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Abstract

Human gaze data provide cognitive information001
that reflect human language comprehension and002
has been effectively integrated into a variety003
of natural language processing (NLP) tasks,004
demonstrating improved performance over cor-005
responding plain text-based models. In this006
work, we propose to integrate a gaze module007
into pre-trained language models (PLMs) at the008
fine-tuning stage to improve their capabilities009
to learn representations that are grounded in010
human language processing. This is done by011
extending the conventional purely text-based012
fine-tuning objective with an auxiliary loss to013
exploit cognitive signals. The gaze module is014
only included during training, retaining com-015
patibility with existing PLM-based pipelines.016
We evaluate the proposed approach using two017
distinct PLMs on the GLUE benchmark and ob-018
serve that the proposed model improves perfor-019
mance compared to both standard fine-tuning020
and traditional text augmentation baselines. All021
code is available on anonymous_git.022

1 Introduction023

As humans read text, the unconscious cognitive024

processes that unfold in their minds while compre-025

hending the stimulus text are reflected in their gaze026

signals (Just and Carpenter, 1980). These gaze sig-027

nals hold the potential to enhance NLP tasks. Re-028

search has focused on using aggregated word-level029

gaze features to enrich text features (Barrett et al.,030

2016; Mishra et al., 2016; Hollenstein and Zhang,031

2019) or to regularize neural attention mechanisms,032

making their inductive bias more human-like (Bar-033

rett et al., 2018; Sood et al., 2020, 2021).034

Moreover, there has been growing interest in035

adopting non-aggregated scanpaths (i.e., sequence036

of consecutive fixations) to augment LMs. These037

scanpaths capture the complete sequential order-038

ing of a reader’s gaze behavior and approximate039

their attention. Mishra et al. (2017) and Khurana040

et al. (2023) employed neural networks to indepen- 041

dently encode scanpaths and text, followed by the 042

fusion of the features extracted from both modal- 043

ities. Yang and Hollenstein (2023) proposed rear- 044

ranging the contextualized token embeddings pro- 045

duced by PLMs based on the order in which the 046

reader fixates on the words, followed by perform- 047

ing sequence modeling on the reordered sequence. 048

To tackle the issue of gaze data scarcity, Deng 049

et al. (2023a) explored the possibility of augment- 050

ing LMs using synthetic scanpaths, generated by a 051

scanpath generation model. Remarkably, synthetic 052

scanpaths demonstrated advantages across various 053

NLP tasks, particularly in settings with limited la- 054

beled examples for the downstream task. 055

In this work, we start from a different perspective 056

and explore utilizing gaze data to improve on the 057

learned representations of PLMs during the fine- 058

tuning stage, without incurring additional compu- 059

tational effort when using the model at application 060

time. To this end, we extend the standard PLM 061

fine-tuning objective with an auxiliary loss by in- 062

tegrating a scanpath module, which serves a dual 063

purpose. First, the auxiliary loss can effectively in- 064

corporate human-like gaze signals generated using 065

a scanpath generation model and thus provide infor- 066

mative gradients to guide the LM towards more rep- 067

resentative local minima. Second, reordering the 068

token-embedding sequence based on the fixation 069

sequence can diversify textual information, poten- 070

tially improving generalization performance (Xie 071

et al., 2020). This stands in contrast to heuristic 072

text augmentation strategies, like random word in- 073

sertion, replacement, swapping, and deletion (Wei 074

and Zou, 2019; Xie et al., 2020). Scanpaths in- 075

herently contain cognitive information that better 076

aligns with and complements textual information. 077

Notably, our proposed gaze module is only ac- 078

tive during training (fine-tuning), ensuring align- 079

ment with the standard usage of LMs after this 080

stage. This offers two key benefits. First, it fa- 081
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Figure 1: Overall architecture during training. The stan-
dard objective is augmented with an auxiliary loss from
a scanpath-integrated branch, where token embeddings
are rearranged based on the simulated fixation sequence.

