
Under review as a conference paper at ICLR 2024

GRAPH TRANSFORMERS FOR LARGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have recently emerged as powerful neural networks for graph learn-
ing, showcasing state-of-the-art performance on several graph property prediction
tasks. However, these results have been limited to small-scale graphs, such as
ligand molecules with fewer than a hundred atoms, where the computational fea-
sibility of the global attention mechanism is possible. The next goal is to scale
up these architectures to handle very large graphs on the scale of millions or even
billions of nodes. With large-scale graphs, global attention learning is proven im-
practical due to its quadratic complexity w.r.t. the number of nodes. On the other
hand, neighborhood sampling techniques become essential to manage large graph
sizes, yet finding the optimal trade-off between speed and accuracy with sam-
pling techniques remains challenging. This work advances representation learn-
ing on single large-scale graphs with a focus on identifying model characteristics
and critical design constraints for developing scalable graph transformer (GT) ar-
chitectures. We argue such GT requires layers that can adeptly learn both local
and global graph representations while swiftly sampling the graph topology. As
such, a key innovation of this work lies in the creation of a fast neighborhood
sampling technique coupled with a local attention mechanism that encompasses
a 4-hop reception field, but achieved through just 2-hop operations. This local
node embedding is then integrated with a global node embedding, acquired via an-
other self-attention layer with an approximate global codebook, before finally sent
through a downstream layer for node predictions. The proposed GT framework,
named LargeGT, overcomes previous computational bottlenecks and is validated
on three large-scale node classification benchmarks. We report a 3× speedup
and 16.8% performance gain on ogbn-products and snap-patents com-
pared to their nearest baselines respectively, while we also scale LargeGT on
ogbn-papers100M with a 5.9% improvement in performance.

1 INTRODUCTION

Transformer networks (Vaswani et al., 2017) have revolutionized representation learning in various
domains, particularly in the field of natural language processing (Devlin et al., 2018; Liu et al., 2019;
Yang et al., 2019; Raffel et al., 2020; Brown et al., 2020; Dosovitskiy et al., 2020; Touvron et al.,
2023; OpenAI, 2023). Their unique ability to model intricate all-pair dependencies in sequential
data (or sets of data tokens) has sparked interest in extending Transformer architectures beyond just
sequential data, leading to promising research in the area of graph representation learning (Zhang
et al., 2020; Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Mialon et al., 2021; Ying et al., 2021;
Rampášek et al., 2022; Shirzad et al., 2023). However, these advances are not without their chal-
lenges. As graph-based learning tasks grow more complex and the scales of the graph data increase,
the limitations of current Graph Transformer (GT) architectures become increasingly evident (Zhao
et al., 2021; Chen et al., 2022; Kong et al., 2023).

On the other hand, traditional message-passing neural networks (MPNNs), including variants like
GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018), and GatedGCN (Bresson & Laurent,
2017), function effectively on small-scale graphs such as molecular structures, operating in the
order of O(E), or O(N) for sparse graphs (Gilmer et al., 2017). However, their efficiency rapidly
decreases when applied to larger graphs with even less than a million nodes. This is primarily
because MPNNs consider all neighbors during their aggregation and update steps. To mitigate
this, some approaches use neighborhood sampling (NS) to limit the number of sampled neighbors

1

Under review as a conference paper at ICLR 2024

for each node up to a certain number of hops (Hamilton et al., 2017). While this method keeps
computational costs in check, it encounters intractability issues when the graph scales to hundreds
of millions of nodes or more. Moreover, even if NS is computationally feasible for two or three
hops, the MPNNs become confined to capturing only highly localized information, which might be
insufficient for tasks on large graphs where more global context is crucial (Lim et al., 2021; Dwivedi
et al., 2022; Kong et al., 2023).

Graph Transformers (GTs) could provide a potential solution, given their ability to model long-range
dependencies and attend to global neighborhoods (Rampášek et al., 2022). However, the intractabil-
ity remains, given that GTs with all-pair attention, i.e., each node attending to every node, would
be quadratic (O(N2)) computationally. When applied with NS, GTs inherit the same limitations,
confining their effectiveness to localized regions. Without NS, the task of attending to global neigh-
borhoods necessitates approximation (Wu et al., 2022; 2023; Shirzad et al., 2023) or sampling (Zhao
et al., 2021; Zhang et al., 2022; Zhu et al., 2023) for computational feasibility, thus bringing us back
to the original challenges of sampling and (in)efficient access to global information.

Present Work. In this paper, we introduce a comprehensive approach to overcoming the afore-
mentioned critical challenges in learning on large-scale graphs by focusing on two essential design
principles: model capacity and scalability. We enhance model capacity by integrating both local
and global graph information for building node representations, while ensuring scalability with an
efficient sampling approach. The proposed framework is summarized as follows:

1. Framework Design: We present LargeGT, a new framework that integrates both local and
global graph representations while minimizing the computational cost incurred at both the stages.
In consistency with recent working recipes in graph learning (Rampášek et al., 2022; Kong et al.,
2023) LargeGT utilizes two distinct modules — LOCALMODULE and GLOBALMODULE — to
handle local and global information exchange efficiently.

2. Localized Representations: Within the LOCALMODULE, we present a novel tokenization strat-
egy that prepares a fixed set of tokens for each graph node to be processed by a Transformer
encoder, resulting in rich local feature representations. Importantly, this mechanism leverages a
neighborhood sampling approach that consists of an offline sampling stage and incorporates local
context features, enabling a broad 4-hop receptive field through just 2-hop operations.

3. Global Representations: For the GLOBALMODULE, we implement an approximate codebook-
based approach, adapted from Kong et al. (2023), to enable global graph attention with computa-
tional complexity linear to the codebook size. This design choice ensures that both modules can
operate independently of the graph size, thereby ensuring scalability.

4. Computational Efficiency: Our approach effectively mitigates computational bottlenecks tradi-
tionally associated with sampling techniques and global information flow. As a result, we enable
incorporation of both local and global graph representations without compromising performance.

