
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNCERTAINTY-WEIGHTED FUSION OF RGB AND
SYNTHETIC MOTION CUES FOR VIDEO ANOMALY DE-
TECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Most existing video anomaly detectors rely solely on RGB frames, which lack
the temporal resolution needed to capture abrupt or transient motion cues—key
indicators of anomalous events. To address this, we introduce a robust frame-
work for video anomaly detection that effectively fuses complementary RGB and
synthetic motion cues. Our approach, Uncertainty-Weighted Image-Event Fusion
(IEF-VAD), addresses the modality imbalance inherent in such data by using a
principled, uncertainty-aware process. The system (i) models the high variance
and heavy-tailed noise of synthetic cues with a Student’s t likelihood; (ii) derives
value-level inverse-variance weights via a Laplace approximation to prevent the
dominant image modality from suppressing motion-centric signals; and (iii) iter-
atively refines the fused latent state to remove residual cross-modal noise. This
uncertainty-driven fusion consistently outperforms conventional fusion methods
like cross-attention and gating, which are prone to modality dominance. Without
any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the
art across multiple real-world anomaly detection benchmarks, demonstrating ro-
bust performance even under modality-specific degradation. These findings high-
light the utility of extracting and integrating these complementary motion cues for
accurate and robust video understanding across diverse applications.

1 INTRODUCTION

Recent advances in deep learning have led to significant progress in multimodal data analysis Xu
et al. (2023); Liang et al. (2024); Girdhar et al. (2023); Radford et al. (2021); Li et al. (2024); Guo
et al. (2019); Akbari et al. (2021), enabling systems to effectively integrate diverse sensory inputs
for complex tasks such as video anomaly detection Flaborea et al. (2023); Zhang et al. (2024); Tang
et al. (2024); Ji et al. (2020); Feng et al. (2023). Traditionally, research in this area has predomi-
nantly focused on leveraging static image information, which provides rich spatial context. How-
ever, dynamic motion cues—capturing subtle temporal changes, abrupt transitions, and transient
patterns—remain largely underexplored. Real event data inherently provides microsecond resolu-
tion and polarity information, making it well suited to capture fleeting anomalies that static images
often miss Gallego et al. (2020); Rebecq et al. (2019); Wang et al. (2022); Chakravarthi et al. (2024).
Yet, the scarcity of real-world event datasets and sensor-specific variability has limited their use in
anomaly detection. In this work, we derive synthetic motion cues from RGB videos via simple inter-
frame differencing and thresholding. Although lacking the precise temporal fidelity and polarity of
true event streams, these cues retain the key property of events—sparse, background-suppressed,
motion-centric representations. We therefore refer to them as event-like proxies: not replacements
for real sensors, but scalable motion-salient cues effectively leveraged through our uncertainty-aware
fusion framework.

The challenge of effectively combining homogeneous data sources—static RGB information and
its derived synthetic motion cues—under conditions of uncertainty remains a critical open problem.
Recent transformer-based fusion methods for video anomaly detection Feng et al. (2021b); Wu et al.
(2020); Zhou et al. (2019); Zhu et al. (2013); Ding et al. (2025); Ghadiya et al. (2024) still focus on
the rich spatial details in images and, as a result, under-utilize the transient yet crucial temporal cues
in motion representations. Because both streams originate from the same modality, their homogene-
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ity makes naive fusion especially prone to modality dominance, where the dense spatial features
suppress complementary motion-centric information Park et al. (2024); Tsai et al. (2019); Liu et al.
(2021a). These limitations highlight the need for a fusion strategy that can explicitly account for
uncertainty and rebalance contributions across homogeneous yet imbalanced feature spaces.

To address these challenges, we propose an approach that explicitly fuses RGB features with syn-
thetic motion cues through an uncertainty-aware framework. Our uncertainty-weighted Image and
Event proxy Fusion framework for Video Anomaly Detection (IEF-VAD) balances the two inputs by
assigning inverse-variance weights derived from Bayesian uncertainty estimates. By modelling each
stream’s latent features alongside their predictive variance, IEF-VAD down-weights less reliable sig-
nals and prevents the RGB stream, richer in spatial content but often dominant, from overshadowing
the temporally informative motion cues. Concretely, we capture the heavy-tailed noise of motion
cues with a Student’s t likelihood and obtain Gaussian approximation via Laplace method Malm-
ström et al. (2023); Zhu et al. (2013); Daxberger et al. (2021); Wu et al. (2021), while drawing on
established Bayesian techniques for uncertainty estimation Zhu et al. (2013); Subedar et al. (2018);
Kendall & Gal (2017); Ober et al. (2021); Gal & Ghahramani (2016). The resulting uncertainty-
weighted fusion dynamically modulates each input’s contribution, allowing high-resolution tempo-
ral cues to complement, rather than be suppressed by, the detailed spatial context of images.

To address this imbalance at a finer granularity, we model uncertainty at the feature level by assign-
ing each latent dimension its own variance estimate. Concretely, we assume a Student’s-t likelihood
for each value to capture heavy-tailed noise, particularly prevalent in motion cues, and approxi-
mate it with a Gaussian via a Laplace expansion. This yields effective per-dimension variances that
are converted into precision weights, enabling value-level inverse-variance fusion. In this way, un-
reliable features are down-weighted, and complementary motion cues retain influence even when
co-present with dominant RGB content.

Furthermore, our framework incorporates a sequential update mechanism and iterative refinement
process. The sequential update merges each new image–motion cue observation with the prior
fused state via inverse-variance (Kalman-gain) weights, closely mirroring the Kalman filter update
step Welch & Bishop (1995); Haarnoja et al. (2016). Iterative refinement then targets the fine-
grained residual errors that the fusion step cannot fully resolve—such as feature-level mismatches,
modality-specific noise, and minor scale imbalances that arise when combining two streams with
different noise profiles. By repeatedly estimating and subtracting these residuals, the refinement
network progressively denoises and re-balances the fused representation, yielding a cohesive latent
state.

Our contributions can be summarized as follows:

• Precision-Weighted Fusion Mechanism: We introduce an uncertainty-aware fusion strat-
egy that assigns inverse-variance (precision) weights to image and motion-cue represen-
tations, inspired by Bayesian inference and Kalman filtering. This approach adaptively
balances contributions by down-weighting unreliable signals, preventing dominant RGB
features from suppressing motion-centric cues.

• Practical Integration of Synthetic Motion Cues: We demonstrate that motion cues de-
rived from conventional RGB videos can be effectively integrated into anomaly detection
pipelines. This provides a scalable alternative to real event sensors and broadens the appli-
cability of motion-aware fusion across diverse video datasets.

• Empirical Validation on Real-World Datasets: Our framework achieves state-of-the-art
results on four benchmark datasets—UCF-Crime (88.67% AUC), XD-Violence (87.63%
AP), ShanghaiTech (97.98% AUC), and MSAD (92.90% AUC). Beyond aggregate perfor-
mance, our analysis shows that motion cues are particularly decisive in motion-dominant
anomaly classes (e.g., Assault, Fighting, Shoplifting), where they significantly boost detec-
tion accuracy compared to RGB-only or conventional fusion methods.

2 RELATED WORK

Adaptive Multimodal Fusion. Multimodal fusion integrates complementary signals from vision,
audio, and language Xu et al. (2023); Zong et al. (2023); Huang et al. (2022). Early work relied
on feature concatenation Ngiam et al. (2011), while recent methods employ transformers Tsai et al.
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(2019); Akbari et al. (2021); Girdhar et al. (2022); Li et al. (2021) and contrastive pretraining Rad-
ford et al. (2021); Girdhar et al. (2023); Dai et al. (2022). Attention mechanisms improve alignment
but risk modality dominance Liang et al. (2024); Xu et al. (2023). Recent studies use LLMs to
modulate modality usage dynamically Shen et al. (2023); Zhao et al. (2023); Gong et al. (2023); Li
et al. (2023); Driess et al. (2023). Complementary to these, we emphasize uncertainty as an explicit
control signal for robust fusion under imbalance and noise.

Event Cues for Video Anomaly Detection. Event-based sensors provide sparse, high-temporal-
resolution signals Gallego et al. (2020); Zheng et al. (2023); Chakravarthi et al. (2024), applied
in recognition Shiba et al. (2022); Yang et al. (2023); Luo et al. (2023) and modality alignment
with CLIP Wu et al. (2023); Zhou et al. (2024); Jeong et al. (2024). Meanwhile, video anomaly
detection has advanced through MIL-based weak supervision Sultani et al. (2018); Wu et al. (2020);
Zhong et al. (2022); Chen et al. (2024), yet remains image-centric Liu et al. (2021b); Georgescu
et al. (2021). Recent work explores multimodal cues, including text via LLMs Alayrac et al. (2022);
Driess et al. (2023); Zhao et al. (2023). Our approach leverages synthetic motion cues—event-like
proxies derived from RGB videos Rebecq et al. (2019); Zhu et al. (2018); Astrid et al. (2021); Jeong
et al. (2024)—to capture motion-salient dynamics without dedicated event sensors.

Uncertainty and Bayesian Fusion. Uncertainty estimation adapts model confidence under noise
and distributional shift Kendall & Gal (2017); Gal & Ghahramani (2016); Ovadia & et al. (2019);
Subedar et al. (2018). Bayesian methods such as dropout inference and inverse-variance weight-
ing Gal & Ghahramani (2016); Subedar et al. (2018); Daxberger et al. (2021) improve robustness.
We extend this line by combining Laplace approximation with a Student’s t noise model Malmström
et al. (2023); Wu et al. (2021), enabling principled fusion of image and motion-cue features under
heavy-tailed uncertainty.

3 UNCERTAINTY-WEIGHTED FUSION FOR MULTIMODAL LEARNING

Figure 1: Overview of IEF-VAD framework. Each video frame and its corresponding synthetic
motion cue are processed by CLIP encoders to obtain feature embeddings zm. These are further en-
coded by modality-specific transformers fm to produce ẑm, which are then passed through projec-
tion heads gm and hm to estimate µm and σm. The estimated σm is used to compute the uncertainty-
aware fusion weight wm, which is applied to obtain the initial fused representation µt,0

f . This rep-
resentation is then refined over N iterative steps through a refinement network to produce the final
output µt,N

f .

