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Abstract

We consider the problem of preprocessing an n X n matrix M, and supporting
queries that, for any vector v, returns the matrix-vector product Mwv. This problem
has been extensively studied in both theory and practice: on one side, practitioners
have developed algorithms that are highly efficient in practice, whereas on the
other side, theoreticians have proven that the problem cannot be solved faster
than naive multiplication in the worst-case. This lower bound holds even in the
average-case, implying that existing average-case analyses cannot explain this
gap between theory and practice. Hence, we study the problem for structured
matrices. We show that for n x n Boolean matrices of VC-dimension d, the
matrix-vector multiplication problem can be solved with O(n?) preprocessing and
O(n?*~'/?) query time. Given the low constant VC-dimensions observed in most
real-world data, our results posit an explanation for why the problem can be solved
so much faster in practice. Furthermore, we show how to extend this result to the
non-Boolean setting with the Pollard pseudodimension.

Our results yield the first non-trivial upper bounds for many applications. In previ-
ous works, the online matrix-vector (OMv) hypothesis (conjecturing that quadratic
time is needed per query, even over the boolean semi-ring) was used to prove many
conditional lower bounds, showing that it is impossible to compute and maintain
high-accuracy estimates for effective resistance, Laplacian solvers, shortest paths,
and triangle detection in graphs subject to node insertions and deletions in sub-
quadratic time. Yet, via a reduction to our matrix-vector-multiplication result, we
show we can maintain these problems efficiently if the input is structured, providing
the first subquadratic upper bounds in the high-accuracy regime.

1 Introduction

Computing sequential matrix-vector products is a fundamental subroutine of many iterative
algorithms in machine learning. In optimization [[Renegar, |1996| [Vempala et al., 2020, Lin et al.,
2023a, |(Chaudhari et al.l 2024]], computational geometry [Har-Peled, 2009, |Welzl, 1992} Fisikopoulos
and Penaranda) [2016]], online algorithms [Lin et al.|, 2024} |Anand and Qul 2024, [Murray et al.,
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2021, and dynamic algorithms [Liul [2024} Jiang et al.,|2023] |/Anand et al., 2024b} Jin and Xul [2022],
sequential matrix-vector products are essential subroutines underlying performant algorithms. The
current learning revolution is powered by hardware specifically designed to perform such products,
as both neural network evaluation and back-propagation require repeated matrix-vector products
[Segrensen, 2012, Rumelhart et al., [ 1986]. Hence, matrix-vector products are arguably one of the most
important and fundamental subroutines, with any complexity improvement having wide-ranging
implications, and is thus a prevalent research topic in both theory and practice.

The problem can be modeled via the following data structure task: construct a data structure that
preprocesses a given n X n matrix M. After preprocessing, we want to multiply vectors with M
faster than naive matrix-vector multiplication. Depending on the application, this matrix M is fixed
or the data structure may need to handle changes to M. For instance, when calculating probabilities
of a random walk (e.g., in the PageRank algorithm [Page et al.l|1999])), performing the power-method,
and evaluating a neural network, the matrix is fixed. Conversely, in convex optimization, such as
when solving a linear or semi-definite program, applying Newton-Raphson’s method, and training
a neural network, the matrix is the inverse of a Hessian or is given by the network’s weights, which
changes from one iteration to the next [Arriaga and Vempala, 2006, |Anand and Liaw, |[2025]].

Beyond speedups due to improved hardware, practitioners have made tremendous progress in
accelerating the computation of matrix-vector products through heuristics that run in nnz(M) (the
number of non-zero entries of M) worst-case time, but which are much faster in practice. This has
led to speedups in training GNNs [Alves et al.|[2024]] and other algorithms [Floros et al., [2024].

Conversely, from a theory perspective there are substantial lower bounds. |Gronlund and Larsen
[2015]] showed that any poly(n)-space data structure for matrix-vector multiplication over sufficiently
large fields (for instance, R) require Q(n?/logn) time. This quadratic lower bound was also proven
for arithmetic circuits [Frandsen et al.,[2001]. While these are worst-case lower bounds, they also
hold for the average case [Henzinger et al. |2022]]. The only non-trivial upper bounds beating
quadratic time are over the Boolean semi-ring (i.e., {0,1} with 2 ® y = min(1,2 + y)). In a
line of works that reduced the problem to finding neighborhoods in a graph and smaller algebraic
products, this query complexity was improved to O(n?/ log® n) [Liberty and Zucker, 2006, Williams|
2007] and O(ngf"(l)) [Larsen and Williams| [2017} |Chakraborty et al.,[2018| |/Abboud et al., |[2024]].
However, none of these algorithms are truly subquadratic, i.e., O(n“~¢) for some constant € > 0.

Moreover, while the Q(nQ) lower bounds only hold over finite fields, even over the Boolean
semi-ring it is conjectured that no truly subquadratic time algorithm exists [Henzinger et al.,[2013],
and this is commonly referred to as the OMv (online matrix-vector multiplication) conjecture. In
fact, this has led to a recent line of works that use the conditional hardness of OMv to prove tight
time lower bounds for many dynamic algorithms, such as dynamic matrix inversion [Brand et al.,
2019alb], dynamic subgraph connectivity [Henzinger and Neumann) 2016|, dynamic regression
[Jiang et al.l[2023]], dynamic range, Langerman’s problem [Jin and Xu, [2022]], and the generalized
Klee’s high-dimensional measure problem [Yildiz and Suril 2012].

In summary, there is a notable difference between the perspectives of this problem in theory
and practice: there are heuristics that are fast in practice, but from a theoretical perspective the
problem is hard, and an entire subarea of fine-grained-complexity has been built on this hardness
assumption [Hu and Polak} 2024]]. Further, average-case analyses cannot explain this gap, as even
the average-case is provably hard. In this work, we resolve this conflict: since the average-case (i.e.,
random non-structured inputs) is hard, the observed efficiency of practical algorithms must stem
from some inherent structure in real-world data. Thus, we study the complexity for structured inputs.

A popular measure for structural complexity is the Vapnik-Chervonenkis (VC) dimension, which
finds many applications in machine learning [Shalev-Shwartz and Ben-David, 2014} Bartlett et al.,
2019], structural graph theory [Nguyen et al., 2024, |Alon et al., 2016, |Karczmarz and Zheng], 2024],
and computational geometry [Har-Peled, 2009} |B. Chazelle, 1989, Fisikopoulos and Penarandal, 2016]]
(see the preliminaries in Section [2|for a definition of the VC-dimension). For Boolean matrices, the
VC-dimension has the following, more intuitive, description: it is the size of the largest subset S C [n]
of columns such that the rows of the sub-matrix whose columns are restricted to those in S contain
every possible string in {0, 1}‘3 | Many structured objects studied by theoreticians have inherently
low VC dimension. For instance, star and interval graphs, and rank-one projection matrices, have
VC-dimension 2, planar graphs have VC dimension 4, and any 1 -minor free graph has VC dimension
at most |V (H)| — 1. Beyond being an established complexity measure in theory, it has also been



empirically observed that real-world data has low VC dimension [Coudert et al.| 2024]]. We explain
this observation via the following structural characterization of matrices with low VC dimension:

Theorem 1.1 (Proof in Appendix @]) Consider a hereditary class of 0/1-matrices M, meaning that
M is closed under row/column deletion (i.e., each matrix M € M is still in M after deleting a row
or column). If M is non-trivial, (i.e., does not contain every possible matrix), then there exists an
absolute constant ¢ € N such that the VC-dimension of any matrix in M is at most c.

Presumably, any unknown structure common to real-world matrices should not be lost when deleting
rows/columns. Theorem [I.1]does not exclude other matrices (which do not satisfy this hereditary
property) from having constant VC-dimension, e.g., adjacency matrices of minor-free graphs.

1.1 Our Results

While theoretical objects such as grid-graphs, intersection graphs, and kernel-matrices have a low
VC-dimension, they are not perfect representations of real-world data. For instance, while city street
networks are predominantly grid-graphs, there always exists exceptions in the form of bridges or few
diagonal streets. Exceptions can also occur due to errors in measurements or other corruptions. To
capture such almost low VC-dimension objects, we define the “corrupted VC-dimension.”

Definition 1.2 (Corrupted VC-dimension d). The “corrupted VC-dimension” of a set system F with
m sets is the smallest d such that there is another set system F' of VC-dimension < d and F can be
obtained from F' by adding and/or removing each element to/from at most O(ml_l/ ) sets.

For matrices M € {0,1}™*", a corrupted VC-dimension d implies the existence of a matrix
L € {0,1}"™*™ of VC-dimension < d and a ‘corruption’ matrix S € {—1,0, 1}"*™ with at most
O(ml_l/ d) non-zero entries per column, such that M = L + S. Note that the mere existence of
such an F’ (i.e., L) of VC-dimension < d suffices for F (i.e., M) to have corrupted VC-dimension
d. We do not need to know F’ or which sets have been corrupted. Also, the VC-dimension of F
upper bounds the corrupted VC-dimension of F. Hence, while we state our results for matrices with
corrupted VC-dimension d, the proven upper bounds also hold for matrices with VC-dimension d.

We now state the theoretical guarantees of our accelerated matrix-vector multiplication algorithm in
Theorem [I.3] where the runtimes are parameterized by the corrupted VC dimension measure.

Theorem 1.3. (Static Online Matrix-Vector Multiplication). If a matrix M € {0,1}"™*" has
corrupted VC-dimension d, then after an O(mn)-time preprocessing, there is a data structure D that
can compute Mu for any v € R™ in O(nm =Y/ + m) time, with high probability.

The problem of approximating the VC-dimension of any set system within a (2 — €) accuracy for any
€ > 01is known to be Z§ -hard [Mossel and Umans) 2002[; however, for our theorem, the algorithm
does not need to know or compute or even approximate the VC-dimension to achieve this runtime.

Our data structure is based on|Bjorklund and Lingas|[2001]] which proposed an algorithm for Boolean
matrix multiplication. Their algorithm computes the matrix-matrix product via n matrix-vector prod-
ucts, thus implicitly providing a matrix-vector multiplication data structure as well. Their complexity
depends on the weight of the minimum spanning tree (MST) defined with respect to the Hamming-
distance between the rows of M. However, the weight of the MST is O(n?) in the worst-case.

This algorithm was recently independently rediscovered in the graph neural networks community
[Alves et al. 2024]] which experimentally verified its efficiency on real-world inputs. Our
Theorem|1.3|now gives a theoretical explanation as to why these practical algorithms are much more
efficient in practice than the worst-case and average-case lower bounds of Q(mn).

