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Abstract
Reward misspecification in RLHF threatens the reliability of large language models
by amplifying spurious correlations and producing unstable or unsafe behavior
Christiano et al. [2017], Skalse et al. [2022], Gao et al. [2023]. Expert-defined harm
categories provide a stable signal for post-training evaluation Mitchell et al. [2019],
but reward models often encode categorical biases that undermine trustworthiness.
We address this challenge through an information-theoretic reliability objective:
minimizing mutual information Belghazi et al. [2018] between reward scores and
sensitive categories. Our approach enforces invariance via adversarial training
Edwards and Storkey [2016], Zhao et al. [2018] while integrating curiosity-driven
intrinsic rewards Pathak et al. [2017] into PPO Schulman et al. [2017] to preserve
diversity. Framing debiasing as a minimax game yields reward models that are both
robust and verifiably category-independent. Empirically, our Fair-RM achieves
near-neutral bias on CrowS-Pairs Nangia et al. [2020] and StereoSet Nadeem
et al. [2020], reduces post-PPO disparity on HH-RLHF, and scales to 19-category
fairness in PKU-SafeRLHF Ji et al. [2024]. These results demonstrate improved
calibration and stability under distribution shift, establishing our method as a
practical reliability control for safety-critical RLHF deployment. Our code can be
found at https://github.com/doelleb/guard-fair-rlhf.git.

1 Introduction
Reinforcement Learning from Human Feedback (RLHF) has become essential for aligning large
language models with human intent Christiano et al. [2017], Ouyang et al. [2022], yet reward
misspecification poses significant risks for reliability in safety-critical applications Amodei et al.
[2016], Pan et al. [2022]. When reward models inherit biases from pretraining or exploit spurious
correlations Skalse et al. [2022], downstream policies can display unstable or unsafe behaviors
across demographic groups or safety categories—a major barrier to deployment in domains such
as healthcare, finance, and criminal justice. These failures undermine not only fairness but also
calibration, robustness, and the broader trustworthiness of RLHF systems across the full LLM
lifecycle.
Existing approaches to mitigating bias typically rely on penalty-based regularization Shen et al.
[2023], Dai et al. [2023] that augments the training loss, or resource reallocation across groups
Ouyang et al. [2025] and ensemble-based multi-objective methods Zhou et al. [2024]. While such
techniques reduce observed disparities, they lack theoretical guarantees of reliability, often collapse
under distribution shift, and may sacrifice response diversity. As a result, these strategies leave open
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important failure modes—including reward hacking and instability—that limit confidence in their
use for safety-critical AI deployment.
Our key insight is that reliability can be formalized as statistical independence between reward
outputs and sensitive categories Belghazi et al. [2018], Zhao et al. [2018]. We implement this by
introducing an adversarial minimax game Edwards and Storkey [2016] that enforces invariance in
the reward model while preserving preference learning performance. To counteract the reduction in
generative diversity that such constraints can impose, we further integrate a curiosity-driven intrinsic
reward during PPO training Pathak et al. [2017], Schulman et al. [2017]. Together, these components
provide both a mitigation strategy and an evaluation protocol, embedding reliability requirements
directly into reward modeling while enabling verifiable improvements in calibration, robustness, and
fairness across diverse categories.

2 Related Work
Reward Misspecification and Reliability in RLHF. Prior work has identified reward misspecifica-
tion as a fundamental threat to RLHF reliability, including reward hacking and over-optimization
Skalse et al. [2022], Gao et al. [2023]. Existing mitigation strategies—penalty-based regularization
Shen et al. [2023], Dai et al. [2023], resource reallocation Ouyang et al. [2025], and multi-objective
methods Zhou et al. [2024], Wu et al. [2023]—lack theoretical guarantees and often collapse under
distribution shift. Our work formalizes reliability as statistical independence with verifiable adversar-
ial constraints.
Information-Theoretic Fairness and Adversarial Training. Mutual information has been used
to enforce fairness through adversarial training that minimizes dependence on sensitive attributes
Edwards and Storkey [2016], Zhao et al. [2018], Belghazi et al. [2018]. Parallel work explores
adversarial and self-play approaches to better represent heterogeneous preferences and bypass reward
models Cheng et al. [2024], Wu et al. [2024], Chen et al. [2024], Bukharin et al. [2025], Wang et al.
[2025, 2024]. We combine adversarial debiasing with curiosity-driven rewards Pathak et al. [2017] to
enforce category independence while preserving diversity during PPO training.