cilitates seamless integration with existing LM-082

based pipelines. Second, at deployment time, it083

eliminates the need to either collect real-time gaze084

recordings, which is costly and impractical for most085

use-cases, or generate synthetic gaze data, which is086

often computationally challenging for devices with087

limited computational resources.088

On the General Language Understanding Eval-089

uation (GLUE) benchmark, our proposed gaze-090

augmented fine-tuning outperforms both standard091

text-only fine-tuning and traditional text augmenta-092

tion baselines, without incurring additional compu-093

tational effort at application time.094

2 Method095

In this section, we start out with a brief descrip-096

tion of the conventional fine-tuning procedure for097

Transformer-based encoders on downstream tasks.098

Subsequently, we introduce our method, and ex-099

plain how it incorporates synthetic scanpaths to100

enhance representation learning of Transformer-101

based encoders into this fine-tuning procedure. The102

overall model architecture is illustrated in Figure 1.103

Preliminaries Our learning objective is to solve104

standard multi-class classification or regression105

problems. We assume access to a Transformer-106

based PLM like BERT (Devlin et al., 2019) or107

RoBERTa (Liu et al., 2019). In the conventional108

fine-tuning approach for downstream tasks, the109

PLM is adapted to a specific task by fine-tuning110

all the parameters end-to-end using task-specific111

inputs and outputs. The final hidden state of the112

“[CLS]” token typically serves as the aggregated113

sentence representation, which is then fed into a 114

newly initialized (series of) dense layer(s) with out- 115

put neurons corresponding to the number of labels 116

in the task. We minimize the standard cross-entropy 117

loss for classification and mean-squared-error loss 118

for regression, denoted Lstandard in Figure 1. 119

Scanpath Integration We extend the standard 120

fine-tuning framework by integrating a scanpath 121

module. The design of the scanpath module fol- 122

lows the prior work of Deng et al. (2023a) and 123

Yang and Hollenstein (2023). Specifically, the 124

Transformer encoder produces contextualized to- 125

ken embeddings for a given sentence, with each 126

embedding associated with its position index in 127

the sequence. Simultaneously, a synthetic scanpath 128

(fixation-index sequence) is generated based on 129

the same sentence using the scanpath-generation 130

model Eyettention (Deng et al., 2023b), which has 131

demonstrated effectiveness in simulating human- 132

like scanpaths during reading (see Appendix A for 133

detailed information about the Eyettention model). 134

The scanpath module then rearranges the token- 135

embedding sequence based on the simulated fix- 136

ation sequence. Subsequently, we use a scanpath 137

encoder, implemented as a layer of Gated Recurrent 138

Units (GRU), to process the reordered sequence. 139

The output from the last step of the scanpath en- 140

coder is then forwarded to the subsequent dense 141

layer. For the branch that takes the scanpath into 142

account, we introduce an additional loss term, re- 143

ferred to as Lscanpath in Figure 1, which represents 144

the cross-entropy loss for classification and the 145

mean-squared-error loss for regression. 146

Training Objective We combine the standard
purely text-based loss and the scanpath-integrated
loss with a trade-off factor λ. The final training
objective is defined as:

L = Lstandard + λLscanpath.

The joint optimization of the two branches facil- 147

itates the flow of cognitive information from the 148

scanpath module to the Transformer through back- 149

propagation, thereby improving its capability to 150

process and comprehend text. Consequently, dur- 151

ing testing, we can remove the scanpath module 152

and generate predictions solely from the Trans- 153

former and the final dense layer. This ensures align- 154

ment with standard LM usage after the fine-tuning 155

stage, notably preserving its intrinsic efficiency and 156

compatibility. 157
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K Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERT 42.100.46 62.161.30 73.580.56 77.681.71 18.524.24 80.480.32 82.120.43 54.950.67 61.45
+EDA 47.741.10 64.890.56 76.230.34 80.481.26 14.052.84† 79.560.62† 82.680.40 55.740.30 62.6720

0

+SP 42.630.82 64.470.84 73.830.44 81.190.98 23.333.42 82.010.28 82.710.48 56.100.67 63.28

BERT 52.351.23 67.330.29 77.780.46 84.170.28 30.291.86 83.900.24 83.150.26 60.431.07 67.43
+EDA 56.370.88 68.030.33 78.480.32 85.370.17 28.891.58† 83.280.24† 84.000.28 60.430.49 68.1150

