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Figure 1: Fine-grained Parameter Sharing (FiPS).

ABSTRACT

Large neural networks achieve remarkable performance, but their size hinders
deployment on resource-constrained devices. While various compression techniques
exist, parameter sharing remains relatively unexplored. This paper introduces Fine-
grained Parameter Sharing (FiPS), a novel algorithm that leverages the relationship
between parameter sharing, tensor decomposition, and sparsity to efficiently com-
press large vision transformer models. FiPS employs a shared base and sparse factors
to represent shared neurons across multi-layer perception (MLP) modules. Shared
parameterization is initialized via Singular Value Decomposition (SVD) and opti-
mized by minimizing block-wise reconstruction error. Experiments demonstrate that
FiPS compresses DeiT-B and Swin-L MLPs to 25–40% of their original parameter
count while maintaining accuracy within 1 percentage point of the original models.

1 INTRODUCTION

Over the last decade, large neural networks have achieved impressive performance across various
tasks by scaling up datasets and model sizes. However, this growth has led to computational, memory,
and storage challenges, necessitating efficient model compression techniques to reduce overhead and
enable deployment on resource-constrained devices like mobile phones and embedded systems. To
this end, research has explored various approaches, including tensor decomposition, quantization,
distillation, sparsity, parameter sharing, and adaptive computing methods (Cheng et al., 2020).
While most of these methods are well-studied and successfully utilized in practice (e.g., distillation,
quantization), parameter sharing has received less attention.

Sharing parameters across multiple layers of a neural network could, in theory, reduce memory
requirements and increase cache hits, leading to faster execution. Motivated by this, several previous
works have explored reusing entire transformer blocks when defining a network (Lan et al., 2020;
Takase & Kiyono, 2023; Lin et al., 2023), resulting in more efficient models. Although the ability to
share weights unmodified across layers is promising, we hypothesize that a more fine-grained approach
may achieve better compression, leading us to focus on sharing neurons across different layers.

We show that sharing neurons across layers can be achieved using a shared basis, where each neuron
is computed as a linear combination of this basis. Crucially, we find that sparsity in the projection
matrix is essential for this approach to be effective. This insight leads to our novel parameter sharing
algorithm, Fine-grained Parameter Sharing (FiPS), which we demonstrate effectively compresses
large vision transformer models. Our contributions include:

1
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(a) Optimal Sparsity: FC-1 (b) Optimal Sparsity: FC-2 (c) Parameter Sharing Strategies.

Figure 2: Initial Experiments. Reconstruction error when inducing sparsity on different factors of
low-rank decomposition of (a) the FC-1 layer and (b) the FC-2 layer, under a parameter budget of
25%. Higher sparsities, when applied to larger factors, enable higher ranks and achieve lower error.
(c) Average reconstruction error of four FC layers under different parameter sharing strategies and
sparsities. See § 2.2 for a description of each strategy.

• We demonstrate the feasibility of neuron sharing across layers by leveraging sparse tensor
decomposition in MLP modules, enabling efficient parameter sharing with minimal
performance degradation.

• We explore various neuron-sharing configurations by analyzing different concatenation
strategies for MLP modules.

• Building on these insights, we introduce FiPS, a method that employs Singular Value
Decomposition (SVD) to initialize the compressed model and optimizes the decomposed
parameters by minimizing block-wise reconstruction error.

• We apply FiPS (using both unstructured and structured sparsity) to compress the MLP modules
of DeiT-B (Touvron et al., 2021) and SWIN-L (Liu et al., 2021), reducing their size to 25–40%
of the original while preserving accuracy with a minimal loss (under 1 percentage point).