3 Problem Setup and Method
Reward Modeling in RLHF. An RLHF reward model (RM) assigns a scalar score rθ(x, y) to
a prompt–response pair and is trained from human pairwise preferences Christiano et al. [2017],
Ouyang et al. [2022]. We use the Bradley–Terry formulation Bradley and Terry [1952]

P (yA ≻ yB) = σ
(
rθ(x, yA)− rθ(x, yB)

)
,

with training objective (averaged over pairs)

LBT(θ) = − log σ
(
rθ(x, yA)− rθ(x, yB)

)
,

so minimizing LBT drives rθ(x, yA) > rθ(x, yB) when yA is preferred. The BT objective represents
an MLE of the preference dataset onto the space of scalar-valued reward models Swamy et al. [2025].

Reliability Constraint via Mutual Information. Following Ouyang et al. [2025], we treat relia-
bility of an RM across categories c ∈ C (e.g., helpfulness/harmlessness or broader safety tags) as
invariance of the reward scale with respect to these categories (see Appx. A.1 for how non-invariant
RMs can induce undesirable downstream behavior). Formally, we target identical reward distributions
rθ(x, y | c) for all c, i.e.,

I
(
rθ(x, y); c

)
= 0,

zero mutual information between reward and category Belghazi et al. [2018], Zhao et al. [2018].
Directly minimizing this dependence is intractable, so we adopt an adversarial surrogate: a classifier
qϕ(c | r) attempts to predict c from rewards. This casts reliable (category-invariant) reward learning
as a minimax game between the reward model and a discriminator solved via no-regret dynamics;
our analysis (Appendix A.3) shows that such training drives the empirical MI toward zero.

Adversarial Implementation. We impose the constraint during RM training on preference pairs,
where each comparison (x, yA, yB) carries a category label. We optimize LBT for preference
prediction while training an adversary qϕ on scored examples (x, y); a lightweight MLP consumes
scalar rewards rθ(x, yA) and rθ(x, yB) to predict c. In practice, the adversarial weight λadv trades
off invariance against stability and fit. To preserve output diversity while enforcing invariance, we
add a small intrinsic reward via Random Network Distillation (RND) Pathak et al. [2017], Burda et al.
[2019] during PPO, following recent introductions of intrinsic reward into RLHF Sun et al. [2025].



4 Experiments and Results
We evaluate our framework on a binary Helpful/Harmless (HH-RLHF) task Bai et al. [2022] and a
19-class safety classification task Ji et al. [2024]. We fine-tune TinyLlama-1.1B TinyLlama Team
[2024] policies with PPO Schulman et al. [2017], Hugging Face [2023], comparing a baseline reward
model against our Fair and Fair+Curiosity variants. Full training and evaluation details are provided
in Appendix A.4–B.

Reward Distribution Analysis. In our main experiment, we compare reward model scores for
Helpful versus Harmless completions. The baseline RM exhibits a systematic skew, consistently
inflating Helpful rewards and allowing weak completions to outrank stronger ones from the other
category, violating the assumption of a shared reward scale.
With λadv = 0.2, the fairness-constrained model yields a substantially more balanced distribution
(Figures 5, 6). The KS distance drops from 0.43 to 0.10 (p<0.001) and the Wasserstein-1 distance
from 13.38 to 0.53 (p<0.001), indicating a significant reduction in categorical bias. This improves
comparability across behavior types and enables more reliable evaluation; a post-hoc predictability
test (Appx. A.7) further confirms that category membership is nearly unrecoverable from debiased
rewards.
Hyperparameter settings are in Appendix A.6, with MI estimator details in Section A.8.