In this work, we extract image embeddings (zx) and motion embeddings (ze) separately from videos,
where ze denotes an event-like proxy (synthetic motion cue) derived from RGB frames. We assume
that both streams observe the same underlying scene and share a common spatial structure while ex-
hibiting complementary expressive and modality-specific features. zx aggregates complex attributes
such as color, background, and spatial details, whereas ze encapsulates transient changes and tem-
poral dynamics. To effectively combine these homogeneous yet imbalanced representations, we
propose a fusion strategy that integrates Bayesian uncertainty estimation with Kalman filter update
principles, where uncertainty quantifies the reliability of each value-level feature. Specifically, we
estimate latent features and their associated uncertainties for each stream, and subsequently fuse
them through a refinement network designed to iteratively correct residual noise, misalignments,
and modality-specific artifacts, yielding a robust final representation µf .
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3.1 SYNTHETIC MOTION CUE

We derive a synthetic motion cue directly from RGB frames to leverage temporal dynamics.
Given consecutive grayscale frames It and It+1, we compute the absolute difference ∆t(x, y) =
|It+1(x, y) − It(x, y)|. Pixels are activated when the difference exceeds a threshold, Et(x, y) =

⊮[ |∆t(x, y)| > τ ], and aggregated over a short temporal window T as Ê(x, y) = 1
T

∑T
t=1 Et(x, y).

This event-like representation suppresses static background while isolating localized motion, provid-
ing a lightweight proxy for event data without specialized sensors. Although derived from RGB, it
complements image features by highlighting transient cues that are often diluted in appearance-only
representations, and empirical results confirm its robustness and contribution to anomaly detection.
Further implementation details and extended empirical analyses can be found in Appendix A.

3.2 MODALITY DESIGN AND UNCERTAINTY ESTIMATION

We design each modality as a noisy observation influenced by both shared scene content and
modality-specific factors. zm = µm + δm, δm ∼ tν(0,Σm), m ∈ {x, e}, where µm∈Rd is the
central estimate and Σm =diag(σ2

m) encodes value-level uncertainty. We choose the heavy-tailed
Student’s-t distribution because a purely Gaussian model underestimates uncertainty in the presence
of outliers; its thicker tails make the fusion rule more conservative when the input is degraded (see
Appendix C).

Given embedding sequences zm ∈RB×T×D, we transpose them to (T,B,D), pass each through a
modality-specific transformer fm, and transpose back, yielding ẑm = (fm(z⊤m))⊤.

Layer normalization aligns scales across modalities. This ensures that the downstream uncertainty
estimation operates on comparable feature scales, improving numerical stability when computing
variances. Linear projection heads gm, hm then predict the posterior mean and log-variance:

µm = gm(ẑm), log σ2
m = hm(ẑm). (1)

Predicting log σ2
m guarantees positivity and numerical stability. Conceptually, zm is sampled from

the posterior tν(µm,Σm), where µm represents the fused central tendency and σ2
m quantifies epis-

temic uncertainty. These uncertainty estimates drive the Kalman-style update and the subsequent
refinement loop, enabling dynamic, reliability-aware fusion that adapts to modality quality in real
time.

For computational tractability, we adopt a diagonal covariance structure, treating each feature di-
mension as conditionally independent. This avoids the O(D3) cost of full-covariance modeling
while enabling efficient per-dimension uncertainty estimation. A detailed discussion of this design
choice, along with empirical justification, is provided in Appendix D.

3.3 INVERSE VARIANCE CALCULATION

In this stage, our goal is to quantify the confidence in each modality’s predictions by computing
the inverse variance. However, direct computation with the Student’s t distribution is intractable for
variance inversion and KL divergence, so we approximate it with a Gaussian via Laplace expansion
(see Appendix B). Recall that our model predicts the log-variance values (Eq. 1), which are then
exponentiated to recover the variance. In the case of a Gaussian noise model, this is given by
σ2
m = exp

(
log σ2

m

)
. For the Student’s t noise model, we first apply the Laplace approximation to

obtain the effective variance (see Appendix E). The Student’s t probability density function (up to
a normalization constant) is given by Eq. 2, where σ2 is the variance parameter for the underlying
Gaussian scale, and ν is the degree of freedom.

p(δ) ∝
(
1 +

δ2

νσ2

)− ν+1
2

, log p(δ) = −ν + 1

2
log

(
1 +

δ2

νσ2

)
+ C. (2)

Since the mode of the distribution occurs at δ = 0, we perform a second-order Taylor expansion of
the logarithm around δ = 0. For small x, recall that log(1 + x) ≈ x for |x| ≪ 1. In our case, set
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x = δ2/(νσ2). Then, for small δ, and log-density we have log
(
1 + δ2

νσ2

)
≈ δ2

νσ2 , log p(δ) ≈

−ν+1
2

δ2

νσ2 + C = − ν+1
2νσ2 δ

2 + C. The Laplace approximation approximates a probability density
near its mode by a Gaussian distribution. The log-density of a Gaussian with variance σ̃2 is given
by log pG(δ) = − 1

2σ̃2 δ
2 + C. By matching the quadratic terms in the Taylor expansion, we set

1
2σ̃2 = ν+1

2νσ2 . This immediately implies σ̃2 = ν
ν+1σ

2. Taking the logarithm of both sides gives

log σ̃2 = log σ2 + log

(
ν

ν + 1

)
. (3)

This derivation shows that, under the Laplace approximation, the effective variance used in down-
stream computations is scaled by the factor ν

ν+1 , reflecting the heavy-tailed nature of the Student’s t
distribution. This effective variance is then used in place of the original variance σ2 when comput-
ing inverse variance weights and other related measures, ensuring that the fusion process properly
accounts for the increased uncertainty due to heavy-tailed noise.

The variance (or effective variance in the Student’s t case) represents the uncertainty associated with
the prediction; lower values indicate higher confidence. To leverage this notion of confidence in
a manner consistent with Bayesian principles, we compute the inverse variance as a measure of
precision. Specifically, for the Student’s t model, we use the effective variance:

wm =
1

σ̃2
m + ϵ

. (4)

where ϵ is a small positive constant added for numerical stability, ensuring that we do not encounter
division by zero. These weights, wx and we, essentially serve as confidence scores—modalities with
lower uncertainty (i.e., lower σ2 or σ̃2) yield higher weights and, consequently, contribute more sig-
nificantly in subsequent fusion steps. This approach is theoretically grounded in Bayesian inference
(detailed in Appendix F), where the inverse variance (or precision) is used to weight the contribu-
tions of different measurements according to their reliability. As a result, by explicitly modeling
and incorporating the inverse variance—or the effective inverse variance under the Student’s t as-
sumption—the fusion process becomes more robust, effectively balancing the contributions of each
modality based on their estimated uncertainties.

3.4 UNCERTAINTY-WEIGHTED FUSION

We compute the fused representation µf ∈ RB×T×D by taking a weighted average of the modality-
specific means according to their computed confidence scores Eq. 4. µf = wxµx+weµe

wx+we
In the case

of the Student’s t distribution, the inverse variance weights are computed based on the effective
variances obtained via a Laplace approximation around the mode of the distribution. Specifically,
by applying the logarithm to the effective variance as derived in Eq. 3, and then exponentiating, we
have σ̃2

m = exp
(
log σ2

m + log
(

ν
ν+1

))
Thus, in both cases, modalities with lower uncertainty (i.e.,

lower variance or effective variance) yield higher precision scores and contribute more significantly
in the fusion process.

The rationale behind this formulation is twofold. First, by weighting each modality’s mean by its
(effective) inverse variance, we ensure that modalities with higher confidence have a greater impact
on the final fused representation. This is a direct application of Bayesian fusion principles, where
the posterior estimate of a latent variable is a precision-weighted average of the individual estimates.
Second, this fusion strategy closely mirrors the update step in the Kalman filter—a well-established
method for sequential data fusion—where the Kalman gain, derived from the inverse variances,
dictates the contribution of each measurement in updating the state estimate, as further detailed in
Appendix F.

3.5 TIME STEP SEQUENTIAL UPDATE

Building upon our uncertainty-weighted fusion framework (Figure 1), we extend the method to han-
dle the time steps (T ) by incorporating temporal dependencies in a sequential update process. The
intuition is analogous to the recursive estimation in Kalman filtering, except that here we account
for the heavy-tailed nature of the Student’s t noise via a Laplace approximation.

5
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Under the Student’s t model, the predicted variance is corrected to obtain an effective variance.
Specifically, if the predicted log-variance is log σ2

t at time t, the effective variance and state variance
at the previous time step are given by

σ̃2
t = exp

(
log σ2

t + log

(
ν

ν + 1

))
(5)

At the initial time step (t = 0), we set the state and its effective uncertainty directly from the first
input: µ0

f = µ0, σ̃2
f,0 = σ̃2

0 . For each subsequent time step (t ≥ 1), we update the state estimate by
fusing the previous state with the current input. To do so, we compute the inverse effective variance
weights. The weight for the previous state is given by wt−1

f = 1/(σ̃2
f,t−1+ ϵ) and the weight for the

current input is wt = 1/(σ̃2
t + ϵ), where ϵ is a small constant for numerical stability. The updated

state and its effective uncertainty are computed as:

µt
f =

wt−1
f µt−1

f + wtµt

wt−1
f + wt

, σ̃2
f,t =

1

wt−1
f + wt

, t ≥ 1. (6)

This sequential update process naturally extends the static fusion methodology by incorporating tem-
poral continuity, using effective variances that account for the heavy-tailed nature of the Student’s t
noise. Just as in the static case—where each modality is weighted according to its (effective) pre-
cision—the sequential update fuses the previous state with new observations based on their relative
effective uncertainties. This approach enhances the robustness and consistency of the state estimates
over time, effectively capturing both current observations and historical context.

3.6 ITERATIVE REFINEMENT OF FUSED STATE

After sequential fusion via uncertainty-weighted averaging, residual noise and discrepancies be-
tween modalities inevitably remain in the fused latent state due to their distinct noise profiles. To
address these fusion-induced residuals, we introduce an iterative refinement procedure inspired by
denoising methods Ho et al. (2020).

Formally, starting from an initial fused state µ0
f , the refinement network F (·) predicts the residual

error ∆µt,r
f = F (µt,r

f ) at iteration r (r = 0, 1, . . . , N ). The state is updated with an attenuation
parameter λr ∈ (0, 1):

µt,r+1
f = µt,r

f − λr∆µt,r
f .

