 0 0 123,000
116,085 6,915 0 0 123,000
IWSLT+OS 123,000 0 12,000 0 135,000
120,000 3,000 12,000 0 135,000
116,085 6,915 12,000 0 135,000
116,085 6,915 8,000 4,000 135,000
116,085 6,915 4,000 8,000 135,000
116,085 6,915 0 12,000 135,000

Table 2: Number of examples from datasets that were used to compose training datasets (in rows) for the Gender
phenomenon in the single language direction (English-to-German) setting.

Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total
Pure IWSLT 123,000 0 0 0 123,000
113,000 10,000 0 0 123,000
101,023 21,977 0 0 123,000
IWSLT+0OS 123,000 0 17,000 0 140,000
113,000 10,000 17,000 0 140,000
101,023 21,977 17,000 0 140,000
101,023 21,977 11,000 6,000 140,000
101,023 21,977 5,000 12,000 140,000
101,023 21,977 0 17,000 140,000

Table 3: Number of examples from datasets that were used to compose training datasets (in rows) for the Formality
phenomenon in the single language direction (English-to-German) setting.

Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total
Pure IWSLT 123,000 0 0 0 123,000
122,981 19 0 0 123,000
IWSLT+0S 123,000 0 1,200 0 124,200
122,981 19 1,200 0 124,200
122,981 19 800 400 124,200
122,981 19 400 800 124,200
122,981 19 0 1,200 124,200

Table 4: Number of examples from datasets that were used to compose training datasets (in rows) for the Auxiliary
phenomenon in the single language direction (English-to-German) setting.

68 % &% ofs
%z ) 7.4
> e35 e o2 2y z » e=5
3 66 = o=t T 41t e & 7.2+ & !
é é o g e=1
é[) 64 i <L(> 7.0 e=2
= 64 - 240 4 =
% ‘_é 40 - & 681 =
o} ®  Fine-tuning £ ¢ E ~
i =D 5 6.6 e=5
© 62 MaxPCXMI . oRe < ¢
6.4
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Figure 5: Accuracy of ctxPro English-to-German phenomena (Gender, Formality, and Auxiliary) against BLEU
on the IWSLT 2017 en-de testset of the fine-tuned models with Metric-based (PCXMI and MaxPCXMI) and

"nan

annotation-based (for comparison) selection of examples. Labels show the number of epochs ("e").
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Figure 6: Measured ctxPro accuracy on all phenomena for each of the relevant language directions (in columns) of
tested methods (in rows).
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Hyper-parameter

Value

Optimizer Adafactor
Learning Rate le-5
LR Scheduler Inverse Sqrt
LR Warmup Ratio 0.1
Weight Decay 0.01
Batch Size 322
Gradient Accumulation Steps 162
Num Epoch 10
Precission fpl6
Seeds 12,3 ’4’512 Dataset Count COMET ContraPro
Max Length >1271024 Gender 0 0.8417 7028
Max Context Size 3 3,000 0.8417 75.03
Beam size > 6915  0.8420 78.52
Table 5: The hyper-parameters of the context-aware 10,915 0.8419 83.58
training and fine-tuning. 14,915 0.8418 84.77
2 For the cases where the CUDA Out Of Memory error 18,915 0.8420 85.24
occurred, we reduced the batch size to 16 and increased Formality 0 0.8416 70.15
the Gradient Accumulation Steps to 32, keeping the 10,000 0.8426 70.59
lfalgne elffectixlf::.ﬁize olf th::t .batch. tonl of 21,977 0.8428 71.12
r the multilingual setting, we used only one seed o
L & g Y 27977 0.8429 71.04
¢ For models based on OpusMT en-de and NLLB-200 33,977 0.8429 70.85
600M respectively. 38,977 0.8430 71.03
Auxiliary 0 0.8414 69.47
19 0.8415 69.39
419 0.8415 69.60
819 0.8415 69.75
1,219 0.8416 69.79

Table 7: Performance in terms of COMET on IWSLT
2017 en-de testset and ContraPro accuracy for the mod-
els in the IWSLT+OS setting trained on datasets with

Dataset Count COMET ContraPro different numbers of examples annotated with different
Sparse 0 0.8415 69.23 phenomena.
Gender 3,000 0.8417 74.70
6,915 0.8417 78.45
Formality 10,000 0.8429 69.55
21,977 0.8430 70.02
Auxiliary 19 0.8413 69.14

Table 6: Performance in terms of COMET on IWSLT
2017 en-de testset and ContraPro accuracy for the mod-
els in the Pure IWSLT setting trained on datasets with
different numbers of examples annotated with different
phenomena.
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Model En-De En-Es En-Fr En-PI En-Ru De-En Es-En Fr-En PI-En  Ru-En
Baseline 26.50 37.68 29.39  21.98 24.49 32.04 4199 3284 29.42 31.35

Gender

En-De 26.66  37.61 2927 21.85 24.46 3198 42.03 32.87 29.54 31.32
En-Es 26.88  37.60 29.33 22.12 24.52 3203 4196 32.86 29.46 31.36
En-Fr 26.75 37,53 29.16 22.05 24.41 32.01 4197 32.87 29.50 31.33
En-P1 26.80 37.57 29.21 21.54 24.48 32.05 42.00 32.86 29.53 31.34
En-Ru 26.78  37.60 29.56 2191 24.45 32.01 42.04 3281 29.52 31.41
Formality