We obtain Theorem [[.3]via techniques from computational geometry. A line of works [Welzl, [1988]
B. Chazelle, |1989, Matousekl (1991}, [Har-Peled, [2009]] consider the following geometric intersection
data structure problem: given a set of points in R?, preprocess them. Then, given a convex polytope
for each query, return whether any of the points intersect the polytope. However, prior work had
exponential preprocessing time [Welzll [1992] or unspecified polynomial time [Matousekl [1991]].
Matrix vector products can be interpreted as O(m) intersection problems if we only care about
Boolean outputs, because in the Boolean case (Mwv); # 0 if and only if there is an intersection
between the position of the non-zero elements in v and the non-zero elements in the ¢-th row of M.
We extend these computational geometry techniques to non-Boolean outputs, and to our more general
notion of corrupted VC-dimension. We provide details of this proof in Section[3.2]



In addition to our novel complexity bound, we also provide alternative algorithms to those presented
in|Bjorklund and Lingas|[2001], Alves et al.| [2024]]. We provide more details below.

Dynamic Setting. We extend Theorem [I.3]by allowing M to undergo row and column updates. The
proof is given in Appendix [B.3]

Theorem 1.4. (Dynamic Online Matrix-Vector Multiplication). Given a matrix Ml € {0,1}"*™,
there is a data structure D with O(mn) preprocessing time that supports row and column updates
(insertions/deletions) to M in O(n) and O(m) time, respectively. Upon querying D with a vector

v € R", it outputs Muv in 5(nm1_1/d* + m) time, with high probability, where d* is the largest
corrupted VC-dimension of M throughout the history of its updates.

Transposed Matrices. If the VC-dimension of M is d, then the VC-dimension of M is at most
2741 [ Assouad, [1983], so Theoremruns in O(nmlfl/Qd + m) time. To address this slow-down,
we extend the algorithm to bound its complexity by the VC-dimension of M T .

If M € {0,1}™*" and MT € {0,1}"*™ have corrupted VC-dimension d and d’ (respectively),
then after an O (mn)-time preprocessing, we show we can compute Muv in time O (min{nm!~1/¢ +

m,mn*~Y4 4 n}) with high probability. We do not need to know d or d’, as the algorithm
automatically achieves the minimum.

Non-Boolean Matrices. The Pollard pseudodimension extends the VC-dimension to non-binary
thresholds. It finds many applications in theoretical machine learning [[Shalev-Shwartz and Ben-
David, 2014, Bartlett et al., 2019] and structural graph theory [Karczmarz and Zheng|, 2024 (see
Appendrxmfor a deﬁmtron of the Pollard pseudodimension). For M € R™*" if d bounds the
Pollard pseudodimension of M and if 7" bounds the number of unique values per column of M, then by

Theorem | Mu can be computed in time O(Tnm!~/4 +m). For T < O(1), this is subquadratic.

1.2 Applications

Random Walks and PageRank by Scaling. Let A € R™"*™ be the adjacency matrix of an n-node
graph and let D € R™*" be its degree matrix. The normalized Laplacian is L=I-D"Y/2AD"1/2,
Even though L is not Boolean, we can still use Theorem since Lv = D=1/ 2(w — Aw) for
w = D~/2¢ and the product Aw can be computed via Theorem The same technique extends to

random-walk probability matrices. In turn, this allows fast simulations of Markov chains to compute
stationary distributions and iterative computation of the PageRank [Page et al.,[1999]] via Theorem|I.3]

Complexity-Theoretic Implications. The Boolean matrix multiplication (BMM) conjecture states
that no algorithm can multiply two boolean n x n matrices in O (n3~¢) time for constant € > 0 [Basch!
et al., 1995, [Williams and Williams},2010]]. This conjecture is used to prove lower bounds on combi-
natorial algorithms (i.e., algorithms that do not make use of Strassen-style fast matrix multiplication
methods), motivated by the property that fast matrix multiplication, while being theoretically fast
(currently O(n?-37%) Williams et al.| [2024]), is very slow in practice due to large constants hidden in
O-notation. Hence BMM gives a lower bound on more practical algorithms and can be used to prove

that any further complexity improvement would require fast matrix multiplication.

Theorem implies that for matrices with corrupted VC-dimension d, BMM can be solved in

O(n?~1/4) time, allowing for improved combinatorial upper bounds. The BMM problem was the
original motivation for Bjorklund and Lingas|[2001]],|Gasieniec and Lingas| [2003[]. Moreover, as
demonstrated in|Alves et al.|[2024]], this algorithm is also highly efficient in practice and does not
encounter the large constant of fast matrix multiplication. Therefore, Theorem [I.3] implies that
problems with lower bounds based on BMM can be solved more efficiently on structured inputs.

Corollary 1.5. Suppose we are given matrices M1, My € {0, 1}"*", where M; has corrupted VC-
dimension d; and M has corrupted VC dimension d, fori € {1,2}. Let s = min{dy, da, d}, d}}.
Then, there is an algorithm for Boolean matrix multiplication which runs in O(n®~1/%) time.

Another relevant conjecture is the OMv conjecture, which states that no algorithm can preprocess a
Boolean matrix M € {0,1}"*" in polynomial time, and then answer n queries that compute Muv (%)
for an online sequence of Boolean vectors v(!), ..., v(™) € {0,1}" in total time O(n3~¢). Observe



that here the vector v(*t1) is only given after the data structure returned Mv(?), hence the use of fast
matrix multiplication to compute the matrix product M [v(1)]...|v(™)] is ruled out.

This conjecture is used to prove conditional lower bounds for many dynamic graph problems, such as
maintaining shortest paths, effective resistances, reachability, bipartite matching, triangle detection,
and many others in graphs undergoing vertex insertions and deletions [Henzinger et al.l 2015]]. Even
using fast matrix multiplication, no algorithm can beat O(n?) time on dense graphs, which is typically
equivalent to re-solving them from scratch whenever the graph changes. Since Theorem [I.3]shows
the OMv conjecture does not hold for structured matrices, it leads to improved dynamic algorithms.

Implications to Dynamic Algorithms. We list some novel dynamic algorithms obtained via this
technique, whose upper bounds are only achievable due to their structured nature, otherwise violating
either the BMM or OMv conjecture. We defer the formal proofs for these results to Appendix [C]

An important class of linear equations arising in practice have form Lx = b, where L is the Laplacian
of an undirected graph G = (V, E) given by L := D — A where D is a diagonal matrix such that
D, ; = deg(i) for i € [n] where |V | = n, and A is the adjacency matrix of G. There are Laplacian
solvers that run in time nearly linear in | F| [Spielman and Teng, [2004]]. We study the problem of
constructing a dynamic Laplacian solver for Lz = b; where the Laplacian changes over time through
vertex updates to the graph, and each b, is an arbitrary new vector.

Previous upper bounds could only handle a poly(1/¢) accuracy by maintaining spectral sparsifiers
[Abraham et al., 2016]] or vertex sparsifiers [Durfee et al., 2019]. Moreover, exact or O(log 1/¢)-time
dependencies are ruled out by the OMv conjecture since no algorithm beats naive recomputation
from scratch in O(|E|) = O(n?) time via nearly-linear time Laplacian solvers [Spielman and Teng,
2004]). We give the first result faster than naive recomputation in the high-accuracy log(1/¢) regime.

Theorem 1.6. (Dynamic Laplacian Solver). There is a dynamic algorithm that, given a dynamic
graph G = (V, E) with corrupted VC-dimension bounded by d, maintains a Laplacian system solver.
The data structure supports queries that receive a vector b € RIV! and error parameter € > 0. Then,
in 5(n2_1/d log 1/€) time, the algorithm returns the (approximate) solution x to La* = b where
|z — 2*||v < €|lz*||L. Each vertex update to G takes O(n) time.

With the fast dynamic Laplacian solver, we maintain dynamic effective resistances, which is a critical
subroutine in graph clustering [Alev et al., 2017]], fault-tolerant computing [[Ghosh et al., [2008]],
network analysis [Tizghadam and Leon-Garcia, 2008} |/Anand and Umans|, |2023} |/Anand et al., 2024al,
and biological systems [Klein et al.l [2022], as it measures the connectivity between two vertices.
The effective resistance r¢(a, b) between vertices a and b in a graph G is a graph-analog of leverage
scores that represents the energy needed to route one unit of electric flow from a to b. Formally, let
e; denote the i-th standard basis vector. Then, for all a,b € V, rg(a,b) = (e, — e) ' Li(e, — ey),
where L is the Laplacian of G and L is the Moore-Penrose pseudoinverse of L.

Theorem 1.7. (Dynamic Effective Resistance). There is a dynamic algorithm that, given a dynamic
graph G = (V, E) with corrupted VC-dimension bounded by d, maintains effective resistances in
G. The data structure supports queries that receive a pair of vertices u,v € V and error parameter
€ > 0. Then, in O(n*~"/4log1/e) time, the algorithm returns a (1 + €)-approximation of the
effective resistance. Moreover, each node update to G in the dynamic data structure takes O(n) time.

Our dynamic matrix-vector multiplication data structure also leads to faster dynamic triangle detection
algorithms for graphs with corrupted VC-dimension d, which are critical components of fraud
detection systems and community-detection algorithms. No subquadratic time algorithm exists for
vertex updates, conditional on BMM [Abboud and Vassilevska Williams, 2014] or OMv [Henzinger|
et al.,|2015[]. We show that these lower bounds can be broken on structured graphs.

Theorem 1.8. (Dynamic Triangle Detection). There is an algorithm that, given a dynamic graph
G = (V, E) with corrupted VC-dimension d, maintains whether G has a triangle or not. Each vertex
update takes O(nQ_l/ 4) time and returns a Boolean indicator for G containing a triangle.

Our techniques lead to faster dynamic approximate algorithms for single-source distances, where we
are tasked with finding the distances from a designated source vertex to every other vertex.

Theorem 1.9. (Dynamic Approximate Single-Source Shortest Paths). There is a dynamic algo-
rithm that maintains (1 + €)-approximate single-source distances on a dynamic unweighted graph



G = (V, E). If the corrupted VC-dimension of G is bounded by d, each node update to G takes
O(kn2~ 1/2d/e) time, and querying the distances for any source node takes O(n2=1/24 /) time.

Given a metric space M with n points and a positive integer k£ < n, the k-center problem asks one to
select k points, referred to as centers, such that the maximum distance of any point in the metric space
to its closest center is minimized. It is known that the k-center is NP-hard to (2 — €)-approximate
for any € > 0 [Hsu and Nemhauser, [1979]]. The best existing dynamic algorithms [Cruciani et al.,
2024] only work with edge updates and use fast matrix multiplication as a black-box. We present an
algorithm without fast matrix multiplication that supports more powerful vertex updates.

Theorem 1.10. (Dynamic Approximate k-center). Given an unweighted undirected graph
G = (V, E), there is a dynamic algorithm for (2 + €)-approximate k-center with node update time
O(k: 2=1/2d /&) where d is a bound on the corrupted VC-dimension of G.

