
Published as a conference paper at ICLR 2025

HOLOGRAPHIC NODE REPRESENTATIONS:
PRE-TRAINING TASK-AGNOSTIC NODE EMBEDDINGS

Beatrice Bevilacqua
Purdue University
bbevilac@purdue.edu

Joshua Robinson
Stanford University
joshrob@cs.stanford.edu

Jure Leskovec
Stanford University
jure@stanford.edu

Bruno Ribeiro
Purdue University
ribeirob@purdue.edu

ABSTRACT

Large general purpose pre-trained models have revolutionized computer vision
and natural language understanding. However, the development of general pur-
pose pre-trained Graph Neural Networks (GNNs) lags behind other domains due
to the lack of suitable generalist node representations. Existing GNN architec-
tures are often tailored to specific task orders, such as node-level, link-level, or
higher-order tasks, because different tasks require distinct permutation symme-
tries, which are difficult to reconcile within a single model. In this paper, we
propose holographic node representations, a new blueprint for node representa-
tions capable of solving tasks of any order. Holographic node representations have
two key components: (1) a task-agnostic expansion map, which produces highly
expressive, high-dimensional embeddings, free from node-permutation symme-
tries, to be fed into (2) a reduction map that carefully reintroduces the relevant
permutation symmetries to produce low-dimensional, task-specific embeddings.
We show that well-constructed expansion maps enable simple and efficient reduc-
tion maps, which can be adapted for any task order. Empirical results show that
holographic node representations can be effectively pre-trained and reused across
tasks of varying orders, yielding up to 100% relative performance improvement,
including in cases where prior methods fail entirely.

1 INTRODUCTION

The development of node embeddings capable of effectively solving multiple tasks remains an un-
solved problem in graph learning (Mao et al., 2024). Just as LLMs have demonstrated the ability
to generate versatile representations that can be adapted for a variety of downstream tasks (Radford
et al., 2019; Gemini Team et al., 2023; OpenAI, 2023), there is a growing need for graph models that
can produce embeddings versatile enough to solve new tasks not foreseen at train time. Despite sig-
nificant advancements in Graph Neural Networks (GNNs), most existing approaches remain highly
specialized, which limits their broader applicability across diverse graph tasks.

Existing embeddings are typically designed for specific types of tasks, or “task orders”, and often
struggle with others. For example, embeddings optimized for node classification (an order-1 task)
may not work well for link prediction (an order-2 task) (You et al., 2019; Srinivasan & Ribeiro, 2020;
Zhang et al., 2021), and vice-versa. This challenge extends to higher-order tasks, and embeddings
intended to handle various tasks generally fail to perform well on any task. A crucial yet often over-
looked reason for this failure is that different task orders possess different permutation symmetries,
which are difficult to program into a single model. This order-specificity of existing models hinders
the development of general pre-trained node representations that can be adapted to any graph task.

In this work, we revisit the notion of node embeddings to create holographic node representations, a
new type of node representations specifically designed to be pre-trained and then adapted to any task
order. The key innovation is a new treatment of node permutation symmetries. Instead of immedi-
ately introducing potentially undesirable symmetries, as is commonly done with standard permuta-

1

Published as a conference paper at ICLR 2025

tion equivariant GNNs (Bronstein et al., 2021), holographic node representations use the majority
of their computation to learn an expansion map which produces highly-descriptive symmetry-free
representations. These are then fed into a reduction map, which introduces task-specific symmetries
to produce embeddings tailored for the task. The reduction map is lightweight, allowing it to be
efficiently adapted and learned for each new task order. The core idea is that, regardless of the pre-
training task order, a suitable reduction map can always be constructed and learned anew for new
tasks of any order, leveraging the output of the expansion map as the pre-trained node embeddings.

In addition to introducing a suitable notion of representations for order-agnostic embeddings, we
present the first practical instantiation of this concept, which we call HoloGNN. The key technical
challenge we address is how to add and remove permutation symmetries. For the symmetry-free
expansion map, we combine a standard message passing model with repeated symmetry breaking
by perturbing node features, producing a sequence of flat embeddings for each node, each able
to capture different information fragments. We demonstrate that this design is provably able to
express eigenvectors without sign or basis ambiguities, which ensures HoloGNN is able to capture
rich graph features (Belkin & Niyogi, 2003). The reduction map fuses together the sequence of
representations for task-specific groups of nodes to output any-order (node-, link-, and higher-order)
representations. We also prove that our combination of expansion and reduction maps produces
maximally-expressive representations from a permutation symmetry perspective.

We experimentally validate our approach, showing that HoloGNN is able to learn representations
that transfer between task orders consistently and significantly outperforming the baselines. For
instance, on the CORA dataset, the performance of HoloGNN decreases by only 1.5% when pre-
trained on link prediction and adapted to node classification, while standard GNNs show a 7%
performance drop, and link-prediction models such as NBFNet (Zhu et al., 2021) and SEAL (Zhang
& Chen, 2018), experience a significantly larger drop of up to 41%.

In summary, our key contributions are:

(1) Introducing holographic node representations, a novel approach that allows node embeddings
to be pre-trained on tasks of any order and then be efficiently adapted to solve new tasks of new
orders by respecting the task-specific permutation symmetries;

(2) Presenting HoloGNN, the first practical architecture for learning holographic node representa-
tions, addressing the technical challenge of adding and removing permutation symmetries;

(3) Theoretically and empirically demonstrating that holographic node representations offer signif-
icant improvements in generalization to new tasks, providing highly expressive representations
that consistently outperform existing methods, irrespective of the pre-training task order.

Notation. Let G = (A,X) be a graph, where A ∈ {0, 1}n×n is the adjacency matrix and X ∈
Rn×dx the node features. We write v ∈ [n] = {1, . . . , n} to denote a node in G, or equivalently
v ∈ V . For node embeddings f(A,X) ∈ Rn×d, f(A,X)v denotes the embedding in Rd of node
v ∈ [n]. Similarly, for f(A,X) ∈ Rn×T×d, f(A,X)v denotes the RT×d slice. We denote the
permutation group on [n] by Sn, which is the collection of all bijective maps [n] → [n]. In general,
for tensors X ∈ R(

n
r)×dx , we write XS ∈ Rdx for a set S ⊆ [n] of cardinality r. For S, we define

π ◦ S = {π(i) | i ∈ S}, and write π ◦X to denote the permutation of the rows of X by applying π
to set S indexing them, with ◦ the permutation action. Finally, 2[n] denotes the power set of [n].

2 PERMUTATION SYMMETRIES AND TASK GENERALIZATION

An often overlooked aspect of graph learning is the task-specific nature of existing embeddings,
typically designed for a particular task “order”, which is the size of the set of nodes involved in the
predictions. For example, node classification involves predictions for individual nodes (order-1),
while link prediction for pairs of nodes (order-2). Since there are many important graph tasks of
different orders, there is a need for powerful models producing embeddings suitable for all orders.

However current embeddings are task-order specific. One reason for this is that many existing
embeddings are structural, meaning that the embeddings do not depend on the IDs of each node.
Crucially, the exact permutation group describing this invariance is not universal, but is inherently
dependent on the task order. This is clearly reflected in the fact that the cardinality of the required

2

Published as a conference paper at ICLR 2025

embeddings for structural representations is determined by the task order itself, as can be seen in the
definition of structural representations.
Definition 2.1 (Structural Representations). Let S be a set of r nodes of a graph G = (A,X).
A function f : {0, 1}n×n × Rn×dx → R(

n
r)×d returns structural representations of order r if f is

equivariant to permutations of the nodes, that is if f(A,X)S = f(π◦A, π◦X)π◦S , for any π ∈ Sn.

In other words, a function returns structural representations if it produces embeddings that are equiv-
ariant under any permutation of the node ordering. Within this class, there is a clean notion of most-
expressive representation, which occurs when isomorphic node sets share the same representation
(necessitated by Definition 2.1), and all non-isomorphic sets have distinct representations.
Definition 2.2 (Most-Expressive Structural Representations). A function f : {0, 1}n×n×Rn×dx →
R(

n
r)×d returns most-expressive structural representations of order r if for every graphs G =

(A,X), G′ = (A′,X ′) and sets of nodes S, S′ of cardinality r, f(A,X)S = f(A′,X ′)S′ iff
∃π ∈ Sn such that A = π ◦A′, X = π ◦X ′, S = π ◦ S′.

𝑣2

𝑣1

𝑣3

𝑣4

Figure 1: Nodes v2 and v3 are isomor-
phic; links (v1, v2) and (v4, v3) are iso-
morphic; links (v1, v2) and (v1, v3) are
not isomorphic. However, if we aggre-
gate most-expressive node representa-
tions as the link representation, (v1, v2)
and (v1, v3) will get the same predic-
tion. Example from Zhang et al. (2021).

A most-expressive structural representation is sufficient
to solve any task of that order (Srinivasan & Ribeiro,
2020). However, in general, the most expressive struc-
tural representation of one order is not also the most ex-
pressive structural representation of another order. For
instance, Srinivasan & Ribeiro (2020) and Zhang et al.
(2021) prove that a most-expressive structural represen-
tation of order-1 tasks cannot serve as a most-expressive
structural representation for order-2 tasks, as show in Fig-
ure 1. Because of this, it is not possible to pre-train a sin-
gle structural representation that is most-expressive and
therefore able to solve tasks of any order.

In addition to structural representations, positional ones,
such as those derived from eigenvectors (Belkin & Niyogi, 2003; Dwivedi et al., 2023), play an im-
portant role in graph learning. Unlike structural embeddings, positional embeddings assign distinct
embeddings to isomorphic node sets. While positional embeddings can be highly effective for tasks
requiring the unique placement of nodes within a graph, they tend to underperform on others (Srini-
vasan & Ribeiro, 2020). For instance, positional embeddings often perform well in link prediction
tasks, where the relative positions of the node endpoints are critical (Lim et al., 2023). However,
they are less effective for node tasks, where node similarity should reflect structural similarity rather
than positional proximity. In other words, current positional representations are also task specific.

Challenges for learning a single embedding for different tasks. Because structural and positional
representations are task specific, they are unsuitable output candidates for pre-training a single model
that produces representations capable of solving tasks of different orders. This claim can be formu-
lated precisely for node embeddings, which are perhaps the most important class of embeddings due
to their linear scalability in the graph size, which is essential when scaling to large graphs.
Proposition 2.3 (Informal). For any node embedding model f , there exists two tasks of different
orders for which at least one is not solvable using f .

The formal version of Proposition 2.3 is presented in Appendix B.1 as Proposition B.1. This im-
possibility result highlights why graph machine learning has continued to rely on specialized ar-
chitectures tailored for specific tasks, unlike the more generalized pre-trained models seen in NLP
and computer vision. It also clarifies that there is a need for novel node representations that extend
beyond conventional node embeddings. In the next section, we present our approach bypassing this
impossibility result by representing nodes with sequences of (flat) node embeddings.

3 HOLOGRAPHIC NODE REPRESENTATIONS

The previous section demonstrated the need for a new notion of node representations beyond the
typical single “flat” embedding vector per node. Our proposal is to use holographic node represen-
tations. Holographic representations have existed outside of the graph learning context since the

3

Published as a conference paper at ICLR 2025

✅

❌

Link Model

Link Task
Head

Node Model

Node Task
Head

Node Task
Head

Link Task
Head

Link Reduction
Map

Link Task
Head

Node Reduction
Map

Node Task
Head

... ...

Order-specific models Pre-trained node embeddings Pre-trained holographic node representations

Fails to generalize to higher-order tasksTrains from scratch representations for
each task

Figure 2: While order-specific models must be retrained for each new task, holographic node rep-
resentations can be adapted to new tasks. Pre-trained (structural) node embeddings cannot solve
high-order tasks since isomorphic nodes get the same representation, making it impossible to differ-
entiate non-isomorphic links. Instead, holographic node representations generate 2D node represen-
tations (T × de), where the additional T dimension captures multiple symmetry-free graph views
(so isomorphic nodes can be distinguished in at least one view). The reduction map reduces these
representations back to 1D, using Λ to re-introduce the correct permutation symmetries for the task.

work of Feldman (1986) and Hinton (1990), which studied how to store complex concepts in neural
networks. At one extreme was the one-concept, one-neuron idea, and at the other was holographic
representations which distributed individual concepts across neurons. These holographic represen-
tations worked by producing representations conditional on different views of the data, rather than
relying on a single “absolute” representation. In this section, we adapt this principle to graph data,
proposing holographic node representations, which produce representations conditioned on differ-
ent nodes. These conditional representations overcome the impossibility result in Proposition 2.3.

Holographic node representations are defined through an expansion map and a reduction map (Fig-
ure 2). The expansion map produces task-agnostic high-dimensional representations of the individ-
ual units of interest (in our case each node) that capture different permutation-sensitive projections
of the object. The permutation-sensitivity of these projections is designed in a way that we can
always create a reduction map (a light-weight task-specific map) that reintroduces the relevant sym-
metries for the task at hand, producing structural representations that match the task order. In this
way, regardless of the pre-training task order, a suitable reduction map can always be learned for any
new task of any order, using the output of the expansion map as the pre-trained node embeddings.

Holographic node representations start with structural node representations,

V1 = gstruc(A,X) ∈ Rn×d1 , (1)

where gstruc is a learnable function returning structural node representations. This function can be
as simple as a single-layer GNN or even the identity function (V1 =X). Importantly, the expres-
siveness of our approach is not limited by that of gstruc, since lost distinctions between nodes can be
reintroduced in the expansion map. But formulating V1 as a general structural representation has the
benefit of allowing the forthcoming expansion map to use prior efforts to obtain rich representations.
Definition 3.1 (Holographic Node Representations). Holographic node representations consist of
two learnable, parameterized maps:

(1) Expansion Map:

Eθ : {0, 1}n×n × Rn×d1 → Rn×T×de × (2[n])L × NT (2)

The expansion map, parameterized by θ, takes as input the adjacency matrix and the initial
structural representations, and it outputs: (a) A (T × de)-dimensional representation for each of
the n nodes (2D representation), denoted by Vθ(A,V1); (b) A sequence of L lists of node IDs,
where nodes within each list share the same role, and nodes in different lists have distinct roles;
(c) A sequence of integers, indicating how the T node representations should be grouped.

4

Published as a conference paper at ICLR 2025

(2) Reduction Map:
Rψ : Rn×T×de × (2[n])L × NT → R(

n
r)×dr (3)

The reduction map, parameterized by ψ, takes the output of the expansion map and produces
1D representations for any set of r nodes.

The mappings satisfy the following properties:

Property (1): The composition Rψ ◦Eθ produces
(
n
r

)
structural representations (one for each set of

r nodes), i.e., π ◦Rψ(Eθ(A,V1)) = Rψ(Eθ(π ◦A, π ◦ V1)) for any π ∈ Sn.

Property (2): For any undirected graph G = (A,X) and isomorphic nodes u, v ∈ G, with
u ̸= v and having different neighborhoods, there exists a θ such that, Vθ(A,V1)v ̸=
Vθ(A,V1)u. That is, the expansion map Eθ can distinguish isomorphic nodes.

Note that bothEθ andRψ are neural networks, with parameters θ, ψ, for which we introduce explicit
designs in Section 4. From now on, we will writeE andR instead ofEθ andRψ for simplicity when
it is unambiguous. Additionally, we denote the three outputs of the expansion map as Eθ(A,V1) =(
V (A,V1), (hλ(A,V1))

L
λ=1,Λ

)
∈ Rn×T×de × (2[n])L × NT .

3.1 INTERPRETING THE DEFINITION

A visual overview of holographic node representations is in Figure 2. The expansion map introduces
a dimension T , yielding node-level representations V (A,V1)v ∈ RT×de for each node v, instead
of the typical “flat” embeddings in Rde . This T dimension encodes positional information (Property
(2)) through T distinct “views” of the graph, as shown by different colored vectors in Figure 2,
addressing the impossibility result for “flat” embeddings in Proposition 2.3.

