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Abstract
Reward misspecification in RLHF threatens the reliability of large language models1

by amplifying spurious correlations and producing unstable or unsafe behavior2

Christiano et al. [2017], Skalse et al. [2022], Gao et al. [2023]. Expert-defined harm3

categories provide a stable signal for post-training evaluation Mitchell et al. [2019],4

but reward models often encode categorical biases that undermine trustworthiness.5

We address this challenge through an information-theoretic reliability objective:6

minimizing mutual information Belghazi et al. [2018] between reward scores and7

sensitive categories. Our approach enforces invariance via adversarial training8

Edwards and Storkey [2016], Zhao et al. [2018] while integrating curiosity-driven9

intrinsic rewards Pathak et al. [2017] into PPO Schulman et al. [2017] to preserve10

diversity. Framing debiasing as a minimax game yields reward models that are both11

robust and verifiably category-independent. Empirically, our Fair-RM achieves12

near-neutral bias on CrowS-Pairs Nangia et al. [2020] and StereoSet Nadeem13

et al. [2020], reduces post-PPO disparity on HH-RLHF, and scales to 19-category14

fairness in PKU-SafeRLHF Ji et al. [2024]. These results demonstrate improved15

calibration and stability under distribution shift, establishing our method as a16

practical reliability control for safety-critical RLHF deployment.17

1 Introduction18

Reinforcement Learning from Human Feedback (RLHF) has become essential for aligning large19

language models with human intent Christiano et al. [2017], Ouyang et al. [2022], yet reward20

misspecification poses significant risks for reliability in safety-critical applications Amodei et al.21

[2016], Pan et al. [2022]. When reward models inherit biases from pretraining or exploit spurious22

correlations Skalse et al. [2022], downstream policies can display unstable or unsafe behaviors23

across demographic groups or safety categories—a major barrier to deployment in domains such24

as healthcare, finance, and criminal justice. These failures undermine not only fairness but also25

calibration, robustness, and the broader trustworthiness of RLHF systems across the full LLM26

lifecycle.27

Existing approaches to mitigating bias typically rely on penalty-based regularization Shen et al.28

[2023], Dai et al. [2023] that augments the training loss, or resource reallocation across groups29

Ouyang et al. [2025] and ensemble-based multi-objective methods Zhou et al. [2024]. While such30

techniques reduce observed disparities, they lack theoretical guarantees of reliability, often collapse31

under distribution shift, and may sacrifice response diversity. As a result, these strategies leave open32

important failure modes—including reward hacking and instability—that limit confidence in their33

use for safety-critical AI deployment.34

Our key insight is that reliability can be formalized as statistical independence between reward35

outputs and sensitive categories Belghazi et al. [2018], Zhao et al. [2018]. We implement this by36

introducing an adversarial minimax game Edwards and Storkey [2016] that enforces invariance in37

the reward model while preserving preference learning performance. To counteract the reduction in38
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generative diversity that such constraints can impose, we further integrate a curiosity-driven intrinsic39

reward during PPO training Pathak et al. [2017], Schulman et al. [2017]. Together, these components40

provide both a mitigation strategy and an evaluation protocol, embedding reliability requirements41

directly into reward modeling while enabling verifiable improvements in calibration, robustness, and42

fairness across diverse categories.43

2 Related Work44

Reward Misspecification and Reliability in RLHF. Prior work has identified reward misspecifica-45

tion as a fundamental threat to RLHF reliability, including reward hacking and over-optimization46

Skalse et al. [2022], Gao et al. [2023]. Existing mitigation strategies—penalty-based regularization47

Shen et al. [2023], Dai et al. [2023], resource reallocation Ouyang et al. [2025], and multi-objective48

methods Zhou et al. [2024], Wu et al. [2023]—lack theoretical guarantees and often collapse under49

distribution shift. Our work formalizes reliability as statistical independence with verifiable adversar-50

ial constraints.51

Information-Theoretic Fairness and Adversarial Training. Mutual information has been used52

to enforce fairness through adversarial training that minimizes dependence on sensitive attributes53

Edwards and Storkey [2016], Zhao et al. [2018], Belghazi et al. [2018]. Parallel work explores54

adversarial and self-play approaches to better represent heterogeneous preferences and bypass reward55

models Cheng et al. [2024], Wu et al. [2024], Chen et al. [2024], Bukharin et al. [2025], Wang et al.56