5. Empirical Validation: We validate the competitiveness and scalability of LargeGT
with baselines in a scalable setting using ogbn-products, snap-patents and
ogbn-papers100M datasets which are among the largest benchmarks with node in ranges
2.5M, 2.9M and 111.1M, respectively. Notably, we obtain a 3× speedup and 16.8% performance
gain on ogbn-products and snap-patents compared to their best baselines respectively,
while on ogbn-papers100M we scale LargeGT with a 5.9% improvement in performance.

Overall, our work not only investigates on the key challenges and presents design elements for GTs
at scale but also provides a robust framework for future research in this area.

2 RELATED WORK

Challenges in MPNN Scaling. When learning on large graphs, the principal issue faced by
message-passing based graph neural networks (MPNNs) is the neighbor explosion phenomenon
(Hamilton et al., 2017; Zhao et al., 2021), since the neighborhood sets of nodes at successive hops
expand exponentially (Alon & Yahav, 2021). Early efforts in scaling MPNNs employed the use of
neighbor sampling (NS) to sample neighbors of nodes in a graph recursively that reduces the overall
neighborhood sets sending messages for nodes’ feature updates (Hamilton et al., 2017). While this
brings a reduction in memory and compute footprint, the MPNN is still intractable to (i) aggregate

2

Under review as a conference paper at ICLR 2024

information at hops greater than 2 or 3 in very large graphs due to the fact that the the size of the
successive neighborhood grows exponentially, and (ii) access global information in the graph, which
is also a well-acknowledged limitation for several works along this line (Chen et al., 2017; 2018;
Huang et al., 2018; Zeng et al., 2019). Information propagation prior to or after the training stage
(Gasteiger et al., 2018; Wu et al., 2019; Frasca et al., 2020) are also adopted as ways to address
the intractability brought by neighborhood explosion, which follow the aforementioned limitations.
Several works also propose pre-training (Han et al., 2022) or distillation strategies (Zhang et al.,
2021; Guo et al., 2023) to mitigate these impacts.

Graph Transformers and Scalability. The apparent access to global information is a driving factor
behind the recent plethora of works on Graph Transformers (GTs) with all pair attention (Ying et al.,
2021). We refer to Müller et al. (2023) for a detailed taxonomy and component-wise study of GTs.
However, an obvious barrier for GTs to scale to large graphs is the quadratic complexity brought by
full-graph attention, i.e., O(N2), with N being the number of nodes in a graph. The use of sparse
Transformers (Rampášek et al., 2022; Shirzad et al., 2023) or approximated global attention Wu
et al. (2022; 2023) alleviate this issue to some extent to bring down the complexity to sub-quadratic.
Yet, these methods remain unscalable on single large graphs due to the entire graph structure being
operated upon. In order to address this limitation, either NS-like computational boundary is enforced
for each node (Shi et al., 2020; Zhao et al., 2021) or a fixed length sequence or set is prepared for
each node prior to training (Zhang et al., 2020; Chen et al., 2022). Such solutions either inherit the
limitations of NS as discussed above, or face infeasibility due to adjacency matrix multiplications
as the graph size grows larger.

Clustering based GTs. Orthogonally, several recent works use hierarchical clustering or parti-
tioning to perform global attention on the coarsened or super nodes (Zhang et al., 2022; Zhu et al.,
2023). However, the coarsening step remains intractable for very large graphs with sizes in hundreds
of millions or more. Finally, Kong et al. (2023) use a combination of NS based local module and a
global module consisting of a trainable fixed-sized codebook that represents global centroids. While
the sampling limitations remain, the global module based on the centroids is efficient and something
that we consider in our proposed approach to compute global representations.

3 RECIPE FOR BUILDING TRANSFORMERS FOR LARGE GRAPHS

In the previous sections, we identified critical limitations in existing graph learning models, specif-
ically their inability to effectively merge local and global graph features when working with very
large graphs. While MPNNs struggle with the ‘neighbor explosion’ problem, making it difficult
to aggregate information beyond 2-3 hops GTs can capture global context, but are hampered by
quadratic complexity in full graph attention. These challenges, although formidable, outline the es-
sential criteria for a successful GT model tailored for large graphs. This leads us to present a recipe
focusing on model capacity and scalability for building GTs for large graphs. In this section, we
first discuss the design principles of model capacity1 and scalability. These factors play a crucial
role in determining the design and feasibility of a Graph Transformer, particularly when it comes to
managing extremely large graphs that have node counts in the millions or higher. Finally, following
the design characteristics, we introduce our proposed framework — LargeGT.

3.1 DESIGN PRINCIPLES

D1- Model Capacity. A graph learning model should possess the ability to incorporate both local
and global information from the original large graph.

Local Inductive Bias: A node’s local connectivity presents a rich source of information that is es-
sential to utilize even in a large graph setting. A straightforward local aggregation of all neighboring
nodes followed by update equation in an MPNN is impractical due to which several works utilize
sampling techniques (as discussed in Section 2). The incorporation of such local information, while

1Note that in this work, we do not contextualize a model’s capacity in terms of Weisfeiler-Leman (WL)’s
expressiveness (Weisfeiler & Leman, 1968; Morris et al., 2019; Xu et al., 2019) as it is known that almost
all of non-isomorphic graphs (or subgraphs) are distinguishable by a 1-WL equivalent model (MPNN) in the
presence of node features (Cotta et al., 2021), and we do not consider graphs with anonymous nodes.

3

Under review as a conference paper at ICLR 2024

remaining in a feasible computational boundary, is a key ingredient when building a graph learning
model for larger graphs and helps immensely in homophilic tasks (Ma et al., 2021; Mao et al., 2023).

Access to Non-Local Information: A node’s capability to incorporate features beyond near-local
neighbors may be vital for long-range or non-homophilic tasks (Lim et al., 2021; Dwivedi et al.,
2022). The sampling strategies discussed in Section 2 fail to allow a model to access nodes’ dis-
tant hops or global information, motivating the use of GTs (Rampášek et al., 2022; Shirzad et al.,
2023). GTs with all-pair attention alleviate this concern, however not all such mechanisms reviewed
in Section 2 are scalable, which is a key concern. The recent global attention mechanism proposed
in GOAT (Kong et al., 2023) uses dimensionality reduction scheme serving as a “conceptual” global
context for a node to attend when looking for non-local information. Without exhaustive computa-
tion, a large graph learning model should allow access to global graph context (Cai et al., 2023).