Figure 1: Reward distribution before applying
fairness constraint

Figure 2: Reward distribution after applying fair-
ness constraint

4.1 Post-PPO Fairness
After PPO fine-tuning on HH-RLHF, we evaluate all policies on 100 Helpful and 100 Harmless
prompts, scoring with an HH-RLHF-trained safety RM Bai et al. [2022]. The baseline policy
exhibits a parity gap of 0.4814, reduced to 0.4001 (−16.9%) under the fairness constraint and 0.4126
(−14.3%) with Fair+Curiosity. Curiosity slightly widens the gap relative to fairness alone but still
markedly improves over baseline while recovering most variance and response diversity. We frame
this parity-gap analysis as an evaluation metric for reward reliability, complementing diversity audits.
See Sec. 4.1 and Appx. B.1 for more details.

Policy Parity Gap Relative Drop

Baseline 0.4814 –
Fair 0.4001 −16.9%
Fair + Curiosity 0.4126 −14.3%

Table 1: Parity gap between Helpful and Harmless mean rewards on HH-RLHF prompts post-PPO.

Diversity. We measure semantic diversity via average pairwise cosine distance of
all-mpnet-base-v2 embeddings Reimers and Gurevych [2019], Song et al. [2020];
see Appx. B.2. Fairness reduces diversity from 0.9638 to 0.9584 (p<0.001), while curiosity restores
it to 0.9616 (p=0.002), nearly matching baseline. This shows curiosity offsets the diversity loss from
fairness; longer PPO runs may further amplify these effects.

4.2 Generalization to Unseen Biases
Setup We train two HH-RLHF reward models Bai et al. [2022]: a baseline (λadv = 0, Bradley–
Terry) and a fairness-constrained model (λadv = 0.2, MI penalty). Bias is assessed on CrowS-Pairs
Nangia et al. [2020] and StereoSet Nadeem et al. [2020] as the proportion of stereotypical predictions
(neutral = 50%).



Model CrowS-Pairs StereoSet

Baseline RM 42.84%± 1.27% 46.58%± 1.09%
Fair RM 51.46%± 1.29% 49.95%± 1.09%

Table 2: Bias rates (50% = neutral).

Results Introducing the MI constraint shifts bias rates
toward neutrality compared to the baseline RM, with statis-
tically significant improvements (CrowS-Pairs: McNemar
p<0.001; StereoSet: p<0.01). Notably, the fairness objec-
tive is trained without access to CrowS-Pairs or StereoSet,
yet reduces stereotype bias across domains. This demon-
strates generalization beyond training categories and highlights a scalable path to mitigating unseen
RLHF biases.

4.3 Fairness Across Multiple Harm Categories

Figure 3: Before fairness. Figure 4: After fairness.

Setup We train two Llama-
3.2-1B reward models on the
19-category PKU-SafeRLHF
dataset Ji et al. [2024]: a
Baseline (λadv = 0) and
a Fair model with an MI
adversary (λadv = 0.2).
While the baseline displays
large reward disparities across
harm categories, the fairness-
constrained RM produces dis-
tributions that are far more uniform. Crucially, the distributions do not collapse; the RM preserves its
Bradley–Terry predictive performance, showing that a single model can be made fair across many
categories simultaneously—scaling fairness beyond binary setups.

4.4 Backward Compatibility and Temporal Shift Robustness

We evaluate whether fairness regularization preserves prior alignment while improving robustness
to distribution shift. The fairness-constrained reward model retains 70.38% of strong baseline
preferences, maintaining backward compatibility with only a 2.2% drop in overall preference quality.
At the same time, it improves temporal robustness, outperforming the baseline by 2.09 accuracy
points on RewardBench-2. These results suggest that fairness constraints alter a non-trivial fraction
of legacy preferences in a targeted manner, yielding stable backward compatibility together with
measurable out-of-distribution gains.

4.5 Ablation: Adversarial Weight

Setup We analyze the effect of the adversarial weight λadv on our MI objective by sweeping this
parameter (full results in Appx. A.9). For each setting, we report both mutual information (MI) and
Bradley–Terry (BT) loss. Table 3 shows a steep drop in MI as λadv increases, alongside improvements
in BT loss. This suggests that the fairness constraint doubles as a regularizer, enhancing preference
learning while suppressing categorical dependence.

λadv BT loss MI

0.0 2.8712 0.2282
0.2 2.2307 0.0163
0.8 1.1879 0.0073
1.5 0.7432 0.0136

Table 3: Representative λadv settings; full sweep in Appx. A.9.