[2025, 2024]. We combine adversarial debiasing with curiosity-driven rewards Pathak et al. [2017] to57

enforce category independence while preserving diversity during PPO training.58

3 Problem Setup and Method59

Reward Modeling in RLHF. An RLHF reward model (RM) assigns a scalar score rθ(x, y) to60

a prompt–response pair and is trained from human pairwise preferences Christiano et al. [2017],61

Ouyang et al. [2022]. We use the Bradley–Terry formulation Bradley and Terry [1952]62

P (yA ≻ yB) = σ
(
rθ(x, yA)− rθ(x, yB)

)
,

with training objective (averaged over pairs)63

LBT(θ) = − log σ
(
rθ(x, yA)− rθ(x, yB)

)
,

so minimizing LBT drives rθ(x, yA) > rθ(x, yB) when yA is preferred. The BT objective represents64

an MLE of the preference dataset onto the space of scalar-valued reward models Swamy et al. [2025].65

Reliability Constraint via Mutual Information. Following Ouyang et al. [2025], we treat relia-66

bility of an RM across categories c ∈ C (e.g., helpfulness/harmlessness or broader safety tags) as67

invariance of the reward scale with respect to these categories (see Appx. A.1 for how non-invariant68

RMs can induce undesirable downstream behavior). Formally, we target identical reward distributions69

rθ(x, y | c) for all c, i.e.,70

I
(
rθ(x, y); c

)
= 0,

zero mutual information between reward and category Belghazi et al. [2018], Zhao et al. [2018].71

Directly minimizing this dependence is intractable, so we adopt an adversarial surrogate: a classifier72

qϕ(c | r) attempts to predict c from rewards. This casts reliable (category-invariant) reward learning73

as a minimax game between the reward model and a discriminator solved via no-regret dynamics;74

our analysis (Appendix A.3) shows that such training drives the empirical MI toward zero.75

Adversarial Implementation. We impose the constraint during RM training on preference pairs,76

where each comparison (x, yA, yB) carries a category label. We optimize LBT for preference77

prediction while training an adversary qϕ on scored examples (x, y); a lightweight MLP consumes78

scalar rewards rθ(x, yA) and rθ(x, yB) to predict c. In practice, the adversarial weight λadv trades79

off invariance against stability and fit. To preserve output diversity while enforcing invariance, we80

add a small intrinsic reward via Random Network Distillation (RND) Pathak et al. [2017], Burda et al.81

[2019] during PPO, following recent introductions of intrinsic reward into RLHF Sun et al. [2025].82

4 Experiments and Results83

We evaluate our framework on a binary Helpful/Harmless (HH-RLHF) task Bai et al. [2022] and a84

19-class safety classification task Ji et al. [2024]. We fine-tune TinyLlama-1.1B TinyLlama Team85

[2024] policies with PPO Schulman et al. [2017], Hugging Face [2023], comparing a baseline reward86

model against our Fair and Fair+Curiosity variants. Full training and evaluation details are provided87

in Appendix A.4–B.88



Reward Distribution Analysis. In our main experiment, we compare reward model scores for89

Helpful versus Harmless completions. The baseline RM exhibits a systematic skew, consistently90

inflating Helpful rewards and allowing weak completions to outrank stronger ones from the other91

category, violating the assumption of a shared reward scale.92

With λadv = 0.2, the fairness-constrained model yields a substantially more balanced distribution93

(Figures 5, 6). The KS distance drops from 0.43 to 0.10 (p<0.001) and the Wasserstein-1 distance94

from 13.38 to 0.53 (p<0.001), indicating a significant reduction in categorical bias. This improves95

comparability across behavior types and enables more reliable evaluation; a post-hoc predictability96

test (Appx. A.7) further confirms that category membership is nearly unrecoverable from debiased97

rewards.98

Hyperparameter settings are in Appendix A.6, with MI estimator details in Section A.8.99

Figure 1: Reward distribution before applying
fairness constraint

Figure 2: Reward distribution after applying fair-
ness constraint

4.1 Post-PPO Fairness100

After PPO fine-tuning on HH-RLHF, we evaluate all policies on 100 Helpful and 100 Harmless101

prompts, scoring with an HH-RLHF-trained safety RM Bai et al. [2022]. The baseline policy102

exhibits a parity gap of 0.4814, reduced to 0.4001 (−16.9%) under the fairness constraint and 0.4126103