Whilst expressive, the expansion map alone does not give suitable node representations since in-
formation is distributed along the T dimension, and does not respect any permutation symmetries.
Property (1) ensures that the reduction map R combines the information across the T views, to out-
put structural representations for any set of r nodes. Since the reduction map depends on r it is order
specific (r = 1 for node, r = 2 for link, and so on), and it is learned anew for each task we aim to
adapt to. The partition Λ is crucial in this process, as it specifies how the T representations should
be grouped to obtain suitable structural representations.

While any expansion mapE can trivially lead to valid holographic node representations by choosing
a constant reduction map (e.g., R returning 0), the challenge lies in designing a reduction map that
generates expressive representations. We address this in Section 4, proving the expressivity of our
approach by leveraging the link between positional and structural representations, building on the
existence result from Srinivasan & Ribeiro (2020). A key contribution of our work is advancing this
theoretical result by designing practical architectures that efficiently perform this operation.

4 AN ARCHITECTURE FOR HOLOGRAPHIC NODE REPRESENTATIONS

This section presents HoloGNN, an architecture for learning holographic node representations. We
begin by outlining how the symmetry-free expansion map is obtained through symmetry breakings,
achieved by perturbing node features for selected nodes. Then, we propose two breaking methods. In
Section 4.2, we describe sequential breaking, a general design inspired by numerical linear algebra
methods, such as the Lanczos algorithm for computing eigenvectors (Lanczos, 1950). We formalize
this connection, showing that sequential breaking generalizes eigenvector methods in a learnable
and canonical way. In Section 4.3, we propose a faster, special case called parallel breaking.

4.1 OVERVIEW OF SYMMETRY BREAKINGS

The intuition behind HoloGNN is to obtain the symmetry-free expansion mapE through “symmetry
breakings”. This process breaks isomorphisms between nodes by perturbing the features of selected
nodes, and then passing these modified features through a structural model. The perturbed features
act as node identifiers, enabling the model to learn distinct representations for isomorphic nodes,
which a structural model cannot do.

5

Published as a conference paper at ICLR 2025

The idea of injecting unique features to obtain positional representations is well-established in pre-
vious work (You et al., 2019; Murphy et al., 2019; Abboud et al., 2021; Sato et al., 2021; Puny et al.,
2020; Eliasof et al., 2023). HoloGNN distinguishes itself by carefully injecting identifiers in a way
that a reduction map can later be designed to reintroduce order-specific permutation symmetries.

Precisely, step t = 1 initializes V1 as in Equation (1). At step t > 1, new node representations
Vt ∈ Rn×d are produced by injecting a unique identifier, such as the standard basis vector 1v ∈ Rn,
for the breaking node v, into a structural model ft (e.g., a permutation equivariant GNN). The role
of the breaking node v is to obtain an embedding for v that distinguishes it from other nodes, which
structural models cannot achieve. The breaking nodes are selected based on predefined functions
known as node-breaking selectors, which deterministically return lists of nodes. As we will see, the
partition Λ is uniquely determined by the breaking nodes, and the final structural representations are
produced by combining all Vt generated by breaking nodes returned by the same breaking selector.

The node-breaking selectors are defined as (hλ)
L
λ=1. Each selector hλ returns a list of breaking

nodes and must satisfy several properties:
Definition 4.1 (Breaking selector hλ). For λ = 1, . . . , L,

(vλ,1, . . . , vλ,kλ) = hλ(A,V1) (4)

denote the λ-th list of breaking nodes, sorted by node ID. The selector hλ is permutation-equivariant,
meaning that if a node v is in hλ(A,V1), then all nodes isomorphic to v in G = (A,V1) are also
included. Additionally, (hλ)Lλ=1 are disjoint, ensuring that no node is included in more than one list.

The breaking selectors can be either pre-defined or learnable functions of the input graphs. Valid
choices include having each hλ return all nodes with the same degree, or expressive choices where
each hλ returns a list of all (and only) isomorphic nodes. Appendix A.1 expands on practical choices.

Validity of Symmetry Breakings. It may seem unclear if symmetry breaking generates E(A,V1)
satisfying Definition 3.1. In particular, one might question whether perturbing features for a single
node v at a time is enough to produce different embeddings for all nodes in the graph. In principle it
may be necessary to perturb multiple nodes at once, which would require at least quadratic number
of forward passes through the structural models. Fortunately, we prove that this is not the case, and
symmetry breaking with single-node perturbations produces valid expansion maps.
Theorem 4.2 (Sufficiency of single-node breakings for holographic representations). For any G =
(A,X) and isomorphic nodes u, v ∈ G, with u ̸= v and having different neighborhoods, there
exists E obtained by single-node symmetry breakings such that V (A,V1)v ̸= V (A,V1)u.

4.2 SEQUENTIAL BREAKING ALGORITHM

Algorithm 1 Sequential Breaking
1: Λ1 = 1
2: λ = 2
3: t = 2
4: while t ≤ T ⋆ do
5: for v ∈ hλ(A,V1) do
6: Vt = ft(A,Vt−1, . . . ,V1,1v)
7: t = t+ 1
8: Λt = λ
9: end for

10: λ = λ+ 1
11: end while
12: T = t

The sequential breaking algorithm introduces
symmetry-breaking perturbations iteratively,
where each new symmetry is broken on the
output of previous symmetry breakings. At
each step t > 1, new node embeddings Vt ∈
Rn×de are generated by a structural model ft
which takes as input: (1) the adjacency A,
(2) the embeddings produced in earlier steps
Vt−1, . . . ,V1, and (3) a perturbation 1v on the
breaking node v. The breaking node v is the
next node in the sequence returned by the cur-
rent breaking selector hλ, with the index λ in-
cremented when the end of the list is reached.
The pseudocode is detailed in Algorithm 1.

The algorithm runs until a specified maximum number of iterations, T ⋆. However, the total number
of steps T may exceed T ⋆ to ensure that the current breaking selector’s list is fully exhausted. This
guarantees that all nodes having the same role, and therefore in the same list, are used as breaking
nodes, preventing any improper selection that could differ for isomorphic graphs, and hinder the
reduction map from constructing structural representations. The expansion map is defined as:

E(A,V1) =
(

Concat(VT , . . . ,V1), (hλ(A,V1))
L
λ=1,Λ

)
∈ Rn×T×de × (2[n])L × NT , (5)

6

Published as a conference paper at ICLR 2025

with Concat concatenating along a new dimension, and (hλ(A,V1))
L
λ=1 and Λ saved for use in the

reduction map. The reduction map uses this information to appropriately combine the embeddings
Vt to reintroduce permutation symmetries, adapting the representations to the task order at hand.

Expressivity of sequential breaking. Algorithm 1 describes a very general class of representations,
as evidenced by several well-known models that are special cases. First, all structural models, such
as GIN (Xu et al., 2019) and GCN (Kipf & Welling, 2017), are special cases by setting f1 =
GIN/GCN, ft = Identity for t > 1, and ignoring breaking nodes entirely. Another important special
case, which we prove next, is that sequential breaking can compute eigenvectors (and functions
thereof). Even more importantly, sequential breaking resolves sign and basis ambiguities inherent in
eigenvectors, eliminating the need for additional techniques like sign flipping (Dwivedi et al., 2023;
Kreuzer et al., 2021; Kim et al., 2022; Dwivedi et al., 2021) or invariant (Wang et al., 2022; Lim
et al., 2022; Huang et al., 2024b) and equivariant (Lim et al., 2023) networks to account for them.
Theorem 4.3 (Expansion Map can express canonical eigenvectors). For any symmetric matrix A,
there exists an expansion map E(A,V1) obtained by sequential breaking which can express eigen-
vectors with no sign or basis ambiguity, and identical for isomorphic graphs up to permutations.

The proof is constructive, manually instantiating expansion maps that exactly correspond to popular
algorithms for computing eigenvectors, such as the Lanczos algorithm. Because the proof is con-
structive, we are also able to prove that sequential breaking removes sign/basis ambiguities, which
has practical advantages over explicit canonicalization (Kaba et al., 2023; Ma et al., 2023; 2024).

Having constructed an expressive expansion map, we are left to design appropriate reduction maps.
Given two isomorphic graphs G1 and G2, there exists a permutation matrix BG1→G2 such that,
V G2
t = BG1→G2V G1

t , ∀t ∈ [T] (c.f., Remark B.8). A natural way to construct structural represen-
tations of order r is to treat the representations of the r nodes across these isomorphic graphs as part
of a set. Specifically, the structural representation of {v1, . . . , vr} is obtained by first computing an
intermediate representation at each step t, using a learnable set function ϕt, which takes as input the
representations of {v1, . . . , vr} at step t in graph Gk, i.e.,

Uk,t = ϕt

({(
BG1→GkVt

)
πGk◦u

}
∀u∈{v1,...,vr}

)
. (6)

Then, another learnable set function ρt aggregates the intermediate representations Uk,t for all Gk,

Ut,{v1,...,vr} = ρt

({
Uk,t

}
∀k∈n!

)
. (7)

Finally, the reduction map can be obtained as the list of such representations for each t,

R(E(A,V1)){v1,...,vr} =
(
Ut,{v1,...,vr}

)
t∈[T]

. (8)

A key limitation of this approach is that it requires iterating over all possible n! isomorphic graphs
to construct BG1→Gk . Appendix A.2 discusses practical approaches that use the breaking selectors
to construct structural representations of order r, instead of iterating over isomorphic graphs.

4.3 PARALLEL BREAKING ALGORITHM

Algorithm 2 Parallel Breaking
1: Λ1 = λ
2: t = 2
3: λ = 2
4: while t ≤ T ⋆ do
5: for v ∈ hλ(A,V1) do
6: Vt = fλ(A,V1 ⊕ 1v)
7: t = t+ 1
8: Λt = λ
9: end for

10: λ = λ+ 1
11: end while
12: T = t

In practice, breaking symmetries sequentially
can be slow. To address this, we introduce par-
allel breaking, a faster variant of the sequential
approach. Parallel breaking generates embed-
dings Vt using a structural model fλ that, in
addition to A, takes only a perturbed version
of V1 for all t, rather than all prior embeddings
Vt−1, . . . ,V1. In this case, the embeddings Vt
for different t are only differentiated by break-
ing different nodes, with perturbations obtained
as V1⊕1v , where ⊕ denotes concatenation. We
remark here that: (1) the structural model fλ is
the same for all breaking nodes belonging to the
same hλ (as opposed to differing for each t in

7

Published as a conference paper at ICLR 2025

the sequential breaking, because it does not see previous breakings); (2) since there is no dependency
on the step t, all Vt can be computed in parallel. The pseudocode is shown in Algorithm 2.

Identically to sequential breaking, the maximum number of iterations is T ⋆, but the total number of
steps T may exceed T ⋆ to ensure that the current breaking selector’s list hλ(A,V1) is exhausted.
The expansion map is defined by concatenating the embeddings VT , . . . ,V1 along a new dimension,
while also collecting the breaking selectors (hλ(A,V1))

L
λ=1 and the partition Λ (c.f., Equation (5)).

For parallel breaking, the reduction map can be constructed in a simpler way, by aggregating repre-
sentations Vt obtained from breaking nodes returned by the same hλ. Specifically, for the structural
representation of {v1, . . . , vr} (i.e., of order r), we first compute an intermediate representation for
each step t, using a learnable set function ϕλ, taking the representations of {v1, . . . , vr} at step t,

Uλ,t = ϕλ

({
Vt,u

}
∀u∈{v1,...,vr}

)
. (9)

Then, another learnable set function ρλ aggregates the intermediate representations Uλ,t for all t
obtained by breaking nodes returned by the same breaking selector, and therefore such that Λt = λ,

Uλ,{v1,...,vr} = ρλ

({
Uλ,t

}
∀t∈[T] s.t. Λt=λ

)
. (10)

Finally, the reduction map can be obtained as the list of such representations for each λ,

R(E(A,V1)){v1,...,vr} =
(
Uλ,{v1,...,vr}

)
λ∈[L]

. (11)

The subtlety of this formulation is in which groups of representations the reduction map must be
invariant to the ordering, and which groups it is beneficial to be sensitive to the order. Specifically,
the within-breaking-set representations being order-invariant (Equation (10)) is essential forR◦E to
be structural. Distinguishing the ordering of between-breaking-set representations (Equation (11))
is necessary for the representations to be expressive. Next, we show that these choices return holo-
graphic node representations, and are maximally expressive in the sense of Definition 2.2.

4.4 HOLOGNN GIVES EXPRESSIVE HOLOGRAPHIC NODE REPRESENTATIONS

In the previous subsections, we introduced two designs for expansion and reduction maps: sequen-
tial breaking (Section 4.2) and parallel breaking (Section 4.3). Sequential breaking enables the
computation of canonical eigenvectors, while parallel breaking provides a more scalable solution.
Importantly, both choices define holographic node representations, as the next result shows.
Theorem 4.4 (Sufficiency of single-node symmetry breakings for structural of any order). Let R
be the reduction map as defined in Equations (8) and (11). When combined with its corresponding
expansion map E, then R(E(A,V1)){v1,...,vr} is a structural representation of {v1, . . . , vr}.

The significance of Theorem 4.4 lies in the sufficiency of single-node symmetry breakings, which
are highly efficient, to generate structural representations. Moreover, we show that these breakings
produce most-expressive link structural representations (per Definition 2.2) for the parallel breaking
algorithm, with a corresponding result for the sequential breaking algorithm in Appendix B.3.
Theorem 4.5 (Sufficiency of single-node breakings for most-expressive link structural). Let E be
the parallel breaking expansion map in Equation (5) with T ⋆ = n and letR be the reduction map as
defined in Equation (11) with r = 2. Assume ρλ and ϕλ injective, and fλ node-most-expressive, for
every λ ∈ [L]. Then, R(E(A,V1)){v1,v2} is a most-expressive structural representation of {v1, v2}.

While maximal expressivity can be achieved for links with single-node breakings, this result can be
extended by considering multi-node symmetry breakings. Theorem B.4 in Appendix B.3 shows that
breaking r − 1 nodes is sufficient to obtain most-expressive structural representations of order r.

5 EXPERIMENTS

We empirically study the generalization of HoloGNN between tasks of different orders performed
on the same dataset. We consider a typical pre-train-adapt protocol, where HoloGNN is pre-trained
on a task of one order, e.g., link-prediction, and adapted to solve a new task of a potentially different

8

Published as a conference paper at ICLR 2025

Link Node Link Node Link Node Worst Pretraining Task

Node Link Node Link Node Link MovieMovie UserMovieUser UserMovieMovie

CORA Citeseer Pubmed MovieLens

SE
AL

NB
FN

et
GN

N
Ho

lo
GN

N
SE

AL
NB

FN
et

GN
N

Ho
lo

GN
N

SE
AL

NB
FN

et
GN

N
Ho

lo
GN

N
SE

AL
NB

FN
et

GN
N

Ho
lo

GN
N

SE
AL

NB
FN

et
GN

N
Ho

lo
GN

N
SE

AL
NB

FN
et

GN
N

Ho
lo

GN
N

SE
AL

NB
FN

et
GN

N
Ho

lo
GN

N
SE

AL
NB

FN
et

GN
N

Ho
lo

GN
N

SE
AL

NB
FN

et
GN

N
Ho

lo
GN

N

0

20

40

60

80

100

Te
st

 M
et

ric

OO
M

NA OO
M

NA

Pretrain on
(for pretrained)
Test on

Trained Pretrained

Figure 3: Performance (the higher the better) of each model when trained on one task (yellow bar)
and when pre-trained on a different task and adapted to the task (blue bar). For each model, the
more yellow visible, the larger the performance loss from using pre-trained embeddings. HoloGNN
shows more consistent performance and thus smaller performance loss across all datasets and tasks.

order, e.g., node-classification. During adaptation, the expansion map remains fixed, with the pre-
trained node embeddings retrieved from storage, while only the light-weight reduction map and a
task-specific output head are trained on the new task. The protocol for other models is the same, with
an MLP output head re-trained on the downstream test task on fixed pre-trained node embeddings.