This parameter prevents over-correction and ensures stable convergence. As refinement proceeds,
residual errors diminish, aligning the fused state closer to the true latent representation. Thus, itera-
tive refinement provides a principled mechanism to denoise and enhance multimodal fusion, yielding
more reliable embeddings (Appendix G).

3.7 VIDEO ANOMALY DETECTION WITH LOSS FUNCTIONS

Classification Loss (Lcls): Given the refined fused representation µt,N
f ∈ RB×T×D, we apply

a lightweight head H(·) to produce logits ŷ = H(µt,N
f ) ∈ RB×T×1. After sigmoid activation,

anomaly probabilities are trained with binary cross-entropy:

Lcls = − 1
BT

B∑
b=1

T∑
t=1

[yb,t log(ŷb,t) + (1− yb,t) log(1− ŷb,t)] .

To allow weak supervision without frame-level labels, we follow Sultani et al. (2018) and divide
each sequence into non-overlapping 16-frame segments. Let length be the number of valid steps,
then k = ⌊ length

16 ⌋ + 1, and segment-level predictions are obtained by averaging frame scores Ilse
et al. (2018); Sultani et al. (2018).

KL Divergence Loss (LKL): Each modality’s noise follows δm ∼ tν(0, σ
2
m). Since the KL di-

vergence with a standard normal prior is intractable, we approximate the Student’s t by a Gaussian

6
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N (µm, σ̃2
m) using the effective variance σ̃2

m from Laplace approximation (Eq. 5). The closed-form
KL divergence is:

LKL = KL
(
N (µm, σ̃2

m) ∥N (0, I)
)
= 1

2

(
σ̃2
m + µ2

m − 1− log σ̃2
m

)
.

This regularization keeps the latent distribution close to the prior, enhancing robustness under heavy-
tailed noise.

Regularization Loss (Lreg): To align latent representations µx and µe in both direction and magni-
tude, we define

Lreg = λ1(1− cos(µx, µe)) + λ2

∣∣∥µx∥ − ∥µe∥
∣∣,

where λ1, λ2 balance the two terms. The cosine term enforces semantic alignment, while the norm
term prevents scale imbalance, together promoting a coherent multimodal space.

Overall Loss: The final loss function is a sum of the classifier loss, the KL divergence losses for
both modalities, and the regularization loss:

L = Lcls +
∑
m

Lm
KL + Lreg (7)

This composite loss enforces accurate predictions while encouraging robust, well-regularized repre-
sentations. By using the effective variance from Laplace’s approximation, we retain a closed-form
KL divergence, combining the robustness of Student’s t with the efficiency of Gaussian methods.
An ablation of loss components is given in Appendix J.

4 EXPERIMENT RESULTS

We evaluate our method on four public video anomaly detection datasets—UCF-Crime Sultani et al.
(2018), XD-Violence Wu et al. (2020), ShanghaiTech Liu et al. (2018), and MSAD Zhu et al.
(2024)—covering diverse real-world surveillance scenarios. Following standardized preprocessing
and independent transformer encoding for each modality (see Appendix I), we perform evaluations
using AUC and AP metrics. Ablation studies presented in Appendix J analyze the sensitivity of
performance to key hyperparameters (ν, N , λref, and ϵ) and investigate the effects of loss configura-
tion choices (Eq. 7). Robustness to outlier injection and the behavior of uncertainty weights under
perturbations are evaluated, with additional uncertainty-aware metrics, including KL divergence and
Brier score, reported in Appendix K. Our method consistently demonstrates strong performance by
effectively leveraging complementary spatial and temporal cues from image and motion-cue repre-
sentations in a weakly supervised setting.

4.1 REAL-WORLD ANOMALY DETECTION IN SURVEILLANCE VIDEO

Method UCF-Crime XD-Violence Shanghai-Tech Method MSAD
AUC (%) Ano-AUC (%) AP (%) AUC (%) AUC (%)

Sultani et al. Sultani et al. (2018) 84.14 63.29 75.18 91.72 MIST (I3D) Feng et al. (2021a) 86.65
Wu et al. Wu et al. (2020) 84.57 62.21 80.00 95.24 MIST (SwinT) Feng et al. (2021a) 85.67
AVVD Wu et al. (2022) 82.45 60.27 - - UR-DMU Zhou et al. (2023) 85.02
RTFM Tian et al. (2021) 85.66 63.86 78.27 97.21 UR-DMU (SwinT) Zhou et al. (2023) 72.36
UR-DMU Zhou et al. (2023) 86.97 68.62 81.66 97.57 MGFN (I3D) Chen et al. (2023b) 84.96
UMIL Lv et al. (2023) 86.75 68.68 - 96.78 MGFN (SwinT) Chen et al. (2023b) 78.94
VadCLIP Wu et al. (2024c) 88.02 70.23 84.51 97.49 TEVAD (I3D) Chen et al. (2023a) 86.82
STPrompt Wu et al. (2024b) 88.08 - - 97.81 TEVAD (SwinT) Chen et al. (2023a) 83.6
OVVAD Wu et al. (2024a) 86.40 - 66.53 96.98 EGO Ding et al. (2025) 87.36

Fusion (Cross Attention) 86.57 69.03 84.62 97.36 Fusion (Cross Attention) 92.07
Fusion (Gating) 87.86 69.74 84.62 97.71 Fusion (Gating) 92.75

IEF-VAD (Gaussian) 88.11 ± 0.28 70.48 ± 0.66 87.18 ± 0.55 97.91 ± 0.08 IEF-VAD (Gaussian) 92.27 ± 0.34
IEF-VAD (Student-T) 88.67 ± 0.45 71.50 ± 1.02 87.63 ± 0.54 97.98 ± 0.07 IEF-VAD (Student-T) 92.90 ± 0.27

Table 1: Comparison of various methods on multiple anomaly detection benchmarks, including
UCF-Crime Sultani et al. (2018), XD-Violence Wu et al. (2020), ShanghaiTech Liu et al. (2018),
and MSAD Zhu et al. (2024). All metrics are reported as the mean (±1 standard deviation) of 10
runs.

Table 1 shows that IEF-VAD outperforms all prior weakly supervised detectors on every benchmark.
On UCF-Crime Sultani et al. (2018), the Gaussian variant already matches the best published AUC
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(88.11%), while the Student’s t extension lifts AUC to 88.67% and raises the anomaly-focused AUC
(Ano-AUC) to 71.50%—a ≈ 1.3 pp absolute gain over the previous record (70.23% of VadCLIP Wu
et al. (2024c)). Similar trends appear on XD-Violence Wu et al. (2020) (87.63 AP) and Shang-
haiTech Liu et al. (2018) (97.98 AUC), where both variants surpass the strongest competitors. On
the more recent MSAD Zhu et al. (2024) benchmark, our Student’s-t model achieves 92.90 AUC,
exceeding the best I3D-based baseline (86.82 AUC) by over 6 pp. Fusion baselines such as cross-
attention and gating exhibit modality dominance, with performance converging toward that of a
single modality, whereas IEF-VAD consistently achieves higher scores. Standard-deviation margins
indicate that gains are statistically consistent across 10 independent runs.

These results confirm two key insights of our framework. First, value-level uncertainty weighting
enables practical exploitation of the heterogeneous synthetic motion cue, turning its complemen-
tary signals into measurable performance gains whenever the RGB stream is degraded. Second,
modelling heavy-tailed noise via a Student’s-t likelihood yields further, systematic improvements,
especially on long-tailed datasets (UCF-Crime Sultani et al. (2018), XD-Violence Wu et al. (2020))
where RGB frames frequently contain motion blur or illumination changes.

Figure 2: Radar charts showing per-class anomaly detection performance (AUC and AP) for image-
only (blue), motion-cue-only (orange), and fused (green) approaches. Each radial axis represents an
anomaly category, and values are normalized per class by the maximum score. The fused approach
consistently covers a larger area, highlighting improved detection across anomaly types.

These trends are further illustrated in Figure 2, which provides a class-wise comparison of image-
only, motion-cue-only, and fused approaches. In most anomaly classes, the image-based modality
achieves higher performance than the motion-cue-based modality, reflecting the substantial differ-
ences in the underlying information each modality encodes. However, in anomaly categories that
align more closely with the characteristics of ze (e.g., Fighting, Assault in UCF-Crime Sultani et al.
(2018)), the motion-cue-based modality outperforms the image-based one, confirming our initial
intuition (Figure 2). By fusing zx and ze, our proposed method consistently achieves higher detec-
tion accuracy than either single modality alone. In particular, this fusion harnesses the strengths of
image while absorbing the advantages of motion-cue for those classes where it excels, leading to
further performance gains in categories already well-handled by image. Consequently, as illustrated
in Figure 2, the fused approach covers a broader area in the radial plots, surpassing the capacity of
single-modality baselines in most anomaly classes (see Appendix I for detailed numbers).

4.2 FUSION: UNCERTAINTY BEHAVIOR UNDER VALUE-LEVEL MASKING

To investigate how the uncertainty weights wm respond to modality-specific degradation, we perturb
a single modality by masking a random subset of its latent features zm ∈ RB×T×D. A masked
sequence is defined as

zmasked
m,i =

{
0, i ∈ Iρ
zm,i, otherwise

, |Iρ| = ρD.

where ρ ∈ (0, 1) denotes the masking ratio and i indexes feature dimensions. We then measure
the change in the image-side uncertainty weight, ∆wx = wmasked

x − wclean
x , with the normalisation

wx + we = 1 enforced. We prefer masking over additive noise because it produces a deterministic,
localised degradation that preserves the Student-t noise assumption and avoids the non-linear prop-
agation artifacts that Gaussian perturbations introduce in attention layers, yielding a cleaner causal
probe of the learned uncertainty mechanism.
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Figure 3: Change in ∆wx under modality-specific masking perturbations. The horizontal axis i is
the latent dimension index, and the vertical axis ρ the proportion of masked values in zx or ze. Each
surface shows ∆wx(i, ρ) = wmasked

x (i) − wclean
x (i) for a given masking ratio. The top row applies

masking to zx, the bottom to ze, both measuring the change in wx. Positive values (blue) indicate
increased image confidence under corruption, while negative values (red) indicate reduction. Non-
uniform patterns across i highlight dimension-specific responses to degradation.

Figure 3 plots ∆wx for three masking ratios (ρ ∈ 0.05, 0.10, 0.20) on four datasets. The top row
masks zx, consistently decreasing wx—indicating higher image uncertainty—whereas the bottom
row masks ze, symmetrically increasing wx. The magnitude of |∆wx| grows with ρ, showing that
the fusion network scales its confidence shift with corruption severity.