2 PARAMETER SHARING THROUGH SPARSE TENSOR DECOMPOSITION

Consider a weight matrix, W∈Rd×p, which projects feature vectors from d-dimensional space to a
p-dimensional space, with neurons represented as the columns of W. We aim to share weights across a
subset of these p neurons such that there remain only r<p unique neurons; in other words, we want only
r columns ofW to have unique values. We can represent the r unique neurons using a lookup table (basis
matrix) U∈Rd×r. Then, our original matrix W can be reconstructed using an r-dimensional one-hot
vector for each of its p columns, represented by a projection matrix V∈Rr×p. This is the "one-hot" ap-
proach illustrated in the upper part of Figure 1. Note that the number of unique neurons in this setting is r,
limiting the resulting matrix’s representation powerW. One way to alleviate this limitation is to increase
the number of non-zero elements inV, effectively creating combinations of the basis neurons and result-
ing in significantly more unique neuron representations, as illustrated in the lower part of Figure 1. So
far, we have considered sharing neurons within a single matrixW. However, this approach can be easily
extended to multiple weight matrices W1,...,WN . Specifically, we can enable fine-grained parameter
sharing across multiple layers by increasing the size of our projection matrix V and shared basis U.

The approach outlined above can be viewed as a low-rank decomposition of a matrix W, where
the first factor U is shared and the second factor V is sparse. Thus, we can utilize existing low-rank
decomposition techniques to obtain an optimal shared orthogonal basis and induce sparsity in the
projection matrices using existing pruning and sparse training techniques. In what follows, we use
a pre-trained DeiT-B model (with 12 encoder blocks, each containing one MLP modules, pre-trained
on ImageNet-1k (Deng et al., 2009)) and investigate the best strategy for tying multiple layers using
the described framework. Specifically, we focus on the model’s MLP modules, each consisting of
two fully connected (FC) layers with dimensions Rd×p and Rp×d respectively, where p=4d.

2.1 OPTIMAL SPARSITY FOR TENSOR DECOMPOSITION

Before moving on to parameter sharing through shared bases, we decompose individual FC layers
using a truncated SVD with a 25% parameter budget and introduce sparsity by setting low-magnitude
values to zero. We consider introducing sparsity in: (1) U, (2) V, and (3) both U and V. We vary
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(a) Mean-Squared Error (MSE) compressing MLP module pairs of diff.
blocks.

(b) Rank.

(c) Accuracy.

Figure 3: Parameter Sharing Groups. (a top) Increase in mean squared error (MSE) when sharing
U across different MLP modules. Combining adjacent MLP modules leads to better reconstruction,
as indicated by the red squares. (a bottom) MSE when compressing individual MLP modules, with
sharing U among consecutive layers typically yielding the lowest error. (b) For a fixed parameter
budget, the rank of the shared basis U stabilizes around four MLP modules. (c) This matches the
optimal group size for maximizing accuracy when compressing the DeiT-B model with our algorithm.

the sparsity of matrices while keeping the total number of non-zero parameters fixed. The resulting
reconstruction errors are shown in Figures 2a and 2b. We observe that the best errors are achieved
around 60–80% sparsity and when sparsity is introduced on the larger factor (i.e., V). We believe
this is because larger matrices have more redundant weights and, thus, easier to prune.

2.2 WEIGHT CONCATENATION AND FINDING SHARED DIMENSIONS

Next, we study introducing parameter sharing across multiple layers within a network. Specifically, we
consider four FC layers from two different MLP modules and concatenate their parameters in different
ways to find the optimal strategy for constructing the shared basis.

First, we transpose the parameters of the second FC layers in each MLP module, such that each layer
is represented by a weight matrix W∈Rd×4d. We then explore four distinct ways of concatenating
2 MLP modules together (four FC layers in total):

(I) Concatenate all matrices along the longer axis: Ws∈Rd×16d.
(II) Concatenate FC layers from the same module along the longer axis and then different

modules along the shorter: Ws∈R2d×8d.
(III) Contrary to (II), concatenate the layers from the same module along the shorter axis and then

different modules along the longer: Ws∈R2d×8d.
(IV) Concatenate all layers along the shorter axis: Ws∈R4d×4d.