D2- Scalability. Learning on large graphs become infeasible for several existing models due to hin-
drances in sampling mechanisms or global information modules (Ying et al., 2021; Rampášek et al.,
2022; Zhao et al., 2021). As such, we consider the following factors to be vital for computational
feasibility and ensuring scalability of the GTs when graphs grow larger.

Efficient Neighbor Node Set Retrieval: As reviewed in Section 2, despite the use of sampling tech-
niques, it becomes intractable to retrieve neighbor node sets from hops greater than two or three if
the graph in consideration is very large (Zhang et al., 2021; Guo et al., 2023). In fact, even a third
hop neighbor set retrieval takes a significant amount of time for graphs with hundreds of millions of
nodes, as the computational complexity of retrieving a node’s l hop neighborhood is O(dl), where
d is the average node degree. Therefore, for efficient retrieval for large graphs, we establish only
two hops retrieval as a key constraint; this limit is commonly adopted in large-scale graph learning
applications (Sankar et al., 2021; Ying et al., 2018; Tang et al., 2022).

Efficient Global Information Access. As much as the significance of global information is discussed
as a key recipe in the Design D1, we reiterate that the global information flow should come at an
inexpensive cost. There are multiple candidates for an efficient access to global information, such
as sparse global attention (Shirzad et al., 2023), use of virtual nodes (Cai et al., 2023) and use of an
approximate centroid-based codebook (Kong et al., 2023). Since we focus on large graphs where
the former two candidates can be infeasible due to their dependency on the number of nodes in
the graph, we aim for incorporating global information without bottlenecks due to a graph’s large
size, such as the method implemented in Kong et al. (2023) which depends on a dynamic codebook
comprising of global centroid tokens.

Distributed Training. Handling very large graphs will be impractical without taking advantage of
the distributed computing infrastructure in which several of the real world graphs occur, eg. social
networks, which are massive and are generally distributed over different machines. Ensuring effi-
cient run times during both training and inference is vital to allow a GT to handle large graphs within
acceptable time frames, keeping the cost feasible and lower. For a model to scale on large graphs,
the training steps should do away with the bottlenecks brought by traditional MPNNs and sparse
GTs. For instance, MPNNs usually sample nodes and their neighbors during the mini-batching step
of the training process, which also applies in recent GTs (Zhao et al., 2021; Kong et al., 2023). In
principle, this translates to maintaining the adjacency matrix of a graph in one machine. This can be
challenging given an example that a simple 3-layer GraphSAGE with NS requires around 350GB+
RAM on the 111.1M sized ogbn-papers100M following standard configurations of OGB Hu
et al. (2020). The single-machine memory requirement can be much larger than the availability on
standard machines with on sophisticated models and on industry-scale graphs with billions of nodes
and edges (Shi et al., 2023; Ying et al., 2018). Thus, avoiding the need to maintain the entire graph
data on a single machine when learning is desirable.

3.2 OUR PROPOSED FRAMEWORK: LARGEGT

Incorporating these desiderata jointly, we next introduce our proposed framework, LargeGT which
is designed from first-principles to enable the application of GTs to massive large-scale graphs. We
refer to Figure 1 for a sketch of the proposed architecture.

Notations. We denote a given graph with G = (V, E) with V being the set of nodes and E the set
of edges, and N = |V| and E = |E| being their cardinalities. The graph structure is represented

4

Under review as a conference paper at ICLR 2024

Transformer Encoder Layer
 layers

Readout

Linear Projection and Positional Encoding (if any)

+

Input set of tokens

Transformer Encoder Layer
1 Layer

Global CodebookInput node

U
pd

at
e

C
od

eb
oo

k

FFN, Norm and Residual
Local Module

Global Module

Final Node
Representation

Seed node (or central node)

Sampled neighbor of seed node

1-hop context of preceding seed or neighbor node

2-hop context of preceding seed or neighbor node
LEGEND

Figure 1: Architectural diagram of LargeGT illustrating the process of updating a node’s represen-
tation denoted by the seed node. FFN and Norm denotes Feed Forward Network and Normalization
layer respectively. Neighbors are sampled for a central or seed node offline, prior to the training
stage using Algorithm LOCALNODES. The feature vectors coming from both local module and
global module are concatenated before passing to the ‘FFN, Norm and Residual’ module.

by the adjacency matrix A ∈ RN×N where Aij = 1 if there exists an edge between nodes i and
j, otherwise Aij = 0. The features for a node i is denoted by Hi ∈ R1×D and for all nodes in the
graph G is denoted by H ∈ RN×D While we assume, for simplicity, that the graph G has no edge
features, these can be incorporated using standard methods as done in the literature, such as using
edge features during message passing to update node representations.

Update Algorithm. We now define the equations which update the feature representations of a
node using the LargeGT framework. Given a node i with its input feature Hin

i ∈ R1×Din , the aim
is to obtain its output features Hout

i ∈ R1×Dout which can be passed to appropriate prediction heads
and/or loss functions, subsequently, depending on the learning task. For simplicity, we will represent
Hi ∈ R1×D in the following equations.

Si = LOCALNODESi(A,K) ∈ R1×K (1)

Xi = INPUTTOKENSi(Si,H
in
i ,Ci) ∈ R1×3K×D (2)

Hlocal
i = LOCALMODULE(Xi) ∈ R1×D (3)

Hglobal
i = GLOBALMODULE(Hin

i) ∈ R1×D (4)

Ĥi = FFN(Hlocal
i ||Hglobal

i) ∈ R1×D (5)

Hout
i = Hin

i + NORM(Ĥi) ∈ R1×D (6)
where, Si reflects the K sampled local nodes from LOCALNODES in Algorithm 1, and Xi is the
set of input tokens of size 3K prepared using INPUTTOKENS in Algorithm 2. Additionally, LO-
CALMODULE consists of a standard Transformer encoder (Vaswani et al., 2017) which could be a
stack of multiple layers to produce each token’s representations, with a readout function at the end
that converts the set of tokens to one feature vector as sketched in Figure 1, and GLOBALMODULE
consists of a single layer Transformer encoder adapted from Kong et al. (2023) that allows a node to
attend to an approximate global representation of all nodes in the graph through a projection of all
nodes’ features in a codebook of a fixed size, that is updated at each iteration (see Section A.3). ||
denotes concatenation. C ∈ RN×2×D is the context feature matrix which provides the 1 and 2 hop
neighborhood context for all nodes in the graph and can be precomputed as C0 = ÃH ∈ RN×1×D

and C1 = Ã2H ∈ RN×1×D where Ã is the normalized adjacency matrix (Chen et al., 2022).