Value-level curves expose pronounced heterogeneity: some dimensions (e.g., indices 12–27) react
strongly, whereas others remain flat. We attribute this to distributed encoding: dimensions domi-
nated by stable appearance cues are robust, while those capturing transient, modality-specific dy-
namics are fragile. The non-uniform yet directionally consistent responses provide empirical ev-
idence that the model estimates uncertainty on a fine-grained basis rather than collapsing it into
a scalar. Supplementary statistics, including KL divergence and Brier score, are reported in Ap-
pendix K.

5 LIMITATIONS AND FUTURE WORK.

While our study advances uncertainty-guided fusion, several limitations remain. First, modeling
each modality’s noise with a diagonal covariance ignores cross-feature correlations; lightweight
structured or low-rank estimators could better capture value-level dependencies. Second, fixed
regularization weights λ1,2 and Student-t degrees-of-freedom ν reduce adaptability; learning them
jointly or via meta-learning would allow dynamic adjustment to modality quality. Third, replac-
ing simple averaging with uncertainty-conditioned attention, gating, or message passing may yield
a more expressive fusion mechanism that exploits inter-modal disagreement for stronger anomaly
detection and broader multimodal perception.

6 CONCLUSION

IEF-VAD demonstrates that motion-centric, event-like representations—synthetically extracted
from ordinary videos—can be fused with RGB frames to push video-anomaly detection beyond
the limits of frame-based models, offering high practicality since they require no dedicated event
cameras. The approach establishes new state-of-the-art scores on UCF-Crime, XD-Violence, Shang-
haiTech, and MSAD, while a value-level masking study shows its weights shift adaptively across
latent dimensions, revealing a reliable reliance on modality-specific cues. We expect these findings
to catalyse broader use of synthetic motion-cue data and demonstrate its potential for principled,
effective multimodal fusion in video understanding.
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A SYNTHETIC MOTION CUE

We provide detailed explanations and analyses of the synthetic motion cue, which functions as a
motion-centric proxy for event data within our framework.

Generation. Synthetic events are generated from consecutive RGB frames. Each frame It is con-
verted to grayscale, and inter-frame differences are computed as ∆t(x, y) = |It+1(x, y)− It(x, y)|.
Pixels are activated when their difference exceeds a threshold, Et(x, y) = ⊮[ |∆t(x, y)| > τ ], and
subsequently aggregated over a temporal window T : Ê(x, y) = 1

T

∑T
t=1 Et(x, y). This yields

sparse binary maps that highlight localized motion while suppressing static background. Compared
to optical flow, this procedure is lightweight, unsupervised, and requires no dense estimation or
training.

Motivation. The goal of synthetic events is not to replicate the full functionality of neuromorphic
Dynamic Vision Sensors (DVS), which provide polarity and microsecond-level temporal resolution.
Instead, they extract motion-centric cues that are absent in static RGB appearance. These represen-
tations emphasize transient, localized dynamics that are crucial for anomaly detection while remain-
ing scalable and deployable without specialized hardware. Thus, synthetic events complement RGB
features by isolating motion saliency that often becomes diluted in appearance-only pipelines.

Empirical Benefits. On UCF-Crime, synthetic events alone substantially outperform RGB in-
puts on motion-sensitive classes such as Assault (56.44 → 72.03), Fighting (58.14 → 79.27), and
Shoplifting (64.27 → 73.29). When fused with RGB under our uncertainty-aware formulation, per-
formance is further improved (e.g., Shoplifting 73.29 → 85.72), demonstrating that synthetic events
provide complementary cues rather than redundant information.

Class RGB Synthetic Event
Assault 56.44 72.03
Fighting 58.14 79.27
Shoplifting 64.27 73.29

Table 2: Synthetic events outperform RGB on motion-centric anomaly classes.

Comparison with Real Events. To validate their practicality, we compared synthetic events with
real event streams from the UCF-Crime DVS benchmark. Fusion with real events improves Ano-
AUC from 66.56 to 70.10, while our synthetic events achieve 72.22. This indicates that synthetic
proxies, though simplified, serve as effective substitutes when real event sensors are unavailable.

Method AUC Ano-AUC
Image only 86.77 66.56
Image + Real Event 87.33 70.10
Image + Synthetic Event (Ours) 89.09 72.22

Table 3: Comparison between RGB, real events, and synthetic events on UCF-Crime.

Robustness to Configuration. We evaluated performance under varying temporal aggregation
windows (T ∈ {4, 8, 16, 32, 64}) and motion thresholds. Across all settings, performance consis-
tently remained above 88% AUC and 70% Ano-AUC, indicating that the method is not sensitive to
configuration choices.

TemporalAgg 4 4 8 8 16 16 32 32 64 64
Threshold 10 25 10 25 10 25 10 25 10 25
AUC 89.00 88.91 89.26 89.44 89.09 89.55 88.83 89.58 88.40 89.33
Ano-AUC 72.13 72.18 72.63 73.24 72.22 73.38 71.50 73.40 70.36 72.70

Table 4: Performance across temporal aggregation and threshold variations.
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Robustness to Noise. We further assessed resilience by injecting Poisson-based Background Ac-
tivity Noise (BAN) into synthetic events. Performance degraded only marginally (89.09 → 87.89
for λ = 0.01–0.05), showing stability under realistic sensor noise levels.

BAN λ 0 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5
AUC 89.09 88.43 88.09 87.99 87.87 87.89 87.62 87.11 86.71 86.71 86.83

Table 5: AUC degradation under simulated event noise (BAN).

Attention and Interpretability. Attention maps confirm the complementary role of synthetic
events. RGB encoders typically cover 45–70% of the frame, shrinking only slightly during anoma-
lies, which can dilute motion cues with background information. By contrast, event encoders con-
sistently focus on compact 3–15% patches. On anomaly frames, event attention grows modestly
(e.g., Assault 0.10 → 0.14), precisely localizing motion signals that RGB overlooks.

Modality Frame Abuse Arrest Arson Assault Burglary Explosion Fighting RoadAcc. Robbery Stealing Shooting Shoplifting Vandalism
Image Anomaly 0.44 0.61 0.52 0.66 0.53 0.39 0.50 0.48 0.24 0.56 0.59 0.50 0.44
Image Normal 0.56 0.67 0.46 0.71 0.51 0.47 0.51 0.52 0.34 0.51 0.60 0.52 0.45
Event Anomaly 0.04 0.14 0.07 0.14 0.15 0.09 0.12 0.06 0.24 0.14 0.08 0.10 0.11
Event Normal 0.03 0.05 0.04 0.10 0.10 0.06 0.09 0.09 0.09 0.07 0.05 0.09 0.05

Table 6: Class-wise attention area by modality and frame type. Event encoders attend to compact
motion patches.

Figure 4: Qualitative comparison of RGB frames (left), synthetic event maps (middle), and attention
heatmaps (right). The event encoder consistently focuses on compact motion-centric patches, while
the RGB encoder distributes attention more broadly. This complementary behavior highlights why
combining the two modalities improves anomaly detection.

Synthetic motion cues, though derived from RGB, act as effective event proxies. They (i) outper-
form RGB on motion-centric anomalies, (ii) complement appearance features, (iii) generalize to real
events, (iv) remain robust to configuration changes and injected noise, and (v) provide interpretable
attention footprints. These results confirm their practicality as substitutes for real event cameras in
video anomaly detection.

B LIMITATIONS OF DIRECT STUDENT’S t FUSION

B.1 CLOSED-FORM FUSION INTRACTABILITY

The absence of a closed-form solution is the primary limitation of directly applying Student-t distri-
butions to precision-weighted fusion. Kalman-style fusion or Bayesian inverse-variance averaging
relies on an explicit formulation such as:

µf =
w1µ1 + w2µ2

w1 + w2
, where wi =

1
σ2
i
.
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This expression assumes that the product of two likelihoods remains within the same distribution
family, allowing for analytic computation of fused mean and variance. While this holds for Gaussian
distributions due to their closure under multiplication, it fails for the Student-t family.

Proof. Let two independent Student-t densities be

pi(x) =
1

Zi

(
1 + (x−µi)

2

νiσ2
i

)−νi+1
2

, i ∈ {1, 2}.

Their product is

p(x) ∝ p1(x)p2(x) =
(
1 + (x−µ1)

2

ν1σ2
1

)−ν1+1
2
(
1 + (x−µ2)

2

ν2σ2
2

)−ν2+1
2

.

This cannot be expressed as a single Student-t law

p(x) ∝
(
1 + (x−µ)2

ν̃σ̃2

)− ν̃+1
2

because

• two distinct quadratic terms remain unless µ1 = µ2, ν1 = ν2, and σ1 = σ2;

• even then, the Student-t family is not closed under multiplication.

Hence the fused posterior lacks closed-form moments, blocking Kalman updates. We address this
by approximating each tνi

with a Gaussian using

σ̃2
i =

νi
νi + 1

σ2
i ,

restoring tractable inverse-variance fusion.

B.2 UNSTABLE PRECISION

Inverse-variance fusion presumes a finite second moment, yet for a Student-tν

Var(tν) =


ν

ν−2 σ
2, ν > 2,

∞, 1 < ν ≤ 2,

undefined, ν ≤ 1.

Thus:

• For ν ≤ 2, the variance (and hence precision w = 1/σ2) is non-finite, so inverse-variance
weights cannot be defined.

• For ν > 2 but near 2, the factor ν/(ν−2) explodes, making w extremely sensitive to small
changes in σ2 and causing exploding or vanishing gradients.

These issues magnify in high-dimensional settings where per-feature noise accumulates, undermin-
ing stable training.

B.3 GAUSSIAN SURROGATE VIA LAPLACE EXPANSION

To restore closed-form fusion we apply a Laplace (second-order) expansion at each mode:

tν(µ, σ
2) ≈ N

(
µ, σ̃2

)
, σ̃2 =

ν

ν + 1
σ2.

The Gaussian surrogate preserves local heavy-tail effects yet admits Kalman-style inverse-variance
updates and a closed-form KL against a Gaussian prior. A derivation sketch is provided in the main
text, while full details are presented here for completeness.
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C BOUNDED INFLUENCE OF Student’s t NOISE

Proposition C.1 (Robustness of Student’s t to Outliers). Let δ be a noise or residual term drawn
from a univariate Student’s t distribution with ν > 0 degrees of freedom, location 0, and scale σ:

δ ∼ tν(0, σ
2).