(−14.3%) with Fair+Curiosity. Curiosity slightly widens the gap relative to fairness alone but still104

markedly improves over baseline while recovering most variance and response diversity. We frame105

this parity-gap analysis as an evaluation metric for reward reliability, complementing diversity audits.106

See Sec. 4.1 and Appx. B.1 for more details.107

Policy Parity Gap Relative Drop

Baseline 0.4814 –
Fair 0.4001 −16.9%
Fair + Curiosity 0.4126 −14.3%

Table 1: Parity gap between Helpful and Harmless mean rewards on HH-RLHF prompts post-PPO.

Diversity. We measure semantic diversity via average pairwise cosine distance of108

all-mpnet-base-v2 embeddings Reimers and Gurevych [2019], Song et al. [2020];109

see Appx. B.2. Fairness reduces diversity from 0.9638 to 0.9584 (p<0.001), while curiosity restores110

it to 0.9616 (p=0.002), nearly matching baseline. This shows curiosity offsets the diversity loss from111

fairness; longer PPO runs may further amplify these effects.112

4.2 Generalization to Unseen Biases113

Setup We train two HH-RLHF reward models Bai et al. [2022]: a baseline (λadv = 0, Bradley–114

Terry) and a fairness-constrained model (λadv = 0.2, MI penalty). Bias is assessed on CrowS-Pairs115

Nangia et al. [2020] and StereoSet Nadeem et al. [2020] as the proportion of stereotypical predictions116

(neutral = 50%).117

Model CrowS-Pairs StereoSet

Baseline RM 42.84%± 1.27% 46.58%± 1.09%
Fair RM 51.46%± 1.29% 49.95%± 1.09%

Table 2: Bias rates (50% = neutral).

Results Introducing the MI constraint shifts bias rates118

toward neutrality compared to the baseline RM, with statis-119

tically significant improvements (CrowS-Pairs: McNemar120

p<0.001; StereoSet: p<0.01). Notably, the fairness ob-121

jective is trained without access to CrowS-Pairs or Stere-122

oSet, yet reduces stereotype bias across domains. This123

demonstrates generalization beyond training categories124

and highlights a scalable path to mitigating unseen RLHF biases.125



4.3 Fairness Across Multiple Harm Categories126

Figure 3: Before fairness. Figure 4: After fairness.

Setup We train two Llama-127

3.2-1B reward models on the128

19-category PKU-SafeRLHF129

dataset Ji et al. [2024]: a130

Baseline (λadv = 0) and131

a Fair model with an MI132

adversary (λadv = 0.2).133

While the baseline displays134

large reward disparities across135

harm categories, the fairness-136

constrained RM produces dis-137

tributions that are far more uniform. Crucially, the distributions do not collapse; the RM preserves its138

Bradley–Terry predictive performance, showing that a single model can be made fair across many139

categories simultaneously—scaling fairness beyond binary setups.140

4.4 Backward Compatibility and Temporal Shift Robustness141

We evaluate whether fairness regularization preserves prior alignment while improving robustness142

to distribution shift. The fairness-constrained reward model retains 70.38% of strong baseline143

preferences, maintaining backward compatibility with only a 2.2% drop in overall preference quality.144

At the same time, it improves temporal robustness, outperforming the baseline by 2.09 accuracy145

points on RewardBench-2. These results suggest that fairness constraints alter a non-trivial fraction146

of legacy preferences in a targeted manner, yielding stable backward compatibility together with147

measurable out-of-distribution gains.148

4.5 Ablation: Adversarial Weight149

Setup We analyze the effect of the adversarial weight λadv on our MI objective by sweeping this150

parameter (full results in Appx. A.9). For each setting, we report both mutual information (MI) and151

Bradley–Terry (BT) loss. Table 3 shows a steep drop in MI as λadv increases, alongside improvements152

in BT loss. This suggests that the fairness constraint doubles as a regularizer, enhancing preference153

learning while suppressing categorical dependence.154

λadv BT loss MI

0.0 2.8712 0.2282
0.2 2.2307 0.0163
0.8 1.1879 0.0073
1.5 0.7432 0.0136

Table 3: Representative λadv settings; full sweep in Appx. A.9.
5 Conclusion155

We introduce an adversarial MI constraint that reduces bias in reward models while keeping alignment156

with human preferences intact. Across tasks like CrowS-Pairs, StereoSet, and SafeRLHF’s 19157

categories, our method improves fairness without sacrificing performance. By pairing this with158

an intrinsic reward in PPO, we position fairness as a built-in reliability goal rather than an add-on.159