1.3 Further Related Work

Boolean matrix multiplication. A line of work shows that the complexity of matrix-vector multi-
plication over the Boolean semiring can be mildly subpolynomial. For instance, Williams|[2007]
showed that BMM can be computed in O(n?/logn) time. In turn, Larsen and Williams|[2017] and

Abboud et al.|[2024] extended this to O(n3/22(VIogn)),

Structured matrices. When the underlying matrix is Vandermonde, Toeplitz, Hankel, or Cauchy,
a body of work shows that they admit fast matrix-vector multiplications through convolutional
transformations [Motzkin} (1951} Olshevsky and Shokrollahi, 2000, Pan and Tsigaridas, 2014].
Orthogonal-vector (OV) matrices are structured matrices where each row and column receives
alabel v € {0,1}% and M; ; = 1 if and only if the corresponding two labels are orthogonal. Similar
to our corrupted VC-dimension results, |]Alman and Vassilevska Williams| [[2020] show that OV
matrices allow fast matrix-vector products if there are few corruptions to the matrix. Matrix products
can also be accelerated using geometric data structures |Lingas| [2002]], Floderus et al.[[2018]]. Another
approach to handle structured inputs is through the algorithms with predictions regime, where some
learning algorithm extracts the structure and can predict information about future vectors, leading to
faster matrix-vector multiplication algorithms |Henzinger et al.| [2024], [Brand et al.| [2024]].

Dynamic structured graphs. Our dynamic algorithms hold for any structured graph, even if we
do not know their structure. When the structure is known, there are specialized dynamic algorithms
tailored to the specific graph. These include, for instance, interval graphs |Crespelle|[2019], |(Chen
et al.|[2024]], geometric graphs defined from Kernels [Alman et al.,|2020], dynamic planar graphs
[Korhonen et al.l 2024, [Abboud and Dahlgaard, 2016, and minor free graphs [Dorn et al., 2012].

Matrix vector multiplication in optimization. In convex optimization, there is a long history on
developing data structures to accelerate matrix-vector products. Here the matrices are generally
projection matrices that require computation of some matrix inverse. While historically, most research
was on accelerating the maintenance of the matrix inverse [[Karmarkar, |1984} Vaidyal, 1989, |Lee and
Sidford, |2015| |Cohen et al.| 2021} [Lee et al., 2019} Brand, [2020| Jiang et al.} 2021}, |2020a, Huang
et al.| 2022} [Jiang et al., [2022, [2020b], this research has progressed so far that the current bottleneck
for faster linear program solvers are simple matrix-vector products [Brand et al., [2020, [2021]].

2 Preliminaries

Notation. Let [n] = {1,...,n}. We use O(-) to hide constant factors, and O(-) to hide polylogarith-
mic factors. Let || - ||; denote the ¢, (Manhattan distance). For a matrix M, let M; and M. ; denote
its 4’th column/row (respectively). For a set V we write M € R™*V for the m x |V| matrlx where
we can index columns by z € V, i.e., M, € R™. For any vector z € R", the Hamming weight of x
is the number of non-zero entries of x also denoted by nnz(x). For Boolean vectors z,y € {0,1}",
the Hamming distance between = and y is given by ||z — y||;. Finally, for any vector z € R™ and
positive definite matrix L. € R™"*™, define the L-induced norm of z by ||z||. = Vz T Lz.

VC-Dimension. A range space (or a set system) is a pair 8 = (X, R) where X isasetand Risa set of
subsets of X. LetIIp(A) = {AN7 : r € R}. The VC-dimension of R is VC(R) = max{|5] :

X and [TTz(S)| = 2!51}. The dual range space of R is then given by R " = (R, {{r|z € r}|z € X})
and the dual VC-dimension of R is the VC-dimension of /8. Any matrix M € {0,1}™*"



corresponds to a set family g = {{j : M, ; = 1} : ¢ € [m]}, i.e., each row of M is the indicator
vector of some set. Through it, we can encode M by the range space 95 = ([n], Fm). Then, the
VC-dimension of M is defined as the VC-dimension of PRy, and the dual VC-dimension is the
VC-dimension of M T. Here, a subset S of the columns of M is said to be shattered if each of the
2!5| many 0/1 strings appears in some row in the restriction of M to the columns in S. Then, the
VC-dimension of M is the maximum size of a shattered subset of the columns of M. Therefore, we
see that the VC-dimension d,,, ,, of a matrix M € {0, 1}"*" satisfies 1 < d,, », < logm.

3 The Structural Complexity of Matrix-Vector Multiplication

We present a technical overview of the algorithms and main theorems. We begin this section with an
overview of Bjorklund and Lingas|[2001]], /Alves et al.|[2024] who established a connection between
matrix vector products and minimum spanning trees on n points {0, 1}™, where the edge weights are
given by the Hamming distance between two points (i.e., matrix IM defines a collection of points).

Having established this connection, we prove one of our main results in Section[3.2] We prove via
techniques from computational geometry that the weight of the minimum spanning tree is bounded if
the matrix M has corrupted VC-dimension at most d. This yields our main result in Theorem [1.3

3.1 Matrix Vector Products via Minimum Spanning Trees

We here recap the algorithm idea by Bjorklund and Lingas|[2001]], which was later independently
rediscovered by |Alves et al[[2024]. We also explain how to extend the results from M to M.

Differential Compression. Given a binary matrix M € {0, 1}™*", let M; denote its 7’th column.
We compress M by writing each column M, as the sum of another column M, and a change
vector A, , such that My, = M, + A, , and A, , = M, — M,,. If M, and M, are similar, then
[IAz,y]l1 is likely to be smaller than the number of nonzero elements of M. So, it is more efficient
to indirectly represent M, with respect to M, instead of through M. This requires an algorithm that
finds a chain of A’s to represent all columns of M: for each column M, identify a similar column
M, such that the Hamming weight ||A; , || required to represent M, is minimized subject to M.,,.
Since the algorithm measures the Hamming distance for each pair of columns in M, we model this
compression by an undirected weighted graph G on n vertices, where vertex ¢ represents M;, and the
weight of each edge (x,y) is || A4 ||1. We can then find a Minimum Spanning Tree (MST) of G,
which by definition spans GG with the minimum sum of edge weights possible. Therefore, any MST
of G rooted at vertex r defines a chain of A’s that, starting at r, can represent all the columns of M.

We formalize this intuition by defining the A-labeled spanning tree of a matrix and its weight.

Definition 3.1 (A-labeled spanning tree of matrix M). A A-labeled tree is a tree T = (V, E) with
some explicit root x, where each edge e € E is directed away from x and labeled by a vector
A. € R™. We say T is a A-labeled spanning tree for matrix M € R™*" if M, = 0 for root x, and
for all edges (i, j) € E we have A; j .= M; — M,.

Definition 3.2 (Weight of a A-labeled spanning tree). For any A-labeled spanning tree of M denoted
by T with directed edge-set I, define weight(T') = > .pnnz(A.).

The minimum spanning tree of M is then the A-labeled spanning tree with the smallest possible
weight. Given any spanning tree of M, we use the weight of the A-labeled spanning tree to
parameterize the runtime of the matrix-vector multiplication algorithm. Here, the lower the weight of
the A-labeled spanning tree, the faster the runtime.

Lemma 3.3 (Bjorklund and Lingas| [2001], |Alves et al.| [2024]). Given a A-labeled spanning tree T
of MT € {0, 1}"*™ and a vector v € R™, we can compute Mv in O(weight(T) + n + m) time.

We describe this procedure in Algorithm [T} As a quick recap, the algorithm computes Muv by starting
at aroot node r € T of the spanning tree and performing depth-first search (DFS). The algorithm
initializes an output vector and computes (Mv), in O(n) time. For each edge (z,y) traversed
by DFS on the tree, the algorithm computes (Mv), = (Mv), + A; ,U. The complexity of this
iterative procedure is proportional to weight(1") = >__c g7 6. where for each edge e = (z,y) in
the A-labeled spanning tree, J. is the number of non-zeros in A, i.e., the Hamming distance between
row x and row y of M. For completeness, we prove Lemma[3.3]in Appendix



Since the weight of the A-labeled spanning tree of MT can be different from the weight of the A-
labeled spanning tree of M, we provide a new algorithm with an analogous guarantee in Lemma [3.4]

Lemma 3.4. Given a A-labeled spanning tree T of Ml € {0,1}™*" and a vector v € R", there is
an algorithm that can compute Mv in O(weight(T') + n 4+ m) fime.

To utilize the A-labeled spanning tree of M, note that Mv = Y7 | M, v;. In the special case where
M has only two columns, Mv = Mjv; + Mave = My (v1 + v2) + Ay 2vs. For more columns,
this can be extended to require only a product with M and products with each A, in 7. Thus the
complexity is bounded by O(m + n + weight(T')). We prove Lemma[3.4]in Appendix

To minimize the time complexity, we compute a MST. In|Alves et al.|[2024]] this was done naively,
whereas in Bjorklund and Lingas| [2001] this is done via Theorem 4.2 of [ndyk and Motwani| [ 199§]].

Lemma 3.5 (Theorem 4.2 of [Indyk and Motwani| [1998])). For e > 0, we can compute a (1 + €)-
approximate MST with respect to the Hamming distance of n points in {0,1}™ in time O(mnl"'l%e ).

Theorem 3.6. Given a Boolean m x n matrix M, we can construct in O (nm) time a A-labeled
spanning tree whose weight is at most a O(log n)-factor larger than the MST of M.

Proof. Run Lemma on the columns of M for e = log n to construct an O(log n)-approximate
MST in O(mn) time. Next, iterate over the edges of the MST and label each tree edge (z,y) by
A, = My — M,. This takes O(mn) time as there are only n — 1 tree edges and A, , € R™. [

3.2 Existence of Low Weight A-labeled Minimum Spanning Trees

The Hamming distance between any two columns in M is at most m. Since there are O(n) edges in
the A-labeled MST, this gives a coarse bound of O(mn) which is achieved for Hadamard matrices.
One of our main technical contributions is to prove that A-labeled MST’s with low weight exist for
structure matrices. We bound the MST’s weight parameterized by the corrupted VC-dimension of M.

Theorem 3.7. If a matrix MT € {0, 1}"*™ has corrupted VC-dimension d, then the weight the
minimum spanning tree of M is at most O(mn'~1/%1og? n).

We show that for matrices M whose transpose M| has bounded corrupted VC-dimension, the
MST has small weight. For this, we work directly with the definition of VC-dimension and use set
terminology, which allows us to use relevant work from Welzl [[1988]. This previous work studied
bounded VC-dimensions in the context of computational geometry. We here use their results to bound
the complexity of matrix vector products.