The probability density function of δ is proportional to

p(δ) ∝
(
1 + δ2

ν σ2

)−ν+1
2

.

Hence, the negative log-likelihood (omitting constant terms that do not depend on δ) is

− log p(δ) =
ν + 1

2
ln
(
1 + δ2

ν σ2

)
+ (constant).

Differentiating with respect to δ yields the score function

d

dδ

[
− log p(δ)

]
=

ν + 1

2
· 1

1 + δ2

ν σ2

· 2 δ

ν σ2
=

(ν + 1) δ

ν σ2 + δ2
.

As |δ| → ∞, the denominator ν σ2 + δ2 is dominated by δ2, so

(ν + 1) δ

ν σ2 + δ2
≈ (ν + 1) δ

δ2
=

ν + 1

δ
−→ 0.

Thus, the derivative (i.e., the slope or ‘pull’ of the residual on the log-likelihood) remains bounded
and actually tends to zero for large outliers.

In contrast, consider a Gaussian noise model, δ ∼ N (0, σ2). The corresponding negative log-
likelihood is

− log p(δ) =
δ2

2σ2
+ (constant),

whose derivative is
d

dδ

[
− log p(δ)

]
=

δ

σ2
,

which grows unboundedly as |δ| → ∞. Therefore, large outliers in a Gaussian model have much
stronger influence on parameter estimation, making it less robust to extreme residuals.

Hence, the bounded slope in the Student-t model demonstrates greater robustness against outliers:
as |δ| becomes large, its influence on parameter updates (through gradient-based or maximum like-
lihood methods) remains finite. This property is central to why Student-t-based methods are often
preferred in situations where occasional extreme values are expected.

D DIAGONAL COVARIANCE ASSUMPTION

We model uncertainty with a diagonal covariance structure, where each feature dimension is associ-
ated with an independent variance parameter. This reduces the computational burden compared to a
full covariance matrix Σ ∈ RD×D.

For a full covariance, computing the log-determinant log |Σ| and the quadratic form (z −
µ)⊤Σ−1(z − µ) requires O(D3) operations per sample. Under the diagonal assumption, these
reduce to

log |Σ| =
D∑
i=1

log σ2
i , (z − µ)⊤Σ−1(z − µ) =

D∑
i=1

(zi − µi)
2

σ2
i

,

both of which scale as O(D).

For each modality m ∈ {x, e} and feature index i, the likelihood is modeled as

p(zm[i] | µm[i], σ2
m[i], ν) = tν(µm[i], σ2

m[i]).
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Applying a Laplace approximation yields an effective variance

σ̃2
m[i] =

ν

ν + 1
σ2
m[i],

which enables computation of precision weights

wm[i] =
1

σ̃2
m[i] + ϵ

, µf [i] =
wx[i]µx[i] + we[i]µe[i]

wx[i] + we[i]
.

The diagonal covariance assumption makes per-dimension uncertainty estimation tractable and al-
lows element-wise fusion without the prohibitive cost of full-covariance modeling.

E LAPLACE APPROXIMATION FOR THE Student’s t NOISE MODEL

We derive an effective variance for the Student’s t noise model via the Laplace approximation. Our
goal is to approximate the heavy-tailed log-density by a quadratic (Gaussian) form in the vicinity of
its mode, thereby obtaining an effective variance that scales the underlying Gaussian variance by a
factor of ν/(ν + 1).

STUDENT’S T DISTRIBUTION

The probability density function of the Student’s t distribution with degrees of freedom ν, location
parameter µ, and scale parameter s > 0 is given by

f(x; ν, µ, s) =
Γ
(
ν+1
2

)
s
√
νπ Γ

(
ν
2

) (1 + 1

ν

(
x− µ

s

)2
)− ν+1

2

,

where:

• Γ(·) denotes the Gamma function.
• ν > 0 is the degrees of freedom, controlling the heaviness of the tails.
• µ ∈ R is the location parameter (here, assumed to be zero in our derivation).
• s > 0 is the scale parameter; setting σ2 = s2 allows us to interpret σ2 as the variance of

the underlying Gaussian scale.

In our derivation we assume µ = 0 for simplicity. Ignoring the normalization constant, the unnor-
malized density can then be written as

p(δ) ∝
(
1 +

δ2

ν σ2

)− ν+1
2

,

where δ ∈ R represents the noise term.

DERIVATION VIA LAPLACE APPROXIMATION

We now present a detailed derivation of the effective variance via the Laplace approximation.
Proposition E.1 (Effective Variance under the Laplace Approximation). Let δ ∈ R be a noise term
with distribution (ignoring the normalization constant)

p(δ) ∝
(
1 +

δ2

ν σ2

)− ν+1
2

,

where σ2 is the scale (variance) parameter of the underlying Gaussian and ν > 0 is the degrees of
freedom. Then, by performing a second-order Taylor expansion of the log-density about its mode
at δ = 0, the local approximation is equivalent to that of a Gaussian distribution with effective
variance

σ̃2 =
ν

ν + 1
σ2.
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We start with the unnormalized density and take the natural logarithm to obtain the log-density as

p(δ) ∝
(
1 +

δ2

ν σ2

)− ν+1
2

, log p(δ) = −ν + 1

2
log

(
1 +

δ2

ν σ2

)
+ C,

where C is a constant independent of δ.

Since the mode of p(δ) occurs at δ = 0, we perform a Taylor expansion of log p(δ) around δ = 0.
For small x, we have the approximation

x =
δ2

ν σ2
, log(1 + x) ≈ x (first-order Taylor expansion).

Thus, for small δ,

log

(
1 +

δ2

ν σ2

)
≈ δ2

ν σ2
.

Substituting this into the log-density expression yields

log p(δ) ≈ −ν + 1

2

δ2

ν σ2
+ C = −ν + 1

2ν σ2
δ2 + C.

Now, consider the log-density of a Gaussian distribution with mean zero and variance σ̃2:

log pG(δ) = − 1

2σ̃2
δ2 + C ′,

where C ′ is a constant independent of δ. To match the local quadratic approximation of log p(δ), we
equate the coefficients of δ2:

1

2σ̃2
=

ν + 1

2ν σ2
.

Multiplying both sides by 2 gives
1

σ̃2
=

ν + 1

ν σ2
.

Taking reciprocals, we obtain
σ̃2 =

ν

ν + 1
σ2.

F THEORETICAL FOUNDATIONS OF INVERSE VARIANCE WEIGHTING IN
BAYESIAN INFERENCE

In this appendix, we provide a detailed derivation and theoretical justification of the inverse variance
(or precision) weighting scheme used in our fusion model. This method is firmly rooted in Bayesian
inference, where each measurement contributes to the estimation of the latent variable based on its
reliability.

F.1 MEASUREMENT FUSION UNDER GAUSSIAN NOISE

Assume that we wish to estimate a latent variable z from two independent noisy measurements zx
and ze. Each measurement is modeled as:

zm = µm + δm, δm ∼ N (0, σ2
m), m ∈ {x, e}.

Here, µm represents the central estimate predicted by modality m, and σ2
m is the associated uncer-

tainty (variance). The likelihood of observing zm given z is then

p(zm | z) ∝ exp

(
− (zm − z)2

2σ2
m

)
.

Assuming a flat prior p(z), the posterior is proportional to the product of the likelihoods:

p(z | zx, ze) ∝ p(zx | z) p(ze | z).
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Taking the logarithm, we obtain the joint log-likelihood:

log p(z | zx, ze) = − (zx − z)2

2σ2
x

− (ze − z)2

2σ2
e

+ C.

Differentiating with respect to z to find the maximum a posteriori (MAP) estimate ẑ:

∂

∂z

[
− (zx − z)2

2σ2
x

− (ze − z)2

2σ2
e

]
= 0, ⇒ zx − z

σ2
x

+
ze − z

σ2
e

= 0.

Rearranging terms gives:

z

(
1

σ2
x

+
1

σ2
e

)
=

zx
σ2
x

+
ze
σ2
e

,

and hence the fused estimate is:

ẑ =

zx
σ2
x
+ ze

σ2
e

1
σ2
x
+ 1

σ2
e

.

This derivation shows that the optimal fusion under Gaussian noise is achieved by weighting each
measurement with its inverse variance wm = 1

σ2
m

.

F.2 BAYESIAN JUSTIFICATION VIA THE KALMAN FILTERING FRAMEWORK

The inverse variance weighting rule is further supported by the Bayesian update formulations seen
in Kalman filtering. Consider a scenario where a prior estimate ẑ− with variance σ− is updated with
a measurement zm having uncertainty σ2

m. The Kalman update is given by:

ẑ = ẑ− +K(zm − ẑ−),

where the Kalman gain K is:

K =
σ−

σ− + σ2
m

.

A measurement with lower uncertainty (higher precision) results in a larger Kalman gain, thus exert-
ing a greater influence on the updated state. Extending this idea to the fusion of multiple modalities,
the final fused estimate can be expressed as:

µf =
wxµx + weµe

wx + we
,

which is exactly the precision-weighted average obtained via the MAP estimation under the assumed
likelihood models.

F.3 FUSION FORMULA: DUAL THEORETICAL FOUNDATIONS

Our fusion formula is derived based on two theoretical foundations: Bayesian inference and the
Kalman filter. First, assume that the two modalities provide independent estimates of the same
latent variable z. For the Gaussian case, the estimates are given by

p(z | µi, σ
2
i ) = N (z;µi, σ

2
i ) and p(z | µe, σ

2
e) = N (z;µe, σ

2
e).

Because these estimates are independent, the joint likelihood (or the unnormalized posterior under
a uniform prior) is proportional to the product of the two Gaussians:

p(z | µi, µe) ∝ exp

(
−||z − µi||2

2σ2
i

)
· exp

(
−||z − µe||2

2σ2
e

)
.

By combining the exponents and completing the square, we find that the value of z that maximizes
the posterior—i.e., the fused mean—is given by

µf =
µi/σ

2
i + µe/σ

2
e

1/σ2
i + 1/σ2

e

.