This frames our metrics as part of the broader evaluation protocol for RLHF systems across the160

LLM lifecycle. Looking ahead, we plan to test larger models and study how fairness interacts with161

emergent risks such as reward hacking and scaling-related behaviors.162

6 Ethics and Limitations163

Our adversarial training method is motivated by zero-information strategies, but practical noisiness164

makes it hard to tune Edwards and Storkey [2016], Belghazi et al. [2018]. Its effectiveness depends165

on well-defined, discrete categories, suggesting future work should extend to non-discrete attributes166

Mitchell et al. [2019], Bolukbasi et al. [2016]. The approach also increases time and memory costs167

Ouyang et al. [2022], requiring larger batch sizes for distribution-level statistics, and our experiments168

remain limited in characterizing the reward hacking dynamics introduced by this constraint.169
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A Appendix290

A.1 Why enforce fairness on Reward Models?291

In this section, we offer an intuitive thought experiment on why fairness defined as categorical292

independence of the reward model distribution mitigates undesired reward hacking scenarios in PPO.293

Consider the example given in the main text 4 and suppose yi,c, yi,r are chosen and rejected samples294

from the ith datapoint in our preference dataset respectively. We observe cases where ∃i, j such295

that yi,c > yi,r > yj,c > yj,r. That is, because datapoint i and datapoint j are independent of one296

another, we can have a good model in the Bradley-Terry definition prioritize chosen over rejected297

within the pair, but then across pairs end up rewarding a rejected sample of one pair over the chosen298

sample of another. In practice, we notice a systemic shift towards higher rewards for i ∈ Dhelpful299

(the subset of preference exemplars portraying helpful behaviors) over j ∈ Dharmless (the subset of300

preference exemplars portraying harmless behaviors). Then, for cases where yi,c > yi,r > yj,c, we301

will observe behavior in the post-trained LM where it prioritizes both helpful and unhelpful behavior302

over harmless behavior given a potentially harmful prompt.303

A.2 Theoretical Justification304

We ground our approach in adversarial training theory, considering a reward model rθ : X → R and305

a discriminator qϕ(c | ·) Edwards and Storkey [2016].306

Setting. We observe i.i.d. triples (X+
t , X−

t , Ct) with labels Yt ∈ {0, 1} indicating whether X+
t is307

preferred to X−
t from some unknown preference distribution. Let Rθ = rθ(X). The (population)308

Bradley–Terry loss is309

LBT(θ) = E
[
− log σ

(
rθ(X

+)− rθ(X
−)

)]
. (1)

Our discriminator qϕ(c | ·) tries to infer C from rewards. We thus have the zero-sum game310

min
θ

max
ϕ

J (θ, ϕ) = LBT(θ) + λE
[
log qϕ(C | Rθ)

]
. (2)

where our target is independence: Rθ ⊥ C (i.e., Iθ(C;Rθ) = 0).311

Our main theoretical result connects the adversarial training scheme to our original fairness objective:312

Theorem 1 (No-regret reaches mutual information target). Assume Lemma 1, feasible invariance (7),313

and no-regret play with RegG(T ),RegD(T ) = o(T ). Then314

1

T

T∑
t=1

Iθt(C;Rθt) ≤
RegG(T ) + RegD(T )

λT
−−−−→
T→∞

0. (3)

A.3 Proof of Theoretical Results315

In this section we provide a proof for our main convergence theorem, starting with supporting lemmas316

to demonstrate the equivalence of our adversarial game to mutual information minimization.317

Lemma 1 (Best response is a mutual-information penalty). If we take a fixed θ,318

sup
ϕ

E
[
log qϕ(C | Rθ)

]
= E

[
log pθ(C | Rθ)

]
= −Hθ(C | Rθ).