5 Conclusion

We introduce an adversarial MI constraint that reduces bias in reward models while keeping alignment
with human preferences intact. Across tasks like CrowS-Pairs, StereoSet, and SafeRLHF’s 19
categories, our method improves fairness without sacrificing performance. By pairing this with
an intrinsic reward in PPO, we position fairness as a built-in reliability goal rather than an add-on.
This frames our metrics as part of the broader evaluation protocol for RLHF systems across the
LLM lifecycle. Looking ahead, we plan to test larger models and study how fairness interacts with
emergent risks such as reward hacking and scaling-related behaviors.



6 Ethics and Limitations
Our adversarial training method is motivated by zero-information strategies, but practical noisiness
makes it hard to tune Edwards and Storkey [2016], Belghazi et al. [2018]. Its effectiveness depends
on well-defined, discrete categories, suggesting future work should extend to non-discrete attributes
Mitchell et al. [2019], Bolukbasi et al. [2016]. The approach also increases time and memory costs
Ouyang et al. [2022], requiring larger batch sizes for distribution-level statistics, and our experiments
remain limited in characterizing the reward hacking dynamics introduced by this constraint.
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A Appendix

A.1 Why enforce fairness on Reward Models?
In this section, we offer an intuitive thought experiment on why fairness defined as categorical
independence of the reward model distribution mitigates undesired reward hacking scenarios in PPO.
Consider the example given in the main text 4 and suppose yi,c, yi,r are chosen and rejected samples
from the ith datapoint in our preference dataset respectively. We observe cases where ∃i, j such
that yi,c > yi,r > yj,c > yj,r. That is, because datapoint i and datapoint j are independent of one
another, we can have a good model in the Bradley-Terry definition prioritize chosen over rejected
within the pair, but then across pairs end up rewarding a rejected sample of one pair over the chosen
sample of another. In practice, we notice a systemic shift towards higher rewards for i ∈ Dhelpful

(the subset of preference exemplars portraying helpful behaviors) over j ∈ Dharmless (the subset of
preference exemplars portraying harmless behaviors). Then, for cases where yi,c > yi,r > yj,c, we
will observe behavior in the post-trained LM where it prioritizes both helpful and unhelpful behavior
over harmless behavior given a potentially harmful prompt.

A.2 Theoretical Justification
We ground our approach in adversarial training theory, considering a reward model rθ : X → R and
a discriminator qϕ(c | ·) Edwards and Storkey [2016].
Setting. We observe i.i.d. triples (X+

t , X−
t , Ct) with labels Yt ∈ {0, 1} indicating whether X+

t is
preferred to X−

t from some unknown preference distribution. Let Rθ = rθ(X). The (population)
Bradley–Terry loss is

LBT(θ) = E
[
− log σ

(
rθ(X

+)− rθ(X
−)

)]
. (1)

Our discriminator qϕ(c | ·) tries to infer C from rewards. We thus have the zero-sum game

min
θ

max
ϕ

J (θ, ϕ) = LBT(θ) + λE
[
log qϕ(C | Rθ)

]
. (2)

where our target is independence: Rθ ⊥ C (i.e., Iθ(C;Rθ) = 0).
Our main theoretical result connects the adversarial training scheme to our original fairness objective:

Theorem 1 (No-regret reaches mutual information target). Assume Lemma 1, feasible invariance (7),
and no-regret play with RegG(T ),RegD(T ) = o(T ). Then

1

T

T∑
t=1

Iθt(C;Rθt) ≤
RegG(T ) + RegD(T )

λT
−−−−→
T→∞

0. (3)

A.3 Proof of Theoretical Results
In this section we provide a proof for our main convergence theorem, starting with supporting lemmas
to demonstrate the equivalence of our adversarial game to mutual information minimization.

Lemma 1 (Best response is a mutual-information penalty). If we take a fixed θ,

sup
ϕ

E
[
log qϕ(C | Rθ)

]
= E

[
log pθ(C | Rθ)

]
= −Hθ(C | Rθ).

This implies that the inner game’s value is nothing more than −Hθ(C |Rθ), the negative conditional
entropy of categories given the reward model distribution (for a slight abuse of notation), and so the
reward model’s objective becomes

J (θ) := sup
ϕ

J (θ, ϕ) = LBT(θ) + λ Iθ(C;Rθ). (4)

We drop the additive constant −λH(C) since it does not depend on θ.
Moreover, any best-response discriminator satisfies qϕ⋆(· | r) = pθ(· | r) a.s.