5

Under review as a conference paper at ICLR 2024

Algorithm 1 LOCALNODES: Algorithm to fetch a multiset of local nodes from 1 and 2 hop neigh-
bors for each node.
Require: A graph with adjacency matrix A ∈ RN×N , and the size of the multiset K.
Ensure: Return the matrix with K-sized multisets for each node S ∈ RN×K

1: Initialize: Multisets for all nodes S ∈ RN×K

2: for i = 0 to N − 1 do
3: T̂← 1 and 2 hop neighbors of node i

4: if |T̂| ≥ k − 1 then
5: T← Randomly sample K − 1 nodes from T̂

6: else if |T̂| < K − 1 and |T̂| > 0 then
7: T← Randomly sample from T̂ with replacement to make K − 1 nodes
8: else
9: T← Randomly sample K − 1 nodes from {0, 1, 2, . . . , N − 1}

10: end if
11: Si ← {i}+ {T} ∈ Rk

12: end for

Algorithm 2 INPUTTOKENS: Algorithm for Mini-Batch Preparation for Local Module

Require: Mini-batch of M samples S ∈ RM×K where K is the total size of the multiset of nodes for each
node, Feature matrix H ∈ RN×D , Hop context features C ∈ RN×2×D .

Ensure: Return the input data of all nodes in mini-batch X ∈ RM×3K×D .
1: Initialize: X ∈ RM×3K×D

2: for i = 0 to M − 1 do
3: for j = 0 to 3K with step 3 do
4: Xi,j ← H[Si,j] # node feature for node i from the feature matrix H
5: Xi,j+1 ← C[Si,j , 0] # 1 hop context feature for the node i from C
6: Xi,j+2 ← C[Si,j , 1] # 2 hop context feature for the node i from C
7: end for
8: end for

Finally, FFN refers to a feed forward network used in Transformers, and NORM is normalization,
which can be either of LayerNorm (Ba et al., 2016) or BatchNorm (Ioffe & Szegedy, 2015). Addi-
tionally, we note here that the Algorithms 1 and 2 are defined for either all nodes or a mini-batch of
nodes, while their respective outputs can be accessed index-wise in the above Eqns. 1 and 2.

Offline Step Prior to Training. The Algorithm 1 LOCALNODES is run on CPU prior to the training
to sample local nodes for each node in the graph, and can be parallelized to multiple cores or ma-
chines. The parallelization is possible due to the fact that the fetch of 1-hop and 2-hop neighbors in
Step 3 and the subsequent steps of Algorithm 1 is independent for each node and can be executed on
different CPU cores in parallel. It’s also worth mentioning that the graph is not required to be stored
on a single machine’s memory for this step. In line with our design principles, the graph can be
distributed across multiple machines using techniques such as key-value stores or graph databases
to circumvent the issue of memory limitations. This ensures that the offline step aligns with the
scalability considerations of handling very large graphs.

Mini-Batching for Local Module. The Algorithm 2 abstracts a mini-batching stage during the
training, which prepares the input tokens for each node in the mini-batch with M node samples.
This process contains a nested loop that can also be heavily parallelized across available cores. The
mini-batch algorithm is implemented in a dataloader’s preparation function, such as the PyTorch
DataLoader collate (Paszke et al., 2019). Besides, an important feature provided by INPUTTO-
KENS is that it increases the receptive field of a node up to 4 hops, based on just 2-hop computations.
To illustrate this, consider a node with its K sized sampled set of 1-hop and 2-hop neighbors. Since
the steps 5-6 in Algorithm 2 allows for a nodes’ 1-2 hop neighbors to retrieve their 1-hop and 2-hop
neighborhood context, the node i in consideration will have access to information from up to 4 hops.
We have included further elaboration of this feature in Figure A.2 in Section A.2.

Characteristics of the Framework. The LargeGT framework fulfills the desired characteristics
(D1-D2, Section 3.1) for a graph learning model to scale on large graphs. D1-Model Capacity:
By incorporating both a local and global module, LargeGT can build node representations using

6

Under review as a conference paper at ICLR 2024

information from local neighborhoods as well as global graph context. The local module leverages
offline neighbor sampling and local context features to efficiently aggregate local structure up to 4
hops while the global module allows attending to the entire graph through a trainable codebook. D2-
Scalability: The framework only samples up to 2-hop neighbors for each node, ensuring efficient
neighbor set retrieval. The runtime is also efficient as the local module operates on sampled neigh-
bors and the global module utilizes a fixed size codebook, which is already efficient as demonstrated
in Kong et al. (2023). Similarly, the offline neighbor sampling step allows the local node sets and
neighborhood contexts to be prepared independently of the graph structure, essentially converting
the graph learning task into a standard neural network training problem on the sampled nodes and
contexts. This allows easy parallelization across machines like for other modalities such as image
and text, alleviating bottlenecks caused in traditional GNN training that require adjacency matrix
access on each machine, in principle. The input token preparation is also independent of the graph
structure. In summary, LargeGT satisfies the key design principles of model capacity and scalabil-
ity to effectively scale on large graph datasets. The local and global components allow it to learn
both from local structure as well as model global dependencies in the graph, without any explicit
bottleneck caused due to the size of a graph. In the next section, we will demonstrate that this model
is not only scalable, but offers strongly competitive performance.