This implies that the inner game’s value is nothing more than −Hθ(C |Rθ), the negative conditional319

entropy of categories given the reward model distribution (for a slight abuse of notation), and so the320

reward model’s objective becomes321

J (θ) := sup
ϕ

J (θ, ϕ) = LBT(θ) + λ Iθ(C;Rθ). (4)

We drop the additive constant −λH(C) since it does not depend on θ.322

Moreover, any best-response discriminator satisfies qϕ⋆(· | r) = pθ(· | r) a.s.323

We turn to the literature of no-regret algorithms as solvers for two-player zero-sum (2p0s) games to324

show the convergence of this adversarial training procedure, defining the regret for the reward model325

and discriminator respectively.326



Repeated play and regrets. At round t = 1, . . . , T , the reward model chooses θt, the discriminator327

chooses ϕt, and both observe payoff J (θt, ϕt). Define external regrets328

RegG(T ) :=

T∑
t=1

J (θt, ϕt) − min
θ

T∑
t=1

J (θ, ϕt), RegD(T ) := max
ϕ

T∑
t=1

J (θt, ϕ) −
T∑

t=1

J (θt, ϕt).

We assume no-regret algorithms for both: RegG(T ) = o(T ) and RegD(T ) = o(T ). Let J̄T =329

1
T

∑T
t=1 J (θt, ϕt) denote the average payoff, and let the game value be330

V := min
θ

max
ϕ

J (θ, ϕ) = min
θ

J (θ) = min
θ

{
LBT(θ) + λIθ(C;Rθ)

}
.

Our next lemma bounds our defined objective J in terms of the value of the game, with a deviation331

equal to the average regret of our generator/discriminator algorithms.332

Lemma 2 (No-regret bound for zero-sum play). Let J (θ, ϕ) be zero-sum and let a play (θt, ϕt)
T
t=1333

induce334

J̄T :=
1

T

T∑
t=1

J (θt, ϕt),

RegG(T ) :=

T∑
t=1

J (θt, ϕt)−min
θ

T∑
t=1

J (θ, ϕt),

RegD(T ) := max
ϕ

T∑
t=1

J (θt, ϕ)−
T∑

t=1

J (θt, ϕt).

Let Vup := minθ maxϕ J (θ, ϕ) and Vlow := maxϕ minθ J (θ, ϕ). Then335

Vlow − RegD(T )
T ≤ J̄T ≤ Vup + RegG(T )

T . (5)
In particular, if the game has value V (i.e., Vup = Vlow = V ),336 ∣∣J̄T − V

∣∣ ≤ RegG(T )+RegD(T )
T . (6)

Proof. We start with the upper bound. By the generator’s regret definition,337

T∑
t=1

J (θt, ϕt) ≤ min
θ

T∑
t=1

J (θ, ϕt) + RegG(T ).

Let θ⋆ ∈ argminθ maxϕ J (θ, ϕ) (a minimax optimizer). Evaluating the RHS at θ⋆ and using338

maxϕ J (θ⋆, ϕ) = Vup yields339

min
θ

T∑
t=1

J (θ, ϕt) ≤
T∑

t=1

J (θ⋆, ϕt) ≤
T∑

t=1

max
ϕ

J (θ⋆, ϕ) = T Vup.

Combining gives
∑T

t=1 J (θt, ϕt) ≤ T Vup + RegG(T ), hence J̄T ≤ Vup + RegG(T )/T., which340

completes this part of the inequality.341

Next, we demonstrate the lower bound. By the discriminator’s regret definition,342

T∑
t=1

J (θt, ϕt) ≥ max
ϕ

T∑
t=1

J (θt, ϕ) − RegD(T ).

Let ϕ⋆ ∈ argmaxϕ minθ J (θ, ϕ) (a maxmin optimizer), so minθ J (θ, ϕ⋆) = Vlow. Then for every343

θ, J (θ, ϕ⋆) ≥ Vlow. In particular,344

max
ϕ

T∑
t=1

J (θt, ϕ) ≥
T∑

t=1

J (θt, ϕ
⋆) ≥

T∑
t=1

Vlow = T Vlow.