We turn to the literature of no-regret algorithms as solvers for two-player zero-sum (2p0s) games to
show the convergence of this adversarial training procedure, defining the regret for the reward model
and discriminator respectively.



Repeated play and regrets. At round t = 1, . . . , T , the reward model chooses θt, the discriminator
chooses ϕt, and both observe payoff J (θt, ϕt). Define external regrets

RegG(T ) :=

T∑
t=1

J (θt, ϕt) − min
θ

T∑
t=1

J (θ, ϕt), RegD(T ) := max
ϕ

T∑
t=1

J (θt, ϕ) −
T∑

t=1

J (θt, ϕt).

We assume no-regret algorithms for both: RegG(T ) = o(T ) and RegD(T ) = o(T ). Let J̄T =
1
T

∑T
t=1 J (θt, ϕt) denote the average payoff, and let the game value be

V := min
θ

max
ϕ

J (θ, ϕ) = min
θ

J (θ) = min
θ

{
LBT(θ) + λIθ(C;Rθ)

}
.

Our next lemma bounds our defined objective J in terms of the value of the game, with a deviation
equal to the average regret of our generator/discriminator algorithms.
Lemma 2 (No-regret bound for zero-sum play). Let J (θ, ϕ) be zero-sum and let a play (θt, ϕt)

T
t=1

induce

J̄T :=
1

T

T∑
t=1

J (θt, ϕt),

RegG(T ) :=

T∑
t=1

J (θt, ϕt)−min
θ

T∑
t=1

J (θ, ϕt),

RegD(T ) := max
ϕ

T∑
t=1

J (θt, ϕ)−
T∑

t=1

J (θt, ϕt).

Let Vup := minθ maxϕ J (θ, ϕ) and Vlow := maxϕ minθ J (θ, ϕ). Then

Vlow − RegD(T )
T ≤ J̄T ≤ Vup + RegG(T )

T . (5)
In particular, if the game has value V (i.e., Vup = Vlow = V ),∣∣J̄T − V

∣∣ ≤ RegG(T )+RegD(T )
T . (6)

Proof. We start with the upper bound. By the generator’s regret definition,
T∑

t=1

J (θt, ϕt) ≤ min
θ

T∑
t=1

J (θ, ϕt) + RegG(T ).

Let θ⋆ ∈ argminθ maxϕ J (θ, ϕ) (a minimax optimizer). Evaluating the RHS at θ⋆ and using
maxϕ J (θ⋆, ϕ) = Vup yields

min
θ

T∑
t=1

J (θ, ϕt) ≤
T∑

t=1

J (θ⋆, ϕt) ≤
T∑

t=1

max
ϕ

J (θ⋆, ϕ) = T Vup.

Combining gives
∑T

t=1 J (θt, ϕt) ≤ T Vup + RegG(T ), hence J̄T ≤ Vup + RegG(T )/T., which
completes this part of the inequality.

Next, we demonstrate the lower bound. By the discriminator’s regret definition,
T∑

t=1

J (θt, ϕt) ≥ max
ϕ

T∑
t=1

J (θt, ϕ) − RegD(T ).

Let ϕ⋆ ∈ argmaxϕ minθ J (θ, ϕ) (a maxmin optimizer), so minθ J (θ, ϕ⋆) = Vlow. Then for every
θ, J (θ, ϕ⋆) ≥ Vlow. In particular,

max
ϕ

T∑
t=1

J (θt, ϕ) ≥
T∑

t=1

J (θt, ϕ
⋆) ≥

T∑
t=1

Vlow = T Vlow.

Thus
∑T

t=1 J (θt, ϕt) ≥ T Vlow − RegD(T ), i.e., J̄T ≥ Vlow − RegD(T )/T.

Combining both sides finishes the proof – in particular, if Vup = Vlow = V (minimax theorem of
zero-sum games), then

V − RegD(T )

T
≤ J̄T ≤ V +

RegG(T )

T
,

and, since max{a, b} ≤ a+ b for a, b ≥ 0, the symmetric bound (6) follows.