Complexity. The computational complexity of the LOCALMODULE in LargeGT is O((3K)2),
while that of the GLOBALMODULE is O(B) where K is the size of the local nodes, 3K is the size of
the tokens for the LOCALMODULE and B is the size of the codebook in GLOBALMODULE. As such,
the framework is not bottlenecked with the size of nodes in the graph, as in prior literature. Note that
the complexity of Algorithm 1, which is a one-time offline step, does not affect the computational
complexity of LargeGT.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETUP

Datasets. We evaluate the proposed LargeGT model architecture on single large graph datasets
with node classification tasks. Since we particularly focus on large graphs, we do not conduct
evaluations on smaller benchmarks with lesser than million nodes as the limitations of scaling a
model are not present. We use ogbn-products and snap-patents for our model prototyping
and experiments, while we also scale our model on ogbn-papers100M. The datasets’ summary
is presented in Table 1. ogbn-products is a dataset containing Amazon co-purchasing network
(Bhatia et al., 2016) with nodes representing products and edges representing the products being
purchased together. We use the Open Graph Benchmark (Hu et al., 2020) version of the dataset with
their standard splits and available features. snap-patents is a network of US patents (Leskovec
& Krevl, 2014) where each node represents a patent and an edge represents patent nodes which cite
each other. We use the snap-patents dataset from Lim et al. (2021) with their default splits and
features. Finally, we use ogbn-papers100M dataset (Hu et al., 2020) which is one of the largest
publicly available single large graph benchmarks. Nodes in the graph denote an arXiv paper while
directed edges denote papers which cite other papers (Wang et al., 2020). As with the former dataset,
we use the default splits and features provided by OGB. Among the three datasets, snap-patents
is a non-homophilic dataset, while the rest are homophilic.

Scalable Baselines. We design our experiments in a way to ensure scalability with efficient neigh-
bor node set retrieval (D2, Section 3.1) on large graphs, with sizes even beyond the benchmarks we
use for the demonstration in this work. As such, we use constrained versions of existing MPNNs
or GT baselines, denoted by Model-δ and call them ‘Scalable Baselines’. We select GraphSAGE
(Hamilton et al., 2017), GAT (Veličković et al., 2018), GT-sparse (Shi et al., 2020; Dwivedi & Bres-
son, 2021), NAGphormer (Chen et al., 2022) and GOAT (Kong et al., 2023) as the baselines which
encompass fundamental GNNs as well as recent scalable GTs. Following D2, we constrain the
graph propagation related operations in all these baselines to 2 hops only. The goal of our exper-

Table 1: Summary of the datasets used in our experiments.

Dataset Name Total Nodes Total Edges Node Feats Class Size Class Label

ogbn-products 2,449,029 61,859,140 100 47 product category
snap-patents 2,923,922 13,975,788 269 5 time granted

ogbn-papers100M 111,059,956 1,615,685,872 128 172 subject area

7

Under review as a conference paper at ICLR 2024

Table 2: Results for ogbn-products, snap-patents and ogbn-papers100M datasets. All
results reported are on 4 runs. LargeGT as well as models with -δ suffix are the versions of the
respective original architecture with D2, i.e., only upto 2-hop computations. GraphSAGE, GAT and
GT-sparse use NS with sizes [20, 10]. Colors denote First, Second and Third. Higher is better.

(a) ogbn-products

Model Test Acc
GraphSAGE-δ 76.62±0.93

GAT-δ 77.38±0.59
GT-sparse-δ 60.76±0.00

NAGphormer-δ 75.28±0.04
GOAT-local-δ 81.17±0.12

GOAT-global-δ 70.28±1.95
GOAT-full-δ 79.88±0.20

LargeGT-local 78.95±0.80
LargeGT-full 79.81±0.25

(b) snap-patents

Model Test Acc
GraphSAGE-δ 48.43±0.21

GAT-δ 45.92±0.22
GT-sparse-δ 47.81±0.00

NAGphormer-δ 60.11±0.05
GOAT-local-δ 40.95±0.16

GOAT-global-δ 42.65±0.07
GOAT-full-δ 50.28±0.14

LargeGT-local 68.19±3.11
LargeGT-full 70.21±0.12

(c) ogbn-papers100M

Model Test Acc
GOAT-full-δ 61.12±0.10

LargeGT-full 64.73±0.05

imental setup is to show how the scalability constraints affect existing models’ capabilities, which
can be addressed by LargeGT; for this reason, we do not use enhanced techniques for obtaining
top leaderboard results such as auxiliary label propagation (Shi et al., 2020; Huang et al., 2020) or
augmentations (Kong et al., 2020). We apply similar restrictions in our proposed LargeGT as well.
For hyperparameters, architectural and training setup of the baselines, we adopt the hyperparameters
available in the original model papers or the OGB examples repository (see Section A.5). We refer
to Section A.4 for a comparison of scalable and original baselines.

LargeGT Models. We train and evaluate two versions of LargeGT in our experiments, denoted as
LargeGT-local and LargeGT-full. In local version we omit the GLOBALMODULE (Eqn 4) and only
use local representations in Eqn. 5. In the full version, we use both the local and global modules and
follow the entire formulation as in Eqns. 1-6. We implement single layer of Transformer encoder in
the local and global modules.2 Other hyperparameter details are included in Section A.5.

4.2 NUMERICAL RESULTS AND DISCUSSION

We now present the numerical results in this section. Table 2 presents the main comparison of the
baselines Model-δ with the LargeGT models. For ogbn-papers100M, we only report the best
performing baseline on the homophilic task of ogbn-products due to computational constraints.
Figure 2 shows the training time per epoch incurred by the models, while Figure 3 shows the sensitiv-
ity analysis of the number of nodes sampled (K) in Algorithm 1 which is used by LOCALMODULE
in LargeGT. We present our observations as follows.

On Performance. On comparison with the scalable baselines in Table 2 consisting of both GNNs
and GTs, we observe LargeGT to attain competitive performance to the best baseline GOAT-local-
δ on ogbn-products, while on snap-patents, LargeGT beats all the baselines. The lower
scores of GraphSAGE-δ and GAT-δ models reveal, in part, how the constraint D2 brings down
the model capacity and such a network with a 2-hop graph receptive field may not incorporate
necessary information required to build useful node representations. Among all the models on
ogbn-products, GOAT-local-δ is the best performing, which on snap-patents ranks the
lowest, understandably due to the latter’s non-homophilic characteristic where local-only informa-
tion aggregation may not be enough. All results considered, LargeGT ranks among the best models
on both the datasets, suggesting the capacity to work well in both homophilic and non-homophilic
settings. Finally, we report the results of LargeGT-full on ogbn-papers100M together with
GOAT-full-δ which is the best performing baseline on a similar homophilic task ogbn-products
on a computational budget of 48h. We observe LargeGT-full to be significantly better (5.9%) in
performance compared to GOAT-full-δ, hence showing the ability to scale to massive graphs.