Thus
∑T

t=1 J (θt, ϕt) ≥ T Vlow − RegD(T ), i.e., J̄T ≥ Vlow − RegD(T )/T.345

Combining both sides finishes the proof – in particular, if Vup = Vlow = V (minimax theorem of346

zero-sum games), then347

V − RegD(T )

T
≤ J̄T ≤ V +

RegG(T )

T
,

and, since max{a, b} ≤ a+ b for a, b ≥ 0, the symmetric bound (6) follows.348



Another technicality is we require the optimal reward model– the one that satisfies our mutual349

information constraint while minimizing BT-loss, to lie in our function class. We frame this as the350

feasible invariance condition:351

Feasible invariance. Let L⋆
BT = infθ LBT(θ). We say feasible invariance holds if there exists θ†352

with353

LBT(θ
†) = L⋆

BT and Iθ†(C;Rθ†) = 0. (7)

In that case, the minimax value satisfies V = L⋆
BT by (4).354

With these results, we can then prove our main theorem that in no-regret, our reward model converges355

to zero mutual-information.356

Proof of Theorem 1 (No Regret Convergence)357

Proof. For each t, let V (θ) = maxϕ J (θ, ϕ) = LBT(θ) + λIθ(C;Rθ) by Lemma 1. By the358

discriminator’s regret definition,359

1

T

T∑
t=1

V (θt) =
1

T

T∑
t=1

max
ϕ

J (θt, ϕ) ≤ J̄T +
RegD(T )

T
.

Feasible invariance implies V = L⋆
BT, and Lemma 2 gives J̄T ≤ V + RegG(T )

T = L⋆
BT + RegG(T )

T .360

Hence361

1

T

T∑
t=1

[
LBT(θt) + λIθt(C;Rθt)

]
≤ L⋆

BT +
RegG(T ) + RegD(T )

T
.

Since LBT(θt) ≥ L⋆
BT for all t, canceling L⋆

BT yields362

λ · 1
T

T∑
t=1

Iθt(C;Rθt) ≤ RegG(T ) + RegD(T )

T
,

which proves the claim. Note that if the average of these terms converges to 0, then we also have that363

inft Iθt −→ 0, and so we can select the minimum running iterate that is bounded by this average to364

have a direct convergent subsequence.365

366

We view training the discriminator using CELoss on each batch as an approximate "best-response."367

More formally, we can think of it as an ϵt-Nash equilibrium for each round – that is, if qϕt
is trained368

to near-optimality per round so that maxϕ J (θt, ϕ) − J (θt, ϕt) ≤ ϵt with 1
T

∑
t ϵt → 0, then the369

proof above holds with RegD(T ) replaced by
∑

t ϵt.370

What if exact invariance is infeasible? That is, what if the Bradley-Terry-optimal reward model371

invariant to category does not lie in our function class? If no θ attains both L⋆
BT and I = 0, then372

V > L⋆
BT and our theorem instead yields the following bound:373

1

T

T∑
t=1

Iθt(C;Rθt) ≤ V − L⋆
BT

λ
+

RegG(T ) + RegD(T )

λT
,

where we cannot ignore the V − L∗
BT term, which we can think of approximation error-esque term374

in the learning theory language.375

A.4 Datasets and Preprocessing376

HH-RLHF (Helpful/Harmless): We construct (chosen, rejected) preference pairs and assign each377

pair a category label of either helpful or harmless. Prompts and responses are concatenated, and378

sequences are truncated to a maximum of 1,024 tokens.379

PKU-SafeRLHF (19 categories): We retain the official harm category labels from the dataset release.380

Samples with missing category annotations are removed to ensure label integrity.381

Deduplication: Exact duplicate (prompt, response) pairs are removed to avoid information leakage382

and inflated results.383

Tokenization and padding: All data is tokenized with padding=longest and truncation=true. Each384

prompt–response sequence is capped at 1,024 tokens in all reported experiments.385



A.5 Model and Training Details386

We use Llama-3.2-1B adapted into a scalar reward model for our RM backbone, with the Bradley-387

Terry pairwise log-likelihood on (chosen, rejected) pairs as our baseline training objective. We train388

for a single epoch on a balanced sample of helpful and harmless data from the Anthropic HH-RLHF389

dataset and evaluate on a held-out set of HH-RLHF dataset as well as RewardBench.390

A.6 Adversary and Fairness Optimization391

The fairness constraint uses a lightweight MLP adversary qϕ that receives summary statistics of392

rewards, computed separately for each category. For each batch, we calculate the mean, variance,393

skewness, and kurtosis of the chosen and rejected rewards, grouped by category, to form the adver-394

sary’s input features.395

Our training implementation follows the given alternating update schedule:396

1. Compute Bradley–Terry loss LBT = − log σ(rchosen − rrejected).397

2. Adversary step: update qϕ by minimizing cross-entropy loss to predict the category from the398

moment features.399

3. Fairness step: update the reward model to maximize adversary uncertainty, i.e., minimize400

LBT − λadv · CELoss
(
qϕ(· | moments), y

)
,

Ablation: For ablation studies, we sweep λadv ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. The default401

setting for main experiments is λadv = 0.2.402

Post-training Category Predictability. As a post-training test, we train a fresh discriminator on403

frozen rewards from the above regularized model, which yields near-chance performance—AUC404