We implement HoloGNN using the parallel breaking algorithm with number of symmetry breakings
T ⋆≤ 10 ≪n. Next we present our main results and refer to Appendix E for additional experiments.1

Planetoid and MovieLens (Sen et al., 2008; Fey & Lenssen, 2019). We compare HoloGNN against
SEAL (Zhang & Chen, 2018; Li et al., 2020), NBFNet (Zhu et al., 2021), and a standard GNN with
SAGE (Hamilton et al., 2017) or GCN (Kipf & Welling, 2017) layers, depending on the dataset.
Notably, while both standard GNNs and HoloGNN produce pre-training node embeddings regard-
less of the pre-training task order, SEAL and NBFNet generate pre-training embeddings that match
the order of the pre-training task, leading to significantly higher storage requirements for high-order
tasks. Figure 3 (and Tables 3 and 4) shows the performance of each model when trained on a partic-
ular task (yellow bar) and when pre-trained on a different task and adapted to it (blue bar). For each
model, the more yellow visible, the larger the performance loss from using pre-trained embeddings.

HoloGNN demonstrates significantly more consistent performance when compared to other meth-
ods. For instance, in the CORA dataset, the difference in performance between HoloGNN when
trained on Node Classification (81.6%) and its performance when pre-trained on Link Prediction
and adapted to Node Classification (80.2%) results in a performance drop of less than 1.5%. On the
contrary, SAGE suffers from a loss of 7%, while NBFNet and SEAL show a more dramatic drop of
41%. Similarly, in the MovieLens dataset, when considering the order-3 task UserMovieUser, the
difference in performance between HoloGNN pre-trained on the task (81.1%) and its worst perfor-
mance when pre-trained in any other task (72.1%, obtained pre-training on the order-2 MovieMovie)
results in a performance drop of 9%. In comparison, SAGE suffers a more pronounced 22% drop,
SEAL runs out of memory (OOM), and NBFNet is unable to manage tasks of order-3 (NA).

RelBench. We evaluate HoloGNN on RelBench (Robinson et al., 2024), a recently proposed bench-
mark of graph datasets derived from relational databases. We use the rel-stack dataset, which is
obtained from several years of activity on the Stack Exchange Q&A website. We evaluate HoloGNN
on (i) two node level tasks: user-engagement and user-badge, where the task is to predict if
a user will be active and if a user will earn a badge (community aware) in the next 3 months, and (ii)
one link-level task: user-post-comment, where the goal is to predict if a user will comment on
a given post in the next 3 months. Following Robinson et al. (2024) our implementation is based on
SAGE (Hamilton et al., 2017), and we include task-agnostic non-learnable baselines.

Results are shown in Table 1. Notably, when pre-training on node-level tasks (user-engagement
and user-badge) and adapting to link-level (user-post-comment), SAGE completely fails

1Our code is available at https://github.com/beabevi/holognn

9

https://github.com/beabevi/holognn

Published as a conference paper at ICLR 2025

Table 1: Evaluation on the rel-stack dataset from RelBench. The user-post-comment
task is link prediction (order-2), and the other two are node classification (order-1) tasks. HoloGNN
achieves superior performance when adapted to tasks of different order than the pre-training one.
Results in blue indicate cases where pre-train and test tasks are the same (i.e., supervised learning).

TEST TASK

user-post-comment user-engagement user-badge
(MAP ↑) (AUROC ↑) (AUROC ↑)

TASK-AGNOSTIC

Global Popularity 0.03±0.00 NA NA
Past Visit 2.05±0.00 NA NA
Random NA 50.7±0.20 50.1±0.00

Majority NA 50.1±0.20 50.0±0.00

P
R

E
-T

R
A

IN
IN

G
TA

S
K

user-post-comment
SAGE 0.11±0.05 88.2±0.05 84.6±0.05

HoloGNN 3.40±0.29 88.8±0.10 85.5±0.00

user-engagement
SAGE 0.00±0.00 90.7±0.01 86.0±0.04

HoloGNN 2.38±0.33 90.6±0.01 87.0±0.03

user-badge
SAGE 0.00±0.00 89.2±0.01 89.0±0.00

HoloGNN 1.02±0.21 89.4±0.05 89.0±0.05

Table 2: Link prediction AUC and runtime per epoch in the tasks of Lim et al. (2023). We show that
eigenvectors obtained as output of the expansion map (Algorithm 1) results in comparable or better
performance than the best performing Sign Equivariant, while being significantly faster.

Erdős-Rényi Barabási-Albert

Model Test AUC Runtime (s) Test AUC Runtime (s)

GCN (constant input) .497±.06 .058±.00 .705±.01 .048±.00

SignNet (Lim et al., 2022) .498±.00 .120±.00 .707±.00 .095±.00

U⊤
i,:Uj,: .570±.01 .010±.01 .597±.01 .008±.00

MLP(Ui,: ⊙ Uj,:) .614±.02 .050±.00 .651±.03 .040±.00

Sign Equivariant (Lim et al., 2023) .751±.00 .063±.00 .773±.01 .054±.00

Eigenvectors via Expansion Map .750±.00 .050±.00 .816±.00 .040±.00

to generalize, achieving 0.0 MAP. HoloGNN, on the other hand, successfully transfers from node-
to link-level tasks. Similarly, when pre-training on the link-level and adapting to node-level tasks,
HoloGNN suffers a smaller drop in performance than SAGE. For instance, when transferring
to user-badge from user-engagement, SAGE suffers a 3% drop in performance, whilst
HoloGNN suffers only 2%. Note that the improved performance of HoloGNN is not simply due to
being a stronger base model. When directly training on a task, HoloGNN achieves identical perfor-
mance to SAGE. This shows that the key differentiator between them is in their transfer properties.

Eigenvectors. To demonstrate the generality of holographic node representations, we employ the
sequential breaking algorithm (c.f., Algorithm 1) to obtain eigenvectors, which we use in the link
prediction task of Lim et al. (2022). Table 2 shows that the eigenvectors returned by holographic
node representations outperform the best performing methods in a fraction of the time. Our approach
surpasses the performance of eigenvectors obtained by conventional eigensolvers (MLP(Ui,:⊙Uj,:),
with Ui,: the eigenvector embedding of node i). We attribute this improvement to our eigenvectors
being derived from V1 (Equation (1)) which is learned on the task. That is, holographic node repre-
sentations use structural features to select the combination of sign and basis, resulting in represen-
tations that facilitate learning rather than relying on arbitrary choices of conventional eigensolvers.

6 CONCLUSION

In this work, we study the ability of node embeddings to solve different task orders, such as pre-
dictions about single nodes, pairs of nodes, or larger sets. Our first insight is that no existing model
is able to solve different task orders simultaneously. We trace the source of this limitation back to
the permutations symmetries possessed by different embeddings, which are task-order dependent,
and therefore no single choice of symmetries suffices. To address this challenge, we propose holo-
graphic node representations, which learn symmetry-free node representations, but done carefully
so that the appropriate task-order symmetries can be re-introduced when adapting to new task or-
ders. We propose HoloGNN, the first practical model for learning holographic node representations,
and show that HoloGNN leads to significant improvements when adapting to new task orders.

10

Published as a conference paper at ICLR 2025

Reproducibility Statement. The assumptions for our theoretical results can be found in Ap-
pendix B. The experimental details are outlined in Appendix E. Detailed steps of the method are
shown in Algorithms 1 and 2, with remarks in Appendix A.

ACKNOWLEDGMENTS

BR acknowledges support from the National Science Foundation (NSF) awards CCF-1918483, CA-
REER IIS-1943364 and CNS-2212160, an Amazon Research Award, and AnalytiXIN, Wabash
Heartland Innovation Network (WHIN), Ford, NVidia, CISCO, and Amazon. Computing infras-
tructure was supported in part by CNS-1925001 (CloudBank). This work was supported in part by
AMD under the AMD HPC Fund program.

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artifical Intelligence (IJCAI), 2021. 6, 30

Michael O Albertson and Karen L Collins. Symmetry breaking in graphs. the electronic journal of
combinatorics, 3(1):R18, 1996. 30

Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quarterly of applied mathematics, 9(1):17–29, 1951. 30

Guy Bar-Shalom, Beatrice Bevilacqua, and Haggai Maron. Subgraphormer: Unifying subgraph
gnns and graph transformers via graph products. In Forty-first International Conference on Ma-
chine Learning, 2024a. 30

Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, and Haggai Maron. A flexible, equivariant framework
for subgraph gnns via graph products and graph coarsening. arXiv preprint arXiv:2406.09291,
2024b. 30

Dominique Beaini, Shenyang Huang, Joao Alex Cunha, Zhiyi Li, Gabriela Moisescu-Pareja,
Oleksandr Dymov, Samuel Maddrell-Mander, Callum McLean, Frederik Wenkel, Luis Müller,
Jama Hussein Mohamud, Ali Parviz, Michael Craig, Michał Koziarski, Jiarui Lu, Zhaocheng Zhu,
Cristian Gabellini, Kerstin Klaser, Josef Dean, Cas Wognum, Maciej Sypetkowski, Guillaume
Rabusseau, Reihaneh Rabbany, Jian Tang, Christopher Morris, Mirco Ravanelli, Guy Wolf, Pru-
dencio Tossou, Hadrien Mary, Therence Bois, Andrew W Fitzgibbon, Blazej Banaszewski, Chad
Martin, and Dominic Masters. Towards foundational models for molecular learning on large-scale
multi-task datasets. In The Twelfth International Conference on Learning Representations, 2024.
29

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003. 2, 3

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. In International Conference on Learning Representations, 2022. 30

Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno Ribeiro, and Haggai Maron. Efficient
subgraph gnns by learning effective selection policies. In The Twelfth International Conference
on Learning Representations, 2024. 30

Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com. 34

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021. 2

Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. LLaGA: Large
language and graph assistant. In Forty-first International Conference on Machine Learning,
2024a. 29

11

Published as a conference paper at ICLR 2025

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning
on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42–61, 2024b. 29

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. In Advances in Neural Information Processing Systems, volume 34, 2021. 30

Leonardo Cotta, Beatrice Bevilacqua, Nesreen Ahmed, and Bruno Ribeiro. Causal lifting and link
prediction. In Proceedings of the Royal Society A: Mathematical, Physical, and Engineering
Sciences, 2023. 17

Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. On positional and structural node features for graph neu-
ral networks on non-attributed graphs. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pp. 3898–3902, 2022. 30

Jan JM Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem. Nu-
merische Mathematik, 36:177–195, 1980. 22, 23

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
networks for node disambiguation. In Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, pp. 2126–2132, 2021. 18

Inderjit Singh Dhillon. A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector
problem. University of California, Berkeley, 1997. 23

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021. 30

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2021. 7

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023. 3, 7, 30, 31

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022. 29

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai
Maron. Graph positional encoding via random feature propagation. In International Conference
on Machine Learning, pp. 9202–9223. PMLR, 2023. 6

Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking. In Principles and
Practice of Constraint Programming—CP 2001: 7th International Conference, CP 2001 Paphos,
Cyprus, November 26–December 1, 2001 Proceedings 7, pp. 93–107. Springer, 2001. 30

Jerome Feldman. Neural representation of conceptual knowledge. 1986. 4

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019. 9, 34

Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. In Advances in Neural Information
Processing Systems, 2022. 30

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. In The Twelfth International Conference on Learning
Representations, 2024. 29

Jianfei Gao, Yangze Zhou, Jincheng Zhou, and Bruno Ribeiro. Double equivariance for inductive
link prediction for both new nodes and new relation types. arXiv preprint arXiv:2302.01313,
2023. 29

12

Published as a conference paper at ICLR 2025

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 1

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017. 9, 35

Yufei He and Bryan Hooi. Unigraph: Learning a cross-domain graph foundation model from natural
language. arXiv preprint arXiv:2402.13630, 2024. 29

Geoffrey E Hinton. Mapping part-whole hierarchies into connectionist networks. Artificial Intelli-
gence, 46(1-2):47–75, 1990. 4

Zhenyu Hou, Haozhan Li, Yukuo Cen, Jie Tang, and Yuxiao Dong. Graphalign: Pretraining one
graph neural network on multiple graphs via feature alignment. arXiv preprint arXiv:2406.02953,
2024. 29

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020. 33, 36

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. Advances in Neural Information
Processing Systems, 36, 2024a. 29

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graphs. In The Twelfth International
Conference on Learning Representations, 2024b. 7

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017. 18

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In International Conference on Machine
Learning, pp. 15546–15566. PMLR, 2023. 7

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, 35:14582–14595, 2022. 7, 30

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017. 7, 9, 35, 36

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021. 7, 30

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012. 29

Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework for
multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024. 29

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. 1950. 5, 30

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding–design provably
more powerful gnns for structural representation learning. arXiv preprint arXiv:2009.00142, pp.
61, 2020. 9, 30

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
The Eleventh International Conference on Learning Representations, 2022. 7, 10

13

Published as a conference paper at ICLR 2025

Derek Lim, Joshua Robinson, Stefanie Jegelka, and Haggai Maron. Expressive sign equivariant
networks for spectral geometric learning. In Advances in Neural Information Processing Systems,
2023. 3, 7, 10, 35

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
One for all: Towards training one graph model for all classification tasks. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. 29

George Ma, Yifei Wang, and Yisen Wang. Laplacian canonization: A minimalist approach to sign
and basis invariant spectral embedding. Advances in Neural Information Processing Systems, 36,
2023. 7

George Ma, Yifei Wang, Derek Lim, Stefanie Jegelka, and Yisen Wang. A canonization perspective
on invariant and equivariant learning. arXiv preprint arXiv:2405.18378, 2024. 7

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2017. 18

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In Forty-first
International Conference on Machine Learning, 2024. 1, 29

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so
far. The Journal of Machine Learning Research, 24(1), 2023. 18, 29

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. 30

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, 2019. 6, 18, 30

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. 1

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network exten-
sions. In International Conference on Machine Learning, 2022. 30

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34:21997–22009, 2021. 30

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, volume 32, 2019. 34

Omri Puny, Heli Ben-Hamu, and Yaron Lipman. Global attention improves graph networks gener-
alization. arXiv preprint arXiv:2006.07846, 2020. 6, 30

Chendi Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and Mathias Niepert. Ordered sub-
graph aggregation networks. In Advances in Neural Information Processing Systems, volume 35,
2022. 30

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 1, 29

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in Neural
Information Processing Systems, 35, 2022. 30, 34

Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias
Fey, Jan E Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark for deep learning
on relational databases. arXiv preprint arXiv:2407.20060, 2024. 9

14

Published as a conference paper at ICLR 2025

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011. 35

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM international conference on data mining (SDM), pp.
333–341. SIAM, 2021. 6, 30

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008. 9

Yangyi Shen, Beatrice Bevilacqua, Joshua Robinson, Charilaos Kanatsoulis, Jure Leskovec, and
Bruno Ribeiro. Zero-shot generalization of gnns over distinct attribute domains. In ICML 2024
Workshop on Theoretical Foundations of Foundation Models, 2024. 29

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. In Proceedings of the International Conference on
Learning Representations, 2020. 1, 3, 5, 17, 20, 25

Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Frad-
kin, and Dominique Beaini. On the scalability of gnns for molecular graphs. In ICLR 2024
Workshop on Navigating and Addressing Data Problems for Foundation Models, 2024. 29

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
491–500, 2024. 29

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, et al. Scaling monosemanticity: Extracting
interpretable features from claude 3 sonnet. Transformer Circuits Thread, 2024. 29

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In International Conference on Learning Representa-
tions, 2022. 7

Lianghao Xia and Chao Huang. Anygraph: Graph foundation model in the wild. arXiv preprint
arXiv:2408.10700, 2024. 29

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. 7

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.
35

Haoteng Yin, Yanbang Wang, and Pan Li. Revisiting graph neural networks and distance encoding
from a practical view. arXiv preprint arXiv:2011.12228, 2020. 30

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021. 30

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
conference on machine learning, pp. 7134–7143. PMLR, 2019. 1, 6, 30

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In International Conference
on Machine Learning, 2023. 30

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018. 2, 9

Muhan Zhang and Pan Li. Nested graph neural networks. In Advances in Neural Information
Processing Systems, volume 34, 2021. 30

15

Published as a conference paper at ICLR 2025

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021. 1, 3, 20

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023. 29

Jianan Zhao, Hesham Mostafa, Michael Galkin, Michael Bronstein, Zhaocheng Zhu, and Jian
Tang. Graphany: A foundation model for node classification on any graph. arXiv preprint
arXiv:2405.20445, 2024. 29

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022. 30

Shuxin Zheng, Jiyan He, Chang Liu, Yu Shi, Ziheng Lu, Weitao Feng, Fusong Ju, Jiaxi Wang,
Jianwei Zhu, Yaosen Min, et al. Predicting equilibrium distributions for molecular systems with
deep learning. Nature Machine Intelligence, pp. 1–10, 2024. 29

Jincheng Zhou, Beatrice Bevilacqua, and Bruno Ribeiro. A multi-task perspective for link prediction
with new relation types and nodes. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning,
2023. 29

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. Advances in Neural Infor-
mation Processing Systems, 34:29476–29490, 2021. 2, 9, 35

16

Published as a conference paper at ICLR 2025

A ADDITIONAL REMARKS AND TECHNICAL DETAILS ON HOLOGRAPHIC
NODE REPRESENTATIONS

In this section, we provide supplementary information, technical clarifications, and remarks on holo-
graphic node representations and its practical instantiation with HoloGNN. We start by discussing
in detail the definition of holographic node representations (c.f.. Definition 3.1).