On Design Characteristics. The scores of LargeGT indicate the need to incorporate both lo-
cal and global neighbor information, as well as the suitability of such architecture to perform
both in homophilic and non-homophilic tasks. The absolute gain in performance of LargeGT-
full against LargeGT-local which is around 1% and 2% respectively for ogbn-products and
snap-patents demonstrates how LargeGT satisfies D1 design characteristic. D2 which ne-

2We observed decreased performance when stacking multiple layers, in consistent with recent works such
as Chen et al. (2022); Kong et al. (2023), and leave the exploration of multi-layered version for later.

8

Under review as a conference paper at ICLR 2024

0 25 50 75 100 125 150 175 200
Epoch Time

60.0
62.5
65.0
67.5
70.0
72.5
75.0
77.5
80.0

Te
st

 A
cc

ur
ac

y

Test Accuracy vs Epoch Time

GraphSAGE-
GAT-
GT-sparse-
NAGphormer-
GOAT-local-
GOAT-global-
GOAT-full-
LargeGT-local
LargeGT-full

(a) ogbn-products

25 50 75 100 125 150 175
Epoch Time

40

45

50

55

60

Te
st

 A
cc

ur
ac

y

Test Accuracy vs Epoch Time

GraphSAGE-
GAT-
GT-sparse-
NAGphormer-
GOAT-local-
GOAT-global-
GOAT-full-
LargeGT-local
LargeGT-full

(b) snap-patents

Figure 2: Training time per epoch of various baselines with the proposed architecture. LargeGT re-
ports relatively faster epoch times compared to the best baselines despite performing competitively.

cessitates the computational feasibility of a network helps keep the epoch times of each baseline
feasible, along with LargeGT. See the epoch times of each experiments in Figure 2. If we further
compare GOAT-full-δ with the original GOAT-full (NS of 3 hops) (Kong et al., 2023), we report
per epoch times of 205s and 497s respectively on ogbn-products, which suggests how existing
works without D2 can be computationally expensive. Finally, we ensure parallelizability in principle
given that the Algorithms 1-2 effectively convert the training problem on a single large graph to a
standard neural network training on the sampled tokens, which can leverage parallelization without
the need of a single global graph context maintained in the memory of any one machine.

On Runtime. In Figure 2, we present the training time
per epoch of all the models considered. We observe the
epoch time of LargeGT to be faster up to a maximum of
3× times (GOAT-full-δ vs. LargeGT-full). Further, Fig.
A.1 in Sec. A.1 shows better learning and generalization
curves of our proposed architecture against the baselines.

On Node set sizes K. In Figure 3, we show results of
LargeGT-full experiment on an important hyperparame-
ter in our proposed framework, the number of nodes to be
sampled from LOCALNODES (Algorithm 1). The value
of K is chosen from a list of [20, 40, 50, 60, 80, 100, 150,
200]. We observe best performance on K = 100 and
K = 50 for ogbn-products and snap-patents
respectively, which somewhat aligns with the extent of
their tasks being non-homophilic since a lower K would
reflect lesser tokens from the local neighborhood.

25 50 75 100 125 150 175 200
K

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Te
st

 A
cc

17s 27s
34s39s 51s 68s

112s 151s

137s

247s

265s
340s

454s 535s 706s 975s

Test Accuracy on different values of K

ogbn-products
snap-patents

Figure 3: K hyperparameter analysis of
Ours-full model on ogbn-products
and snap-patents datasets. Labels
on the data points denote the training
time per epoch.

5 CONCLUSION

In this work, we propose the LargeGT framework for designing Graph Transformers on very large
graphs, such at those with at least millions nodes. We studied the characteristics and constraints
necessary for a learning model to effectively scale on large graphs, namely model capacity, com-
putational feasibility, and distributed training ability. We design LargeGT to satisfy the intended
criteria, and show a proof of concept of how these components can be incorporated into a GT model
to obtain competitive results in an improved runtime compared to architectures in prior literature.

Further research. In our LargeGT framework, we focus on key design elements that offer both
a robust model and the ability to scale on large graphs. We believe some features of this frame-
work are worth further study. The main goal of this work is to demonstrate the core components
like the sampling and tokenization steps (LOCALNODES, INPUTTOKENS), as well as the update
modules (LOCALMODULE, GLOBALMODULE). However, these can be further optimized for spe-
cific types of graphs. For instance, our current tokenization approach allows a wide 4-hop receptive
field through simpler 2-hop operations. Yet, other sampling techniques could be more efficient in
capturing complex relationships. Same applies for exploration on GLOBALMODULE’s efficiency.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

We build LargeGT primarily on PyTorch (Paszke et al., 2019) leveraging PyTorch Geometric (Fey
& Lenssen, 2019), DGL (Wang et al., 2019) and their dependent open-source libraries to perform
some of the graph processing steps. We also make use of the codebase generously released by Kong
et al. (2023) as we adapt some of their functionalities. While we will release the code repository
of our work after this manuscript is peer-reviewed, we provide important dataset information and
experimental setup in Section 4 and include necessary hyperparameter information in Section A.5.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

K Bhatia, K Dahiya, H Jain, A Mittal, Y Prabhu, and M Varma. The extreme classification repos-
itory: Multi-label datasets and code. url: http://manikvarma. org/downloads/xc. XMLRepository.
html, 2016.

Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets. arXiv:1711.07553, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
transformer. arXiv preprint arXiv:2301.11956, 2023.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2022.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Neural Information Processing Systems
(NeurIPS 2022), Track on Datasets and Benchmarks, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Fed-
erico Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198,
2020.