0

+SP 55.400.61 67.860.42 78.190.24 84.220.52 35.871.50 85.260.29 84.520.46 61.440.43 69.10

10
00

BERT 60.510.66 69.400.54 79.530.16 85.250.51 39.920.86 86.220.11 85.420.23 63.101.16 71.17
+EDA 61.580.50 69.910.35 80.490.16 86.100.34 31.041.89† 85.500.22† 86.370.44 64.261.16 70.66†

10
00

+SP 61.750.32 70.580.30 80.240.33 86.700.09 42.450.59 86.730.14 86.770.69 63.181.08 72.3

RoBERTa 40.060.68 68.590.54 77.210.60 88.560.39 30.292.55 82.840.43 83.370.16 55.811.15 65.84
+EDA 53.640.44 68.840.71 77.520.57 87.940.64† 23.304.16† 83.860.10 84.050.49 58.411.20 67.2020

0

+SP 44.900.63 69.050.69 78.140.68 87.110.86† 29.073.18† 82.420.24† 83.860.62 63.032.58 67.20

RoBERTa 65.200.46 73.420.48 81.540.22 89.610.35 39.590.95 86.680.30 86.090.36 62.241.92 73.05
+EDA 64.970.56† 71.570.45† 81.200.23† 89.270.35† 36.052.28† 86.460.26† 87.490.67 59.491.55† 72.06†50

0

+SP 64.890.42† 73.790.30 81.780.16 89.750.30 39.071.96† 86.290.07† 87.000.54 68.011.07 73.82

RoBERTa 70.910.61 75.630.29 83.430.12 90.690.24 44.780.65 88.060.19 88.850.19 64.911.26 75.91
+EDA 70.840.34† 74.590.52† 82.640.47† 90.230.38† 41.441.18† 87.790.15† 89.600.41 63.252.00† 75.05†

10
00

+SP 70.690.37† 75.400.16† 83.590.42 89.910.35† 44.431.88† 88.120.17 89.420.53 72.710.73 76.78

Table 1: Results on the GLUE benchmark with K = {200, 500, 1000} training instances. QQP/MRPC: F1, STS-B:
Spearman correlation, CoLA: Matthews correlation, and accuracy for the remaining tasks. We perform 5 runs and
report the means along with standard errors. The dagger “†” indicates performance inferior to standard fine-tuning.