Definition 3.8 (Set crossings). Let A and r be sets. r crosses A if and only if neither A C r nor
ANr =0 holds. That is, there are z,y € Awithz € randy ¢ r.

Definition 3.9 (Spanning Tree). Let A C X be a finite set of elements of a range space (X, R). A
spanning tree on A is an undirected (unrooted) tree with node set A.

Definition 3.10 (Weight of spanning tree T'). A crossing of a range v € R in T is an edge in T
that is crossed by r (i.e., an edge that has one endpoint in v and the other endpoint in X \ r). The
crossing number k., (T) of a range v € R is the number of crossings of v in T. The weight of tree
T is defined as w(T) = . g kr(T).

This spanning tree corresponds to the A-labeled spanning tree for matrix IM, where the range space
(X, R) induced by M € {0, 1}™*™ has ground set X = [n] (i.e., column indices) with the rows of M
being the indicator vectors of m subsets of X . Thus, a spanning tree T'x for (X, R) and a spanning
tree T for M both consist of edges connecting elements in [n], and the number of crossings for an
edge (x,y) € Tx equals the number of indices ¢ where (M, ); and (M,); differ. Hence, w(T'x) is
the weight of the corresponding A-labeled spanning tree of M.

We show that when the dual of (X, R) has corrupted VC-dimension d, then (X, R) has spanning trees
with small weight. The literature on finding spanning trees on X with few crossings stems from works
in computational geometry from the 1900s [Welzl, 1988, B. Chazelle, |1989, Matousek, |1991| |Har-
Peled, [2009] which used the trees to preprocess a set of points in R¢ and answer queries where for any
convex polytope, the query returns a point in the polytope. We transfer their techniques to our problem.
The following lemma allows us to prove the existence of a A-labeled spanning tree for matrices
whose transpose has bounded VC-dimension. We later extend this to corrupted VC-dimension.



Lemma 3.11 (Lemma 4.1 of Welzl| [[1988])). Let (X, R) be a range space with dual VC-dimension at
most d. For every A C X, |A| = n > 1 and every multiset Q) of ranges in R with |Q| = m, there

exists © # y € A such that the number of ranges in Q crossing (z,y) is at most O(mn~"/%log?® n).

Remark 3.12. The original proof of Lemma 4.1 of|Welzl| [|1988] gives a bound ofO(mn_l/d logn)
but hides some terms that depend on the VC-dimension: the original statement of Lemma 4.1 says
that the constant ¢, hidden in the O(-) notation, depends on (X, R), but this is vacuous in our setting
as (X, R) is the entire problem instance. We show that ¢ = O(d) < O(logn) suffices, and provide a
proof in[B2|for completeness.

Lemma 3.13. Let (X, R) be a range-space with | X| = n, |R| = m with dual VC-dimension at most
d. Then there exists a spanning tree T of weight w(T) = O(mn'~/@1og? n).

Proof. Let Ag = X. Consider the following process initialized at ¢ = 0. By Lemma [3.11] there
exists distinct z;, y; € A; where the number of ranges in R crossing (z;, y;) is O(m|Ai|_1/d log? n).
Iteratively letting A;1 < A; \ z; constructs a spanning tree 7" with weight at most

Z O(m(n — i)_% log*(n —i)) < O (m log? n/ x_rlfrdx) = O(mnl_% log? n). O
i=1 1
We extend Lemma[3.13]to corrupted VC-dimensions by converting the tree to a single line of vertices,
so that any single corruption minimally affects the number of crossings.

For instance, suppose X = [n], R is a multiset of m empty ranges (corresponding to an m X n zero
matrix M), and the spanning tree is a star with 1 € X at the center. If the corruption adds 1 to each
empty set in R (equivalently, turning the first column of M to an all-1-column), this fits into the
definition of the dual having corrupted VC-dimension. This is because each set of (X, R) is corrupted
by only one element, and thus in the dual set system each element is corrupted by adding it to one set.

After corruption, the number of crossings of each tree edge is O(m) as 1 is in each of the m sets, but
none of the other elements in X are in any set. As the tree has n—1 edges, each connecting 1 to another
element of X, the tree has O(mn) crossings in total. If, however, the tree was a single line, the cor-
ruption would affect at most 2 edges, and the total number of crossings would only increase by O(m)
rather than O(mn). We convert the tree to a single line in Lemma proven in Appendix
Lemma 3.14. For a range space (X, R), | X| = n with spanning tree T, there exists a permu-
tation ™ € Sy, such that the weight of the corresponding spanning tree T' (which is just the line
w(1),m(2),...,m(n)) is at most twice that of T.

Proof of Theorem[3.7} Suppose MT = LT + ST € {0,1}"*™ has corrupted VC-dimension < d,
where LT € {0,1}"*™ has VC-dimension d and ST € {—1,0,1}"*" has at most O(n'~1/9)
non-zero entries per column. L and S exist by definition of corrupted VC-dimension.

Let (X, R) be the set system induced by L (i.e., each row of L is the indicator vector of a set in R with
|R| = m), by LT having VC-dimension < d, (X, R) has dual VC-dimension < d. By Lemma
(X, R) has a spanning tree T’ with w(T) < O(mn'~/?log? n). Then, by Lemma there exists
a spanning tree 7" which is a line with weight at most O(mn'~"/?log®n). Let (X, R.) be the
range space of M. T” has the same weight as (X, R¢) as on (X, R), excluding crossings due to the
corruption. For range r € R, we count the number of new crossings it incurs due to the corruption:
an edge (x,y) only has a new crossing for a range r € R, if x or y was corrupted in r. Since
each z € X has at most 2 incident edges in T” (since it is a line) each corruption to r causes at
most 2 new crossings. Since the total number of corruptions is bounded by O(mn'~1/4), we have
w(T') < O(mn'~"?log®n) and T" is a A-labeled spanning tree for M, as X = [n] are the column
indices and the number of crossings for an edge (z, y) is the number of entries where M, and M,
differ. Since the MST has lower weight, its weight is at most O(mn!'~/%1og? n). O

We can now put everything together to prove Theorem|1.3

Theorem 1.3. (Static Online Matrix-Vector Multiplication). If a matrix M € {0,1}™*™ has
corrupted VC-dimension d, then after an 6(mn)-time preprocessing, there is a data structure D that
can compute Mv for any v € R™ in 6(nm1’1/d + m) time, with high probability.



Proof. Preprocess M by constructing a A-labeled spanning tree 7' for M T via Theorem in
O(mn) time. Given v € R", pass v and 7" to the algorithm of Lemma It returns Mv in time

O(m+n -+ weight(T)). By Theorem | the MST of ML T has weight at most O(nm*~1/4) since M
has corrupted VC-dimension at most d. Since T'is a O(log n)-approximation of the MST, answering

a query takes O(nm! =/ 4+ m) time. O

3.3 Dynamic Matrices

At last, we outline how to handle matrices M that receive updates over time, i.e., Theorem

Theorem 1.4. (Dynamic Online Matrix-Vector Multiplication). Given a matrix M € {0,1}"*™,
there is a data structure D with 6(mn) preprocessing time that supports row and column updates
(insertions/deletions) to M in O(n) and O(m) time, respectively. Upon querying D with a vector

v € R", it outputs Muv in O(nm1 1d 4 m) time, with high probability, where d* is the largest
corrupted VC-dimension of M throughout the history of its updates.

We sketch how to handle column insertions: Let M be the current matrix. We split it into smaller
matrices M@ M® . Mg where each M) contains at most 2 columns of M. When a
new column is inserted to M, we insert that column to M(?), When any M) contains more than
2% columns, then all its columns are inserted to M1 and M) is reset to an empty matrix. Thus,
any M) receives new columns at most once every 2¢ iterations to M. When an M(%) receives new
columns, we initialize a new matrix-vector multiplication data structure (Theorem [I.3)) on it. This

takes O(m2¢) time, but amortizes to O(m) time per insertion to M since it only happens at most
once every 2! insertions. This yields an amortized time of Zlog " O(m) = O(m) time to maintain
all M@ for i = 0, ...,logn. To answer a matrix-vector multiplication query Muv, we split v into
vectors v(?) | ..., v(1°27) such that Mv = Ziigo" M@y For the time complexity, note that each
M is a submatrix of M. Thus, the the time complexity needed to multiply a vector by M) is
bounded by O(nm!~1/4 + m).

We ignore column deletions to M () until M(®) is reinitialized: simply set v; = 0 for the columns that
should have been deleted. We can handle row updates to M in a similar way, by splitting the matrix
again into log m matrices, each containing at most 27 rows. The full proof is given in Appendix

4 Conclusion

We study the structural complexity of matrix-vector multiplication. We propose a theoretical frame-
work to study heuristic algorithms that have achieved tremendous practical success. Building on the
VC-dimension literature, we propose the notion of a corrupted VC-dimension d and provide structural
characterizations. We show that if a matrix M € {0, 1}™*" has corrupted VC-dimension d, then

its matrix-vector product Mv can be computed in 5(nm1’1/ 4 4+ m) time, providing polynomial
speed ups over existing methods. Moreover, our algorithm maintains updates to M in O( ) and
O( ) time, leading to the first O( ~¢)-time algorithms for maintaining high-accuracy estimates for
Laplacian solvers, effective resistance, and triangle detection in dynamic graphs.

Limitations. While we show subquadratic runtimes in non-Boolean matrices with bounded Pollard
pseudodimension, we believe that the linear dependence of the number of distinct values 7" in the
runtime is suboptimal and should instead be logarithmic. Finally, without matching lower bounds,

we cannot verify whether the 0] (n?~1/4) scaling with respect to the VC-dimension is optimal.

Societal Impacts. This work is foundational in nature. As such, while it enables more efficient
computation in iterative algorithms, it is not tied to any specific applications or deployments.
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A Preliminaries for Supplementary Material

Notation. Let [n] = {1,...,n}. We use O(-) to hide constant factors, and O(-) to hide polylogarith-
mic factors. Let || - |1 denote the ¢; (Manhattan distance). For any matrix M, let M; and M. ; denote
its 4’th column and i’th row (respectively). For a set V' we write M € R™*V for the m x |V'| matrix
where we can index columns by x € V, i.e., M, € R™. For any vector x € R", the Hamming
weight of x is the number of non-zero entries of = also denoted by nnz(x). For Boolean vectors
x,y € {0,1}", the Hamming distance between x and y is given by ||z — y||1. Finally, for any vector

x € R™ and positive definite matrix L € R™*", define the L-induced norm of z by ||z||r, = Vx T Lz.