We apply truncated SVD to the concatenated matrix Ws, and keep the top r singular vectors. The
resulting matrix V (corresponding to the right singular vectors) is sparsified by keeping the entries
with the largest magnitude, an approach shown in § 2.1 to yield optimal reconstruction. Finally, we
reconstruct the parameters using a shared basis and report the mean squared error (MSE) in Figure 2c.
Concatenating weights along the longer dimension yields the best reconstruction error, especially

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

W1

p

d

p*N

d

U

r

p

V2

V1

VNCONCAT

W2

WN

r

d

DECOMPOSE

Figure 4: Parameter Sharing Through Sparse Tensor Decomposition. A group of FC layers are
concatenated along the larger dimension, p, and decomposed into two matrices: a shared basis, U, and
a sparse projection matrix, which is then sliced up respectively for each layer.

at higher sparsity levels. Therefore, going forward, we will always concatenate the two FC layers
of every MLP module in the transformer blocks along their larger dimension.

2.3 PARAMETER SHARING ACROSS LAYERS

In this section, we study the redundancy and interplay among different MLP modules to identify ideal
groups for parameter sharing. First, we decompose individual modules using a rank of r=180 and
plot the MSE in Figure 3a-bottom. We observe that the error increases almost monotonically with
the module index, suggesting the need for allocating more capacity to later modules in the network.

Next, we group two MLP modules from two blocks (i and j) and make them share the same basis
U, which reduces the parameter count and consequently increases the MSE for each block. The MSE
for block i in this shared setting is denoted as MSEi,j . In Figure 3a, we plot the average MSE increase
between blocks i and j asMSE↑

i,j=(MSEi−MSEi,j+MSEj−MSEj,i)/2. Empirically, we find
that nearby blocks tend to have the smallest increase in error, motivating the grouping of consecutive
layers when sharing parameters.

We then study the optimal number of MLP modules per group. Increasing the group size, thereby
sharing more parameters across the same basis U, allows for a higher rank, as shown in Figure 3b.
This effect is more pronounced when sparsity is applied to factor V. However, a higher rank does
not always lead to better accuracy, as the shared basis must cover a larger number of parameters. As
illustrated in Figure 3c, the highest post-compression accuracy is attained when parameters are shared
across the MLP modules four consecutive blocks†.

3 SPARSITY-ENABLED PARAMETER SHARING

Experiments in the previous section motivate and guide us in developing FiPS, an efficient parameter-
sharing algorithm enabled by sparse tensor decompositions that can be summarized in three main points:

1. Shared Initialization: We tie multiple FC layers across a group of MLP modules and apply
low-rank decomposition via truncated SVD.

2. Local Error Minimization: We finetune our shared low-rank initialization to minimize
the difference between the activations of the original and compressed model. During this
step, we also introduce sparsity in our factors, which helps us allocate parameters where they
are most needed.

3. Global Error Minimization (Optional): For best results, especially at lower compression
levels, we finetune our compressed models end-to-end.

Algorithm 1 outlines the key steps of FiPS, which are detailed below.

Shared Initialization. We begin by compressing the pre-trained model through parameter sharing,
achieved by concatenating and decomposing multiple FC layers simultaneously, as illustrated in Fig-

†Here, we compress the DeiT-B architecture using FiPS, which is introduced in the following section.
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ure 4. For higher parameter budgets and sparsity levels (e.g., 50% and 75%, respectively), the rank of our
low-rank factorU can exceed the model dimension d. In such cases, we grow the matricesU andV sim-
ilar to the approach in Net2Net (Chen et al., 2016). However, unlike Net2Net, we growU by appending
zeros rather than splitting each neuron. We select the top-k neurons with the highest singular values (i.e.,
k=r−d) and multiply them by 1/τ , where τ is treated as a hyperparameter (discussed further in § 5).

Formally, the parameters of a group of FC layers,W1,W2,...,WN , are concatenated into a large matrix
Ws=[W1;W2;...;WN ], where Wi∈Rd×p †. We then apply truncated SVD, Ws=UΣV̂, to obtain
a low-rank approximation of the parameters, where U∈Rd×r, Σ∈Rr×r, and V̂∈Rr×(N ·p). The
factor U is shared among all layers within the group and remains dense due to its relatively small size.
Next, we multiply V̂ by the singular values to obtain the projection matrixV=ΣV̂. Finally, the weights
are reconstructed asW′

i=UVi, where eachVi is a slice ofV corresponding to the weight matrixWi.