For the Student’s t model, we replace σ2
i and σ2

e with their effective counterparts σ̃i
2 and σ̃e

2, as
derived via the Laplace approximation (see below), leading to the same formulation in terms of the
inverse variances.
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From the perspective of the Kalman filter, suppose that one modality provides a prediction µi with
variance σ2

i (or σ̃i
2 in the Student’s t case) and another modality provides a prediction µe with

variance σ2
e (or σ̃e

2 in the Student’s t case). The Kalman filter update for the state estimates is given
by

µf = µi +K(µe − µi),

where the Kalman gain K is defined as

K =
σ̃i

2

σ̃i
2 + σ̃e

2 ,

which leads to an equivalent expression for the fused mean:

µf =
σ̃e

2µi + σ̃i
2µe

σ̃i
2 + σ̃e

2 .

By defining the inverse variance weights as wi = 1/(σ2
i + ϵ) (or wi = 1/(σ̃i

2 + ϵ) for the Student’s
t) and we = 1/(σ2

e + ϵ) (or we = 1/(σ̃e
2 + ϵ) for the Student’s t), our fusion formula becomes

µf =
wiµi + weµe

wi + we
.

Thus, both the Bayesian derivation and the Kalman filter interpretation lead to the same uncertainty-
weighted fusion formula, with the only difference being that for the Student’s t noise model we use
a corrected (effective) variance.

To summarize, our fusion formula is derived based on two theoretical foundations: Bayesian infer-
ence and the Kalman filter. Both derivations lead to the same uncertainty-weighted fusion expres-
sion:

µf =
wiµi + weµe

wi + we
,

with the inverse variance weights defined as wm = 1/(σ2
m + ϵ) for Gaussian noise and wm =

1/(σ̃2
m + ϵ) for the Student’s t model. This dual theoretical basis justifies our approach, as it effec-

tively leverages the inverse variances (or precisions) of the modality-specific estimates to account for
their respective uncertainties, resulting in a robust and reliable fused representation for downstream
tasks.

G ITERATIVE REFINEMENT OF FUSED STATE

After performing the sequential update to fuse the modalities over time using effective variances
(i.e.,

σ̃2 = exp
(
log σ2 + log

( ν

ν + 1

))
) to account for the heavy-tailed Student-T noise, small residual errors or microscopic uncertainties
may still persist in the fused state. To address this, we introduce an iterative refinement step that
further denoises and adjusts the fused representation.

The intuition behind this approach is similar to iterative error correction or gradient descent-based
optimization: rather than relying solely on the initial fusion, we continuously refine the estimate to
better capture the true latent state. Specifically, starting from the initial fused state x0

fusion obtained
after the sequential update, we iteratively predict and subtract a residual correction. In each refine-
ment step i (for i = 0, 1, . . . , N − 1), a dedicated network F (·) takes the current state xi along
with additional contextual information ci (which may include time-step context, current effective
uncertainty estimates, and modality weights) and predicts a residual ∆xi:

∆xi = F (xi, ci).

This residual represents the remaining error in the current fused estimate. The state is then updated
by subtracting a fraction of this residual, controlled by an attenuation parameter λi:

xi+1 = xi − λi∆xi.

After N refinement steps, the final fused representation xN is obtained, which is expected to be
more robust and accurate.
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Theoretical Justification: Even after uncertainty-weighted fusion and sequential updates—where
effective variances derived via the Student-T model are used—the fused state may still contain im-
perfections due to noise, model approximation errors, or unmodeled dynamics. The refinement
network is motivated by the following principles:

• Residual Learning: The initial fused state x0
fusion is an approximation of the true latent

state y, such that
y = x0

fusion + δ,

where δ is the residual error. The refinement network is designed to learn this residual:

F ∗(xi, ci) ≈ E[y − xi | xi, ci],

so that the final estimate becomes

xN = x0
fusion −

N−1∑
i=0

λiF (xi, ci).

This formulation is analogous to residual learning in deep networks, where modeling the
error is often easier than directly predicting the target.

• Diffusion Model Inspiration: Diffusion models iteratively denoise data by progressively
removing noise from a corrupted input. Similarly, our iterative refinement can be viewed as
a denoising process where each refinement step removes part of the residual error, thereby
driving the fused state closer to the true latent representation.

• Optimization Perspective: The refinement step can be interpreted as performing an ad-
ditional optimization in function space. The subtraction of λi∆xi is akin to a gradient
descent update that reduces an implicit error loss. Over multiple iterations, this results in
a more accurate estimate, provided that the refinement network is properly designed and
trained.

Empirical Benefits and Future Directions: In practice, introducing a refinement network after
the initial fusion offers several benefits:

• Error Reduction: By learning the residual δ, the final output xN achieves lower prediction
error than the initial fused state.

• Robustness: The iterative refinement is effective in mitigating the effects of heavy-tailed
noise and unmodeled dynamics, leading to a more stable fused representation.

• Enhanced Detail Recovery: Fine-grained details that might be lost in the initial fusion
can be recovered through successive refinement, improving both quantitative metrics and
qualitative performance.

Future work may explore:

• Iterative or Recurrent Refinement: Extending the refinement process with additional
iterative steps or a recurrent architecture that shares weights across iterations.

• Uncertainty-Guided Refinement: Incorporating explicit uncertainty measures to guide
the refinement network to focus on regions with high residual error.

• Enhanced Loss Functions: Employing perceptual or adversarial losses in the refinement
stage to better capture fine details and enhance the realism of the final output.

In summary, the iterative refinement network not only removes residual errors remaining after the
initial uncertainty-weighted fusion but also draws strong inspiration from diffusion models’ de-
noising principles. This two-stage approach—first, a coarse fusion and then a fine, iterative re-
finement—provides a theoretically grounded and empirically validated method to enhance the final
fused representation for downstream tasks.
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H DERIVATION OF KL DIVERGENCE

We present a detailed derivation of the KL divergence between two Gaussian distributions. Specifi-
cally, the KL divergence between a Gaussian distribution N (µm, σ̃2

m) and a standard normal distri-
bution N (0, I) is derived in closed form as follows:

KL
(
N (µm, σ̃2

m)∥N (0, I)
)
=

1

2
(σ̃2

m + µ2
m − 1− log σ̃2

m).

The KL divergence between two probability distributions p(x) and q(x) is defined as:

KL(p∥q) =
∫

p(x) log
p(x)

q(x)
dx.

Consider two Gaussian distributions:

p(x) = N (x;µm, σ̃2
m), q(x) = N (x; 0, 1).

Expanding explicitly, we obtain:

KL(p∥q) =
∫

p(x)

[
log

1√
2πσ̃2

m

exp

(
− (x− µm)2

2σ̃2
m

)
− log

1√
2π

exp

(
−x2

2

)]
dx.

KL(p∥q) = 1

2
log

1

σ̃2
m

+

∫
p(x)

[
− (x− µm)2

2σ̃2
m

+
x2

2

]
dx.

Evaluating the expectations under p(x):

Ep[x] = µm, Ep[x
2] = σ̃2

m + µ2
m, Ep[(x− µm)2] = σ̃2

m.

Substituting these expectations back into the expression gives:

KL(p∥q) = 1

2
log

1

σ̃2
m

− 1

2σ̃2
m

σ̃2
m +

1

2
(σ̃2

m + µ2
m).

Simplifying further, we obtain the final closed-form expression:

KL
(
N (µm, σ̃2

m)∥N (0, I)
)
=

1

2
(σ̃2

m + µ2
m − 1− log σ̃2

m).

I EXPERIMENT DETAILS

Experiments compute resources. All experiments were conducted on a local workstation
equipped with an AMD Ryzen Threadripper PRO 5955WX 16-Core Processor (32 threads) and
a single NVIDIA RTX 6000 Ada Generation GPU (48GB VRAM). The system had 256GB of
system RAM and 5GB VRAM and ran on Ubuntu 22.04. To improve training efficiency, we first
precompute the video frame embeddings using the image and event encoders before training. This
preprocessing step takes approximately 3 to 5 days. Once embeddings are extracted, training on the
XD-Violence dataset takes around 3 hours, while training on the ShanghaiTech, UCF-Crime, and
MSAD datasets completes within 1 hour.

I.1 DATASET DETAILS

We evaluate our weakly supervised learning approach on four commonly used benchmark datasets
for video anomaly detection: UCF-Crime Sultani et al. (2018), XD-Violence Wu et al. (2020),
ShanghaiTech Liu et al. (2018), and MSAD Zhu et al. (2024). UCF-Crime consists of 1,900 real
surveillance videos, totaling 128 hours and covering 13 anomaly classes. XD-Violence comprises
4,754 untrimmed videos (217 hours), featuring 6 distinct anomalous or violent actions. Shang-
haiTech includes 330 training and 107 test videos (approximately 317,000 frames), recorded in 13
scenes and labeled with 11 anomaly classes. MSAD features 720 videos from 14 different scenar-
ios, annotated with 11 anomalies. Due to the data imbalance and the rarity of violent incidents in
XD-Violence, we report the Average Precision (AP, %) to assess precision–recall balance, while for
the other datasets, we measure performance using the Area Under the ROC Curve (AUROC, %).
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Preprocessing We employ a spatial augmentation strategy inspired by multi-crop evaluation.
Specifically, each input video is first resized to a resolution of 224 × 224, followed by the gen-
eration of 10 spatial crops: five fixed regions (top-left, top-right, bottom-left, bottom-right, and
center) and their horizontally flipped counterparts. From each video, image frames are extracted
and processed by the CLIP Radford et al. (2021) (ViT-L/14) image encoder to obtain latent repre-
sentations. For every 16 frames, we compute the average latent vector, denoted as zx. In parallel, we
generate synthetic motion cues by computing pixel-wise changes between consecutive frames within
each 16-frame segment using a threshold of 10/255 and a clamp value of 10. The resulting binary
motion maps—serving as event-like proxies—are stacked and fed into the event encoder Jeong et al.
(2024) (aligned with the image encoder) to produce motion representations ze. We refer to these as
“synthetic” since they are derived from RGB frames rather than captured by a true event sensor.

I.2 IMPLEMENTATION DETAILS

Architecture Detail Figure 1 illustrates the complete architecture used in our framework. Both
the image and event encoders are implemented using the ViT-L/14 architecture from CLIP Radford
et al. (2021), with an embedding dimension of 768. The function f , responsible for modality-
specific feature encoding, is implemented as a multi-layer attention module with 8 attention heads
and 2 transformer layers. The functions g and h, used to predict the mean and variance parameters
for fusion, are each implemented as a single linear layer. The refinement network consists of a
simple feedforward structure with a Linear–ReLU–Linear sequence to iteratively refine the fused
representation.