VC-Dimension of Range Spaces. A range space (also called a set system) is a pair R = (X, R)
where X is a set and R is a set of subsets of X. Let IIg(A4) = {ANr:r € R}. The VC-dimension
of R is given by VC(R) = max{|S| : S € X and |TIz(S)| = 2!5!}. The primal shatter function
7 of R is given by m(m) = max{|lIr(A4)| : A C X,|A| = m}form > 0. Let B be a set of
ranges in R. Then, let II%,(B) = {C : C' C Xand C is not crossed by any range in Q} and let
IT% (B) be maximal. Then, for m > 0, the dual shatter function 7* of the range space is given by
7*(m) = max{|II%(B)| : B C R, |B| = m}.

VC-Dimension of Matrices. Any matrix M € {0, 1}"*™ corresponds to a set family given by
Fm={{j: M, ; =1} :i € [m]}, ie., consider each row of M as the indicator vector of some set.
Through it, we can encode M by the range space Rp; = ([n], Fum). Then, the VC-dimension of M
is defined as the VC-dimension of Apg. Here, a subset .S of the columns of M is said to be shattered
if each of the 25! many 0/1 strings appears in some row in the restriction of M to the columns in
S. Then, the VC-dimension of M is the maximum size of a shattered subset of the columns of M.
Moreover, the VC-dimension d,,, ,, of a matrix M € {0, 1}"™*" satisfies 1 < d,, , < logm.

Pollard Pseudodimension of Matrices. For a family of functions F mapping X to Y, the
Pollard pseudodimension of F, denoted by Pdim(F), is the VC dimension of the set system

(X <Y, {{(z,y) | f(z) 2y} [ f € F}).

For a real matrix M, define the pseudo-dimension of M, denoted by Pdim(M) by thinking of
the rows of M as functions and taking the pseudo-dimension of the resulting class of functions.
Specifically, if M is an m X n matrix, for each ¢ € {1,...,m}, define fa; : {1,...,n} — Rby
sz(j) = Mi,j’ and let Pdlm(M) = Pdlm({fMJ 11 € {1, Lo, m

B Online Matrix Vector Data Structure

In this section we prove all the intermediate lemmas required for our first two main results on
subquadratic online matrix-vector multiplication. The proof that combined the technical lemmas was
already given in Section 3]

Theorem 1.3. (Static Online Matrix-Vector Multiplication). If a matrix M € {0,1}™*™ has
corrupted VC-dimension d, then after an 6(mn)-time preprocessing, there is a data structure D that
can compute Mv for any v € R" in 5(nm1_1/d + m) time, with high probability.

Theorem 1.4. (Dynamic Online Matrix-Vector Multiplication). Given a matrix Ml € {0,1}"*™,
there is a data structure D with 5(mn) preprocessing time that supports row and column updates
(insertions/deletions) to M in O(n) and O(m) time, respectively. Upon querying D with a vector

v € R", it outputs Mv in O(nm1 1d 4 m) time, with high probability, where d* is the largest
corrupted VC-dimension of M throughout the history of its updates.

B.1 Static Online Matrix Vector Multiplication Data Structure

Definition 3.1 (A-labeled spanning tree of matrix M). A A-labeled tree is a tree T = (V, E) with
some explicit root x, where each edge e € FE is directed away from x and labeled by a vector
A, € R™, We say T is a A-labeled spanning tree for matrix M € R™*" if M, = =0 for root x, and
for all edges (i, j) € E we have A; j .= M; — M,.

Definition 3.2 (Weight of a A-labeled spanning tree). For any A-labeled spanning tree of M denoted
by T with directed edge-set I, define weight(T') = > .pnnz(A.).
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Algorithm 1 Online Matrix-vector multiplication (given a A-labeled tree of M ")

Require: Input matrix M € {0, 1}™*", and a A-labeled tree of ML" denoted by 7" and rooted at 7.
Require: Input vector v € R™.
Initialize: ® = 0™
¢, =M/ v
Run DFS on T from root 7. Whenever DFS visits a vertex x € V via some edge (y, =), then
set @, =, + Ay v

Return ¢

Lemma 3.3 (Bjorklund and Lingas| [2001], |Alves et al.| [2024]). Given a A-labeled spanning tree T
of MT € {0,1}"*™ and a vector v € R", we can compute Muv in O(weight(T) + n + m) time.

Proof. Consider Algorithm which takes as input M € {0,1}™*", a A-labeled spanning tree of
M (denoted by 7)), and a vector v € R™.

We inductively prove that ® = Mwv over the number of visited vertices. This is true when only one
vertex is visited, as that is the root  and by definition ®,, = (Mw),.. For the inductive step, assume
DFS visits the (k 4 1)st vertex . Let y be the parent of the vertex, then the algorithm assigns

=D, + A, 0
= (Mv)y + (M — My)v
= (Mv),,.
Here ®, is already computed since it was among the first k visited vertices.

Runtime analysis. Let ; ; be the number of non-zero entries in A; ; forall (¢, j) € E(T'). Initializing
the vector ® and populating its first element ®,. takes O(n + m) time. The cost of populating the
remaining entries is proportional to the number of non-zero entries in each A, ,,, since we can store

each A via a sparser representation of only its non-zero entries and use this to compute A;: LU 1n
time O(dy,s). Thus, the total time complexity is O(3_, ,\cp(r) 0a,y) = O(weight(T)). Hence, the
runtime of Algorithm|Iis O(weight(T") + n + m), proving the lemma. O

When the spanning tree is constructed over the columns of M, we run a different algorithm. The
following matrix N is defined based on the spanning tree. We will prove (i) that multiplying vectors
with N can be done efficiently (Lemma|[B.2)), and (ii) that N = M (Lemma[B.3). Combining the two
then yields Lemma|3.4

Definition B.1 (Path-A matrix N")). Given a A-labeled subtree T = (V, E) with root r, define the
path-A matrix NT) € R™*V sych that for u € V,

N = Z A..
e€P(r—u)

Here, P(r — u) denotes the edges of the unique (since T is acyclic) directed path from r to u.
Lemma B.2. For A-labeled tree T = (V, E), and a vector v € RV, let ¢ € RE with Flye) =
Zz ev(T,) V= where T, is the subtree rooted at c € V. Let A € R™%E pe the matrix with columns
being the labels of tree T'. Then Ag =Ny,

Proof. By the definition of N(7), we have

NTy = STNT .y,
yev

S I DR

yeV e€ P(r—y)

Now consider how often any one edge e shows up in this sum: an edge e = (z, z) is in P(r — y) if
and only if z is an ancestor of y (or y = 2) (or, in other words, if y is a descendant of z (or y = 2)).
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This condition can be written as y € T,. Thus we write the sum as

SOY aw- Y Yanw

yeV e€ P(r—y) (z,2)eE y€ET:
> Aez ) vy
(z,2)EE yeT,
> Auydy
(zy)€E
= Ad,
which proves the claim. O

Le(m)ma B.3. Let T be a A-labeled spanning tree of M where the root v of T has M,. = 0, then
N = M.

Proof. We prove this by induction over the width of M.

—

Base Case.  For width 1, T is just the root r, so NT) = 0 = M.

Inductive Step.  Suppose the statement holds for matrices of width < n and we now have a matrix
M of width n. Let L C V be the leaves of T'. Let T” be the tree T" with these leafs removed, and
let M’ € {0, 1}"*(VAL) be matrix M with all columns corresponding to I removed. Then for any
yeV\L
(€] " (@)
M, = M 2 NG N

where equality (1) uses the induction hypothesis and equality (2) uses the fact that any path in the
leaf-removed tree T” also exists in 7.

For any y € L let z be its ancestor in T'. Therefore, z ¢ L. Then, we have

N =ND +A,, 1)
=N+ A, )
=M., +A., (3)

=M. + (M, — M) = M,,

where equation[Tjuses the fact that the path from root r to y is a path from root  to z with one extra
edge (z,y). Equatlonluses the fact the path from r to z in T" also exists in 7”, and finally equatlonl
follows by the induction hypothesis. Together, they prove the lemma.

Lemma 3.4. Given a A-labeled spanning tree T of Ml € {0,1}™*™ and a vector v € R", there is
an algorithm that can compute Mo in O(weight(T') + n + m) time.

Proof. Algorithm:

We compute N7y via Lemmawhich requires us to compute the vector & € R” with Fly,ec) =
> .ev(r,) V- forall (y,c) € E where T is the subtree of 7" rooted at c. This can be done in O(n)
time via a simple “dynamic programming on trees” algorithm: For any ¢ € V, let C be its children.

Then,

Flye) = D U

zeV (T.)

3>

2€C 2eV (Ty)

= V. + Z 5(C7w).

zeC
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So we can compute & in O(n) by starting at the leaf-edges, then propagating the sums up towards the

root. At last, we multiply A& in O(weight(T)) time as that is the number of non-zeros in A (which
is the matrix consisting of the tree labels as column-vectors).

Correctness. Without loss of generality, assume that for root r of tree 7" we have M,. = 0. Otherwise,
append a 0-column to M, and add edge (n +1,r) to T with label A, 11, = M, — M, 41 = M,,
and make n + 1 the new root of 7T'. This increases the tree weight by at most m, resulting in an
additive O(m) in the time complexity.

Append another entry to v so that the dimensions match and Mu is well-defined. By Lemma[B.3] we
thus have N(T)y = Mo. O

B.2 Existence of Low Weight A-labeled Minimum Spanning Trees

We first provide a proof of Lemma (Lemma 4.1 of |Welzl [1988]]), restated below for completeness.

Lemma 3.11 (Lemma 4.1 of Welzl| [[1988])). Let (X, R) be a range space with dual VC-dimension at
most d. For every A C X |A| = n > 1 and every multiset Q) of ranges in R with |Q| = m, there

exists & # y € A such that the number of ranges in Q crossing (z,y) is at most O(mn~"/%log?® n).

For this, we introduce the notion of e-nets and a crucial proposition of Welzl|[[1988]] and Haussler and
Welzl [1986].

Definition B.4 (¢-net). Ler (X, R) be a range space and 0 < € < 1. Let A be a finite multiset of
elements in X. Then, N C A is an e-net of A for R if |‘?2|7"‘ > ¢ impliest NN # () forallr € R.
Proposition B.5 ([Welzl, 1988, Proposition 2.4]). Let (X, R) be a range space of VC-dimension
d > 1landlet0 < € <1 be areal number. For every finite multiset A of elements in X, there is an
e-net N of A for R such that |N| < [84 log 827.

Lemma B.6 (Lemma 2.2 of [Welzl| [1988]]). If (X, R) is a range space of V C-dimension d, then
(X, R), where R ={(r" Ur") — (+' nr")|¢', 7" € R} has VC-dimension at most O(dlog d).

We are now ready to prove Lemma[3.11] which we adapt from [Welzl [1988].

Proof of Lemma By the pigeonhole principle, it is sufficient to show the existence of a subset
N of @ such that (i) 7*(|N|) < n and (ii) if a pair of elements {z,y} is crossed by more than
dmn~%logn ranges in Q, then {z,y} is crossed by a range in V.