10

Under review as a conference paper at ICLR 2024

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil Shah, and Tong
Zhao. Linkless link prediction via relational distillation. In International Conference on Machine
Learning, pp. 12012–12033. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple
gnn training acceleration with mlp initialization. In The Eleventh International Conference on
Learning Representations, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. 34th
Conference on Neural Information Processing Systems, 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. Combining label prop-
agation and simple models out-performs graph neural networks. In International Conference on
Learning Representations, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems, 31, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv:1609.02907, 2016.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. 2020.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning,
2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection, 2014.

Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on non-
homophilous graphs. arXiv preprint arXiv:2104.01404, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2021.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? arXiv preprint
arXiv:2306.01323, 2023.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

11

Under review as a conference paper at ICLR 2024

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, pp. 4602–4609. AAAI Press,
2019.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023.

OpenAI. Gpt-4 technical report, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference 2021, pp. 2535–2546, 2021.

Jiahui Shi, Vivek Chaurasiya, Yozen Liu, Shubham Vij, Yan Wu, Satya Kanduri, Neil Shah, Pe-
icheng Yu, Nik Srivastava, Lei Shi, et al. Embedding based retrieval in friend recommendation.
2023.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. arXiv preprint arXiv:2303.06147, 2023.

Xianfeng Tang, Yozen Liu, Xinran He, Suhang Wang, and Neil Shah. Friend story ranking with
edge-contextual local graph convolutions. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pp. 1007–1015, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):396–
413, 2020.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

12

Under review as a conference paper at ICLR 2024

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Dif-
former: Scalable (graph) transformers induced by energy constrained diffusion. arXiv preprint
arXiv:2301.09474, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
mlps new tricks via distillation. arXiv preprint arXiv:2110.08727, 2021.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171–21183,
2022.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and
Yanfang Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint
arXiv:2110.13094, 2021.

Wenhao Zhu, Tianyu Wen, Guojie Song, Xiaojun Ma, and Liang Wang. Hierarchical transformer
for scalable graph learning. arXiv preprint arXiv:2305.02866, 2023.

13

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 ADDITIONAL RUNTIME ANALYSIS

0 50 100 150 200 250
Time (minutes)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy with training time

NAGphormer-
GOAT-full-
GAT-
GraphSAGE-
LargeGT-full

(a) ogbn-products

0 50 100 150 200 250
Time (minutes)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

Test Accuracy with training time

NAGphormer-
GOAT-full-
GAT-
GraphSAGE-
LargeGT-full

(b) ogbn-products

0 50 100 150 200 250
Time (minutes)

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy with training time

NAGphormer-
GOAT-full-
GAT-
GraphSAGE-
LargeGT-full

(c) snap-patents

0 50 100 150 200 250
Time (minutes)

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y
Test Accuracy with training time

NAGphormer-
GOAT-full-
GAT-
GraphSAGE-
LargeGT-full

(d) snap-patents

Figure A.1: Validation and test curves of the models with the running time in minutes.

Figure A.1 presents a convergence analysis of the scalable baselines with LargeGT with their vali-
dation and test performance for an unlimited number of epochs run within a computation budget of
4 hours (240 minutes). We observe better generalization curves of our proposed architecture against
the baselines as the latter are largely affected by NS (neighbor sampling) while our architecture is
based on the design principles which addresses some limitations of the NS used during training in
the baselines. Additionally, recall from Section 4, we report a 3× faster epoch time of LargeGT-full
vs. GOAT-full-δ on ogbn-products. This is influential in the faster convergence of LargeGT
as observed for ogbn-products in Figure A.1, where the generalization curves of LargeGT-full
for < 90 minutes is similar to that of GOAT-full-δ for the entire 240 minutes, resulting in an earlier
learning stability.

A.2 LOCALMODULE

One of the main contributions of LargeGT (Section 3.2) in building localized representations is the
introduction of a tokenization strategy that prepares a fixed set of input tokens for each graph node
which is processed in the Transformer encoder of LOCALMODULE to produce local feature repre-
sentations of the node. For this, first a set of K local nodes are sampled offline using LOCALNODES
Algorithm 1, which is then leveraged to prepared 3K tokens for each node during the mini batching
step, following INPUTTOKENS Algorithm 2. The combination of the sampled nodes and the context
features in Algorithm 2 effectively allows a receptive field of up to 4 hops for a node i in consider-
ation, using only 2 hop operations. This is illustrated in Figure A.2. We compute the 1 hop and 2

14

Under review as a conference paper at ICLR 2024

1-hop

2-hop

3-hop

4-hop

Figure A.2: An example illustration of how the tokenization strategy using LOCALNODES and
INPUTTOKENS proposed in LargeGT which is input into LOCALMODULE allows an effective re-
ceptive field of up to 4-hops for a node i in consideration.

hop context features for all nodes using C0 = ÃH and C1 = Ã2H, respectively, where Ã is the
normalized adjacency matrix and H is the node feature matrix.

In the figure, where K is set to 5 for simple illustration, we can observe that there are K − 1 = 4
sampled nodes for the node i, where the nodes sampled from 1 hop are represented as j1 and from
2 hop are represented as j2. The 2-hop context feature for j2 will also form part of the token set
for the node i, following INPUTTOKENS Algorithm 2. As such, the set of tokens of size 3K will
include vectors which represent the a node i’s 4 hop neighborhood information.

A.3 GLOBALMODULE

The algorithm GLOBALMODULE in LargeGT is adapted from Kong et al. (2023) which uses a
single layer Transformer encoder to allow every node in a mini-batch to global graph nodes, con-
ceptually through a fixed sized B centroids. The B centroid tokens are stored in a codebook which
is defined as µ ∈ RB×D and are updated using an Exponential Moving Average (EMA) K-Means
algorithm (Kong et al., 2023) at every mini-batch step. In Algorithm 3, MLPa and MLPb are two
multi-layer perceptron modules with separate learnable parameters, while WQ,WK ,WV are the
learnable parameters of the Transformer encoder.

15

Under review as a conference paper at ICLR 2024

Algorithm 3 GLOBALMODULE: Algorithm to output global representations of nodes in mini-batch

Require: Hidden features Hin ∈ RM×D for M nodes in a mini-batch, µ is the centroid computed
by the K-Means algorithm, P is the centroid assignment index for each node.