Hyperparameters Detail To reproduce the results reported in Table 1, we configure the model
with the following hyperparameters: the degrees of freedom is set to ν=8, the number of iterative
refinement steps is N=10, and the uncertainty refinement weight is λr=0.5. The optimization uses
the AdamW Loshchilov & Hutter (2017) optimizer with a learning rate of 2× 10−5 and a batch size
of 64 for 10 training epochs. We apply a MultiStepLR scheduler with milestones at epochs 4 and
8, and a decay factor of 0.1. The numerical stability term is set to ϵ=10−8. Additionally, for the
regularization loss Lreg, we fix both λ1 and λ2 to 0.5 throughout all experiments.

I.3 RESULTS DETAIL

UCF-Crime Sultani et al. (2018) XD-Violence Wu et al. (2020) ShanghaiTech Liu et al. (2018) MSAD Zhu et al. (2024)
Class Image Event Fusion Class Image Event Fusion Class Image Event Fusion Class Image Event Fusion

Abuse 68.02 70.09 70.74 Fighting 79.59 67.81 84.76 Car 70.07 74.76 74.83 Assault 54.78 66.03 58.73
Arrest 72.21 47.09 75.05 Shooting 54.59 42.94 61.99 Chasing 94.49 84.36 91.33 Explosion 50.86 66.25 57.20
Arson 65.49 66.75 72.68 Riot 97.62 86.07 97.67 Fall 72.96 65.30 82.17 Fighting 71.74 79.75 81.14

Assault 56.44 72.03 72.58 Abuse 59.42 54.49 64.96 Fighting 76.91 63.48 83.64 Fire 71.97 49.44 71.23
Burglary 68.02 65.88 74.99 Car Accident 50.83 32.53 51.70 Monocycle 67.23 75.32 75.46 Object falling 90.52 75.92 90.92

Explosion 56.33 57.64 63.46 Explosion 64.32 39.22 68.54 Robbery 76.74 87.26 90.43 People falling 60.64 42.50 56.93
Fighting 58.14 79.27 62.81 Running 37.95 60.95 60.78 Robbery 68.10 66.90 70.95

RoadAccident 57.41 59.11 66.32 Skateboard 76.04 78.29 82.38 Shooting 71.20 86.87 77.88
Robbery 76.03 62.39 76.29 Throwing object 89.63 83.14 91.95 Traffic accident 62.23 70.08 70.93
Stealing 74.91 61.51 75.43 Vehicle 79.39 67.38 79.87 Vandalism 83.40 75.82 87.05
Shooting 60.95 38.42 62.26 Vaudeville 44.04 53.66 53.61 Water incident 97.95 88.93 98.75

Shoplifting 64.27 73.29 85.72
Vandalism 66.89 63.05 69.23

AUC 86.77 78.67 89.13 AP 84.22 55.96 86.54 AUC 97.58 93.69 98.24 AUC 91.52 82.10 92.16
Ano AUC 66.56 63.94 72.49

Table 7: Per-class performance on UCF-Crime Sultani et al. (2018), XD-Violence Wu et al. (2020),
ShanghaiTech Liu et al. (2018), and MSAD Zhu et al. (2024) for Figure 2. Event is our event-like
proxy (motion cue)

Figure2 summarizes the per-class performance across four benchmark datasets: UCF-Crime, XD-
Violence, ShanghaiTech, and MSAD. For each anomaly class, we report detection performance us-
ing the image modality, motion-cue modality, and their fusion. In most cases, the fusion consistently
outperforms both unimodal inputs, highlighting the complementarity between image and motion-cue
information. Notably, on UCF-Crime, classes such as Shoplifting and Arson show substantial gains
from fusion. For XD-Violence, categories like Riot and Fighting exhibit strong improvements with
fusion, despite relatively weak motion-cue-only performance. ShanghaiTech also shows a consis-
tent pattern of fusion superiority across diverse scene types. In the MSAD dataset, fusion leads to
higher detection scores for complex dynamic events such as Water incident and Vandalism. These
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results emphasize the effectiveness of our uncertainty-guided multimodal fusion strategy in adapting
to diverse scene contexts and anomaly types.

J ABLATION STUDY

J.1 SENSITIVITY TO HYPERPARAMETER SETTINGS

We conduct a comprehensive ablation study to examine the effect of key hyperparameters in our
uncertainty-guided fusion framework. Specifically, we analyze the impact of the degrees of free-
dom ν in the Student-T distribution, the number of refinement steps N , the Laplace approximation
precision ϵ, and the refinement weight λr, all metrics is reported 10-times average with 1-standard
deviation.

ν 2 4 6 8 10
AUC 87.98±0.33 88.34±0.30 88.38±0.40 88.67±0.45 88.11±0.47
Ano-AUC 70.06±0.72 70.69±0.72 70.88±0.86 71.50±1.02 70.22±0.86

N 0 10 20 30 40
AUC 86.77±0.18 88.67±0.45 88.41±0.43 88.48±0.28 88.60±0.31
Ano-AUC 67.41±0.43 71.50±1.02 71.27±0.61 71.36±0.59 71.45±0.58

ϵ 10−4 – 10−6 – 10−8

AUC 88.46±0.42 – 88.50±0.38 – 88.67±0.45
Ano-AUC 71.06±1.14 – 71.45±0.81 – 71.50±1.02

λr 0.1 0.3 0.5 0.7 0.9
AUC 87.92±0.38 88.13±0.24 88.67±0.45 88.21±0.34 87.91±0.34
Ano-AUC 69.61±0.98 70.13±0.58 71.50±1.02 70.32±0.90 69.80±0.86

Table 8: Ablation study results on UCF-Crime with varying hyperparameters.

UCF-Crime : Varying the degrees of freedom ν shows a gradual increase in both AUC and Ano-
AUC scores, peaking at ν = 8. For the number of refinement steps N , performance increases
significantly when N changes from 0 to 10, and remains relatively stable for N ≥ 10. The Laplace
approximation precision ϵ results in only marginal differences across all values tested. In the case
of the refinement weight λr, the best results are obtained at λr = 0.5, while performance slightly
degrades when the weight is set to more extreme values (0.1 or 0.9) Table 8.

Dataset Hyperparameter 2 / 0 / 1e-4 / 0.1 4 / 10 / – / 0.3 6 / 20 / 1e-6 / 0.5 8 / 30 / – / 0.7 10 / 40 / 1e-8 / 0.9

XD-Violence

ν (AP) 87.31±0.77 87.39±0.65 87.03±0.52 87.63±0.54 86.64±0.51
N (AP) 86.01±1.10 87.63±0.54 87.52±0.40 87.71±0.70 87.54±0.60
ϵ (AP) 87.27±0.76 – 87.44±0.79 – 87.63±0.54
λr (AP) 86.89±0.80 86.74±0.48 87.63±0.54 87.19±0.67 87.23±1.13

ShanghaiTech

ν (AUC) 97.91±0.10 97.91±0.10 97.90±0.10 97.98±0.07 97.92±0.06
N (AUC) 97.94±0.08 97.98±0.07 97.90±0.12 97.90±0.11 97.93±0.07
ϵ (AUC) 97.91±0.12 – 97.90±0.08 – 97.98±0.07
λr (AUC) 97.86±0.07 97.90±0.11 97.98±0.07 97.90±0.11 97.92±0.13

MSAD

ν (AUC) 91.78±0.34 91.79±0.29 91.84±0.42 92.90±0.27 91.64±0.27
N (AUC) 90.69±0.35 92.90±0.27 92.29±0.30 92.72±0.29 92.69±0.21
ϵ (AUC) 91.77±0.27 – 91.81±0.33 – 92.90±0.27
λr (AUC) 90.73±0.74 91.41±0.53 92.90±0.27 92.12±0.29 92.28±0.44

Table 9: Ablation study results across datasets (XD-Violence, ShanghaiTech, MSAD) under varying
hyperparameters.

XD-Violence : In the XD-Violence dataset, the degrees of freedom ν show stable performance
across different settings, with AP values consistently around 87, peaking at 87.63 when ν = 8.
Increasing the number of refinement steps N leads to noticeable improvements, with AP rising from
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86.01 at N = 2 to 87.71 at N = 30. The Laplace precision parameter ϵ exhibits minimal influence
on performance, with AP differences within 0.36 across tested values. Adjusting the refinement
weight λr shows moderate effects, where the best AP of 87.63 is achieved at λr = 0.5 Table 9.

ShanghaiTech : For the ShanghaiTech dataset, the performance remains stable across different
settings of the degrees of freedom ν, with AUC scores ranging narrowly between 97.90 and 97.98.
Varying the number of refinement steps N does not lead to significant changes, though a slight
increase is observed at N = 10. The Laplace precision parameter ϵ shows minimal effect on AUC,
with differences remaining within 0.08. Adjusting the refinement weight λr yields the highest AUC
of 97.98 at λr = 0.5, while other values produce slightly lower but comparable performance Table 9.

MSAD : In the MSAD dataset, increasing the degrees of freedom ν generally results in marginal
improvements, peaking at ν = 8 with an AUC of 92.90. The number of refinement steps N has a
more pronounced impact, with AUC improving steadily from 90.69 at N = 0 to 92.72 at N = 30,
then maintaining a similar level at N = 40. The Laplace precision parameter ϵ again leads to only
small variations, with values ranging from 91.77 to 92.90. For λr, AUC increases consistently as
the parameter increases, with the highest value (92.28) observed at λr = 0.9 Table 9.

J.2 LOSS CONFIGURATION

Dataset Metric Lcls Lcls + Lreg Lcls + LKL Lcls + Lreg + LKL

UCF-Crime AUC 88.04±0.28 87.78±0.46 88.24±0.19 88.67±0.45
Ano-AUC 69.79±0.85 69.73±1.00 70.46±0.69 71.50±1.02

XD-Violence AP 87.40±0.72 87.45±0.49 87.46±0.64 87.63±0.54

ShanghaiTech AUC 97.97±0.07 97.91±0.09 97.85±0.14 97.98±0.07

MSAD AUC 92.39±0.22 91.65±0.32 92.38±0.22 92.90±0.27

Table 10: Performance comparison under different loss configurations across datasets.

We assess the contribution of each loss component by evaluating four configurations: classifica-
tion loss only (Lcls), classification plus regularization (Lcls + Lreg), classification plus KL diver-
gence (Lcls +LKL), and the full combination (Lcls +Lreg +LKL) across UCF-Crime, XD-Violence,
ShanghaiTech, and MSAD datasets (Table 10).