3 Experiments158

3.1 Evaluation Setup159

Data Sets We conduct experiments on the GLUE160

benchmark (Wang et al., 2018), including sen-161

timent analysis (SST-2), linguistic acceptability162

(CoLA), similarity and paraphrase tasks (MRPC,163

STS-B, QQP), and natural language inference tasks164

(MNLI, QNLI, RTE).165

Model and Data Setup We use BERTbase and166

RoBERTabase as the base models in the experi-167

ments. We primarily focus on a low-resource set-168

ting where only limited labeled examples for the169

downstream task are available. In such cases, ef-170

fective fine-tuning strategies are crucial to enable171

high-capacity LMs to learn more informative rep-172

resentations (Zhang et al., 2021). For each task,173

we sample a small subset of training instances with174

sizes K = {200, 500, 1000}. We take an addi-175

tional 1,000 instances from the original training set176

as the development set and use the original devel-177

opment set for testing. Additionally, we consider178

a high-resource setting where we use the entire179

training set and report the results on the GLUE de-180

velopment sets. Appendix B gives further details181

about training and hyper-parameter tuning.182

Baselines We compare our proposed method183

with the standard text-only fine-tuning (Lstandard as184

the training objective), Moreover, we compare to185

the EDA method (Wei and Zou, 2019), which ran-186

domly inserts, replaces, swaps, and deletes words187

in the text to augment the training data.188

3.2 Results 189

Low-Resource Performance Table 1 shows that, 190

overall, our scanpath-augmented fine-tuning (+SP) 191

consistently outperforms the standard fine-tuning 192

and EDA baselines, regardless of the number of 193

training instances. We observe performance gains 194

of 2-3% for BERT and 1-2% for RoBERTa over 195

standard fine-tuning. At the per-task level, our 196

method outperforms standard fine-tuning across 197

all tasks in all setups for BERT, and on 5, 5, and 198

4 out of 8 tasks when trained with 200, 500, and 199

1,000 instances, respectively, for RoBERTa. The 200

improvements are larger with fewer training in- 201

stances, indicating the efficacy of our method in 202

low-resource scenarios. Notably, for tasks like 203

CoLA and STS-B where the EDA method yields 204

largely inferior results compared to standard fine- 205

tuning (Model=BERT), our method shows supe- 206

rior performance. This suggests that the scanpath, 207

which inherently contains cognitive information, 208

aligns with and complements textual information 209

effectively. 210

High-Resource Performance In Table 2, we 211

present the results of different methods when us- 212

ing all training instances. Our scanpath-augmented 213

fine-tuning (+SP) achieves the highest overall per- 214

formance. While the gains are not as significant as 215

in the low-resource setting for most tasks, notable 216

improvements persist for tasks like CoLA and RTE. 217

In contrast, the EDA method fails to outperform 218

standard fine-tuning overall, aligning with findings 219

from previous research (Longpre et al., 2020). 220
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Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERT 83.87 88.02 91.01 92.43 59.90 89.47 90.51 66.79 82.75
+EDA 83.82† 87.53† 90.79† 92.55 56.88† 88.67† 90.94 71.12 82.79
+SP 84.17 88.27 91.38 93.23 64.27 89.61 91.60 71.48 84.25

RoBERTa 87.77 89.03 92.88 94.84 61.48 90.58 93.15 77.98 85.96
+EDA 87.71† 88.58† 92.48† 95.41 58.88† 90.35† 92.93† 76.17† 85.31†
+SP 87.95 89.10 92.97 94.95 63.20 90.55† 92.93† 80.14 86.47

Table 2: Results on the GLUE Development sets with all training samples are used. The dagger “†” indicates
performance that is inferior to standard fine-tuning of the PLM.

Model SST-2 CoLA MRPC RTE Avg.

BERT 92.43 59.90 90.51 66.79 77.41
+SP (-AfterLayer-12) 93.23 64.27 91.60 71.48 80.15

+SP-AfterLayer-11 92.89 63.38 91.19 71.84 79.83
+Pos Emb 93.00 62.91 91.09 70.40 79.35

+SP-AfterLayer-8 93.12 62.44 91.36 70.04 79.24
+Pos Emb 93.12 63.04 91.00 69.68 79.21

+SP-AfterLayer-5 93.12 61.34 90.88 70.40 78.94
+Pos Emb 92.89 61.62 91.03 71.48 79.26

+SP-Emb 93.23 61.11 90.82 68.23 78.35

Table 3: Comparison of the Scanpath Module at vari-
ous model locations: after the n-th Transformer layer
(SP-AfterLayer-n), and after the embedding layer (SP-
Emb). We add extra positional embeddings to the token
embeddings in the reordered sequence (+Pos Emb).