Ensure: Return the output representations of all nodes in the mini-batch Hglobal.
1: for i = 0 to M − 1 do
2: x← MLPa(H

in
i)

3: q← xWQ

4: K← µWK

5: V← µWV

6: Ĥglobal
i ← Softmax

(
qK⊤
√
D

+ log (1nP)
)
V

7: Hglobal
i ← MLPb(Ĥ

global
i)

8: Update µ using x through Exponential Moving Average (EMA) K-Means algorithm.
9: end for

A.4 EXTENDED BASELINE RESULTS

As mentioned in Section 4.1, we compare LargeGT with ‘Scalable Baselines’ which are con-
strained versions of existing MPNNs or GT baselines, denoted by Model-δ. The decision to compare
LargeGT with 2-hop constrained versions of the baselines was to maintain a consistent scope of ex-
pensive computation incurred across all models. For instance, the cost of fetching l-hop neighbors
for a node in a very large graph would be the same and agnostic of any selected model. Nevertheless,
in this section, we provide an extended comparison of LargeGT with both ‘Scalable Baselines’ as
well as their original models, for ogbn-products. Note that for the original models, we adopt
hyperparameters in their respective papers. From Table A.1, we can observe that the best performing
model remains the same while LargeGT, which only use up to 2-hop operations, remains better and
competitive compared to the best performing model. Additionally, it is obvious that the ‘Original
Baselines’ that employ greater than 2-hop operations are computationally demanding (upto 4× in
some cases), as compared to the ‘Scalable Baselines’.

Table A.1: Extended results for ogbn-products where LargeGT is compared to Model-δ as
well as the original baselines without the -δ constraint.

Model Original Baselines Scalable Baselines (-δ)
Test Acc Epoch Time Test Acc Epoch Time

GraphSAGE 78.17 22s 76.62 7s
GAT 79.21 86s 77.38 31s

GT-sparse 67.87 40s 60.76 12s
NAGphormer 77.71 22s 75.28 8s

GOAT-local 81.29 490s 81.17 120s
GOAT-global 70.28 3.5s 70.28 3.5s

GOAT-full 81.21 500s 79.88 205s

LargeGT-local – 78.95 45s
LargeGT-full – 79.81 68s

A.5 EXPERIMENTAL DETAILS

In our experiments, we use the baselines GraphSAGE (Hamilton et al., 2017), GAT Veličković et al.
(2018), GT-sparse (Dwivedi & Bresson, 2021; Shi et al., 2020), NAGphormer (Chen et al., 2022) and
GOAT (Kong et al., 2023) to compare with our proposed architecture LargeGT. We follow the setup
of the respective codebase of NAGphormer3 and GOAT4 to conduct the baseline experiments, while

3https://github.com/JHL-HUST/NAGphormer
4https://github.com/devnkong/GOAT

16

https://github.com/JHL-HUST/NAGphormer
https://github.com/devnkong/GOAT

Under review as a conference paper at ICLR 2024

for the remaining, we follow their OGB implementation5. The hardware setup and hyperparameters
of the experiments are as follows.

A.5.1 HARDWARE

The experiments on ogbn-products and snap-patents are conducted on Tesla-V100 GPU
with 16GB GPU memory, 24 CPU cores and 156GB RAM, while that of ogbn-papers100M are
on A40 GPU with 48GB GPU memory, 128 CPU cores and 1024GB RAM.

A.5.2 HYPERPARAMETERS

Table A.2: Hyperparameters for ogbn-products

GraphSAGE-δ GAT-δ GT-sparse-δ NAGphormer-δ GOAT-δ LargeGT

batch size 1024 512 1024 200 512 1024
hidden dim 256 128 128 512 256 256

heads – 4 4 4 2 2
pos enc – – – – node2vec (64) node2vec (64)

centroids (B) – – – – 4096 4096
NS [20, 10] [20, 10] [20, 10] – [20, 10] –

dropout 0.5 0.5 0.3 0.3 0.5 0.5
learning rate 3e-3 1e-3 1e-3 – 1e-3 1e-3

weight decay 0.0 0.0 0.0 1e-5 0.0 0.0
warmup steps – – – 1000 – –

peak learning rate – – – 1e-3 – –
end learning rate – – – 1e-4 – –
learning patience – – – 30 – –

hops – – – 2 – –

5https://github.com/snap-stanford/ogb

17

https://github.com/snap-stanford/ogb

Under review as a conference paper at ICLR 2024

Table A.3: Hyperparameters for snap-patents

GraphSAGE-δ GAT-δ GT-sparse-δ NAGphormer-δ GOAT-δ LargeGT

batch size 1024 512 1024 200 2048 2048
hidden dim 256 128 128 512 128 128

heads – 4 4 4 2 2
pos enc – – – – node2vec (64) node2vec (64)

centroids (B) – – – – 4096 4096
NS [20, 10] [20, 10] [20, 10] – [20, 10] –

dropout 0.5 0.5 0.3 0.2 0.5 0.5
learning rate 3e-3 1e-3 1e-3 – 1e-3 1e-3

weight decay 0.0 0.0 0.0 1e-5 0.0 0.0
warmup steps – – – 1000 – –

peak learning rate – – – 1e-3 – –
end learning rate – – – 1e-4 – –
learning patience – – – 30 – –

hops – – – 2 – –

Table A.4: Hyperparameters for ogbn-papers100M

GOAT-δ LargeGT

batch size 2048 1024
hidden dim 768 512

heads 2 2
pos enc node2vec (128) node2vec (128)

centroids (B) 4096 4096
NS [20, 10] –

dropout 0.5 0.5
learning rate 1e-3 1e-3

weight decay 0.0 0.0

18

	Introduction
	Related Work
	Recipe for Building Transformers for Large Graphs
	Design Principles
	Our Proposed Framework: LargeGT

	Experiments
	Datasets and Experimental Setup
	Numerical Results and Discussion

	Conclusion
	Appendix
	Additional Runtime Analysis
	LocalModule
	GlobalModule
	Extended Baseline Results
	Experimental Details
	Hardware
	Hyperparameters