Another technicality is we require the optimal reward model– the one that satisfies our mutual
information constraint while minimizing BT-loss, to lie in our function class. We frame this as the
feasible invariance condition:

Feasible invariance. Let L⋆
BT = infθ LBT(θ). We say feasible invariance holds if there exists θ†

with
LBT(θ

†) = L⋆
BT and Iθ†(C;Rθ†) = 0. (7)

In that case, the minimax value satisfies V = L⋆
BT by (4).

With these results, we can then prove our main theorem that in no-regret, our reward model converges
to zero mutual-information.

Proof of Theorem 1 (No Regret Convergence)

Proof. For each t, let V (θ) = maxϕ J (θ, ϕ) = LBT(θ) + λIθ(C;Rθ) by Lemma 1. By the
discriminator’s regret definition,

1

T

T∑
t=1

V (θt) =
1

T

T∑
t=1

max
ϕ

J (θt, ϕ) ≤ J̄T +
RegD(T )

T
.

Feasible invariance implies V = L⋆
BT, and Lemma 2 gives J̄T ≤ V + RegG(T )

T = L⋆
BT + RegG(T )

T .
Hence

1

T

T∑
t=1

[
LBT(θt) + λIθt(C;Rθt)

]
≤ L⋆

BT +
RegG(T ) + RegD(T )

T
.

Since LBT(θt) ≥ L⋆
BT for all t, canceling L⋆

BT yields

λ · 1
T

T∑
t=1

Iθt(C;Rθt) ≤ RegG(T ) + RegD(T )

T
,

which proves the claim. Note that if the average of these terms converges to 0, then we also have that
inft Iθt −→ 0, and so we can select the minimum running iterate that is bounded by this average to
have a direct convergent subsequence.

We view training the discriminator using CELoss on each batch as an approximate "best-response."
More formally, we can think of it as an ϵt-Nash equilibrium for each round – that is, if qϕt

is trained
to near-optimality per round so that maxϕ J (θt, ϕ) − J (θt, ϕt) ≤ ϵt with 1

T

∑
t ϵt → 0, then the

proof above holds with RegD(T ) replaced by
∑

t ϵt.
What if exact invariance is infeasible? That is, what if the Bradley-Terry-optimal reward model
invariant to category does not lie in our function class? If no θ attains both L⋆

BT and I = 0, then
V > L⋆

BT and our theorem instead yields the following bound:

1

T

T∑
t=1

Iθt(C;Rθt) ≤ V − L⋆
BT

λ
+

RegG(T ) + RegD(T )

λT
,

where we cannot ignore the V − L∗
BT term, which we can think of approximation error-esque term

in the learning theory language.

A.4 Datasets and Preprocessing
HH-RLHF (Helpful/Harmless): We construct (chosen, rejected) preference pairs and assign each
pair a category label of either helpful or harmless. Prompts and responses are concatenated, and
sequences are truncated to a maximum of 1,024 tokens.
PKU-SafeRLHF (19 categories): We retain the official harm category labels from the dataset release.
Samples with missing category annotations are removed to ensure label integrity.
Deduplication: Exact duplicate (prompt, response) pairs are removed to avoid information leakage
and inflated results.
Tokenization and padding: All data is tokenized with padding=longest and truncation=true. Each
prompt–response sequence is capped at 1,024 tokens in all reported experiments.



A.5 Model and Training Details
We use Llama-3.2-1B adapted into a scalar reward model for our RM backbone, with the Bradley-
Terry pairwise log-likelihood on (chosen, rejected) pairs as our baseline training objective. We train
for a single epoch on a balanced sample of helpful and harmless data from the Anthropic HH-RLHF
dataset and evaluate on a held-out set of HH-RLHF dataset as well as RewardBench.