Forz € X,let R, = {r € R:z € r} and for z,y € X with x # y, let R, be the set of ranges in
R that cross {z,y}. Since (R, {R,|d € X}) is the dual of (X, R) it has VC-dimension at most d by
assumption. So by Lemma|B.6| (R, {R,y|z,y € X,z # y}) has VC-dimension O(d log d).
Therefore, by Proposition[B.3] for every € > 0 and every multiset ) of ranges in R, there is an e-net

of @ for {Ryy|z,y € X, # y} with |[N| < ]'O(dleogd) log O(dleogd)] Now, let € = cdn~/%logn,
where c is some constant. Then, there is an e-net of () of size at most

1/d
O(dlogd)

nl/d a
log | O(dlogd) 7 <cin

cdlogn cdlogn

where ¢; < O(1). For large enough ¢, we can get small enough ¢; such that w*(Lclnl/‘iJ) < n. For
some constant c, we thereby get a (cdn~'/%logn)-net of @Q for the ranges R, with 7*(|N|) < n.
This implies that there is a pair of elements {x,y} crossed by more than cd|Q[n~%logn =
cdmn~%logn ranges in Q. Finally, applying d < logn concludes the argument. O

Lemma 3.14. For a range space (X, R), | X| = n with spanning tree T, there exists a permu-
tation w € Sy, such that the weight of the corresponding spanning tree T (which is just the line
m(1),m(2),...,m(n)) is at most twice that of T.

Proof. Enumerate all the ranges in R by Ry, ..., R,,, where R, := {c¢: M,; . = 1} for i € [m].
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The crossing number of R; in T counts the number of edges in 7" such that one endpoint of the edge
is in R; and the other endpoint is in [n] \ R;. Suppose the spanning tree 7" on X has a crossing
number of ; for just R; and let w(T) = >_7" | k; be the weight of T for (X, R).

Perform a DFS traversal on 7" and write the in-order traversal Z. We use the permutation 7 (¢) = Z;
for i € [n]. Let T” be the corresponding linear tree. In the worst case, this vertex path crosses R; 2k
times, that is because DFS uses each edge (x, y) of T" twice: once when visiting y (going down one
level in the tree) and once when it is done processing y (DFS pops the current level from the stack).

Thus the total number of crossings w(T”) for the linear tree 7" is w(T”) < > | 2r; < 2x(T). O

B.3 Dynamic OMyv Data Structure

In this section we give a black-box reduction from dynamic OMv to static OMv. In the static version,
we are given a matrix M to preprocess. This matrix stays fixed, while we receive an online sequence
of vectors and must repeatedly compute Mwv. In the dynamic version, we can inform the data structure
about changes to M. Specifically, we are allowed to add/remove/change rows/columns of the matrix.

Using the reduction from dynamic to static, we obtain Theorem T.4]

Theorem 1.4. (Dynamic Online Matrix-Vector Multiplication). Given a matrix Ml € {0,1}™*™,
there is a data structure D with O(mn) preprocessing time that supports row and column updates
(insertions/deletions) to M in O(n) and O(m) time, respectively. Upon querying D with a vector

v € R, it outputs Muv in O(nml_l/d* -+ m) time, with high probability, where d* is the largest
corrupted VC-dimension of M throughout the history of its updates.

The idea of this reduction is to split the columns of M into log n matrices My, ..., Mg, Where
M, contains at most 2¢ columns. Each M is used as input to a static OMyv data structure which is
reinitialized whenever M; changes which occurs at most once every 2¢ updates to M. This allows to
amortize the reinitialization cost over multiple updates.

Lemma B.7. Assume there is a static OMv data structure for matrices of size mxn with preprocessing
time P(m,n) and query time Q(m,n). Then there exists a dynamic OMv data structure supporting

row and column insertions and deletions. The preprocessing time is O(P(m,n)), the amortized row
update time is

logm .
P(2,n)
o2 =%
j=0
and for column updates
logn ;
P(m,2")

and query time is O(Q(m,n)). This reduction runs several static OMv data structures, each receiving
a submatrix of the dynamic input matrix.

We start by proving column updates only, then extend the reduction to support row updates as well.

Lemma B.8. Assume there is a static OMv data structure for matrices of size m X n with prepro-
cessing time P(m,n) and query time Q(m,n). Then there exists a dynamic OMv data structure

supporting column insertions and deletions. The preprocessing time is 6(P(m7 n)), the query time
is O(Q(m,n)), and the amortized update time is

'ET P(m, 2
o3 1)

This reduction runs several static OMv data structures, each receiving a submatrix of the dynamic
input matrix.

Proof. Let M be the input matrix that changes over time.
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Initialization. We run logn instances of the static OMv data structure, where the ith instance is
guaranteed to run on a matrix with at most 2¢ columns. Let M(©) .. MU°g") pe the respective
input matrices to these instances. Initially, only the last (¢ = logn) data structure receives the initial
matrix M as input, and all other instances of the data structure initialize on an empty matrix. Hence
initialization takes O(P(m,n)) time.

Insertions. Whenever there is a column insertion to M(*) we reinitialize the ith static OMv data
structure on that new matrix. When M(9 has more than 2¢ columns, then all columns are removed
(i.e., we set M(®) = 0) and inserted to matrix M(“+1)_ All column insertions to M are passed to
M) Observe that any M( is updated every 2¢ updates to M, hence the amortized update time is

logn
0 (Z P(m, zi)/2i> .
=0

Queries. We can answer queries by observing that
M = [MUee™) | MO MO,

So, for a query vector v we split it into corresponding pieces v(?), ...v(1°8™) and query each M) (9),

The time for this is
O(Q(m,n)logn)
because each M9 is a submatrix of M and we have log n such matrices.

Deletions. When deleting a column of M, we do not delete the column from the respective M@,
Instead, all future query vectors v will have an extra O entry for the deleted column.

When all columns from M) are appended to M(“+1) because of some insertions, then the deleted
columns are not appended to M(“+1), Hence whenever a static OMv data structure is initialized, it is
a submatrix of the input matrix M.

When there have been 2¢ /2 postponed deletions to any M), then the columns are actually deleted
and the respective static OMyv data structure is reinitialized on the new M(?), The remaining columns
in M all exist in the current dynamic input M, so again, the static OMv data structure receives a
submatrix of M as input. For any one 4, this takes amortized O(P(n, 2")/2") time which is subsumed
by the complexity of handling insertions.

Observe that internally, our matrices M(?) are always at most twice their intended size because of the
yet to be removed columns. Thus the query complexity increases by at most a constant factor. [

We now prove Lemma [B.7](Row & Column Updates)

Proof. Here, we extend Lemma [B.8]to support row updates as well. The reduction follows the same
idea as Lemmal[B.8

Let N be the dynamic input matrix. We run logn copies of the column update data structure
Lemma on matrices N(©_ . NU°g7) with the 7’th matrix having at most 2° rows. When
inserting new rows to N, they are passed to N(®). When N() has more than 2° rows, all rows
are appended to N(+1) When rows are appended to any N9, the respective data structure is
reinitialized. To handle deletions, we remove the respective row from the output until 2* /2 rows have
been deleted from N(i), then the rows are removed from N and the respective data structure is
reinitialized. The amortized row update time thus becomes

0 "2 Time to initialize Lemmal[B.8on 27 x n matrix _0 ¥ p (27,n)
Z% 27 B Z% 2
j= j=

For column updates, each of the N receives a new column, so each of the log m column update
data structures is updated which takes:

log m logn

P29, 2 &L P(m, 2
o ZZ% =0(Z<2ﬂ)

7=0 =0 =0
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because geometric sums are bounded by their largest term in O-notation.

Finally, the query time is

logm

> Q,n) | =0(Q(m,n)),
Jj=
which proves the lemma. O

We now prove Theorem [I.4] (Dynamic OMv for corrupted VC-dimension d).

Proof. The initialization cost of static OMv is P(m,n) = O(mn), and the query complexity is
Q(m,n) = O(nm*~/¢ + m) by Theorem This complexity also holds for submatrices, i.e.,
Q(a,b) = O(nm?~/4 4-m) for any a x b sized submatrix.

Thus we have update time for column updates:

logn P m72i logn
(5 750) -0 (5%

=0

\_/

and for row updates we have

logm i log m
P(27,n) n
AP 2)
7=0
and for query time we have
O(Q(m.n)) < O(nm' = + m),
which proves the theorem. O

B.4 Extension to Structured Non-Boolean Matrices

In this section, we prove a result for a subquadratic-time accelerated matrix-vector multiplication for
non-Boolean matrices, when the analogous Pollard pseudodimension is bounded. We also list further
applications of this result.

Theorem B.9. Suppose that the Pollard pseudodimension of the matrix M € R™*™ is d, and that
the number of distinct values per column is < T. Then, after an O(T'mn) time preprocessing, there
is a data structure that, upon receiving a vector v € R", returns Mv in time O(Tnml_l/ d 4 m).
Remark B.10. When M is the weight matrix of a neural network and v is the activation output
from the previous layer of the neural network, the matrix-vector product Muv corresponds to running
inference on v with the neural network M. This is a key step in a number of applications, includ-
ing online optimization in unknown no-linear systems [\Lin et al.| |2025b]] and inference in large
language models. |Dehghankar et al.| [|2024] studies the latter application with ternary matrices
M € {—1,0,1}"*™ and shows that they are amenable to O(n?/logn) multiplication. If M has
bounded Pollard pseudodimension d, then as T = 3, we obtain a polynomial acceleration on this

result: by Theorem the matrix-vector product can be computed in a(mnl_l/ 4 4 n) time.

Recall the definition of the Pollard pseudodimension:

Definition B.11 (Pollard Pseudodimension). For a family of functions F mapping X to'Y, the Pollard
pseudodimension of F, denoted by Pdim(F), is the VC dimension of the set system (X XY, {{(x,y) |

f@) =y} | fer})

In the setting of matrices M € R™*", we interpret each row as a function fy; : @ — M, ;. In
particular, when M has Pollard pseudodimension d, then that means the set system ([n] x R, {(j, y) |
M, ; > y} | ¢ € [m]}) has VC-dimension d. Restricting the groundset [n] x R to {(j,y) | 3 :
M, ; = y} does not increase the VC-dimension. This latter set system can be interpreted as the
following Boolean matrix N:

Given a matrix M € R™*"™ where each column has at most 7" distinct values, consider the following
construction of an N € {0, 1}™*"T matrix. Let Y € RT*™ be the distinct values per column of M
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(we may duplicate values if a column has < T distinct values). Assume the entries in each column of
Y are sorted in increasing order. Let N; jryx = Im, >y, -
,JT+ i,j2Z Yik

For example, the following M has at most 7" = 4 distinct values per column:

1] -1 100 0[1 000 L9
4] -2 11001100 5 1

Mi=|24 [ |[1 11 1/1111|=N Y=|[ ,
5| 3 111 0[1 110 s
41 3 11001110

Since matrix IN is Boolean and of VC-dimension at most d, we can run our fast matrix-vector product
data structures on it (e.g., Theorem E])

Proof of Theorem[B.9, Given M € R™*" we construct the Boolean matrix N € {0, 1}™*"T" as
previously described.