Properties (1) and (2) are essential to ensuring that holographic node representations can be trained
in a task-order agnostic way, whilst still being able to map representations back to order-specific
representations. Property (1) guarantees final task-specific representations are structural of order r;
and Property (2) ensures that the output of the expansion map consists of T positional, and thus
symmetry-free, representations, which are necessary for task-agnostic node representations due to
the impossibility result from Proposition 2.3.

We further remark that Property (1) in Definition 3.1 ensures that the reduction map returns struc-
tural representations for sets rather than tuples of r nodes, aligning with the observation made by
Srinivasan & Ribeiro (2020) that structural representations should be defined for sets of nodes. The
rationale behind this is that it is not possible to distinguish between isomorphic nodes2 that occupy
different positions within a tuple, i.e. (v1, v2, . . . vr) and (v2, v1, . . . vr) if v1 and v2 are isomorphic.
Therefore all tuples containing the same nodes should be considered as the same set.

Property (2) in Definition 3.1 ensures that the expansion map E returns T positional representa-
tions for each node, where each positional representation correspond to a “view” of the graph. Im-
portantly, in the case of sequential breaking, these positional representations can be T (canonical)
eigenvectors of any symmetric matrix of the graph (Theorem 4.3). Notably, encompassing eigen-
vectors has an additional implication, which is made clear in Definition 3.1 (Property 2). Specif-
ically, since returning eigenvectors of AAT and ATA represents a valid expansion map output,
for any undirected graph, if u and v, u ̸= v, are isomorphic nodes with the same neighborhood,
then V (A,V1)v = V (A,V1)u (Cotta et al., 2023, Theorem 4). Therefore, we exclude this case by
requiring Property (2) to hold for isomorphic nodes that do not have the same neighborhood.

While Definition 3.1 provides a general definition, HoloGNN represents a practical instantiation,
which obtains the symmetry-free expansion map by breaking symmetries for selected nodes chosen
by breaking selectors. Intuitively, the role of the node breaking selectors is to determine the breaking
nodes to be used in the expansion map, ensuring that positional representations are constructed in
a way that allows the reduction map to generate structural representations. In other words, the
final structural representations are produced by combining positional representations generated by
breaking nodes returned by the same breaking selector (see e.g., Equation (10)). This ensures that
the final representations are the same for isomorphic node sets (and therefore they are structural). In
contrast, randomly selecting breaking nodes without node breaking selectors would not ensure the
same final representations for isomorphic sets, nor would it provide the same representations across
different runs or isomorphic graphs.

Definition 4.1 outlines the properties of the breaking selectors, which are necessary for designing
an appropriate reduction map capable of returning structural representations. Importantly, Defini-
tion 4.1 can be specialized to define most-expressive selectors, as we present next. These most-
expressive selectors are important because are those employed in the sequential breaking algorithm
for obtaining eigenvectors, as we shall see in Appendix B.2.

Definition A.1 (Most-expressive breaking selector h⋆λ). A most-expressive selector is a selector, as
defined in Definition 4.1, that is most-expressive based on the graph topology. That is, for any two
nodes u, v ∈ G = (A,V1), then u, v ∈ h⋆λ(A,V1) ⇐⇒ u, u isomorphic in G based only on the
graph topology A.

In other words, when using h⋆λ then vλ,1, . . . , vλ,k⋆λ are isomorphic nodes in A. Importantly, each
hλ returns a different list (a different group of isomorphic nodes). This is always possible as non-
isomorphic nodes can be distinguished by structural properties (e.g., differing degrees) – as other-
wise they would be isomorphic – which a most-expressive selector is able to capture by definition.

2Two nodes u and v are isomorphic if there exists a permutation of nodes that swaps u and v such that the
permuted adjacency and feature matrices remain identical.

17

Published as a conference paper at ICLR 2025

A.1 NODE BREAKING SELECTORS

Having established that the expansion map produces highly expressive symmetry-free representa-
tions, we now specify how the breaking nodes are chosen. In principle any structural rule may
be used to construct the breaking selectors (Definition 4.1), as long as the choice is appropriately
coupled with the definition of Λ to recover from these choices when constructing structural repre-
sentations (Definition 3.1). In the following, we discuss the breaking rules we consider:

(1) Node degree. Each breaking selector hλ returns all nodes that share the same degree3. That is,
we consider h1 to return all nodes with the highest degree, h2 to return nodes with the second-
highest degree, and so forth (inverse sorting is also a possibility). Nodes returned by the same
breaking selector are sorted by node ids, as per Definition 4.1. In this case, Λ ensures that Λt
remains identical across all t for breaking nodes with the same degree.

(2) Learned structural distribution. Given V1, define a node-wise score s = V1w ∈ Rn with
learnable weights w ∈ Rd. Then, sample k ≤ n nodes without replacement according to the
distribution Softmax(s). For the learned distribution we need to compute gradients through
the random sample. For this we use the straight-through Gumbel-Softmax estimator (Jang et al.,
2017; Maddison et al., 2017), to allow differentiable sampling (of k nodes) from the distribution.
This rule results in a single breaking selector h1 containing all k sampled nodes. While this rule
is not permutation-equivariant in general, it can still be useful for large graphs, where there
usually are no isomorphic nodes. During inference, instead of sampling, we directly select the
top k nodes based on their scores. If there is a tie at the end (i.e., the k-th and the k+1-th nodes
have the same score), we include all nodes with the tied score, resulting in a list of at least k
nodes returned by h1. In this way, h1 is permutation equivariant in test.

(3) Node ids, when T ⋆ = n. The simplest rule involves a single breaking selector, h1, that returns
all nodes, sorted by their IDs. In this case, T ⋆ = n because the algorithm requires iterating
through the entire list of nodes before termination, making this choice less scalable than others.
Furthermore, Λt = 1 for all t, reflecting the uniform treatment of all nodes.

(4) Most expressive. Each breaking selector hλ returns a list of nodes that are isomorphic to each
other (Definition A.1). Recall that each hλ must return a different list (a different group of
isomorphic nodes), which is always possible as non-isomorphic nodes can be distinguished
by structural properties. Practical choices include employing most-expressive GNNs, such as
Murphy et al. (2019); Dasoulas et al. (2021), or also expressive GNNs whose expressivity level
is sufficient to distinguish all graphs in the family of graphs considered in the tasks of interest.
We refer the reader to Morris et al. (2023) for a review of expressive methods.

Finally, we remark here that there are many other valid rules for selecting breaking nodes, whose
exploration we leave for future work.

A.2 A PRACTICAL SEQUENTIAL BREAKING REDUCTION MAP

Section 4.2 in the main paper presents an instantiation of the reduction map for the sequential break-
ing algorithm, which leverages the representations of {v1, . . . , vr} in all graphs isomorphic to the
input one. A key limitation of this approach is that it requires iterating over each possible isomor-
phic graph Gk to construct BGk , which is then used in Equation (6) to get the representation of
{v1, . . . , vr} inGk. An alternative strategy is to consider the representations of all r sets isomorphic
to {v1, . . . , vr}, instead of the representations of {v1, . . . , vr} for all possible Gk. However, identi-
fying all isomorphic sets can be computationally intensive. A reasonable compromise is to consider
all sets of r nodes where each node is isomorphic to a different node in {v1, . . . , vr}. These in-
clude the sets isomorphic to {v1, . . . , vr}, as well as those that are not, even if their nodes are in a
one-to-one mapping.

Specifically, these sets can be obtained from our breaking selectors (hλ(A,V1))
L
λ=1. Each set svi,w

is generated by replacing node vi in {v1, . . . , vr} with another node w taken from the same breaking
selector list, i.e.,

svi,w = {v1, . . . , vi−1, w, vi−1, . . . vr}.
3Any other structural property can be used in this case, e.g., betweenness centrality.

18

Published as a conference paper at ICLR 2025

where vi ∈ {v1, . . . , vr} and vi, w ∈ hλ(A,V1) for some λ ∈ [L]. We denote the collection of
these sets as S{v1,...,vr}, that is,

S{v1,...,vr} = {svi,w}∀vi∈{v1,...,vr},∀w∈G s.t. w,vi∈hλ(A,V1).

Since (hλ(A,V1))
L
λ=1 is structural by definition (c.f., Definition 4.1), the above strategy allows us

to construct the set of sets still containing all isomorphic sets to {v1, . . . , vr}, although S{v1,...,vr}
also contains more sets not isomorphic to {v1, . . . , vr}. To obtain a structural representation of
{v1, . . . , vr}, we first obtain an intermediate representation for each set svi,w,

Uλ,svi,w
= ϕλ

({
Vt,u

}
∀u∈svi,w

)
. (12)

Then, we aggregate these intermediate representations for all sets in S{v1,...,vr}, that is

Uλ,t = ψλ

({
Uλ,svi,w

}
∀svi,w∈S{v1,...,vr}

)
. (13)

Next, we aggregate these intermediate representations for all t generated by breaking nodes returned
by the same breaking selector,

Uλ,{v1,...,vr} = ρλ

({
Uλ,t

}
∀t∈[T] s.t. Λt=λ

)
. (14)

Finally, the reduction map can then be expressed as

R(E(A,X)){v1,...,vr} = (Uλ,{v1,...,vr})∀λ∈[L]. (15)

B PROOFS

This appendix includes the proofs for the theoretical results presented in Sections 2 and 4. We start
by formally proving the impossibility of having a single embedding capable of solving different task
orders, particularly node and link predictions. Then, we discuss the results related to the expansion
map, including its connection to canonical eigenvectors. Lastly, we present the proofs concerning
the reduction map.

B.1 SECTION 2 PROOFS

We begin by formalizing the challenges related to node embeddings and their use for solving dif-
ferent tasks. Let f(A,X) ∈ Rn×d denote node embeddings. We define a node-level task predictor
and a link-level task predictor, respectively, as

Ŷ (A,X)u = MLPnode(f(A,X)u),

Ŷ (A,X)uv = MLPlink(f(A,X)u, f(A,X)v).

In practice, MLPnode and MLPlink correspond to different heads on top of the single embeddings
f(A,X). This implies that f(A,X) is used for solving two different tasks, a node-level task,
which we denote by Tnode, and link-level task, which we denote by Tlink. We define the respective
test errors as:

LTnode(Dnode) = E(A,X),Yu∼Dnode [ℓTnode(Ŷ (A,X)u,Yu)],

LTlink(Dlink) = E(A,X),Yuv∼Dlink [ℓTlink(Ŷ (A,X)uv,Yuv)],

with ℓTnode , ℓTlink appropriate loss functions, and denoting the test minima as L∗
Tnode

and L∗
Tlink

. In the
following, we formally prove that f(A,X) ∈ Rn×d is not sufficient to accurately solve both tasks.
Proposition B.1 (Impossibility of accurate any-order task learning from node embeddings). Con-
sider simultaneously performing two tasks, Tnode and Tlink, using node embeddings f(A,X) ∈
Rn×d. There exist Tnode and Tlink such that, for any MLPnode and MLPlink achieving the training
minima, no f that produces either positional or structural representations can simultaneously sat-
isfy the following two conditions: (1) LTnode(Dnode) = L∗

Tnode
; (2) LTlink(Dlink) = L∗

Tlink
. That is, when

using standard (flat) node embeddings, the predictions cannot be simultaneously accurate (in test)
for both tasks.

19

Published as a conference paper at ICLR 2025

Proof. The proof proceeds by showing that, for any f , it is always possible to construct either
Tnode or Tlink, such that one of the conditions does not hold. Note that f returns node embeddings,
which can either be equivariant to node permutations, i.e., structural, or not, i.e., positional. In the
following, we will prove the theorem for these two cases separately.

Assume that f is equivariant to node permutations, and therefore structural. Then, by definition,
Ŷu and Ŷuv are also invariant to node permutations. It follows from Srinivasan & Ribeiro (2020);
Zhang et al. (2021) that there exists a link-level task Tlink such that LTlink(Dlink) ̸= L∗

Tlink
. Specifically,

consider the link-level task consisting in predicting in test the two non-isomorphic links (v1, v2) and
(v1, v3) in Figure 1, and assume that those have different labels. Since f is equivariant to node
permutations, the isomorphic nodes v2 and v3 will have the same representation, and therefore
(v1, v2) and (v1, v3) will receive the same prediction, despite having different labels. This implies
that LTlink(Dlink) ̸= L∗

Tlink
, since the test error can be reduced with correct predictions for these two

links.

Assume that f is not equivariant to node permutations, and therefore positional. Consider a node-
level task Tnode on a training graph and consider a node u. Now, assume that the test graph is
composed of two disconnected copies to the training graph. This means that there are two nodes
isomorphic to u in the test graph. However their representations will be different by definition of
positional encoding. Since the representation seen in training for u will correspond to only one of
two representations seen in test, the representation of one of the test nodes may lead to incorrect
predictions. Therefore LTnode(Dnode) ̸= L∗

Tnode
.

Therefore, we have proved that for any f returning node embeddings, there exists a task such that
one condition does not hold, which concludes our proof.

The above result justifies the need for our holographic node representations (Definition 3.1), as
simply using node embeddings, coupled with different heads for different task orders, cannot result
in accurate predictions for different task orders.

B.2 SECTION 4 EXPANSION MAP PROOFS

In the following, we present the theoretical results related to the expansion map, as introduced in
Section 4.

We start by proving that single-node breakings are sufficient for obtaining the expansion mappings
within holographic node representations.

Theorem 4.2 (Sufficiency of single-node breakings for holographic representations). For any G =
(A,X) and isomorphic nodes u, v ∈ G, with u ̸= v and having different neighborhoods, there
exists E obtained by single-node symmetry breakings such that V (A,V1)v ̸= V (A,V1)u.

Proof. To prove the sufficiency of single-node breakings for a valid expansion map, we consider E
to be the expansion map of the sequential breaking algorithm. Since the parallel breaking algorithm
represents a special case of the sequential algorithm, the result will naturally extend to the parallel
case as well.

By assumption, u and v have different neighborhoods, and therefore there exists at least one node
w ∈ G that is neighbor of u but not of v (or vice-versa). Additionally, since the breaking selectors are
non-overlapping (Definition 4.1) and assuming T ⋆ = n, there exists a step t such that the breaking
node is w. Then, it is sufficient to consider the structurally invariant model ft to perform one
message passing step (with identity weights) using the perturbation 1w, in which case u will obtain
a different representation than v, as u is connected tow, that had perturbed features. Therefore, there
exists a t in which ft(A,Vt−1, . . . ,V1,1w)u ̸= ft(A,Vt−1, . . . ,V1,1w)v . Since E is obtained by
concatenating the outputs of the different ft (Equation (5)), then V (A,V1)v ̸= V (A,V1)u, which
concludes our proof.