3.3 Ablation Studies221

Location of the Scanpath Module We explore222

the impact of integrating the scanpath module at dif-223

ferent feature-representation levels on the model’s224

performance. Specifically, we experiment with225

placing the scanpath module after the 11th, 8th, 5th,226

and embedding layer of the Transformer. In these227

cases, it is straightforward to use the subsequent228

Transformer layers to process the scanpath-guided229

reordered sequence; we therefore remove the scan-230

path encoder from the module. Moreover, we add231

extra positional embeddings to the token embed-232

dings after the rearrangement, providing informa-233

tion about the positions of tokens in the sequence.234

Table 3 shows that integrating the scanpath mod-235

ule into the model, regardless of its placement,236

yields improved performance compared to stan-237

dard text-only fine-tuning. However, placing it at238

a lower position within the Transformer results in239

smaller gains. This may be attributed to the top240

Transformer layers capturing richer semantic infor-241

mation (Jawahar et al., 2019). Placing the scan-242

path module at the top facilitates better access to243

this information, potentially aiding in leveraging244

cognitive information. Furthermore, adding extra245

positional information to the reordered sequence246

marginally impacts performance.247

Scanpath vs Random Order The core principle 248

of the scanpath module is to utilize the order of 249

fixations to integrate estimated cognitive informa- 250

tion into the model. To study whether the observed 251

gains truly arise from the order of fixations, we 252

compare our method which rearranges the token- 253

embedding sequence based on the scanpath to two 254

baselines: (1) shuffling the scanpath ordering, and 255

(2) randomly shuffling the token-embedding se- 256

quence. Table 4 shows that shuffling the scanpath 257

results in consistent performance drops across all 258

tasks, indicating the importance of the order of fix- 259

ations. Furthermore, excluding the scanpath and 260

randomly shuffling BERT token embeddings leads 261

to a large decrease in performance gain, underscor- 262

ing the importance of both fixated words and their 263

order in enhancing model performance. 264

Model SST-2 CoLA MRPC RTE Avg.

BERT 92.43 59.90 90.51 66.79 77.41
+SP 93.23 64.27 91.60 71.48 80.15

+Shuffle SP 93.00 63.81 91.34 71.12 79.82
+Random Shuffle 92.78 60.66 91.42 68.95 78.45

Table 4: Comparison of strategies for reordering token
embeddings: scanpath-guided (SP), shuffled scanpath-
guided (Shuffle SP), and (Random Shuffle).

4 Conclusion 265

Our work contributes to the broad effort of enrich- 266

ing NLP models by grounding them in various do- 267

mains of experience. Our specific focus lies in 268

leveraging scanpath data, demonstrating its vital 269

role in enhancing textual representation learning. 270

By extending the standard PLM fine-tuning objec- 271

tive with a scanpath-integrated loss, we ground 272

the LM in human language processing. Finally, 273

our experiments show that the proposed method 274

surpasses standard fine-tuning and EDA baselines 275

on the GLUE benchmark, pointing to the poten- 276

tially promising future direction of enriching tex- 277

tual representations with gaze data, especially for 278

low-resource tasks and languages. 279
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Limitations280

One limitation of our work is that the scanpath-281

generation model—Eyettention—was pre-trained282

on a single eye-tracking corpus with a relatively283

small sample (see Appendix A). Participants read284

sentences covering only a single domain and a nar-285

row range of difficulties. This limitation may re-286

strict the knowledge acquired by Eyettention con-287

cerning human language processing, thus poten-288

tially leading to limited benefits when integrating289

simulated gaze data into LMs. In our experiments,290

we observe that our proposed fine-tuning scheme291

provides fewer benefits to RoBERTa than BERT,292

even in the low-resources setting. The key distin-293

guishing factor between these models is the scale294

of unsupervised pre-training. We hypothesize that295

pre-training provides similar benefits targeted by296

the simulated cognitive signals generated from Eye-297

ttention. Including larger eye-tracking samples for298

pre-training, possibly covering diverse domains of299

text reading, could potentially enhance the model’s300

performance.301

Furthermore, it is worth exploring the perfor-302

mance of using other state-of-the-art scanpath gen-303

erators. Different architectures have been devel-304

oped recently in the field (Bolliger et al., 2023;305

Khurana et al., 2023). Exploring the strengths and306

weaknesses of different scanpath generators when307

integrated into LMs could provide valuable insight308

into the development of improved scanpath genera-309

tors for benefiting NLP tasks.310

Ethics Statement311

It is essential to acknowledge potential privacy312

risks in the collection, sharing, and processing of313

human gaze data. Due to the highly individual na-314

ture of eye movements, there exists a possibility of315

extracting sensitive information such as a partici-316

pant’s identity (Jäger et al., 2020; Makowski et al.,317

2021), gender (Sammaknejad et al., 2017) and eth-318

nicity (Blignaut and Wium, 2014) from gaze data,319

posing a risk of privacy leakage. The use of syn-320

thetic gaze data can help alleviate the necessity for321

large-scale experiments involving human subjects,322

although some amount of human gaze data remains323

necessary to train generative models.324
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A Model Details519