0.78 ± 0.03 → 0.53 ± 0.06, BA 0.70 ± 0.02 → 0.52 ± 0.05 (5-fold; see Appx. A.7)—indicating405

little recoverable category signal from the fair reward model.406

A.7 Post-hoc Category Predictability Audit407

To test whether category information remains after training, we freeze the reward model and train a408

new discriminator q̂(c | r) on its scalar outputs (no weights shared with the in-training adversary). We409

use stratified 5-fold cross-validation and report mean±sd over folds. The discriminator is a 2-layer410

MLP trained with cross-entropy and early stopping on validation AUC. Chance performance is 0.5411

for both AUC and balanced accuracy (BA).412

Model AUC Balanced Acc.

Baseline RM 0.78± 0.03 0.70± 0.02
Fair RM (ours) 0.53± 0.06 0.52± 0.05

Table 4: Post-hoc predictability from frozen rewards; lower is better (chance ≈ 0.5).

A.8 Mutual Information Estimation (Ablation)413

We measure the dependence between reward scores and category labels during the λadv sweep.414

Mutual information (MI) is computed with sklearn.metrics.mutual_info_score between category415

labels C ∈ {helpful, harmless} and a discretized reward variable, obtained by binning rewards into416

50 equal-width bins.417

Lower MI indicates that the rewards are more category-independent. As an additional check, we mon-418

itor the adversary’s balanced accuracy; values close to chance imply minimal category dependence.419



A.9 Full λadv Sweep420

In this section we provide the complete data for our full sweep over adversarial loss parameters.

λadv BT loss MI

0.0 2.8712 0.2282
0.2 2.2307 0.0163
0.4 1.5607 0.0088
0.6 1.7104 0.0059
0.8 1.1879 0.0073
1.0 0.8694 0.0141
1.5 0.7432 0.0136
2.0 0.8151 0.0076

Table 5: Complete sweep of λadv values.

421

A.10 Scaling Experiments422

To evaluate the scalability of our method, we conducted preliminary experiments on Meta’s Llama3-423

8B-Instruct model on an 8xH100 node. The reward distributions for our Fair-RM variant, shown424

below, exhibit a more complex, multimodal structure compared to the 1.1B model, which we425

hypothesize is due to the larger model’s capacity to capture finer-grained nuances in the preference426

data. Despite this, the results confirm that our approach remains effective at scale. There is clear427

separation between chosen and rejected rewards, indicating preference alignment is maintained.428

Crucially, the distributions for helpful and harmless categories remain tightly aligned, demonstrating429

that the fairness constraint successfully generalizes and prevents reward disparities even in larger430

models. However, both our base model and fair-RM variant achieve around 50% accuracy on a431

subset of RewardBench after our training, for a variety of reasons but mainly in part due to the small432

bandwidth we had to only run smaller training runs. Our Fair-RM had on-par performance with433

the baseline BT model, however, but to achieve SOTA-level eval results on both models, full-scale434

post-training of RewardBench-competitive models derived from the 8B models is part of our future435

intended work.436

Figure 5: Reward distributions for chosen vs.
rejected

Figure 6: Reward distributions for helpful vs.
harmless

B PPO Training Setup437

In this section we detail our setup for PPO training of downstream language models using our fair438

reward models.439

Base Actor. We initialize all policy variants from TinyLlama/TinyLlama-1.1B-Chat-v1.0440

to enable rapid convergence and reduce compute cost while still maintaining competitive generation441

quality for our evaluation tasks. Policies are adapted using LoRA with rank r = 16 and α = 32,442

targeting the query/key/value and output projection matrices in the attention layers.443

PPO Configuration. We use HuggingFace TRL’s PPOTrainer with minibatch size = 64, batch444

size = 512, and 2 PPO epochs per update. The KL control coefficient is set to β = 0.05 (adaptive445

control enabled), targeting the reference model (TinyLlama/TinyLlama-1.1B-Chat-v1.0).446