We initialize Theorem |1.3/on N which takes O(T'mn) time. Multiplying a vector v’ € R with N
takes O(Tnm'~/? + m) time. We are left with explaining how to compute Muv via Nv'.

We have
Mij =Y+ > Yij = Yi-1,
E>1:Y ;<M

T

=N;;rY1;+ Z Nijrir(Ye; — Y1)
k=2

In particular, we can compute Mv = Nv'where
Vi =05 Y, Uiy =05 (Yo = Yy ) for k > 2.

Constructing v’ takes O(T'n) time per query. O

Matrices with small constant Pollard pseudodimensions are also prevalent in real-world data, and
capture a similar notion of structure as matrices with low constant VC-dimensions. For instance, the
following are examples of matrices with small Pollard pseudodimension.

Definition B.12 (Multiball vectors). Let v € V' be a vertex of the graph G. Let 1 be a real number
and A be a set of distances —o00 = dg < 61 < - -+ < dp_1 < dp = 00. Define the multiball vectors
as follows:

MB(v, 7, A) = (yu)uev where y, € [€] is the smallest integer such that v € B(v,r + Syu)-

Let MBg A = {MB(v,r,A)|v € V,r € R} be the set of all multiball vectors in G with shifts A.

Theorem B.13 (Karczmarz and Zheng| [2024])). For a Kp,-minor-free graph G, for any set A of ¢
distances, the set of multiball vectors MBg, a has pseudodimension at most h — 1.

C Applications

In this section, we consider some applications of our OMyv result in Theorem|I.4] These applications
have quadratic Q(nz)—time lower bounds, conditional on the OMv conjecture. We show that on
structured graph this lower bound can be beaten.

C.1 High-accuracy Dynamic Laplacian Solver

Theorem 1.6. (Dynamic Laplacian Solver). There is a dynamic algorithm that, given a dynamic
graph G = (V, E) with corrupted VC-dimension bounded by d, maintains a Laplacian system solver.
The data structure supports queries that receive a vector b € RVl and error parameter € > 0. Then,
in 6(712’1/‘{ log 1/€) time, the algorithm returns the (approximate) solution x to La* = b where
|z — 2*||v < €|lz*||L. Each vertex update to G takes O(n) time.
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We consider the setting where the Laplacian L corresponds to a graph with bounded VC-dimension.
First, recall the notion of spectral sparsifiers.

Definition C.1 ((1 + €)-spectral sparsifiers). Let Lx denote the Laplacian of any undirected graph
X. Then, a (1 £ €)-spectral sparsifier H of a graph G is a subgraph of G such that for every vector
z e R",

(1—€)az Lyz <z'Lgz < (1+¢e)z' Ly,

Then, a result from |Abraham et al.|[2016] provides a construction for a dynamic spectral sparsifier
under edge deletions and insertions with polylogarithmic amortized update time:

Theorem C.2 (Theorem 4.1 of |/Abraham et al.| [2016]]). There exists a fully dynamic randomized
algorithm with polylogarithmic update time for maintaining a (1% €)-spectral sparsifier H of a graph
G, with probability at least 1 — 1/n° for any 0 < ¢ < 1 and ¢ > 1. Specifically, the amortized update
time of the algorithm is O(ce =2 log® plog® n) and the size of H is O(cne=2log® plog® nlog W +
mp~1), where 1 < p < m is a parameter of choice. Here, W is the ratio between the largest and the
smallest edge weight in G.

We use the following result for solving Laplacian systems in the static setting.

Lemma C.3 (Kyng and Sachdeval [2016])). There is a randomized procedure that given any n-vertex
m-edge graph G with Laplacian matrix Lg, and vector b € RY such that there exists an x € RV

with Lz = b computes T € RY with |T — ||L, < €#||Lg in O(mlog 1) with high probability.

Lemma C4. Let G be a dynamic graph and let A be its dynamic adjacency matrix. Assume there is
a dynamic OMv data structure for this A with update time U (n) and query time Q(n).

Then there exists a dynamic Laplacian System solver for the same dynamic graph G, supporting
updates to G in O(U(n) + n) time. The data structure supports queries which for any given b € RV

and € > 0 in O(Q(n)log 1/¢) time return z € RY with ||z — ¥ ||Le < €||z*||lLg where x* is the
exact solution for Lz = b.

Via Theorem|1.4|we have U(n) = O(n) and Q(n) = O(n2~1/4), thus obtaining Theorem

Proof. We run two separate data structures. The first is a dynamic spectral sparsifier Theorem [C.2]
which maintains a spectral sparsifier H ~ L with error e = 1/2. We also run the dynamic OMv
data structure for matrix A (adjacency matrix).

The update time is thus é(n + U(n)) as the spectral sparsifier needs polylog time per edge updates,

thus O(n) time for node updates.

Queries When given a vector b € RY and error parameter € > 0, we use H™! as preconditioner
for the linear sistem Loz = b. We can multiply with H™! by running a static Laplacian system

solver Lemma [C.3{which takes O(n) time per product as H has O(n) edges. In particular, we let
2 =H"b
and then perform iterative refinement (Richardson iteration)

o't 2t — H N (Lga' —b).

After O(log 1/€) iterations we have ||zt — T Le < €llr|Lg-

Each iteration takes O(n + Q(n)) time, where O(n) is the time for multiplying by H™1, and Q(n)
the time for multiplying by L. Observe that Lgv = Dv — Av where D is a diagonal matrix and A
is an adjacency matrix. So the first product takes O(n) time and the second product is handled by the
dynamic OMv data structure in O(Q(n)) time. Together, this proves the lemma.

O

C.2 Effective Resistance

The following Theorem I.7]is a corollary of the dynamic Laplacian solver from Theorem 1.6}

27



Theorem 1.7. (Dynamic Effective Resistance). There is a dynamic algorithm that, given a dynamic
graph G = (V, E) with corrupted VC-dimension bounded by d, maintains effective resistances in
G. The data structure supports queries that receive a pair of vertices u,v € V and error parameter
€ > 0. Then, in O(n*"'/4log1/e) time, the algorithm returns a (1 + €)-approximation of the
effective resistance. Moreover, each node update to G in the dynamic data structure takes O(n) time.

Proof. The effective resistance of a pair u,v € V is the energy of an electric flow, routing one unit
of flow between u and v. The energy of an electric flow f € R is >~ f? and the electric flow is
given by f = BLf(e, — e,) where B € {—1,0,1}¥*V is the incidence matrix of G’ with arbitrary
directions. Thus the effective resistance is

||BL1L(eu - ev)||§ = (ey — ev)TLTBTBLT(eu —ey)

= (ey — eU)TLT(eu —€yp).

This can be computed via the dynamic Laplacian system solver in Theorem 1.6 O

C.3 Triangle Detection

Theorem 1.8. (Dynamic Triangle Detection). There is an algorithm that, given a dynamic graph
G = (V, E) with corrupted VC-dimension d, maintains whether G has a triangle or not. Each vertex
update takes O(ngfl/ ) time and returns a Boolean indicator for G containing a triangle.

The result follows form the following lemma for U(n) = O(n) and Q(n) = O(n2~Y/%) from
Theorem T4l

Lemma C.5. Let G be a dynamic graph and let A be its dynamic adjacency matrix. Assume there is
a dynamic OMv data structure for this A with update time U (n) and query time Q(n).

Then there exists a dynamic triangle detection algorithm for the same dynamic graph G, supporting

updates in O(U(n) + Q(n)) time.

Proof. Let A be the adjacency matrix of the graph, then the diagonal entries (A?),, ,, are non-zero if
and only if v participates in a triangle. Thus by maintaining the sum i(AS)i we can detect if there
is any triangle in the graph.

‘We maintain the sum as follows: Let A be the incidence matrix before, and A after a node v is
updated.

Then
DA =0 (A%) +3( (A%, — (A%, ).

? 7

difference in # of triangles v participates in

This is because each triangle v participates in is counted thrice in the sum (once for each vertex of the
triangle). Thus we can maintain the sum by computing (A’®), , and (A?), .. Observe that this is
the vector-matrix-vector product of (i) the vth row of A, (ii) matrix A, (iii) and v-th column vector
of A. Thus it can be computed in O(Q(n)) time, with an extra U(n) time to update A to A’.

O

C.4 Single-Source Shortest Paths and k-Center

Lemma C.6 (Brand et al.| [2022]). Assume there is a dynamic distance oracle for unweighted
undirected graphs with the following operations.

An inifialization procedure that is given G = (V, E) and a threshold 1 < d < n.

A node update operation with update time U (n, d).

A query operation which for any source node, given during the query, returns the d-bounded single
source distances in O(Q(n, d)). That is, return for each v € V the distance if it is at most d, or 0o if
the distance is > d.
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Then for any 1 < k < nand € > 0 there exists a dynamic (1 + ¢)-approximate single source distance
data structure on unweighted undirected graphs. It supports node updates in

dUCHREICHEEY

Theorem 1.9. (Dynamic Approximate Single-Source Shortest Paths). There is a dynamic algo-
rithm that maintains (1 + €)-approximate single-source distances on a dynamic unweighted graph
G = (V, E). If the corrupted VC-dimension of G is bounded by d, each node update to G takes
O(kn*~ 1/2d/6) time, and querying the distances for any source node takes O(n2~1/24 /) time.

time.

Proof. We first describe how to obtain a dynamic distance oracle that yields distances up to 1/e.
This is done by running the dynamic OMyv data structure of Theorem on the adjacency matrix
of G. Then single source distances up to 1/e from source vertex u can be computed by repeatedly
multiplying w <+ Aw for initial w = e,,, i.e., we compute A’e, fori = 1,2, ..., 1/e. The smallest i
with (Aieu)v # 0 is the smallest number of steps to reach from u to v, i.e., the distance between the
vertices.

This data structure internally constructs the a A-labeled spanning tree of the boolean matrix A, where
the weight of the tree gives us the time complexity per query. Hence, while we do not know the
corrupted VC-dimension d, we do know how much time each query is going to take.

So when running Lemma on the above distance data structure, we can pick & = n/v/T where
T > n is the weight of the spanning tree. Thus, we get the update time

~ 2 ~
O(n—kIZT—&-nk—kZ) =O<n+nﬁ+n>

e VT

which proves the claim. ]

Theorem 1.10. (Dynamic Approximate k-center). Given an unweighted undirected graph
G = (V, E), there is a dynamic algorithm for (2 + €)-approximate k-center with node update time
O(kn*=Y/24 /¢) where d is a bound on the corrupted VC-dimension of G.