Scanpath Generation Model For the utilization520

of the scanpath generation model Eyettention, we521

follow the work of (Deng et al., 2023a). The train-522

ing process for the Eyettention model is conducted523

in two phases. First, we pre-train the Eyetten-524

tion model on the L1 subset of the CELER cor-525

pus (Berzak et al., 2022), which comprises eye-526

tracking recordings collected from native speakers527

of English during natural reading sentences. Sec-528

ond, the Eyettention model is fine-tuned on down-529

stream NLP tasks. More specifically, in our pro-530

posed scanpath-augmented fine-tuning scheme, we531

fine-tune the Transformer encoder and the Eyetten-532

tion model, as well as train the scanpath encoder533

and the final dense layer from scratch. We tailor the534

parameters of Eyettention for specific downstream535

tasks, aiming to provide targeted inductive biases.536

For further details on the Eyettention model, please537

refer to (Deng et al., 2023b,a).538

In our experiments, we evaluate our proposed539

approach using two distinct PLMs, BERT and540

RoBERTa, each equipped with its unique tokenizer.541

The Eyettention model includes a PLM in the text542

encoder for embedding the stimulus sentence. The543

generated fixation sequence (token index sequence)544

is based on the specific tokenizer associated with545

the PLM used. To facilitate a direct application546

of the arrangement operation based on the token-547

embedding sequence and fixation sequence without548

additional complex conversion, we maintain con-549

sistency by using the same PLMs in the Eyettention550

text encoder when evaluating specific PLMs as our551

base models. By replacing BERT with RoBERTa552

in the Eyettention text encoder, we observe a sim-553

ilar validation loss in scanpath prediction on the554

CELER corpus.555

Scanpath Encoder The scanpath encoder is com-556

posed of a unidirection GRU layer (Cho et al.,557

2014) with a hidden size of 768 and a dropout558

rate of 0.1. We initialize the hidden state of the559

GRU layer using the [CLS] token outputs from the560

final layer of the PLMs.561

B Training Details562

We train all models using the PyTorch (Paszke et al.,563

2019) library on an NVIDIA A100-SXM4-40GB564

GPU using the NVIDIA CUDA platform. We565

use the pre-trained checkpoints from the Hugging-566

Face repository (Wolf et al., 2020) for the language567

model BERTbase and RoBERTabase. The models are 568

optimized using the AdamW optimizer (Loshchilov 569

and Hutter, 2019). We set the maximum sequence 570

length to 128 and the training batch size to 32. 571

In the high-resource setting, we train the models 572

for 20 epochs and update the best checkpoint by 573

measuring validation accuracy every 500 steps. For 574

datasets with fewer than 500 steps per epoch, we 575

update and validate at the end of each epoch. We 576

tune the learning rates for BERT from {5e-5, 4e-5, 577

3e-5, 2e-5} and for RoBERTa from {3e-5, 2e-5, 1e- 578

5} for each task, following the recommendations 579

in the original paper (Devlin et al., 2019; Liu et al., 580

2019). 581

In the low-resource setting, we train the mod- 582

els for 10 epochs and save checkpoints every 583

epoch. We use the same learning rate that was 584

found optimal in the high-resource setting for each 585

task. We perform 5 runs with different data seeds 586

({111,222,333,444,555}) for shuffling, while the 587

seed s=42 is consistently utilized for model training 588

across all models. 589

In both high-resource and low-resource settings, 590

for our proposed scanpath-augmented fine-tuning 591

method, we conduct a hyperparameter search on 592

the development set to determine the optimal trade- 593

off factor λ for each task, exploring values from 594

{1, 0.7, 0.5, 0.3, 0.1, 0.01, 0.001}. For the EDA 595

baseline, we tune the number of generated aug- 596

mented sentences added to the original training set, 597

exploring values from {1, 2, 4, 8, 16} based on the 598

recommendations in the original paper (Wei and 599

Zou, 2019). 600
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