We set target_kl=0.1 to limit divergence from the reference.447



Reward Models. All reward models are Llama-3.2-1B sequence classifiers trained on preference448

data with the Bradley–Terry objective. The Fair variant applies a mutual information (MI) penalty449

with λadv = 0.2 between protected-category predictions and reward scores. Fair + Curiosity adds an450

intrinsic curiosity bonus from a Random Network Distillation (RND) module trained online during451

PPO.452

Curiosity Bonus. The RND network uses a 2-layer MLP with ReLU activations, hidden size 512.453

The predictor network is optimized with Adam (η = 1× 10−4) on the cosine similarity loss between454

target and predictor features. Intrinsic reward is scaled by ηcur = 0.05 and added to the scalar RM455

score before PPO optimization.456

Generation Settings. For PPO rollouts, we generate with temperature = 0.7, top-p = 0.9, and457

max length = 256 tokens. KL penalties are computed against the reference log-probabilities.458

Training Duration. Each run is trained for N = 5,000 PPO steps (≈1.5M tokens processed),459

which we found sufficient for convergence in both reward and policy loss metrics given the small460

model size.461

B.1 Parity Gap: Definition and Estimation462

In this section we detail a parity gap (effectively mean matching evaluation) for how fair a reward463

model is, for simplicity across only two categories.464

Definition. Let r(x, y) denote the scalar reward assigned by a (fixed) safety RM to a prompt–465

response pair (x, y). We consider two behavior categories c ∈ {Helpful,Harmless} and define the466

parity gap as the absolute difference in expected rewards:467

ParityGap =
∣∣E[r(x, y) | c = Helpful

]
− E

[
r(x, y) | c = Harmless

] ∣∣.
We define the parity gap as effectively a mean-matching surrogate evaluation – intuitively, a smaller468

parity gap indicates the RM (and the downstream policy it shapes) treats categories on a comparable469

reward scale, reducing category-dependent inflation/deflation.470

Estimator. Given disjoint evaluation sets DH and DA (Helpful vs. Harmless) with sizes nH and nA471

and rewards {rHi }
nH
i=1, {rAj }

nA
j=1, we compute472

r̄H = 1
nH

nH∑
i=1

rHi , r̄A = 1
nA

nA∑
j=1

rAj , ∆̂ = r̄H − r̄A, ̂ParityGap = |∆̂|.

When nH ̸= nA, the above remains unbiased under i.i.d. sampling within each group. In our main473

runs we use balanced sets (nH=nA).474

Relative change (vs. a baseline). When comparing a model M to a baseline B, we also report the475

relative drop:476

RelDrop(M ;B) =
̂ParityGap(M)− ̂ParityGap(B)

̂ParityGap(B)
× 100%.

Practical notes. (i) We score responses with the same fixed RM across all policies. (ii) Generation477

settings and seeds are identical across policies (Appendix B).478

B.2 Semantic Diversity Calculation479

In this section we detail our metric for diversity of LLM sampling to benchmark our intrinsic reward.480

Prompts and generation. For diversity evaluation we sample 1,030 LIMA prompts (seed 42) and481

generate one response per prompt with identical sampling across models. Prompts are drawn from482

GAIR/lima. Generation parameters: temperature = 0.9, top-p = 0.95, max_new_tokens= 100,483

max_length= 512, batch size = 8. All models use the same seed and generation parameters.484

Semantic diversity (primary metric). Let f(·) be all-mpnet-base-v2 with mean-pooling;485

embeddings are ℓ2-normalized. For the set of responses {yi}ni=1 with embeddings ei = f(yi), we486

report487

SemDiv = 2
n(n−1)

∑
i<j

(
1− cos(ei, ej)

)
.

Higher is better (more meaning-level variety).488



Statistics. To compare a fair model against the baseline, we use a paired bootstrap (1,000 resamples;489

two-sided) over aligned prompt sets, reporting the mean difference, 95% CI, and p-value. In the main490

text, we report semantic-diversity differences: Fair (no curiosity) vs. Baseline: −0.0054 (p<0.001);491

Fair + Curiosity vs. Baseline: −0.0022 (p=0.002).492

B.3 Compute and Runtime493

Hardware: For initial experiments of both reward model training and PPO, we used dual A100494

clusters, and currently are using a 8xH100 node for results on Llama3-8B.495
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