Local Error Minimization For the second phase of our method, we compute the input and output
activations of the original FC layers using a calibration dataset D, described in § 4. We use these
activations to optimize the compressed layers and minimize the L2-loss between the original and
compressed layers’ activations:

argmin
U,Vi,...,VN

N∑
i

∥WiXi−UViXi∥22, (1)

where Xi is the inputs to the ith original FC layer. We explore several sparse training and pruning
techniques to identify a sparse V during this optimization: (a) Static Sparsity, which establishes the
sparsity structure by retaining the top-magnitude connections before training (Hoefler et al., 2021); (b)
Gradual Magnitude Pruning (GMP) (Zhu & Gupta, 2017), which progressively increases sparsity by
updating its mask every T steps, retaining the top-magnitude connections following the cubic schedule
from Kurtic et al. (2023); and (c) RigL (Evci et al., 2021), which starts from (a) but updates the sparse
connectivity every ∆T steps using gradient and magnitude information. We decided to use GMP for
the final sparse training recipe due to its superior performance.

Although we share parameters across multiple MLP modules, gradients for error minimization can be
computed one MLP module at a time. Therefore, optimization requires significantly fewer resources
compared to end-to-end fine-tuning.

Global Error Minimization. In this optional stage, we finetune the shared parameterization found
in the previous stage end-to-end to further improve our results. Because our factors Vi are sparse,
we employ the dynamic sparse training method, RigL, during this stage as we observe it to perform
slightly better than keeping the sparsity pattern constant (i.e., Static Sparsity) as discussed in § 4.

Latency and Memory profiling As noted in § 3, for 75% sparsity, the parameter budgets above
27.5% increase the rank of the shared singular vectors beyond the original model embedding dimension.
We require efficient sparse operations and representations to effectively reduce the latency and memory
overhead of FiPS.

Implementing dedicated kernels to fully exploit the potential for compression offered by FiPS is
outside the scope of this work; however, we demonstrate promising preliminary benchmarks by
utilizing NVIDIA’s tensor core support for 2:4 (Mishra et al., 2021) sparsity for GPUs, and Neural
Magic’s DeepSparse Engine (Neural Magic, 2021) to showcase CPU performance. See fig. 8 for
latency and memory overhead comparisons of DeiT-B. Note that the parameter budgets are slightly
adjusted for latency benchmarking to ensure tensor shapes are evenly divisible by 64, a necessary
property to leverage 2:4 sparsity with 16-bit data types. Based on the latency profiling results in fig. 8
and the structured sparsity performance in table 3, FiPS demonstrates effective model compression,
offering improvements in both memory usage and latency.

4 MAIN RESULTS

Experimental Setup In our experiments, we used DeiT-B (with 12 blocks) and Swin-L (four stages
containing 2, 2, 18, and 2 blocks, respectively) (Touvron et al., 2021; Liu et al., 2021). We used a cali-
bration dataset D of 30×128=3840 samples from ImageNet-1k (Deng et al., 2009). We found that 20

†We transpose the second FC layer’s parameters to match the shape of the first FC layer.
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Figure 5: DeiT-B inference latency and memory benchmarks. (a) End-to-end latency of 2:4 sparse
FiPS on an Nvidia A4000 for batch sizes ranging from 1 to 64. FiPS with a 22% parameter budget
exhibits a 25% latency improvement over the original network above batch sizes of 8. (b) Latency
of 75% unstructured sparse FiPS accelerated with DeepSparse Engine on Intel Xeon W-2145 CPU.
On CPU, FiPS with a 23% parameter budget is faster than the original network at all batch sizes
measured. (c) Maximum VRAM allocation for 50% sparse FiPS using 2:4, strided (i.e., without
a sparse representation), and CSR tensor storage. At 10 and 25% parameter budgets, 2:4 reduces
maximum allocated memory of 18 to 44%, respectively. CSR increases memory overhead at this
modest sparsity due to the associated overhead of storing the non-zero element indices. We find that
the reduction in memory overhead is consistent for all batch sizes observed from 1 to 64. Note that all
plots in fig. 8 have a logarithmic y-axis.