A.6 Adversary and Fairness Optimization
The fairness constraint uses a lightweight MLP adversary qϕ that receives summary statistics of
rewards, computed separately for each category. For each batch, we calculate the mean, variance,
skewness, and kurtosis of the chosen and rejected rewards, grouped by category, to form the adver-
sary’s input features.
Our training implementation follows the given alternating update schedule:

1. Compute Bradley–Terry loss LBT = − log σ(rchosen − rrejected).
2. Adversary step: update qϕ by minimizing cross-entropy loss to predict the category from the

moment features.
3. Fairness step: update the reward model to maximize adversary uncertainty, i.e., minimize

LBT − λadv · CELoss
(
qϕ(· | moments), y

)
,

Ablation: For ablation studies, we sweep λadv ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. The default
setting for main experiments is λadv = 0.2.
Post-training Category Predictability. As a post-training test, we train a fresh discriminator on
frozen rewards from the above regularized model, which yields near-chance performance—AUC
0.78 ± 0.03 → 0.53 ± 0.06, BA 0.70 ± 0.02 → 0.52 ± 0.05 (5-fold; see Appx. A.7)—indicating
little recoverable category signal from the fair reward model.

A.7 Post-hoc Category Predictability Audit
To test whether category information remains after training, we freeze the reward model and train a
new discriminator q̂(c | r) on its scalar outputs (no weights shared with the in-training adversary). We
use stratified 5-fold cross-validation and report mean±sd over folds. The discriminator is a 2-layer
MLP trained with cross-entropy and early stopping on validation AUC. Chance performance is 0.5
for both AUC and balanced accuracy (BA).

Model AUC Balanced Acc.

Baseline RM 0.78± 0.03 0.70± 0.02
Fair RM (ours) 0.53± 0.06 0.52± 0.05

Table 4: Post-hoc predictability from frozen rewards; lower is better (chance ≈ 0.5).

A.8 Mutual Information Estimation (Ablation)
We measure the dependence between reward scores and category labels during the λadv sweep.
Mutual information (MI) is computed with sklearn.metrics.mutual_info_score between category
labels C ∈ {helpful, harmless} and a discretized reward variable, obtained by binning rewards into
50 equal-width bins.
Lower MI indicates that the rewards are more category-independent. As an additional check, we mon-
itor the adversary’s balanced accuracy; values close to chance imply minimal category dependence.



A.9 Full λadv Sweep
In this section we provide the complete data for our full sweep over adversarial loss parameters.

λadv BT loss MI

0.0 2.8712 0.2282
0.2 2.2307 0.0163
0.4 1.5607 0.0088
0.6 1.7104 0.0059
0.8 1.1879 0.0073
1.0 0.8694 0.0141
1.5 0.7432 0.0136
2.0 0.8151 0.0076

Table 5: Complete sweep of λadv values.

A.10 Scaling Experiments
To evaluate the scalability of our method, we conducted preliminary experiments on Meta’s Llama3-
8B-Instruct model on an 8xH100 node. The reward distributions for our Fair-RM variant, shown
below, exhibit a more complex, multimodal structure compared to the 1.1B model, which we
hypothesize is due to the larger model’s capacity to capture finer-grained nuances in the preference
data. Despite this, the results confirm that our approach remains effective at scale. There is clear
separation between chosen and rejected rewards, indicating preference alignment is maintained.
Crucially, the distributions for helpful and harmless categories remain tightly aligned, demonstrating
that the fairness constraint successfully generalizes and prevents reward disparities even in larger
models. However, both our base model and fair-RM variant achieve around 50% accuracy on a
subset of RewardBench after our training, for a variety of reasons but mainly in part due to the small
bandwidth we had to only run smaller training runs. Our Fair-RM had on-par performance with
the baseline BT model, however, but to achieve SOTA-level eval results on both models, full-scale
post-training of RewardBench-competitive models derived from the 8B models is part of our future
intended work.

Figure 5: Reward distributions for chosen vs.
rejected

Figure 6: Reward distributions for helpful vs.
harmless

B PPO Training Setup
In this section we detail our setup for PPO training of downstream language models using our fair
reward models.

Base Actor. We initialize all policy variants from TinyLlama/TinyLlama-1.1B-Chat-v1.0
to enable rapid convergence and reduce compute cost while still maintaining competitive generation
quality for our evaluation tasks. Policies are adapted using LoRA with rank r = 16 and α = 32,
targeting the query/key/value and output projection matrices in the attention layers.

PPO Configuration. We use HuggingFace TRL’s PPOTrainer with minibatch size = 64, batch
size = 512, and 2 PPO epochs per update. The KL control coefficient is set to β = 0.05 (adaptive
control enabled), targeting the reference model (TinyLlama/TinyLlama-1.1B-Chat-v1.0).
We set target_kl=0.1 to limit divergence from the reference.