En-De 26.61 37.27 2929 21.75 24.44 3198 42.05 32.85 29.52 31.31
En-Es 26.58 3729 2943 21.65 24.57 32.01 42.04 3284 2949 31.39
En-Fr 26.70  37.63  29.67 21.89 24.48 32.02 4199 3292 2952 31.37
En-P1 26.62 3738 2944 21.83 24.35 32.03 42.00 32.88 29.44 31.23
En-Ru 26.88  37.53 2936 22.05 24.22 32.04 42.03 3291 29.50 31.39
Auxiliary

En-De 26.86  37.57 2926 21.77 24.48 32.01 42.08 3291 29.51 31.42
En-Es 26.88 3744 2938 22.01 24.46 32.09 4198 32.85 2946 31.40
En-Fr 2694 3753 2956 2197 24.42 32.01 4199 3283 29.51 31.28
En-Pl 26.65 37.69 29.33 21.70 24.47 32.04 42.05 32.82 2947 31.26
En-Ru 26.73  37.50 2935 2203 24.55 32.08 4195 3284 29.51 31.36
Inflection

En-Pl 2695 3758 2941 21.68 24.59 32.07 4198 3287 2949 31.40
En-Ru 26.80  37.63  29.31 21.90 2443 32.06 42.04 32.85 29.51 31.30
Animacy

De-En 26.80 3743 2932 21.84 24.65 32.05 42.05 32.84 2948 31.41
Es-En 26.83  37.59  29.39 22.20 24.50 32.02 4197 3281 2951 31.27
Fr-En 2693 3770 2923  21.85 24.55 32.04 42.02 3288 29.46 31.27
Pl-En 26.71 37.55 2935 21.89 24.46 32.09 42.01 32.88 2944 31.35
Ru-En 26.83 3751 2935 21.73 24.48 32.00 4195 3286 2948 31.35

Table 8: BLEU scores for the models trained on datasets with different densities of annotated examples in the
multilingual setting on the test subsets of the OpenSubtitles 2018 datasets for all relevant language pairs.

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En PlI-En  Ru-En
Baseline 0.8023 0.8459 0.8005 0.8171 0.8321 0.8182 0.8522 0.8192 0.8009 0.8086
Gender

En-De 0.8025 0.8456 0.8001 0.8171 0.8325 0.8182 0.8522 0.8189 0.8011 0.8085
En-Es 0.8025 0.8462 0.8004 0.8172 0.8326 0.8181 0.8521 0.8193 0.8011 0.8086
En-Fr 0.8023 0.8456 0.8000 0.8172 0.8322 0.8182 0.8521 0.8192 0.8011 0.8085
En-P1 0.8025 0.8458 0.8004 0.8176 0.8324 0.8182 0.8522 0.8193 0.8011 0.8084
En-Ru 0.8021 0.8456 0.7999 0.8168 0.8321 0.8182 0.8523 0.8189 0.8009 0.8086
Formality

En-De 0.8023 0.8456 0.8002 0.8168 0.8324 0.8181 0.8522 0.8190 0.8010 0.8084
En-Es 0.8026 0.8455 0.8003 0.8171 0.8325 0.8182 0.8523 0.8191 0.8011 0.8087
En-Fr 0.8024 0.8458 0.8008 0.8173 0.8321 0.8183 0.8522 0.8192 0.8011 0.8087
En-P1 0.8024 0.8456 0.8005 0.8176 0.8325 0.8185 0.8523 0.8192 0.8009 0.8085
En-Ru 0.8022 0.8456 0.8001 0.8171 0.8318 0.8183 0.8524 0.8190 0.8009 0.8085
Auxiliary

En-De 0.8023 0.8458 0.8001 0.8171 0.8321 0.8185 0.8524 0.8190 0.8011 0.8085
En-Es 0.8024 0.8458 0.8006 0.8174 0.8327 0.8185 0.8522 0.8191 0.8011 0.8085
En-Fr 0.8025 0.8455 0.7999 0.8165 0.8322 0.8181 0.8521 0.8189 0.8010 0.8085
En-P1 0.8026 0.8458 0.8001 0.8170 0.8321 0.8183 0.8522 0.8191 0.8009 0.8083
En-Ru 0.8024 0.8457 0.8001 0.8169 0.8326 0.8183 0.8520 0.8190 0.8009  0.8085
Inflection

En-Pl 0.8025 0.8458 0.8004 0.8162 0.8323 0.8184 0.8522 0.8191 0.8010 0.8087
En-Ru 0.8021 0.8457 0.7999 0.8168 0.8309 0.8184 0.8523 0.8190 0.8010 0.8084
Animacy