Algorithm 1 Fine-grained Parameter Sharing

Require: MLP parameters W1,··· ,WN ∈ Rd×p, MLP inputs Ai and MLP function f(Wi, Ai),
Target rank r, Learning Rate η, Steps T.

1: U, [V1,V2,···,VN ]←TruncatedSVD([W1;W2;···;WN ], k=r)
2: for each training iteration t=1 to T do
3: GU=0 ▷ Gradient accumulator for U
4: for each block i do
5: Vi←Sparsify(Vi, t) ▷ Potentially increase or adjust sparsity
6: Li←MSE_loss(f(Wi,Ai), f(UVi,Ai))
7: Vi←Vi−η∇ViLi

8: GU←GU+∇ULi

9: end for
10: U←U− η

N
GU

11: end for
12: return U, [V1,...,VN ]

6
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Table 1: Compressing Models Pretrained on ImageNet-1k. We compare top-1 val. accuracy of
DeiT-B (81.85%) (Touvron et al., 2021) and Swin-L (86.24%) (Liu et al., 2021) models compressed
using FiPS vs. AAFM/GFM across parameter budgets. Results include layer-wise error minimization
(FiPS) and global error minimization (FiPS + FT). AAFM/GFM† results are from Yu & Wu (2023).

Param. Budget 10% 25% 40% 50% 75%

Method / Model DeiT Swin DeiT Swin DeiT Swin DeiT Swin DeiT Swin

AAFM † – – – – 80.33 – 81.21 85.04 – –
GFM † – – – – 81.28 – 81.62 85.33 – –

FiPS (ours) 70.04 74.04 80.64 84.78 81.69 85.69 81.83 85.99 81.82 86.21
FiPS + FT (ours) 77.26 82.13 81.31 85.16 81.55 85.68 81.54 85.99 – –

Table 2: Transfer Learning Results. We compare the Top-1 accuracy of the original DeiT-B model
with compressed versions using GFM and FiPS across various MLP parameter budgets on small-scale
datasets. GFM† and Original† results are from Yu & Wu (2023) and Touvron et al. (2021), respectively.

Models Original† GFM† FiPS+RigL FT (ours)

Param. Budget 100% 40% 50% 25% 40% 50%

CIFAR-100 90.99 90.17 90.67 90.88 91.24 91.33
Pets 94.74 93.95 94.22 94.19 94.52 94.41
Flowers102 97.77 97.02 97.45 97.84 98.14 98.37
iNaturalist-2019 77.39 77.13 77.56 77.26 77.58 77.69

epochs with this calibration set yielded near-optimal results, while longer training or larger calibration
sets yielded marginal improvements. This calibration stage took <1 hour on an Nvidia A6000 GPU for
both architectures. Transfer learning capability was assessed on CIFAR-100, Flowers102, Oxford-III-
Pets, and iNaturalist 2019 datasets (Krizhevsky, 2009; Nilsback & Zisserman, 2008; Parkhi et al., 2012;
Van Horn et al., 2018) using 100 training epochs, following the methodology of Yu & Wu (2023). In
all our experiments, we used AdamW optimizer (Loshchilov & Hutter, 2019) and identified the optimal
learning rates by performing a small hyperparameter sweep using 12 logarithmically spaced values.

When applying FiPS, we targeted 75% average sparsity across all sparse factors, as this resulted in
the best compression, as shown in Figure 6b. The mask update interval, ∆T , for both RigL and GMP
was set to 50 steps. When using RigL during global fine-tuning, we used an initial pruning ratio† of
0.1 and reduced this value to 0.05 during our transfer learning experiments to limit changes in the
sparsity pattern. Further hyperparameter details for the optimizer and the sparse training algorithms
used are provided in Appendix A.2.