Next, we discuss one of the main results of this section, which is to show that there exists a
sequential-breaking expansion map that can express eigenvectors with no sign or basis ambigui-
ties. We consider symmetric matrices, which includes the normalized Laplacian matrix and the
undirected adjacency matrix.

20

Published as a conference paper at ICLR 2025

Theorem 4.3 (Expansion Map can express canonical eigenvectors). For any symmetric matrix A,
there exists an expansion map E(A,V1) obtained by sequential breaking which can express eigen-
vectors with no sign or basis ambiguity, and identical for isomorphic graphs up to permutations.

We prove this result by constructing an explicit expansion map with T ∗ = n for which the embed-
dings V1, . . . ,Vn ∈ Rn×1 correspond to full set of n Lanczos vectors of the symmetric matrix A
(which can be the Laplacian). We then show how these Lanczos vectors can be used to obtain the full
set of n eigenvectors. Crucially, we demonstrate that both the Lanczos vectors and the eigenvectors
are free of sign and basis ambiguities and are permutation equivariant.

It is important to note that, while the expansion map may return V1, . . . ,Vn+1, the set of Lanczos
vectors corresponds to V1, . . . ,Vn. This is because the initial V1 is also one of the vectors (al-
though obtained without breaking any node), and Vn+1 will be the zero vector (as there are only n
orthogonal vectors in Rn).

A key intermediate step is to prove that sequential breaking can express the Lanczos algorithm,
which computes the Lanczos vectors. We then demonstrate how to derive the symmetric tridiagonal
matrix, that is one of the terms of the Lanczos algorithm, from the Lanczos vectors and the original
matrix A using a simple permutation-equivariant function. This step is crucial, as the tridiagonal
matrix shares the same eigenvalues as the original matrix A, and the eigenvectors of the original
matrix can be obtained from those of the tridiagonal matrix through a simple matrix multiplication.
Once the tridiagonal matrix is constructed, many efficient eigensolvers can be applied to produce its
eigenvectors, and consequently those of the original matrix.

Before stating the intermediate Lanczos result, we first introduce Lanczos’ algorithm in detail.

B.2.1 LANCZOS ALGORITHM

Lanczos Algorithm takes as input a symmetric matrix A ∈ Rn×n, and returns a matrix V of orthog-
onal columns (the Lanczos vectors) and a symmetric tridiagonal matrix T with the same eigenvalues
as A. Lanczos has four main steps:

1. Select an initial arbitrary vector v1 ∈ Rn with unit Euclidean norm.

2. Initial iteration:

(a) Let w′
1 = Av1.

(b) Let α1 = w′T
1 v1.

(c) Let w1 = w′
1 − α1v1.

3. For t = 2, . . . , n do:

(a) Let βt = ∥wt−1∥ (also Euclidean norm).
(b) If βt ̸= 0, then let vt = wt−1/βt,

else pick as vt an arbitrary vector with Euclidean norm 1 that is orthogonal to all of
v1, . . . ,vt−1.

(c) Let w′
t = Avt.

(d) Let αt = w∗
tvt.

(e) Let wt = w′
t − αtvt − βtvt−1.

4. Let V be the matrix with columns v1, . . . ,vn. Let

T =

α1 β2 0
β2 α2 β3

β3 α3
. . .

. βn−1

βn−1 αn−1 βn
0 βn αn

Note that it is easy to obtain the tridiagonal matrix T from the matrix of Lanczos vectors V , as
T = V TAV .

21

Published as a conference paper at ICLR 2025

Because it is easy to obtain the tridiagonal matrix T (from which it is easy to obtain eigenvectors,
see Cuppen (1980)) from the Lanczos vectors, the precise statement of our intermediate result is
that sequential breaking can return the Lanczos vectors. The proof of the full result (Theorem 4.3)
then simply extends this by constructing a function of the Lanczos vectors and the matrix A to
additionally compute T , compute the eigenvectors of T , and derive those of A. We will show that
all these steps are free from sign and basis ambiguities, and additionally prove that the Lanczos
vectors (and consequently the tridiagonal and the eigenvectors) are permutation equivariant.
Theorem B.2 (Sequential breaking can implement Lanczos Algorithm). For any symmetric matrix
A ∈ {0, 1}n×n there exists an n-step expansion map E(A,X) = [Vn, . . . ,V1], where Vj is the jth
Lanczos vector of A.

Proof. To prove that the sequential breaking algorithm can implement the Lanczos algorithm, we
need to define the functions (hλ)Lλ=1 and ft for t ∈ [n] in a way that matches the steps of the Lanczos
algorithm. Let’s break this down step by step:

For (hλ)Lλ=1 we consider most-expressive breaking selectors (Definition A.1), which partition the
set of nodes into isomorphism equivalence classes. We denote the breaking node of the t-step as vt.

Additionally, we take the embedding dimension d = 1, as we want each Vt to correspond to a
Lanczos vector.

Now, we are ready to define Vt = ft(A,Vt−1, . . . ,V1,1v), as follows:

1. For t = 1: V1 = gstruc(A,X) ∈ Rn, the (normalized) vector obtained from a structural
function (Equation (1)). In this particular case, we assume that V1 has norm 1 (as required
by the Lanczos algorithm), and we further assume that gstruc discards node features X ,
because eigenvector methods do not use node features but only the matrix A.

2. For t = 2:

(a) w′
1 = AV1

(b) α1 = V T
1 w′

1

(c) w1 = w′
1 − α1V1

(d) β2 = ∥w1∥
(e) If β2 ̸= 0: V2 = w1

β2

(f) Else: V2 =
1v1−projV1

(1v1)

∥1v1
−projV1

∥ ∈ Rn where proj denotes the Gram-Schmidt projection
operator of 1vt onto the span of V1. Since V1 is a single vector, this is simply V2 =
1vt−(1⊤

vt
V1)V1

1vt−(1⊤
vt

V1)V1
.

3. If t > 2:

(a) w′
t−1 = AVt−1

(b) αt−1 = V T
t−1w

′
t−1

(c) wt−1 = w′
t−1 − αt−1Vt−1 − βt−1Vt−2

(d) βt = ∥wt−1∥
(e) If βt ̸= 0: Vt =

wt−1

βt

(f) Else: Vt =
1vt−projV1,...Vt−1

(1vt)

∥1vt−projV1,...Vt−1
(1vt)∥

∈ Rn, the orthonormalization of 1vt with respect

to the span of V1, . . .Vt−1.

Note that in each case this definition of ft is a composition of the following permutation equiv-
ariant functions: linear transformations, dot products, norms, linear combinations, and conditional
statements. Because of this, ft is also permutation equivariant as required in Section 4.2.

It is not at first clear that this choice of ft is well defined. The danger comes from the Gram-Schmidt
orthogonal projection 1vt−projV1,...Vt−1

(1vt), which must be non-zero so that it can be normalized.
For now let us assume that this ft is well defined in order to show that the rest of the proof goes
through. Then, at the end of the proof we will return to this matter.

22

Published as a conference paper at ICLR 2025

With these choices the sequential breaking algorithm (Algorithm 1) becomes step-by-step identical
to the Lanczos algorithm, with a particular instantiation of the “arbitrary” breaking vectors, which
in the sequential breaking algorithm are not random vectors as in Lanczos, but are instead defined
as V1 = gstruc(A,X) ∈ Rn and as 1vt , with vt the breaking node.

This formulation of the sequential breaking algorithm matches the Lanczos algorithm step by step.
The key points to note are:

1. The function ft is defined to perform the exact same operations as the Lanczos algorithm
for each t.

2. When βt = 0, we choose Vt =
1vt−projV1,...Vt−1

(1vt)

∥1vt−projV1,...Vt−1
(1vt)∥

, which for appropriate choices of

most-expressive breaking selectors is guaranteed to be a unit vector orthogonal to previ-
ous vectors due to the Gram-Schmidt orthonormalization projection map, as we show in
Theorem B.6. This underscores that this choice of ft is well defined.

3. The output V is constructed in the same way as in the Lanczos algorithm.

This demonstrates that with the given definitions of (hλ)
L
λ=1 and ft for t ∈ [n], the sequential

breaking algorithm exactly replicates the Lanczos algorithm.

We have seen that the sequential breaking algorithm can implement the Lanczos algorithm. Impor-
tantly, since all choices are deterministic, with both the initial vector V1 and the arbitrary vectors
determined by the most-expressive breaking selectors and therefore by the graph structure, the ob-
tained Lanczos vectors do not have any ambiguity, with both sign and basis exactly determined by
gstruc and (hλ)

L
λ=1. Furthermore, Theorem B.7 shows that the Lanczos vectors are identical up to

permutation for isomorphic graphs.

Given these results we are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Let f1, . . . , fn and (hλ)
L
λ=1 be as in Theorem B.2. We construct an addi-

tional function Γ that, given the original matrix A and the Lanczos vectors, returns the eigenvectors
of A,

U = Γ(A,V) ∈ Rn×n

with V = [V1, . . . ,Vn] and U denoting the full set of n eigenvectors of A.

Specifically we define Γ to be factorized into two steps Γ = Γ2 ◦ Γ1, corresponding to the two
remaining steps required to compute eigenvectors from A and V1, . . . ,Vn, which we have seen do
not have sign/basis ambiguities and are identical up to permutations for isomorphic graphs.

First, Γ1 represents the map (A,V) 7→ (T ,V) ∈ Rn×n, returning the tridiagonal matrix of the
Lanczos algorithm, as well as the Lanczos vectors (this last output is included for later usage in Γ2,
but simply corresponds to the input). Note that this Γ1 can be written as

Γ1(A,V) = (V TAV ,V)

since T = V TAV . Since Γ1 simply consists of two matrix multiplications, it is permutation
equivariant.

Then, Γ2 : Rn×n × Rn×n → Rn×n can be any of the (fast) specialized eigensolvers for symmetric
tridiagonal matrices, followed by a matrix multiplication to recover the eigenvectors of A from those
of T . For concreteness, we may take Γ2 to first perform the divide-and-conquer algorithm proposed
by Cuppen (1980), which computes the eigendecomposition of T in O(n2) steps. Importantly, it
was shown by Dhillon (1997) that this divide-and-conquer can be done deterministically using a
“twisted factorization” (see Section 3.1 therein) to initialize, and so the resulting eigenvectors do not
have sign/basis ambiguities. Then, given the eigenvectors UTri of T , the eigenvectors U of A can be
obtained as U = V UTri. Importantly, since it only involves a decomposition (without ambiguities)
and a matrix multiplication, Γ2 is also permutation equivariant.

Thus, we have shown that it is possible to recover the eigenvectors of A from the Lanczos vectors.
Since both the Lanczos vectors and the mappings used to obtain the eigenvectors are free of sign

23

Published as a conference paper at ICLR 2025

and basis ambiguities, and are permutation equivariant, the resulting eigenvectors will also be free
of these ambiguities and permutation equivariant, concluding our proof.

B.3 SECTION 4 REDUCTION MAP PROOFS

In the following, we present the theoretical results related to the reduction map, as introduced in
Section 4. We start by showing that the reduction map designs introduced for the sequential and
parallel breaking algorithms are valid, as they return structural representations of order r (Property
(1) in Definition 3.1).

Theorem 4.4 (Sufficiency of single-node symmetry breakings for structural of any order). Let R
be the reduction map as defined in Equations (8) and (11). When combined with its corresponding
expansion map E, then R(E(A,V1)){v1,...,vr} is a structural representation of {v1, . . . , vr}.

Proof. We will show this result for the sequential breaking algorithm and for the parallel breaking
algorithm separately.

Sequential Breaking. Equation (8) trivially satisfies the definition of structural representation (Def-
inition 2.1), as it returns the representation of the set {v1, . . . , vr} by averaging its representations
across all isomorphic graphs.

Parallel Breaking. We need to show that Equation (11) satisfies the definition of structural represen-
tation (Definition 2.1). Specifically, we show that if {v1, . . . , vr} ∼ {u1, . . . , ur},A ∼ A′,V1 ∼
V ′
1 then R(E(A,V1)){v1,...,vr} = R(E(A′,V ′

1)){u1,...,ur}. Since the output of R is a concate-
nation of intermediate representations, it is sufficient to show that Uλ,{v1,...,vr} = U ′

λ,{u1,...,ur}.
This is trivially true because: (1) the breaking selectors are structural, and therefore breaking nodes
belonging to the same selector in (A1,V1) are isomorphic to breaking nodes belonging to the same
selector in (A′

1,V
′
1), (2) ft for t ∈ [T] is structural. Therefore the reduction map in Equation (11)

returns structural representations.

Note that while we have proven the above result for Equation (8) for the sequential breaking al-
gorithm, it is easy to see that it extends also to Equation (15), by following the same proof steps
used for parallel breaking. Indeed, Equation (15) similarly considers the concatenation of interme-
diate representations, each obtained by aggregating representations obtained by structural models
and structural selectors.

Next, we prove that the representations returned by the reduction map are most-expressive for links.
We start by showing that this is case for Equation (11).

Theorem 4.5 (Sufficiency of single-node breakings for most-expressive link structural). Let E be
the parallel breaking expansion map in Equation (5) with T ⋆ = n and letR be the reduction map as
defined in Equation (11) with r = 2. Assume ρλ and ϕλ injective, and fλ node-most-expressive, for
every λ ∈ [L]. Then, R(E(A,V1)){v1,v2} is a most-expressive structural representation of {v1, v2}.

Proof. Let {u1, u2} be another set of two nodes, which is different from {v1, v2}. We will show
that R(E(A,V1)){v1,v2} = R(E(A,V1)){u1,u2} iff {v1, v2} ∼ {u1, u2}, therefore satisfying the
definition of most-expressive structural representations (Definition 2.2).

Recall that, since T ⋆ = nwe have T = n+1 because we need to break all the n nodes, and therefore
the equations can be rewritten as

Uλ,t = ϕλ

(
{Vt,v1 ,Vt,v2}

)
Uλ,{v1,v2} = ρλ

(
{Uλ,t}∀t∈[n+1] s.t. Λt=λ

)
R(E(A,V1)){v1,v2} =

(
Uλ,{v1,v2}

)
λ∈[L]

.

For simplicity, let us further denote by St,{v1,v2} the set of the representations of {v1, v2} at time t,
i.e., St,{v1,v2} = {Vt,v1 ,Vt,v2}.

24

Published as a conference paper at ICLR 2025

(⇒) We will show thatR(E(A,V1)){v1,v2} = R(E(A,V1)){u1,u2} ⇒ {v1, v2} ∼ {u1, u2}. Since
ρλ and ϕλ are injective, we have

R(E(A,V1)){v1,v2} = R(E(A,V1)){u1,u2}

⇒ ∀λ ∈ [L] {St,{v1,v2}}∀t∈[n+1] s.t. Λt=λ = {St,{v1,v2}}∀t∈[n+1] s.t. Λt=λ

⇒ ∀j ∈ [n+ 1],∃k ∈ [n+ 1] such that {Vj,v1 ,Vj,v2} = {Vk,u1
,Vk,u2

}

which means that ∀j ∈ [n+ 1],∃k ∈ [n+ 1] such that

{fλ(A,V1 ⊕ 1vj)v1 , fλ(A,V1 ⊕ 1vj)v2} = {fλ(A,V1 ⊕ 1vk)u1 , fλ(A,V1 ⊕ 1vk)u2}

Since the above means that ∀j ∈ [n + 1],∃k ∈ [n + 1] where the sets are the same, then without
loss of generality we have that4

fλ(A,V1 ⊕ 1vj)v1 = fλ(A,V1 ⊕ 1vk)u1

fλ(A,V1 ⊕ 1vj)v2 = fλ(A,V1 ⊕ 1vk)u2

Consider the first equation. Since fλ is node-most-expressive, then v1 ∼ u1, which implies ∃P
permuting vj with vk and v1 with u15 such that A = PAP T and V1 ⊕ 1vk = P (V1 ⊕ 1vj). This
implies that (vj , v1) ∼ (vk, u1). Similarly, for the second equation we have that (vj , v2) ∼ (vk, u2).
Consequently, it must be (v1, v2) ∼ (u1, u2) (cause if they were not, then either (vj , v1) ̸∼ (vk, u1)
or (vj , v2) ̸∼ (vk, u2), reaching a contradiction).