Reward Models. All reward models are Llama-3.2-1B sequence classifiers trained on preference
data with the Bradley–Terry objective. The Fair variant applies a mutual information (MI) penalty
with λadv = 0.2 between protected-category predictions and reward scores. Fair + Curiosity adds an
intrinsic curiosity bonus from a Random Network Distillation (RND) module trained online during
PPO.

Curiosity Bonus. The RND network uses a 2-layer MLP with ReLU activations, hidden size 512.
The predictor network is optimized with Adam (η = 1× 10−4) on the cosine similarity loss between
target and predictor features. Intrinsic reward is scaled by ηcur = 0.05 and added to the scalar RM
score before PPO optimization.

Generation Settings. For PPO rollouts, we generate with temperature = 0.7, top-p = 0.9, and
max length = 256 tokens. KL penalties are computed against the reference log-probabilities.

Training Duration. Each run is trained for N = 5,000 PPO steps (≈1.5M tokens processed),
which we found sufficient for convergence in both reward and policy loss metrics given the small
model size.

B.1 Parity Gap: Definition and Estimation
In this section we detail a parity gap (effectively mean matching evaluation) for how fair a reward
model is, for simplicity across only two categories.

Definition. Let r(x, y) denote the scalar reward assigned by a (fixed) safety RM to a prompt–
response pair (x, y). We consider two behavior categories c ∈ {Helpful,Harmless} and define the
parity gap as the absolute difference in expected rewards:

ParityGap =
∣∣E[r(x, y) | c = Helpful

]
− E

[
r(x, y) | c = Harmless

] ∣∣.
We define the parity gap as effectively a mean-matching surrogate evaluation – intuitively, a smaller
parity gap indicates the RM (and the downstream policy it shapes) treats categories on a comparable
reward scale, reducing category-dependent inflation/deflation.

Estimator. Given disjoint evaluation sets DH and DA (Helpful vs. Harmless) with sizes nH and nA

and rewards {rHi }
nH
i=1, {rAj }

nA
j=1, we compute

r̄H = 1
nH

nH∑
i=1

rHi , r̄A = 1
nA

nA∑
j=1

rAj , ∆̂ = r̄H − r̄A, ̂ParityGap = |∆̂|.

When nH ̸= nA, the above remains unbiased under i.i.d. sampling within each group. In our main
runs we use balanced sets (nH=nA).

Relative change (vs. a baseline). When comparing a model M to a baseline B, we also report the
relative drop:

RelDrop(M ;B) =
̂ParityGap(M)− ̂ParityGap(B)

̂ParityGap(B)
× 100%.

Practical notes. (i) We score responses with the same fixed RM across all policies. (ii) Generation
settings and seeds are identical across policies (Appendix B).

B.2 Semantic Diversity Calculation
In this section we detail our metric for diversity of LLM sampling to benchmark our intrinsic reward.

Prompts and generation. For diversity evaluation we sample 1,030 LIMA prompts (seed 42) and
generate one response per prompt with identical sampling across models. Prompts are drawn from
GAIR/lima. Generation parameters: temperature = 0.9, top-p = 0.95, max_new_tokens= 100,
max_length= 512, batch size = 8. All models use the same seed and generation parameters.

Semantic diversity (primary metric). Let f(·) be all-mpnet-base-v2 with mean-pooling;
embeddings are ℓ2-normalized. For the set of responses {yi}ni=1 with embeddings ei = f(yi), we
report

SemDiv = 2
n(n−1)

∑
i<j

(
1− cos(ei, ej)

)
.

Higher is better (more meaning-level variety).



Statistics. To compare a fair model against the baseline, we use a paired bootstrap (1,000 resamples;
two-sided) over aligned prompt sets, reporting the mean difference, 95% CI, and p-value. In the main
text, we report semantic-diversity differences: Fair (no curiosity) vs. Baseline: −0.0054 (p<0.001);
Fair + Curiosity vs. Baseline: −0.0022 (p=0.002).

B.3 Compute and Runtime
Hardware: For initial experiments of both reward model training and PPO, we used dual A100
clusters, and currently are using a 8xH100 node for results on Llama3-8B.
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