Following our earlier results (i.e., Figure 3c), we used groups of four consecutive blocks (each with
one MLP module) for the DeiT-B architecture, resulting in three different parameter-sharing groups.
For Swin, we shared parameters within each 2-block stage separately and split the remaining stage
with 18 blocks into three groups with six consecutive blocks each.

ImageNet-1k We compare FiPS against the baselines of Adaptive Atomic Feature Mimicking
(AAFM), which utilizes block-wise error minimization, and Global Feature Mimicking (GFM),
combining AAFM with distillation at the model output, both of which are proposed by Yu & Wu
(2023). At a 40% parameter budget, FiPS achieves 1.36% point higher accuracy (shown in Table 1)
than AAFM and even exceeds the costly GFM approach by 0.41% point, which requires significantly
higher memory and computing resources due to the need for end-to-end fine-tuning.

As for Swin-L, the picture is similar as shown in Table 1. Across all parameter budgets, GMP-based
FiPS consistently achieves higher accuracies than alternatives like GFM while requiring less computing
and memory to compress the pre-trained model.

†Pruning ratio is the proportion of non-zero elements pruned and regrown at each mask update step.
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Transfer Learning Next, we take our compressed models and finetune them on four different
transfer tasks. Since the factors are already sparse, we use RigL to adapt the sparse factors. Models
compressed through FiPS result in significantly better transfer accuracies as shown on Table 2.

5 ABLATIONS

In this section, we study the importance of various components of the FiPS algorithm when
compressing the DeiT-B model at different parameter budgets. First, we ablate key components of
our algorithm in Figure 6a under a 25% parameter budget:

1. SVD-based Initialization: Using a random initialization (RI) instead of SVD-based
initialization results in a 1% point drop in accuracy.

2. Global Pruning: We use global pruning (GP) when sparsifying our sparse factors V, which
results in 0.4% point improvement over local pruning (LP), which enforces the same sparsity
level for each factor Vi.

3. Scaling Vectors: We normalize the weights W before the initial SVD stage of FiPS as
suggested by Liu et al. (2024). Normalized weights initialize the SVD, while magnitude
vectors initialize scaling vectors (SV) for neuron scaling. Scaling vectors improve local
pruning but are less effective with global pruning.

Consequently, the final FiPS configuration integrates GMP with GP. Next, we perform a sensitivity
analysis using different sparsity levels, calibration dataset sizes, and training lengths using the DeiT-B
checkpoint trained on ImageNet-1k.

Optimal Sparsity for Sparse Factors We compressed the DeiT-B model, as described in § 4,
using sparsity levels ranging from 50% to 96% at a reduced parameter budget of 17.5%, as shown
in Figure 6b. The best performance was observed at 75% sparsity as shown in Figure 6b. While
increasing sparsity to 87% yielded similar accuracy, lowering it to 50% resulted in a notable drop
in performance, likely due to a significant reduction in rank.

Calibration Dataset Size and Training Length We examine the relationship between the number
of batches and epochs using a fixed batch size of 128 and a 50% parameter budget. We require the
calibration set to have at least 3 data points per category for generalization (i.e., 30 batches) and observe
that increasing the number of calibration data points results in less than 0.1% point improvement.
Similarly, training beyond 20 epochs often results in worse generalization.

Alternative Sparsity Techniques In addition to GMP, we considered using Dense tensor
decompositions (i.e., no sparsity on V factors) and other sparse training techniques: Static Sparsity
and RigL. Results are presented in Table 4. In the case of DeiT-B, for parameter budgets from 10–50%,
RigL consistently outperforms Dense and Static Sparsity. At higher budgets, all methods converge
to nearly identical accuracies approaching the original model accuracy. For Swin-L, RigL outperforms
Dense and Static Sparsity at 10% and 25% parameter budgets. However, for higher parameter budgets,
Static Sparsity obtains slightly higher accuracies.