(⇐) We will show that {v1, v2} ∼ {u1, u2} ⇒ R(E(A,V1)){v1,v2} = R(E(A,V1)){u1,u2}.
Suppose by contradiction that R(E(A,V1)){v1,v2} ̸= R(E(A,V1)){u1,u2} which means that there
exist λ ∈ [L] such that Uλ,{v1,v2} ̸= Uλ,{u1,u2}. Since ϕλ, ρλ are injective, this implies that
∃j ∈ [n+ 1] such that6

fλ(A,V1 ⊕ 1vj)v1 ̸= fλ(A,V1 ⊕ 1vk)u1
∀k ∈ [n+ 1] such that Λj = Λk = λ

However, since {v1, v2} ∼ {u1, u2}, ∃k ∈ [n+ 1] with Λk = λ such that considering P permuting
vj with vk and v1 with u1 is such that A = PAP T and V1 ⊕ 1vk = P (V1 ⊕ 1vj). Since fλ is
structural, then

fλ(A,V1 ⊕ 1vj)v1 = fλ(A,V1 ⊕ 1vk)u1

reaching a contradiction.

Next, we show that maximal expressivity can also be achieved by Equation (8).

Proposition B.3 (Sufficiency of single-node sequential breakings for most-expressive link struc-
tural). Let E be the sequential breaking expansion map in Equation (5) with T ⋆ = n and let R be
the reduction map as defined in Equation (8) with r = 2. Assume ρt and ϕt are injective, and ft
defined as in Theorem B.2 (that is, returning the Lanczos vectors). Then, R(E(A,V1)){v1,v2} is a
most-expressive structural representation of {v1, v2}.

Proof. From the proof of Theorem 4.4 we already know that R(E(A,V1)){v1,v2} is structural. We
now only need to show it is most expressive, that is R(E(A,V1)){v1,v2} = R(E(A′,V ′

1)){v′1,v′2}
⇒ ∃π ∈ Sn A = π ◦A, V1 = π ◦ V1 and {v1, v2} = π ◦ {v′1, v′2}. This follows from Srinivasan
& Ribeiro (2020, Theorem 2) as the Lanczos vectors are most expressive positional representations.

While maximal expressivity can be achieved only for links in the case of single-node breakings, for
the parallel breaking algorithm case, it is possible to extend the result when considering multi-node
breakings. Specifically, we next show that breaking r − 1 nodes at a time is sufficient to obtain a
most-expressive structural representation of order r.

4An alternative equivalent relation would be to swap u1 with u2 in the equation.
5Note that vj can also be equal to vk, and in such case P permutes only v1 with u1.
6We can alternatively swap v1 with v2 and/or u1 with u2, without loss of generality.

25

Published as a conference paper at ICLR 2025

Theorem B.4 (Sufficiency of (r − 1)-node joint breakings for most-expressive r structural). Let E
be the parallel breaking expansion mapping obtained by perturbing (r − 1)-nodes at a time, and
let T ⋆ =

(
n
r−1

)
. Let R be the reduction mapping as defined in Equation (11). Assume ρλ and

ϕλ injective, and fλ node-most-expressive, for every λ ∈ [L]. Then, R(E(A,V1)){v1,...vr} is a
most-expressive structural representation of {v1, . . . vr}.

Proof. The proof is step-by-step identical to the proof of Theorem 4.5, with the only difference
being that we break r − 1 nodes at a time to obtain most-expressive structural representations of
order r. Let {u1, . . . , ur} be another set of r nodes, which is different from {v1, . . . , vr}. We
will show that R(E(A,V1)){v1,...,vr} = R(E(A,V1)){u1,...,ur} iff {v1, . . . , vr} ∼ {u1, . . . , ur},
therefore satisfying the definition of most-expressive structural representations (Definition 2.2).

Recall that, since T ⋆ =
(
n
r−1

)
we have T =

(
n
r−1

)
+1 because we need to break all the

(
n
r−1

)
set of

r − 1 nodes, and therefore the equations can be rewritten as

Uλ,t = ϕλ

(
{Vt,v1 , . . . ,Vt,vr}

)
Uλ,{v1,v2} = ρλ

(
{Uλ,t}∀t∈[T] s.t. Λt=λ

)
R(E(A,V1)){v1,...,vr} =

(
Uλ,{v1,...,vr}

)
λ∈[L]

.

For simplicity, let us further denote by St,{v1,...,vr} the set of the representations of {v1, . . . , vr} at
time t, i.e., St,{v1,...,vr} = {Vt,v1 , . . . ,Vt,vr}.

(⇒) We will show that R(E(A,V1)){v1,...,vr} = R(E(A,V1)){u1,...,ur} ⇒ {v1, . . . , vr} ∼
{u1, . . . , ur}. Since ρλ and ϕλ are injective, we have

R(E(A,V1)){v1,...,vr} = R(E(A,V1)){u1,...,ur}

⇒ ∀λ ∈ [L] {St,{v1,...,vr}}∀t∈[T] s.t. Λt=λ = {St,{u1,...,ur}}∀t∈[T] s.t. Λt=λ

⇒ ∀j ∈ [T],∃k ∈ [T] such that {Vj,v1 , . . . ,Vj,vr} = {Vk,u1 , . . . ,Vk,ur}
which means that ∀j ∈ [T],∃k ∈ [T] such that
{fλ(A,V1 ⊕ 1sj)v1 , . . . , fλ(A,V1 ⊕ 1sj)vr} = {fλ(A,V1 ⊕ 1sk)u1

, . . . , fλ(A,V1 ⊕ 1sk)ur
}

where 1sj (and similarly 1sk) is the vector with exactly r − 1 ones (and n − (r − 1) zeros), at the
r − 1 positions specified by sj = {j1, . . . , jr}, with j1, . . . , jr node ids.

Since the above means that ∀j ∈ [T],∃k ∈ [T] where the sets are the same, then without loss of
generality we have that

fλ(A,V1 ⊕ 1sj)v1 = fλ(A,V1 ⊕ 1sk)u1

...
fλ(A,V1 ⊕ 1sj)vr = fλ(A,V1 ⊕ 1sk)ur

Consider the first equation. Since fλ is node-most-expressive, then v1 ∼ u1, which implies ∃P per-
muting nodes in sj with nodes in sk and v1 with u1 such that A = PAP T and V1⊕1sk = P (V1⊕
1sj). This implies that (sj , v1) ∼ (sk, u1) or, equivalently, (j1, . . . , jr, v1) ∼ (k1, . . . , kr, u1).
Similarly, for all equations until the r-th equation we have that (j1, . . . , jr, vr) ∼ (k1, . . . , kr, ur).
Consequently, it must be (v1, . . . , vr) ∼ (u1, . . . , ur).

(⇐) We will show that {v1, . . . , vr} ∼ {u1, . . . , ur} ⇒ R(E(A,V1)){v1,...,vr} =
R(E(A,V1)){u1,...,ur}. Suppose by contradiction that R(E(A,V1)){v1,...,vr} ̸=
R(E(A,V1)){u1,...,ur} which means that there exist λ ∈ [L] such that Uλ,{v1,...,v2} ̸=
Uλ,{u1,...,ur}. Since ϕλ, ρλ are injective, without loss of generality this implies that ∃j ∈ [T] such
that

fλ(A,V1 ⊕ 1sj)v1 ̸= fλ(A,V1 ⊕ 1sk)u1
∀k ∈ [n+ 1] such that Λj = Λk = λ

However, since {v1, . . . , vr} ∼ {u1, . . . , ur}, ∃k ∈ [T] with Λk = λ such that considering P
permuting sj with sk and v1 with u1 is such that A = PAP T and V1⊕1sk = P (V1⊕1sj). Since
fλ is structural, then

fλ(A,V1 ⊕ 1sj)v1 = fλ(A,V1 ⊕ 1sk)u1

reaching a contradiction.

26

Published as a conference paper at ICLR 2025

B.4 AUXILIARY THEOREMS AND PROOFS

Lemma B.5. Consider the specialization of our sequential breaking algorithm to the Lanczos al-
gorithm (c.f., Appendix B.2.1). For every step t such that βt = 0, if vt is such that it exists another

node u with Vi,vt = Vi,u for all i < t, then Vt =
1vt−projV1,...Vt−1

(1vt)

∥1vt−projV1,...Vt−1
(1vt)∥

∈ Rn is a unit vector

orthogonal to previous vectors.

Proof. First, we note that for every step t, if βt = 0, then7

wt−1 = w′
t−1 − αt−1Vt−1 − βt−1Vt−2 = 0,

which implies

w′
t−1 = AVt−1 ∈ span(Vt−1,Vt−2).

Now we only need to show that 1vt ̸∈ span(Vt−1, . . . ,V1). Assume by contradiction that instead
1vt ∈ span(Vt−1, . . . ,V1), and therefore it can be obtained as a linear combination of Vt−1, . . . ,V1.
However, since by assumption ∃u such that Vi,v = Vi,u for all i < t, then the linear combination
of Vt−1, . . . ,V1 will necessarily result in a vector having the same entry for vt and u, and therefore
cannot be 1vt which is 1 in vt and 0 in u, leading to our contradiction.

Theorem B.6. Consider the specialization of our sequential breaking algorithm to the Lanczos
algorithm (c.f., Appendix B.2.1). There exist most-expressive breaking selectors (h⋆λ)

L
λ=1 (c.f., Def-

inition A.1) which are sufficient to always obtain breaking nodes vt such that, when βt = 0, then

Vt =
1vt−projV1,...Vt−1

(1vt)

∥1vt−projV1,...Vt−1
(1vt)∥

∈ Rn is a unit vector orthogonal to previous vectors.

Proof. The proof follows directly from Lemma B.5 by showing that there exist most-expressive
(h⋆λ)

L
λ=1 satisfying its assumptions. These breaking selectors can be easily constructed in the fol-

lowing way:

(1) For the first t such that βt = 0, we need the corresponding h⋆λ to return an isomorphism class
that contains more than one node. In other words, the length of the list must be greater than 1
(k⋆λ > 1). Since this is the first time we break symmetries, this ensure that there exists another
u satisfying Lemma B.5.

(2) For any other t such that βt = 0, we also need h⋆λ to be returning a non-singleton isomorphism
class. This class must be such that it exists another node u isomorphic to vt such that Vi,vt =
Vi,u for all i < t, so that the assumptions of Lemma B.5 are met. Note that there always exist
such h⋆λ, as we show next.

Assume by contradiction that there isn’t any vt such that ∃u with Vi,vt = Vi,u for all i < t.
Then it is always possible to obtain a new orthogonal vector using the Lanczos algorithm (by
propagating the unique features), which implies that βt ̸= 0 reaching a contradiction.

Finally, note that such (h⋆λ)
L
λ=1 are non overlapping: whenever an h⋆λ is chosen to obtain a

corresponding vt, then the symmetry is broken and therefore using again the isomorphism class
as output of another h⋆λ′ , with λ′ > λ, will not result in additional symmetry breakings, implying
we need to use a different non-singleton isomorphism class for later t′ > t such that βt′ = 0.

Theorem B.7. Let G1 = (A1,X1), G2 = (A2,X2) be two isomorphic graphs, i.e., A2 =
PA1P

T , X2 = PX1, for some permutation matrix P . Denote the Lanczos vectors of G1 as
V G1
1 , . . . ,V G1

n , and the Lanczos vectors of G2 as V G2
1 , . . . ,V G2

n , obtained by our sequential
breaking algorithm with V G1

1 and V G2
1 the normalized outputs of the structural function gstruc

(Equation (1)) and (hλ)
L
λ=1 the most-expressive breaking selectors (Definition A.1). There exists

a permutation matrix B such that

V G2
t = BV G1

t , ∀t ≤ n. (16)
7Note that if t = 2, then w1 = w′

1 − α1V1 and the equation is valid by assuming Vt−2 = 0, β1 = 0.

27

Published as a conference paper at ICLR 2025

Proof. For simplicity of notation, let b1 = Concat((hλ(A1,V1))
L
λ=1) and b2 =

Concat((hλ(A2,V2))
L
λ=1) be the two lists of breakings. Since b1, b2 are simply orderings of node

ids, they can equivalently be represented by permutation matrices, which we will denote by Pb1
and

Pb2 . Let B the permutation matrix transforming b1 into b2, that is:

B = P T
b2
Pb1

. (17)
We will prove the result by induction by showing that Equation (16) is true with B as in Equa-
tion (17).

Base case. Consider t = 1. Since (hλ)
L
λ=1 are most-expressive and structural, the breaking nodes

in the same position in b1 and b2 are isomorphic. Therefore, B maps each node in G1 to a node in
G2 isomorphic to it, which implies

BV G1
1 = V G2

1 .

Consider t = 2. We distinguish two cases: (1) βG1
2 ̸= 0 and βG2

2 ̸= 0 or (2) βG1
2 = 0 and βG2

2 = 0.
Indeed, it is not possible to have βG1

2 ̸= βG2
2 , as they are obtained from V G1

1 and V G2
1 using a

structural function.

If β2 ̸= 0, since the steps of the Lanczos algorithm outside the else-statement are all structural,
since V G2

1 is simply a permutation of V G1
1 , and since B maps each node in G1 to a node in G2

isomorphic to it, then again

BV G1
2 = V G2

2 .

If, instead, βG1
2 = βG2

2 = 0, then, for each graph Gi, i ∈ {1, 2}, given a breaking node vGi
2 we first

construct the breaking vector as UGi
2 = 1

v
Gi
2

and then orthonormalize it using Gram-Schmidt. Note

that since UG1
2 ,UG2

2 are standard basis vectors, which differ in that they are obtained by potentially
different breaking nodes vG1

2 and vG2
2 , we have BUG1

2 = UG2
2 by definition of B (which indeed

maps vG1
2 into vG2

2). Therefore, denoting by V̂ Gi
2 the unnormalized version of V Gi

2 , we have

BV̂ G1
2 = B(UG1

2 − proj
V

G1
1

(UG1
2))

= BUG1
2 −Bproj

V
G1
1

(UG1
2)

= BUG1
2 −B(UG1

2

T
V G1
1)V G1

1

= BUG1
2 − (UG1

2

T
BTBV G1

1)BV G1
1

= BUG1
2 − proj

BV
G1
1

(BUG1
2)

= UG2
2 − proj

V
G2
1

(UG2
2)

= V̂ G2
2 .

Since we have just shown that Equation (16) is true for the unnormalized vectors, then dividing both
sides by the norm preserves the relationship, and therefore

BV G1
2 = V G2

2 .

Inductive step. Consider a step t− 1 < n, and suppose

V G2
i = BV G1

i , ∀i ≤ t− 1. (18)

We next show that V G2
t = BV G1

t . We distinguish again two cases, βt ̸= 0 and βt = 0.

If βt ̸= 0, then the step to obtain the next Lanczos vector is a structural function, and since B maps
each node in G1 to a node in G2 isomorphic to it, then again

BV G1
t = V G2

t .