De-En 0.8026 0.8458 0.8003 0.8174 0.8324 0.8184 0.8524 0.8188 0.8010 0.8085
Es-En 0.8025 0.8459 0.8005 0.8171 0.8328 0.8184 0.8522 0.8191 0.8009 0.8086
Fr-En 0.8021 0.8458 0.8000 0.8168 0.8325 0.8181 0.8523 0.8191 0.8008 0.8083
Pl-En 0.8021 0.8456 0.8004 0.8171 0.8322 0.8183 0.8522 0.8192 0.8008 0.8085
Ru-En 0.8022 0.8455 0.8003 0.8172 0.8321 0.8182 0.8521 0.8189 0.8008 0.8083

Table 9: COMET scores for the models trained on datasets with different densities of annotated examples in the
multilingual setting on the test subsets of the OpenSubtitles 2018 datasets for all relevant language pairs.
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Model BLEU COMET Gender Formality Auxiliary ContraPro

Baseline 33.93 0.8431 60.52% 38.63% 6.81% 78.88%
Fine-tuning e=1 33.60 0.8416 66.79% 39.30% 6.30% 83.02%
Fine-tuning e=2 33.59 0.8416 67.49% 39.34% 6.37% 83.78%
Fine-tuning e=5 33.60 0.8415 68.20% 39.49% 6.48% 84.50%
Head-tuning h=1 33.89 0.8428 63.28% 38.64% 6.43% 82.61%
Head-tuning h=2 33.85 0.8427 64.04% 38.58% 6.44% 83.40%
Head-tuning h=3 33.80 0.8425 64.75% 38.27% 6.45% 84.36%
Weighting A\=2 33.94 0.8430 64.35% 39.14% 7.18% 83.10%
Weighting A\=5 33.83 0.8430 65.72% 39.48% 7.67% 84.63%
Weighting A=10 33.74 0.8426 66.24% 39.81% 8.10% 85.11%
Adapted D&R None  33.95 0.8429  60.77% 38.17% 7.01% 78.66%
CoWord p=0.1 33.98 0.8435 60.54% 38.72% 7.79% 78.65%
CoWord p=0.2 33.95 0.8436  60.47% 38.72% 8.22% 78.52%
CoWord p=0.3 33.88 0.8433 60.29% 38.68% 8.59% 78.39%
MaxPCXMI e=1 33.71 0.8420 66.16% 41.11% 6.84% 82.95%
MaxPCXMI e=2 33.70 0.8418 66.86% 41.44% 6.99% 83.79%
MaxPCXMI e=5 33.62 0.8414 67.31% 41.82% 7.18% 84.39%

Table 10: Performance in terms of BLEU and COMET on IWSLT 2017 en-de testset and ctxPro and ContraPro

accuracy for the different methods. Number of epochs is noted as "e", and CoWord Dropout probability as "p",
number of tuned heads as "h", and weighting strength as "\".

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 26.50 37.68 29.39  21.98 24.49 32.04 41.99 32.84 2942 31.35
Adapted D&R 26.50 37.00 2948  22.00 24.44 32.05 42.01 32.88  29.50 31.30

CoWord p=0.1 26.72 3748 2886 21.89 24.27 3210 4197 3277 2941 31.31
CoWord p=0.2 2645 3731 2927  22.01 24.25 3205 4188 3275 2935 31.30
CoWord p=0.3 26.58 37.61 2948 2195 24.15 32.11  41.82 3268 29.28 31.22
MaxPCXMI e=1 26.00 37.04 2871 21.23 24.02 31.89  41.78 3273  29.35 30.76
MaxPCXMI e=2 26.04 37.02 2859 2134 23.90 31.81 41.81 3271 2931 30.68
MaxPCXMI e=5 26.09 3693  28.74 21.29 23.85 31.78  41.65 3262 29.22 30.46

Table 11: BLEU scores for the methods in the multilingual setting on the test subsets of the OpenSubtitles 2018
datasets for all relevant language pairs.

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En PlI-En  Ru-En
Baseline 0.8023 0.8459 0.8005 0.8171 0.8321 0.8182 0.8522 0.8192 0.8009 0.8086
Adapted D&R 0.8026 0.8456 0.8000 0.8175 0.8322 0.8183 0.8522 0.8191 0.8011 0.8085
CoWord p=0.1 0.8023 0.8454 0.7994 0.8167 0.8317 0.8182 0.8521 0.8188 0.8006 0.8086

CoWord p=0.2 0.8015 0.8453 0.7994 0.8166 0.8316 0.8178 0.8518 0.8187 0.8002 0.8083
CoWord p=0.3 0.8014 0.8453 0.7990 0.8164 0.8313 0.8176 0.8516 0.8183 0.7996  0.8083
MaxPCXMIe=1 0.7990 0.8433 0.7963 0.8125 0.8296 0.8155 0.8501 0.8170 0.7988  0.8057
MaxPCXMle=2 0.7987 0.8431 0.7958 0.8123 0.8296 0.8150 0.8499 0.8167 0.7982  0.8053
MaxPCXMle=5 0.7974 0.8427 0.7947 0.8109 0.8285 0.8137 0.8490 0.8158 0.7970  0.8043

Table 12: COMET scores for the methods in the multilingual setting on the test subsets of the OpenSubtitles 2018
datasets for all relevant language pairs.
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