In UCF-Crime, adding the KL loss improves AUC from 88.04% to 88.24% and Ano-AUC from
69.79% to 70.46%, while the full combination further boosts AUC and Ano-AUC to 88.67% and
71.50%, respectively. In XD-Violence, ShanghaiTech, and MSAD, performance remains largely
stable across settings, with slight improvements under the full loss configuration. In particular,
MSAD AUC increases from 92.39% to 92.90% with the full loss. Overall, adding LKL consistently
yields benefits, while the effect of Lreg alone is minor. The full configuration achieves the best or
comparable results across all benchmarks.

K FUSION DETAILS

To evaluate whether the proposed framework performs as intended, we analyze the behavior of the
uncertainty weights wm (Eq. 4) when one modality is partially corrupted. Specifically, we aim to test
whether the model’s dynamic uncertainty estimation mechanism can correctly respond to degraded
sensor input. Rather than injecting additive noise—which may lead to complex and unpredictable
interactions within attention-based encoders—we opt for a controlled masking strategy. In attention
networks, even small perturbations can propagate nonlinearly across dimensions, making it difficult
to interpret the resulting change in uncertainty due to entangled feature dependencies. Additionally,
adversarial perturbations rely on gradients computed after the refinement stage, making it difficult
to isolate the direct effect on modality-specific uncertainty. In contrast, masking fixed proportions
of input features allows us to deterministically degrade the modality in a localized and interpretable
manner, providing a clean testbed for evaluating the reliability and sensitivity of uncertainty estima-
tion.
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To assess the reliability of our uncertainty-weighted fusion mechanism, we conduct controlled
modality-specific perturbation experiments across four datasets. We simulate degradation by ran-
domly masking a proportion ρ ∈ {0.05, 0.10, 0.20, 0.30, 0.50} of the latent feature dimensions in
either the image modality (zx) or the motion-cue modality (ze). All experiments report standard
performance metrics, including AUC or AP for detection quality, Brier score for probabilistic cal-
ibration, and KL divergence to quantify the shift between predictions made on clean inputs and
those made under masking. Additionally, we track uncertainty weights wx and we for both modal-
ities, including breakdowns on abnormal and normal video segments, to understand how the model
reallocates modality-level confidence under degradation.

Noise Type Masked Level AUC (%) Brier KL ∆we ∆wab
e ∆wn

e ∆wx ∆wab
x ∆wn

x

CLEAN 0 89.09 0.1205 0.0000 0.4760 0.4744 0.4761 0.5240 0.5256 0.5239

EV NOISE

0.05 88.92 0.1238 0.0032 0.4757 0.4742 0.4758 0.5243 0.5258 0.5242
0.10 88.80 0.1249 0.0062 0.4756 0.4742 0.4758 0.5244 0.5258 0.5242
0.20 88.68 0.1252 0.0104 0.4757 0.4743 0.4758 0.5243 0.5257 0.5242
0.30 88.64 0.1238 0.0133 0.4757 0.4743 0.4758 0.5243 0.5257 0.5242
0.50 88.35 0.1216 0.0198 0.4758 0.4745 0.4759 0.5242 0.5255 0.5241

IMG NOISE

0.05 88.57 0.1261 0.0258 0.4764 0.4749 0.4766 0.5236 0.5251 0.5234
0.10 87.90 0.1295 0.0548 0.4769 0.4755 0.4771 0.5231 0.5245 0.5229
0.20 87.05 0.1290 0.1066 0.4779 0.4766 0.4780 0.5221 0.5234 0.5220
0.30 86.57 0.1238 0.1445 0.4788 0.4776 0.4790 0.5212 0.5224 0.5210
0.50 85.74 0.1097 0.2021 0.4808 0.4798 0.4809 0.5192 0.5202 0.5191

Table 11: Fusion metrics on the UCF-Crime dataset under varying noise settings. AUC is reported
as a percentage.

Noise Type Masked Level AP (%) Brier KL ∆we ∆wab
e ∆wn

e ∆wx ∆wab
x ∆wn

x

CLEAN 0 88.26 0.0735 0.0000 0.4661 0.4623 0.4672 0.5339 0.5377 0.5328

EV NOISE

0.05 88.12 0.0741 0.0020 0.4661 0.4623 0.4672 0.5339 0.5377 0.5328
0.10 88.00 0.0747 0.0040 0.4661 0.4623 0.4671 0.5339 0.5377 0.5329
0.20 87.74 0.0761 0.0083 0.4660 0.4624 0.4671 0.5340 0.5376 0.5329
0.30 87.51 0.0769 0.0121 0.4660 0.4624 0.4670 0.5340 0.5376 0.5330
0.50 87.13 0.0792 0.0194 0.4658 0.4623 0.4668 0.5342 0.5377 0.5332

IMG NOISE

0.05 87.95 0.0794 0.0267 0.4665 0.4628 0.4676 0.5335 0.5372 0.5324
0.10 87.64 0.0852 0.0546 0.4670 0.4633 0.4680 0.5330 0.5367 0.5320
0.20 86.60 0.0986 0.1162 0.4679 0.4644 0.4689 0.5321 0.5356 0.5311
0.30 85.86 0.1109 0.1788 0.4687 0.4655 0.4697 0.5313 0.5345 0.5303
0.50 84.23 0.1366 0.3082 0.4705 0.4677 0.4714 0.5295 0.5323 0.5286

Table 12: Fusion metrics on the XD-Violence dataset under varying noise settings.

Noise Type Masked Level AUC (%) Brier KL ∆we ∆wab
e ∆wn

e ∆wx ∆wab
x ∆wn

x

CLEAN 0 98.17 0.0402 0.0000 0.4718 0.4633 0.4723 0.5282 0.5367 0.5277

EV NOISE

0.05 98.13 0.0401 0.0006 0.4720 0.4634 0.4725 0.5280 0.5366 0.5275
0.10 98.11 0.0398 0.0022 0.4722 0.4635 0.4727 0.5278 0.5365 0.5273
0.20 98.07 0.0399 0.0038 0.4726 0.4638 0.4731 0.5274 0.5362 0.5269
0.30 98.06 0.0393 0.0053 0.4729 0.4639 0.4734 0.5271 0.5361 0.5266
0.50 98.06 0.0383 0.0082 0.4734 0.4641 0.4739 0.5266 0.5359 0.5261

IMG NOISE

0.05 97.66 0.0430 0.0162 0.4726 0.4647 0.4731 0.5274 0.5353 0.5269
0.10 97.54 0.0434 0.0308 0.4733 0.4651 0.4738 0.5267 0.5349 0.5262
0.20 96.29 0.0477 0.0758 0.4750 0.4678 0.4754 0.5250 0.5322 0.5246
0.30 95.09 0.0520 0.1084 0.4764 0.4696 0.4768 0.5236 0.5304 0.5232
0.50 90.72 0.0611 0.2180 0.4801 0.4754 0.4803 0.5199 0.5246 0.5197

Table 13: Fusion metrics on the ShanghaiTech dataset under varying noise settings.

Across all four datasets, our method consistently demonstrates robust uncertainty-guided fusion
behavior. When degradation is applied to the motion-cue modality (ze), performance remains sta-
ble—AUC or AP typically drops by less than 1%, and uncertainty weights show minimal change.
This suggests that the model is not overly sensitive to motion-cue corruption and maintains reliable
fusion under partial degradation.
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Noise Type Masked Level AUC (%) Brier KL ∆we ∆wab
e ∆wn

e ∆wx ∆wab
x ∆wn

x

CLEAN 0 92.39 0.1119 0.0000 0.4807 0.4786 0.4814 0.5193 0.5214 0.5186

EV NOISE

0.05 92.27 0.1126 0.0024 0.4808 0.4787 0.4815 0.5192 0.5213 0.5185
0.10 92.19 0.1129 0.0048 0.4810 0.4788 0.4816 0.5190 0.5212 0.5184
0.20 91.94 0.1149 0.0088 0.4812 0.4791 0.4819 0.5188 0.5209 0.5181
0.30 91.89 0.1153 0.0116 0.4814 0.4791 0.4821 0.5186 0.5209 0.5179
0.50 91.86 0.1168 0.0158 0.4817 0.4794 0.4824 0.5183 0.5206 0.5176

IMG NOISE

0.05 92.27 0.1117 0.0066 0.4811 0.4790 0.4817 0.5189 0.5210 0.5183
0.10 92.10 0.1118 0.0125 0.4816 0.4795 0.4822 0.5184 0.5205 0.5178
0.20 91.86 0.1111 0.0220 0.4824 0.4804 0.4830 0.5176 0.5196 0.5170
0.30 91.63 0.1116 0.0303 0.4832 0.4813 0.4838 0.5168 0.5187 0.5162
0.50 91.52 0.1106 0.0425 0.4848 0.4827 0.4854 0.5152 0.5173 0.5146

Table 14: Fusion metrics on the MSAD dataset under varying noise settings.

In contrast, masking the image modality (zx) produces more pronounced effects, especially on
appearance-dependent datasets such as UCF-Crime and XD-Violence. At the highest masking level,
UCF-Crime experiences a 2.35% drop in AUC, and XD-Violence shows nearly a 5% drop in AP,
accompanied by KL divergence increases up to 0.3082. Uncertainty weights reflect this asymmetry:
wx consistently decreases while we increases, indicating that the model dynamically downweights
unreliable image features and reallocates confidence toward the motion-cue modality.

On datasets with higher modality redundancy—such as ShanghaiTech and MSAD—both perfor-
mance and uncertainty remain relatively stable under perturbation. ShanghaiTech maintains an AUC
above 98% under motion-cue noise and above 90% under severe image masking, while MSAD ex-
hibits only minor fluctuations across all metrics. This confirms that the model can maintain balanced
modality fusion when both modalities offer sufficient information.

While the average change in uncertainty weights (∆wm) is numerically small—typically below
1%—this is largely due to aggregation over all vector indices and time steps. A finer-grained analy-
sis reveals that individual latent dimensions can shift by as much as 30% under value-level masking,
demonstrating substantial feature-wise modulation. Moreover, uncertainty reallocation is more pro-
nounced in abnormal segments compared to normal ones, indicating that the model adapts more
sensitively in semantically critical regions. Finally, increases in Brier score under corruption reflect
growing misalignment between predicted probabilities and ground truth labels, particularly under
image degradation, further confirming that the model’s confidence dynamically adjusts in response
to input quality.
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