If βt = 0, then UG1
t ,UG2

t are standard basis vectors, which differ in that they are obtained by
potentially different breaking nodes vG1

t and vG2
t , and again we have BUG1

t = UG2
t by definition

of B. Therefore, denoting by V̂ Gi
t the unnormalized version of V Gi

t ,

BV̂ G1
t = B(UG1

t −
t∑
i=1

proj
V

G1
i

(UG1
t))

28

Published as a conference paper at ICLR 2025

= BUG1
t −B

t∑
i=1

proj
V

G1
i

(UG1
t)

= BUG1
t −B

t∑
i=1

(UG1
t

T
V G1
i)V G1

i

= BUG1
t −

t∑
i=1

(UG1
t

T
BTBV G1

i)BV G1
i

= BUG1
t −

t∑
i=1

proj
BV

G1
i

(BUG1
t)

= UG2
t −

t∑
i=1

proj
V

G2
i

(UG2
t)

= V̂ G2
t

which implies that

BV G1
t = V G2

t ,

since we are simply dividing both sides by the norm.

Remark B.8 (Equivariance of VT , . . . ,V1). Theorem B.7 demonstrates that the vectors VT , . . . ,V1

produced by the expansion map permute with the input graph. In other words, for any two isomor-
phic graphs G1, G2, there exists a permutation matrix B such that V G2

t = BV G1
t , for all t ≤ T .

This property holds for both the Lanczos vectors and any other structural function ft. In the latter
case, the proof follows from Theorem B.7 by simply disregarding the β = 0 case.

C RELATED WORK

Towards Graph Foundation Models. Unlike vision and language, graph machine learning does
not yet have a standard recipe for training general purpose models. Because of this, there is an active
debate on what ingredients are needed (Mao et al., 2024). Some requirements are clear, such as the
need for a single input feature space common to all graphs, akin to a language model tokenizer (Rad-
ford et al., 2019). Initial approaches include “textifying” all node features and using pre-trained text
encoders to produce feature vectors (Chen et al., 2024b; Liu et al., 2024), while recent works have
proposed different solutions for addressing the problem of differing features across graphs (Zhao
et al., 2023; Lachi et al., 2024; Zhao et al., 2024; Xia & Huang, 2024; He & Hooi, 2024; Shen
et al., 2024; Hou et al., 2024), including for cases where the differences are only the relation identi-
fiers (Gao et al., 2023; Zhou et al., 2023; Galkin et al., 2024). Our work focuses on another crucial
need: developing general-purpose representations capable of performing multiple tasks. To best of
our knowledge, there is no existing GNN-based model capable of learning representations that are
suitable for different tasks. Existing effort are either domain-specific (Zheng et al., 2024; Beaini
et al., 2024; Sypetkowski et al., 2024), or heavily rely on LLMs (Huang et al., 2024a; Liu et al.,
2024; Chen et al., 2024a; Tang et al., 2024), which can present efficiency challenges (Mao et al.,
2024). Perhaps more crucially, no existing method offers guarantees on the expressiveness of the
learned representations. Our work builds on this growing understanding of GNN expressive power
(Morris et al., 2023), moving from expressivity for a single task to expressivity across many tasks.

Associative Memories and Distributed Representations. Earlier neural network blueprints
broadly fell into one of two extreme camps: “one concept one neuron”, or distributed (holographic)
representations, where an individual concept is spread across many neurons. Arguments for either
side were advanced partially through appeal neuroscience’s understanding the animal brains. The
deep learning era triggered by AlexNet (Krizhevsky et al., 2012) largely set this debate to one side,
as modern neural networks tended to exhibit properties somewhere in the middle, with neuron-level
concepts recoverable in startling detail in some cases (Templeton et al., 2024) and superimposed in
other cases (Elhage et al., 2022). Our effort to explicitly reintroduce holographic representations
for graphs is in response to the different structural properties (namely symmetries) of graph data
compared to vision, language and other modalities.

29

Published as a conference paper at ICLR 2025

Symmetry Breaking Algorithms. The expansion map in HoloGNN uses symmetry breakings as a
key subroutine to produce general and expressive representations. Symmetry breakings is often used
in GNNs that “color” or “mark” individual nodes in order to distinguish them, a common form of
positional encoding (You et al., 2019; Cui et al., 2022), oftentimes also obtained by sampling random
features for each node (You et al., 2019; Murphy et al., 2019; Abboud et al., 2021; Sato et al., 2021;
Puny et al., 2020). Symmetry breakings has also been used as a form of distance encoding, which
can be specialized for predictions of different tasks (Li et al., 2020; Yin et al., 2020). In contrast, our
approach uses the same symmetry breaking for all tasks, with task specialization occurring only in
the (lightway) reduction map. But symmetry breaking has been used more broadly in the analysis of
graphs. Examples include in algebraic combinatorics to study the automorphism groups of different
graph classes (Albertson & Collins, 1996), and in combinatorial optimization, where symmetry
breaking is used to simplify complex combinatorial constraint sets (Fahle et al., 2001). Moreover,
symmetry breaking is also used in gold-standard linear algebra algorithms, such as Lanczos and
Arnoldi iterations for computing eigendecompositions (Lanczos, 1950; Arnoldi, 1951). In this case,
symmetry breaking is used to (randomly) resolve ambiguities in eigenspaces for eigenvalues with
repeated roots. Stepping back, although symmetry breaking is a known concept in graph learning,
our approach distinguishes itself by ensuring that symmetry breaking is performed in such a way that
it is possible to re-introduce the lost permutation symmetries and produce structural representations.

Subgraph GNNs. The concept of symmetry breaking, particularly through our parallel breaking
algorithm, shares similarities with the recent works on Subgraph GNNs (Zhang & Li, 2021; Cotta
et al., 2021; Papp et al., 2021; Bevilacqua et al., 2022; Zhao et al., 2022; Papp & Wattenhofer,
2022; Frasca et al., 2022; Qian et al., 2022; Zhang et al., 2023; Bevilacqua et al., 2024; Bar-Shalom
et al., 2024a;b), which also break symmetries by marking nodes to enhance the expressive power
of GNNs, as originally proposed in Li et al. (2020). However, our approach significantly differs
from Subgraph GNNs in that our aim is not to produce expressive representations for a single task,
but rather to pre-train models returning representations that can be used for any task. To this end,
we introduce the concept of a reduction map, which generates structural representations suitable for
any task order. In contrast, Subgraph GNNs use their representations to revert to structural node or
graph-level representation. Additionally, while Subgraph GNNs generally break symmetries for all
nodes in the graph, our expansion map can leverage T ⋆ ≪ n, significantly improving efficiency.

Graph Transformers. Finally, we acknowledge the growing interest in graph transformer mod-
els (Kreuzer et al., 2021; Dwivedi & Bresson, 2021; Ying et al., 2021; Rampášek et al., 2022; Kim
et al., 2022; Müller et al., 2024), driven by their strong performance especially on graph classifica-
tion tasks. However, graph transformers rely on positional encodings (Dwivedi et al., 2023), which
make their learned representations inherently positional. As discussed in Section 2, positional rep-
resentations are task-order specific. This task-order specificity makes graph transformers unsuitable
for pre-training a single model that can generate flexible representations capable of adapting to tasks
of varying orders. In contrast, HoloGNN focuses on producing task-agnostic, symmetry-free repre-
sentations that can efficiently adapt to different task orders.

D COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the symmetry-breaking algorithms (Algorithm 1 and
Algorithm 2), which represent the foundation of our HoloGNN.

The complexity of the algorithms is determined by the complexity of ft (for sequential breaking)
and fλ (for parallel breaking). Suppose ft and fλ are Message Passing Neural Networks (MPNNs),
which have linear complexity in the number of nodes n and edges m, O(n+m), where the feature
dimension d is considered constant. Since both sequential and parallel breaking perform T calls to
the corresponding MPNNs, each time by passing a new breaking node, the complexity is O(T (n+
m)) in both cases. Note that in our experiments T ≪ n and T ≪ m. For instance, in the Pubmed
dataset, T = 8, n = 19717, m = 88648. Finally, we note that in the parallel breaking algorithm,
the additional T factor in the complexity can effectively be mitigated, as all T calls can be done in
parallel. This is because each breaking is applied to V1, and fλ does not take all prior embeddings.

30

Published as a conference paper at ICLR 2025

Table 3: Performance on the MovieLens dataset in each task (column), when pre-trained in each of
the four tasks (row block). The diagonal (light blue) contains the performance of the models when
trained and tested on the same task. ”OOM” indicates out of RAM, and ”NA” indicates that either
the task could not be performed due to out-of-memory issues or because the model cannot perform
that task order. Each column illustrates the performance drop when comparing the results of pre-
training on the target task with pre-training on all other tasks, with HoloGNN variants exhibiting
significantly smaller drops.

MOVIELENS

UserMovie MovieMovie UserMovieUser UserMovieMovie
(RMSE ↓) (Acc. ↑) (Acc. ↑) (Acc. ↑)

P
R

E
-T

R
A

IN
IN

G
TA

S
K

U
se

rM
ov

ie

SEAL 0.960±0.010 0.815±0.002 OOM OOM
NBFNet (no feat) 1.044±0.004 0.981±0.001 NA NA
NBFNet 0.967±0.005 0.892±0.001 NA NA
SAGE 0.943±0.006 0.657±0.008 0.595±0.002 0.589±0.001

SAGE & LapPE 0.949±0.019 0.765±0.004 0.593±0.002 0.592±0.001

HoloGNN (MP) 0.949±0.002 0.921±0.001 0.708±0.001 0.808±0.002

HoloGNN (GNN) 0.943±0.001 0.918±0.002 0.741±0.003 0.810±0.001

M
ov

ie
M

ov
ie

SEAL 1.044±0.007 0.981±0.001 OOM OOM
NBFNet (no feat) 1.053±0.007 0.989±0.001 NA NA
NBFNet 1.050±0.007 0.989±0.001 NA NA
SAGE 1.052±0.004 0.977±0.002 0.635±0.006 0.667±0.002

SAGE & LapPE 1.045±0.003 0.975±0.003 0.646±0.016 0.675±0.001

HoloGNN (MP) 1.019±0.005 0.984±0.001 0.694±0.001 0.810±0.001

HoloGNN (GNN) 1.020±0.006 0.986±0.001 0.721±0.001 0.810±0.004

U
se

rM
ov

ie
U

se
r

SEAL NA NA OOM NA
NBFNet (no feat) NA NA NA NA
NBFNet NA NA NA NA
SAGE 1.014±0.005 0.733±0.002 0.816±0.003 0.646±0.001

SAGE & LapPE 1.012±0.008 0.793±0.002 0.812±0.006 0.647±0.001

HoloGNN (MP) 1.005±0.002 0.936±0.003 0.794±0.004 0.779±0.001

HoloGNN (GNN) 0.991±0.005 0.972±0.001 0.811±0.002 0.795±0.001

U
se

rM
ov

ie
M

ov
ie

SEAL NA NA NA OOM
NBFNet (no feat) NA NA NA NA
NBFNet NA NA NA NA
SAGE 1.007±0.014 0.930±0.003 0.721±0.001 0.890±0.007

SAGE & LapPE 0.995±0.004 0.900±0.002 0.719±0.001 0.885±0.008

HoloGNN (MP) 0.982±0.005 0.974±0.002 0.756±0.002 0.904±0.009

HoloGNN (GNN) 0.989±0.004 0.974±0.002 0.769±0.001 0.905±0.008

E ADDITIONAL EXPERIMENTS AND DETAILS

E.1 ADDITIONAL EXPERIMENTS

In this section, we provide additional insights and results on the experiments. We also introduce
an additional baseline, created by concatenating structural and positional encodings—referred to as
SAGE & LapPE for MovieLens and GCN & LapPE for Planetoid, using SAGE or GCN for structural
encodings and Laplacian eigenvectors for positional encodings (Dwivedi et al., 2023). This baseline
demonstrates that simple concatenation does not achieve the performance of HoloGNN.

E.1.1 MOVIELENS

Table 3 compares the performance of HoloGNN in the MovieLens dataset. Each column represents
a different task we test on, namely UserMovie, MovieMovie, UserMovieUser, UserMovieMovie.
Each row block corresponds to a pre-training task, with each row being one model. This implies
that each entry in the table corresponds to the performance of a model (row) when pre-trained on
one task (row block) and adapted to a potentially different task (column). The diagonals, colored in
light blue, contain the performance of each model when pre-trained and tested on the same task; in
other words, each diagonal shows the performance of the supervised version of each model.

We consider four tasks, UserMovie, MovieMovie which are order-2 tasks, and UserMovieUser,
UserMovieMovie, which are order-3 tasks. In particular, the UserMovie task, the standard task for
this dataset, predicts a user’s rating of a movie, MovieMovie predicts the existence of a metapath
between two movies, UserMovieUser predicts if two users will both watch a particular movie,

31

Published as a conference paper at ICLR 2025

Table 4: Performance on the Planetoid datasets in each of the two tasks (column), when pre-trained
in either of the two tasks (row block). For each dataset, the diagonal (light blue) shows the per-
formance of the models when trained and tested on the same task. Each column illustrates the
performance drop when comparing the results of pre-training on the target task with pre-training
on the other task. HoloGNN variants demonstrate more consistent performance, with significantly
smaller drops than all other methods especially when pre-trained on link prediction and tested on
node classification.

CORA CITESEER PUBMED

Node Class. Link Pred. Node Class. Link Pred. Node Class. Link Pred.
(Acc. ↑) (AUROC ↑) (Acc. ↑) (AUROC ↑) (Acc. ↑) (AUROC ↑)

P
R

E
-T

R
A

IN
IN

G
TA

S
K

N
od

e
C

la
ss

.

SEAL 77.2±2.1 85.9±1.6 64.5±0.5 88.8±1.1 75.0±1.1 93.3±0.2

NBFNet (no feat) 31.3±1.3 82.1±0.9 25.7±1.6 89.6±1.1 40.5±0.5 92.5±0.3

NBFNet 68.8±1.3 87.5±1.6 50.4±2.8 88.8±1.2 71.4±2.1 95.7±0.3

GCN 81.4±1.0 89.9±0.2 70.1±0.7 89.5±0.8 79.0±0.2 93.2±0.1

GCN & LapPE 81.5±0.8 90.2±0.8 70.0±0.4 88.5±0.8 78.9±0.3 93.5±0.1

HoloGNN (MP) 81.5±0.8 91.0±0.3 70.0±0.2 93.7±0.1 78.7±0.2 93.5±0.2

HoloGNN (GNN) 81.6±0.7 91.1±0.4 70.1±0.8 94.0±0.6 78.7±0.8 93.8±0.1

L
in

k
Pr

ed
.

SEAL 35.6±2.6 93.5±0.5 31.6±0.8 90.6±1.1 44.4±1.1 97.8±0.2

NBFNet (no feat) 26.7±3.3 94.8±0.7 22.8±2.8 92.4±1.6 40.5±0.3 98.3±0.2

NBFNet 27.8±6.1 89.0±2.7 25.0±1.0 85.2±1.2 56.7±0.2 98.2±0.2

GCN 74.2±0.2 89.6±0.5 68.3±0.2 91.4±0.2 76.8±0.1 96.0±0.7

GCN & LapPE 73.4±0.6 89.3±1.8 68.1±0.5 91.1±0.7 75.3±0.6 95.8±0.4

HoloGNN (MP) 80.5±0.8 92.5±0.5 69.0±0.8 94.9±0.5 79.7±0.4 96.7±0.4

HoloGNN (GNN) 80.2±0.5 93.9±0.1 69.0±0.9 95.0±0.5 79.8±0.5 97.2±0.8

UserMovieMovie, if a user will watch two particular movies. For SEAL, we use OOM to denote that
the model went out of RAM memory in the preprocessing phase, when constructing the subgraphs.
We then use NA in the other tasks as the embeddings cannot be adapted to any other tasks, since
they could not be learned. For NBFNet and NFBNet (no feat) (the variant that does not use node
features) we use NA in the order-3 tasks as NBFNet cannot handle tasks of order greater than 2.