This result is a corollary of Theorem as k-center can be reduced to computing k-single source
distances.

Lemma C.7 (Theorem 7.3 by (Cruciani et al| [2024]). Given a graph G = (V, E), a positive
parameter € < 1/2, and a fully-dynamic data structure that maintains (1 + €)-approximate single
source distances with update time T (n, m, €) and Q(n, m, €) query time, there is a dynamic algorithm
that maintains a 2(1 + 4¢)-approximate solution to fully-dynamic k-center in time O(T'(n, m, €) +

k- (Q(n,m,e) +n)).

D Characterization of matrices with constant VC-dimension

In this section, we provide a characterization of matrices with constant VC-dimension. Particularly,
we prove Theorem [I.T]and state a number of examples of other constant VC-dimension matrices.

Fact 1. Consider a hereditary class of 0/1-matrices M, meaning that M is closed under
row/column deletion (i.e., each matrix M € M is still in M after deleting a row or column).
If M is non-trivial, (i.e., does not contain every possible matrix), then there exists an absolute
constant ¢ € N such that the VC-dimension of any matrix in M is at most c.

Fact[[.T] provides a structural characterization of some matrices with constant VC-dimension, and it
is an analogous result to the fact that non-trivial hereditary classes of graphs have low VC-dimension.
To prove Fact[I.1] we introduce the notion of a bipartisation of a graph.
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Definition D.1. A bipartite graph H = (AU B, E) is a bipartisation of graph G if removing all
edges in A and B in G yields H for some partition A, B of V(G). A graph class G is said to be
hereditary if it is closed under induced subgraphs.

Lemma D.2 (Lemma 3.4 of Bousquet et al.| [2015]]). For any hereditary class C of graphs and for
any bipartite graph H, if the graphs in C have infinite VC-dimension, then C contains a graph G
whose bipartisation is H.

By transposition, we get the following corollary:

Corollary D.3. The equivalent contrapositive statement is that for any hereditary class C of graphs
and for any bipartite graph H, if C does not contain a graph G whose bipartisationis H = (AUB, E)
where AU B = V(QG), then the graphs in C have finite VC-dimension.

Lemma D.4. The VC-dimension of any matrix in M is upper bounded by a finite constant.

Proof. Since Ml € M is Boolean, we can treat it as a bipartite graph G, with rows representing left
vertices and columns representing right vertices. In particular, we can treat M as a class of bipartite
graphs closed under vertex deletion (row deletion = deleting a left vertex, column deletion = deleting
a right vertex). Thus we can apply Lemma|[D.2]to M.

Since M is non-trivial, there must be some graph H not contained in it. For this excluded graph H,
define H' as the same graph but add one extra left vertex and one extra right vertex. Connect this new
left vertex to every vertex on the right, and connect the new right vertex to every vertex on the left.
Note that since H was not contained in M and it is closed under vertex deletion, H’ also cannot be
contained in M.

Now assume there is G € M that contains H’ as bipartization. Then there is a partition A, B of V,
such that keeping only the edges between A and B of G, results in H’. Because of the left vertex
in H' that connects to all right vertices, and the right vertex connecting to all left vertices, we must
have that A are all left and B are all the right vertices of G (or the other way around). But that means
no edges were removed from G when restricting to edges between A and B, since a bipartite graph
by definition only has edges connecting left and right vertices. So G = H' and H' € M. Thisis a
contradiction because by construction of H’, it does not exist in M.

We conclude, that set of bipartite graphs corresponding to M does not contain any graph whose
bipartisation is H'. Hence by Corollary [D.3|the VC-dimension must be a finite constant. Note that
this is equivalent to the VC-dimension of the adjacency matrices being bounded, but M are not
adjacency matrices. The adjacency matrices are of form

0 M

M" 0
for matrices M € M. We already argued that each adjacency matrix has constant VC-dimension,
and since removing rows does not increase the VC-dimension (it is equivalent to deleting sets),

this implies M also has constant VC-dimension. In conclusion, each matrix in M has constant
VC-dimension. O

D.1 Examples of low VC-dimension matrices

We provide some broad families of matrices with constant VC dimension.

Adjacency matrices of H-minor free graphs. [Eppstein|[[1995] showed that H-minor free directed
graphs (where the minor can be obtained through vertex deletion, edge deletion, and edge contraction)
has VC-dimension at most |V (H)| — 1. As an immediate consequence, since bipartite-graphs are
triangle (K3) free, the VC-dimension of any bipartite graph is 2. As a consequence, given any
adjacency matrix A of a H-minor free graph G, for any & > 1, A¥ is the adjacency matrix of a H-
minor free graph G’ (since A¥ corresponds to the reachability graph where an edge (u,v) € E(G")
corresponds to the existence of a k-length walk between u and v in G). Therefore, the VC-dimension
of A is also at most |V (H)| — 1.

Adjacency matrices of interval graphs. Interval graphs are the intersection graphs of a family of
intervals on the real line. Then, since the hypothesis class of intervals on the real line H = {1, :
a < z < b} has VC-dimension 2 (any two points can be shattered by choosing an interval that
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includes one or both points, but no set of three points can always be shattered), every interval graph
has VC-dimension at most 2.

Boolean kernel matrices. A matrix where each column i (and each row) receives some label ¢; € L
from some (possibly infinite) set of possible labels L. Then, suppose each entry of M satisfies
M, ; = f(4;,¢;) for some function f : L — {0,1}. For example, the labels could be points in
L = R? with f being indicator that the distance is at most some threshold. If f, L is fixed (i.e.,
independent of the number of rows/columns) then these graphs are closed under row/column deletion
and thus have bounded VC-dimension by Theorem [I.T}

Shortest-path structures. Let G be an undirected graph with non-negative edge weights and let .S
be a subset of its shortest paths such that, for every pair (u, v) of distinct vertices, S contains exactly
one shortest path between v and v. Marie de Lima et al|[[2023] defines a range space associated with
S and proves that its VC dimension is 2.

Adjacency matrices of planar graphs. Let G be a planar graph. Then, there is a planar drawing of
G, and deleting vertices and edges retains this property. Therefore, these graphs are closed under
row/column deletion and thus have bounded VC-dimension by Theorem|l1.1

Adjacency matrices of semi-algebraic graphs of bounded description complexity. By the Milnor-
Thom theorem in real algebraic geometry [Matousek! |2002]| and Assouad’s theorem [[Assouad, [1983]],
semi-algebraic graphs of bounded description complexity have constant VC-dimensions. In turn, this
extends to adjacency matrices of string graphs where every two curves intersect.

Practical matrices. |(Coudert et al.[[2024] computes the VC-dimension of families of graphs that
arise in practice, from protein interaction networks to autonomous Internet systems. Even for such
graphs with millions of nodes, the VC-dimension of the graphs are typically between 3 and 8.

E Numerical Simulations

The algorithm from Theorem|I.3]has previously been described inBjorklund and Lingas| [2001]] and
Alves et al.|[2024]. The latter already experimentally verified the efficiency of the algorithm on real-
world data sets and observed that it beats the naive quadratic time matrix vector multiplication. Our
work proves theoretic guarantees for this speed-up parameterized by the (corrupted) VC-dimension.
While the main contribution of this work is to have theoretic guarantees and explanation for why the
algorithm is efficient in practice, we here complement the result with a few experimentﬂ As we give
theoretic bounds parameterized by d, our experiments focus on the d-dependence too.

Matrix Generation. Since we want to study the complexity dependence on d, we fix the matrix
dimension to n = 2'2 = 4096 and run experiments for d = 2, ..., 12. The maximum d is 12 because
the VC-dimension < log(n) = 12 so we do not need to consider d > log(n). The matrix size n
was picked due to execution time constraints. The n x n Binary matrices are generated by sampling
i.i.d uniform () € [0,1]%,6%) € [0,d/2] fori = 1,...,n and 29 € [0,1]¢ for j = 1,...,n, and
letting M; ; = Il.{a(q‘,)TI(_j)Zb(i)}. The range for the b() was chosen so that neither M nor 1 — M

are sparse, which otherwise would allow for naive matrix multiplication to already beat O(n?) time.
The set system of linear classifiers has VC-dimension d, so the corrupted VC-dimension of M is
upper bounded by d. This implies that the respective MST has weight at most O(n>~1/4). Figure
shows the observed weight of the MST relative to the ambient dimension d. The MST was computed
exactly since easier to implement and the preprocessing time complexity is not focus of this work.

Complexity. For the matrix vector products we generate i.i.d. uniform vectors v € [0, 1]™. For each
d, we compute 1000 matrix vector products and measure the run time. Figure [2] shows the mean and
standard deviation of the observed time. We also compare the time to the naive numpy matrix vector
multiplication. Figure[2]shows that, since matrix size n is fixed, the time complexity of numpy is
constant for different d, whereas the MST-based algorithm is substantially faster for small d. As d
increases, the gap gets smaller as one would expect, given the O(ng_l/ ) theoretic upper bound. The

experiments were conducted on an Apple M4 Pro macOS model with 12 physical cores / threads,
and 48 GB unified memory RAM, and an Apple Accelerate Framework BLAS backend. The total

3The code for the experiments is available at https://github.com/emiletimothy/structural_
complexity_of_matrix_vector_multiplication
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Figure 1: Weight of the A-labeled spanning tree for 2'2 x 2'2 matrices generated from halfspaces in
d dimensions.
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Figure 2: Average run time of the MST-based matrix vector algorithm (bold) and naive numpy matrix
vector multiplication (blank), with 1-sigma error bars. Horizontal axis is the dimension of the points
and halfspaces used to construct the matrix.

amount of time to run the experiments was ~ 30 minutes. No GPU acceleration was used; all matrix
operations ran on CPU.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide theoretical proofs for each claim made in the abstract and intro-
duction. We do not make any other simplifying assumptions, and we explicitly discuss the
limitations of this work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly discuss the limitations of our results in the paper: the lack of
matching lower bounds to verify if the scaling with the VC-dimension is optimal, and the
sub-optimality of the non-Boolean setting.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide clear and formal mathematical proofs to support each claim.
Guidelines:
* The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.
* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide a full description of the algorithms and experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our simulations are on synthetic matrices. We do provide open source code
with sufficient instructions to reproduce the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The test details such as matrix size and dimension and how they were chosen
have been described in both appendix and in the code.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The observed time complexities are accompanied by 1-sigma error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our numerical simulations section in the Appendix lists the hardware specifi-
cations used, and the total time to run the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this work conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work is theoretical and foundational in nature. As such, it is not tied to
any specific applications or deployments.

Guidelines:
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12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowd-sourcing nor any research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any crowd-sourcing nor any research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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