As can be seen from Table 3, HoloGNN (GNN) and its variant HoloGNN (MP), which uses simple
message passing propagations as fλ instead of a GNN network, exhibit a significantly smaller gap
in the performance when pre-trained on the task and when adapted from a different one. For ex-
ample, when considering the order-3 task UserMovieUser, the difference in performance between
HoloGNN (GNN) when pre-trained on the task (0.811) and its worst performance when pre-trained
in any other task (0.721, obtained pre-training on the order-2 MovieMovie) results in a performance
drop of around 9%. SAGE shows a much larger drop of around 22%, with its accuracy dropping
from 0.816 when pre-trained on UserMovieUser to 0.595 when pre-trained on the order-2 User-
Movie (worst performance when pre-trained in any other task). For the order-2 task MovieMovie,
HoloGNN exhibits a drop of 7%, while SAGE’s drop becomes 32%. Note that this trend also holds
true for all other methods, with SEAL and NBFNet consistently showing larger performance gaps
than HoloGNN. The only exception is NBFNet (no feat) in the MovieMovie dataset when pre-
trained on UserMovie; however, this is due to NBFNet underperforming on the pre-training task,
suggesting it is merely capturing node distances rather than learning the task, which happens to
suffice for MovieMovie.

E.1.2 PLANETOID

Table 4 compares the performance of HoloGNN in the Planetoid datasets Cora, Citeseer and
Pubmed. Each column block represents a different dataset, and each column corresponds to a differ-
ent task we test on, namely Node Classification and Link Prediction. Each row block corresponds
to a pre-training task, with each row being one of the models. This implies that each entry in the
table corresponds to the performance of a model (row) when pre-trained on one task (row block)
and adapted to a potentially different task (column), with both tasks from the same dataset. The
diagonal for each dataset, which is colored in light blue, contains the performance of each model
when pre-trained and tested on the same task; in other words, it contains to the performance of the
supervised version of each model in that dataset.

For each dataset, we consider the order-1 task Node Classification and the order-2 task Link Pre-
diction. As can be seen from Table 4, HoloGNN (GNN) and its variant HoloGNN (MP), which uses

32

Published as a conference paper at ICLR 2025

simple message passing propagations as fλ instead than a shallow GNN network, demonstrate sig-
nificantly more consistent performance compared to other methods. While all other models exhibit
a significant performance loss when pre-trained on Link Prediction and adapted to Node Classifi-
cation, this is not the case for HoloGNN and HoloGNN (MP). For instance, in the CORA dataset,
the difference in performance between HoloGNN (GNN) when pre-trained on Node Classification
(81.6%) and its performance when pre-trained on Link Prediction and adapted to Node Classifi-
cation (80.2%) results in a performance drop of around 1%. On the contrary, SAGE suffers from
a performance drop of 7%, while NBFNet and SEAL show a more dramatic drop of 41%. Pre-
training on Node Classification results in less dramatic drops, especially for SAGE which obtains
node representation (structural of order 1) both for node- and link-level tasks, which therefore tend
to yield similar performances. Nonetheless, HoloGNN still demonstrate smaller performance drops,
and overall better performances.

E.1.3 MOLHIV

Table 5: Performance on molhiv on the graph
classification task, when pre-trained in either
graph classification or link prediction. HoloGNN
demonstrates more consistent performance, with
significantly smaller drops than GCN.

MOLHIV
Graph Class.
(ROC-AUC ↑)

GCN (Pretrain on Graph Class) 76.06±0.97

HoloGNN (GNN) (Pretrain on Graph Class) 78.19±0.91

GCN (Pretrain on Link Pred) 70.29±1.33

HoloGNN (GNN) (Pretrain on Link Pred) 76.43±1.20

We conduct an additional experiment to evalu-
ate the performance of HoloGNN when adapted
to a different task order, namely the order-n task
graph classification. Since there is currently no
standard dataset that includes both graph clas-
sification and another type of task, we consid-
ered the molhiv dataset from the OGB bench-
mark (Hu et al., 2020), which is designed for
graph classification (an order-n task) and we
created a link prediction task (an order-2 task)
on the dataset. We evaluated the performance
of both GCN and HoloGNN when pre-trained
on link prediction and adapted to graph classi-
fication and compare them to their performance when directly trained and evaluated on the graph
classification task.

Results are reported in Table 5. The key observation is that the difference in performance between
HoloGNN trained on graph classification (78.19%) vs pre-trained on link prediction and adapted
to graph classification (76.43%) results in a performance drop of only 1.76%, while GCN suffers a
more pronounced drop of 5.77%. These results further showcase the ability of HoloGNN to pre-train
on one task order and adapt effectively to other task orders.

E.1.4 ABLATION STUDY ON THE NUMBER OF BREAKINGS

Table 6: Impact of the number of breakings T in
HoloGNN. Regardless of the value of T , the perfor-
mance drop of HoloGNN when trained on node clas-
sification and when trained on link prediction and
adapted to node classification is significantly smaller
than the performance drop suffered by GCN, with
larger values of T yielding marginal improvements.

CORA
Node Class.

(Acc. ↑)

GCN (Pretrain on Node Class) 81.4±1.0

HoloGNN (GNN) T = 4 (Pretrain on Node Class) 80.9±0.8

HoloGNN (GNN) T = 8 (Pretrain on Node Class) 81.6±0.7

HoloGNN (GNN) T = 64 (Pretrain on Node Class) 82.1±0.1

GCN (Pretrain on Link Pred) 74.2±0.2

HoloGNN (GNN) T = 4 (Pretrain on Link Pred) 79.4±0.7

HoloGNN (GNN) T = 8 (Pretrain on Link Pred) 80.2±0.5

HoloGNN (GNN) T = 64 (Pretrain on Link Pred) 80.5±0.7

We additionally evaluate the impact of
the number of breakings T . We con-
sider the Cora dataset and report results
of HoloGNN for different values of T on
the node classification task, both when
trained on it and when pre-trained on link
prediction and adapted to node classifi-
cation. Table 6 shows that small T val-
ues are sufficient for obtaining represen-
tations that can effectively adapt to dif-
ferent tasks, and increasing T results in
marginal improvements. Indeed, regard-
less of the value of T , the performance
drop of HoloGNN when trained on node
classification and when trained on link
prediction and adapted to node classifica-
tion is significantly smaller than the per-
formance drop suffered by GCN.

33

Published as a conference paper at ICLR 2025

Table 7: Comparison with GPS (Rampášek et al., 2022) on CORA in each of the two tasks (column),
when pre-trained in either of the two tasks. HoloGNN demonstrates more consistent performance,
with significantly smaller drops than GPS when pre-trained on link prediction and adapted to node
classification.

CORA

Node Class. Link Pred.
(Acc. ↑) (AUROC ↑)

GCN (Pretrain on Node Class) 81.4±1.0 89.9±0.2

GPS (Pretrain on Node Class) 78.3±1.0 93.0±0.1

HoloGNN (GNN) (Pretrain on Node Class) 81.6±0.7 91.1±0.4

GCN (Pretrain on Link Pred) 74.2±0.2 89.6±0.5

GPS (Pretrain on Link Pred) 36.8±2.0 92.7±0.4

HoloGNN (GNN) (Pretrain on Link Pred) 80.2±0.5 93.9±0.1

E.1.5 COMPARISON WITH GPS GRAPH TRANSFORMER

We additionally compare the performance of the GPS graph transformer (Rampášek et al., 2022)
baseline with HoloGNN when adapted to a different task order than the one used for pre-training,
using the CORA dataset.

Results are reported in Table 7, where each column represents a different task (Node Classification
or Link Prediction). For each task, we evaluate the performance of the models when trained directly
on that task (shown in light blue) and when pre-trained on the other task and adapted to the target
task. While GPS performs well when adapted to Link Prediction, it suffers from a dramatic per-
formance drop of 41.5% when pre-trained on Link Prediction and adapted to Node Classification,
while HoloGNN results in a performance drop of only around 1%.

E.2 EXPERIMENTAL DETAILS

We implemented HoloGNN using Pytorch (Paszke et al., 2019) and Pytorch Geometric (Fey
& Lenssen, 2019), and performed hyperparameter tuning using the Weight and Biases frame-
work (Biewald, 2020). We ran our experiments on NVIDIA A100 and GeForce RTX 4090 GPUs.

In all our experiments except the eigenvector task, we implemented the parallel breaking algorithm.
We use a feature-marking technique to break nodes, adding an additional dimension to the embed-
dings with value 1 if that node is selected to be broken, and 0 otherwise. Note that we break nodes
one at a time, so there are T distinct forward passes, as described in the parallel breaking algorithm
(Algorithm 2). We use a shallow structural model as fλ. Specifically, for HoloGNN (MP), fλ sim-
ply performs Ak(V1 ⊕ 1v), for k set to 2. Note that this variant does not have any extra parameters
with respect to a standard GNN. For HoloGNN (GNN), fλ consists of a shallow GNN network, with
2 layers and hidden dimension equal to its input dimension. The GNN layer type depends on the
dataset, as we will see next. In both cases, we set T ⋆ = 8 for Planetoid and MovieLens datasets,
and T ⋆ = 10 for RelBench.

We further defined ϕλ to be elementwise multiplication and implemented ρλ to average over all
steps t. This means we do not concatenate the Uλ,{v1,...,vr} for different λ values; instead, we treat
all Ut,{v1,...,vr} as part of the same partition. This decision aims to reduce the dimension dr of
R(E(A,V1)){v1,...,vr} (Equation (11)) to match d, aligning it to the dimension of other methods.

For NBFNet, we included initial node features by concatenating them in the initial (boundary) con-
dition. We denote the variant that does not include node features as NBFNet (no feat).

Notably, while a standard GNN returns node embeddings, SEAL and NBFNet do not return node
embeddings when pre-trained on tasks of order greater than 1. SEAL produces pre-trained embed-
dings corresponding to the order of the task, which can scale up to O(n3) in our experiments when
pre-trained on order-3 tasks. Similarly, NBFNet returns order-2 embeddings when pre-trained on
tasks of that order and is unable to extend to higher-order tasks. In contrast, HoloGNN remains
linear in the number of nodes and can handle tasks of any order, providing a scalable and flexible
solution across task complexities.

34

Published as a conference paper at ICLR 2025

We train all models using the Adam optimizer, and report the test for the configuration achieving the
best validation metric. Each experiment is repeated for 3 different seeds. Details of hyperparameter
grid for each dataset can be found in the following paragraphs.

MovieLens. For all models except NBFNet, we use a Bipartite-SAGE GNN Network (Hamilton
et al., 2017) with hidden dimension 64 and 3 SAGE layers. For SAGE & LapPE we tuned the number
of eigenvectors in {8, 16}. We tuned the learning rate in {0.01, 0.001}. For HoloGNN (MP) and
HoloGNN (GNN), we use the Bipartite-SAGE GNN Network as gstruc (Equation (1)) and use node
degree as the breaking rule to construct breaking selectors (Appendix A.1). We employed GCN
layers in the GNN used as fλ for HoloGNN (GNN) for all datasets except UserMovieUser, where
we instead used SAGE layers. We generate train validation and test splits for each task by randomly
splitting the edges with a ratio of 80:10:10. We run our experiments for 1k epochs, and return the test
at the epoch achieving the best validation results. For NBFNet and SEAL we run for 50 epochs, due
to the significant and intractable increase in running time. We remark that the number of epochs for
these models is similar to the number of epochs used in the corresponding original papers on their
datasets. Notably, on UserMovieUser and UserMovieMovie, preprocessing for SEAL to construct
the subgraphs exceeds the RAM capacity of our A100 GPUs (528 GB), resulting in out-of-memory
(OOM) errors as reported in the table. Finally, since NBFNet is not designed for triplet predictions,
we report NA in the corresponding entries for UserMovieUser and UserMovieMovie.

Planetoid. For all models except NBFNet, we use a GNN Network with hidden dimension 64 and
2 GCN layers (Kipf & Welling, 2017). For GCN & LapPE we tuned the number of eigenvectors in
{8, 16}. For the node-level tasks, we employ the widely used choices, including the final classifier
being a linear layer, dropout of 0.5 and weight decay of 5e− 4. For HoloGNN (MP) and HoloGNN
(GNN), we use the GCN network as gstruc (Equation (1)), node degree as the breaking rule to con-
struct breaking selectors (Appendix A.1), and we further employed GCN layers in the GNN used as
fλ for HoloGNN (GNN). For node classification, we employ the standard splits (Yang et al., 2016),
while for link prediction, following Zhu et al. (2021), we generate train validation and test splits by
randomly splitting the edges with a ratio of 85:5:10. We run our experiments for 500 epochs, and
return the test at the epoch achieving the best validation results. Due to the significant increase in
running times, for NBFNet we run for 100 epochs for the node-level tasks, and for 20 epochs for the
link-level tasks, while for SEAL we run for 500 and 50, respectively.

RelBench. The rel-stack graph is a large and realistic graph containing over 38M nodes.
Because of this, our models use subgraph-based sampling as proposed by Hamilton et al. (2017).
This means that the symmetry breaking approaches based on global structural properties, such as
choosing nodes of highest-degree, are not possible in this case. Instead, we use a mini-batch based
breaking method, which takes the embeddings of each node given by the initial structural model
gstruc and passes them through a learnable linear layer to produce a single scalar logic for each
node. These are then passed as input to a Gumbel-Softmax computation block as described in
Appendix A.1, which selects T ⋆ = 10 ≪ 38M distinct nodes to be used as breaking nodes in a
fully differentiable way. We adapt the GNN training code from the RelBench repository found at
https://github.com/snap-stanford/relbench. We adopt many default hyperparameters from the repos-
itory, including 10 epochs training for node-level tasks, and 20 for link prediction, 2 GNN message
passing layers for ft with sum aggregation, and Adam optimizer with learning rate 0.005 for node-
level and 0.001 for link-level tasks. The exception is that we shrunk the network so as to fit on a 24G
GPU. Namely we used batch size 128, hidden dimension 64, and sampled 64 neighbors per node.

Eigenvector Task. We use the GCN model implemented in Lim et al. (2023), denoted by GCN
(constant input) in Table 2, as gstruc (Equation (1)). Rather than training gstruc together with our
expansion map and the classifier, we utilize the pre-trained gstruc to obtain V1. Then, we use V1 to
derive the eigenvectors as per Algorithm 1, thereby only training the final classifier. We obtained
the eigenvectors using the Subspace Iteration (Saad, 2011), a generalization of the power iteration
method for computing several dominant eigenvectors simultaneously, using node degrees to obtain
breaking selectors (Appendix A.1). Given the eigenvectors matrix U ∈ Rn×k, we obtain the final
prediction as MLP(Ui,: ⊙Uj,:), with ⊙ denoting element-wise product. We set k to be the same as
the number of eigenvectors used by the other methods, namely 16.

35

https://github.com/snap-stanford/relbench

Published as a conference paper at ICLR 2025

Molhiv. We consider a GNN Network with hidden dimension 64 and 2 GCN layers (Kipf &
Welling, 2017) as the baseline. For HoloGNN, We use the identity as gstruc (Equation (1)), and
choose T = 2 breakings for each graph in the dataset. We further employ 2 GCN layers with hidden
dimension 64 in the GNN used as fλ. For both models, we tuned the learning rate in {0.01, 0.001}.
For graph classification, we employ the standard splits (Hu et al., 2020), while for link prediction,
we generate train validation and test splits by randomly splitting the edges with a ratio of 85:5:10.

36

	Introduction
	Permutation Symmetries and Task Generalization
	Holographic Node Representations
	Interpreting the Definition

	An Architecture for Holographic Node Representations
	Overview of Symmetry Breakings
	Sequential Breaking Algorithm
	Parallel Breaking Algorithm
	HoloGNN Gives Expressive Holographic Node Representations

	Experiments
	Conclusion
	Additional Remarks and Technical Details on Holographic node representations
	Node Breaking Selectors
	A Practical Sequential Breaking Reduction Map

	Proofs
	Section 2 Proofs
	Section 4 Expansion Map Proofs
	Lanczos Algorithm

	Section 4 Reduction Map Proofs
	Auxiliary Theorems and Proofs

	Related Work
	Complexity analysis
	Additional Experiments and Details
	Additional Experiments
	MovieLens
	Planetoid
	molhiv
	Ablation Study on the number of breakings
	Comparison with GPS Graph Transformer

	Experimental Details