Structured Sparsity We investigate the generalization performance of FiPS using structured sparsity,
with results presented in table 3. The methods explored include the Straight Through Estimator (STE)
employing top-k weight magnitude selection, projects parameters into a sparse subspace during training,
and applies gradients to dense parameters with a gradual pruning schedule for improved results; the
Sparse-Refined Straight Through Estimator (SR-STE), which mitigates the negative impact of approx-
imated gradients; and N :M Structured RigL (NMSRigL) and N :M Structured GMP (NMSGMP)
(Lee et al., 2023; Zhou et al., 2021; Lasby et al., 2024), where N :M denotes the sparse weight matrix
dimensionality (e.g., a 50% sparsity in FC weight matrices of size d×4d corresponds to a 2:4 structure).

Sparsity Distribution and MSE-loss Figure 7a shows that earlier MLP layers are easier to
compress, requiring fewer parameters, while later layers are more challenging, as reflected by higher
reconstruction errors in Figure 3a. These later layers exhibit lower sparsity and higher weight density,
with Figure 7b highlighting a strong correlation (0.922) between weight density and MSE. This
indicates that later layers demand more parameters to preserve performance.
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Table 3: Structured Sparsity Performance. ImageNet top-1 validation accuracy (%) of DeiT-B
(81.85%) (Touvron et al., 2021) for various structured sparsification methods at 50% and 75% sparsity,
compared to Unstructured FiPS. Methods include STE, Sparse-Refined STE, N :M Structured RigL
(NMSRigL), and N :M Structured GMP (NMSGMP) at 50% sparsity, corresponding to 2:4 structures
(Lee et al., 2023; Zhou et al., 2021; Lasby et al., 2024).

Param. Budget (at 50% Sparsity) 10% 25% 40% 50%

STE 42.89 73.26 78.26 79.36
SR-STE 45.31 75.53 79.71 80.68
NMSRigL 44.87 75.71 79.97 80.99
NMSGMP 52.36 76.88 80.59 81.31
Unstructured FiPS 54.00 77.56 80.94 81.63

Unstructured FiPS (75% Sparsity, optimal) 70.04 80.64 81.69 81.83

(a) Ablation Results. (b) Optimal Sparsity. (c) Calibration Dataset Size.

Figure 6: Ablations and Sensitivity Analysis. ((a) Ablation of key ingredients of the FiPS algorithm:
random initialization (RI), Local Pruning (LP), Global Pruning (GP), and Scaling Vectors (SV); (b)
Effect of sparsity used in sparse factors; (c) Effect of calibration dataset size (denoted as #batches with
128 images each) and # training epochs to post-compression accuracy.

Table 4: Sparsification Method and FiPS Generalization Performance. ImageNet top-1 validation
accuracy (%) of DeiT-B (81.85%) (Touvron et al., 2021) and Swin-L (86.24%) (Liu et al., 2021) models
compressed with FiPS using different sparsity methods: RigL (Evci et al., 2021) and static sparsity.

Param. Budget 10% 25% 40% 50% 75%

Method / Model DeiT Swin DeiT Swin DeiT Swin DeiT Swin DeiT Swin

Dense 15.35 3.61 65.71 60.31 74.33 80.61 79.22 83.59 81.36 85.64
Static Sparsity 65.26 65.6 80.06 84.37 81.48 85.69 81.70 85.98 81.86 86.23
RigL 66.67 70.96 80.31 84.57 81.50 85.59 81.65 85.91 81.82 86.20
GMP (FiPS) 70.04 74.04 80.64 84.78 81.69 85.69 81.83 85.99 81.82 86.21

Growing Neurons in Shared Bases and Sparse Factors As discussed in § 3, high parameter
budgets and sparsity levels (e.g., 50% and 75% for DeiT-B) often allow the rank r to exceed the model
dimension d. Since SVD provides only d directions for initialization, we explore three methods for
initializing the remaining k=r−d dimensions: 1. Random Growth: New neurons in U are initialized
to zero, and those in V are initialized randomly using He et al. (2015); 2. Neuron Splitting: The top
k neurons of U are duplicated, and the top k neurons of V are halved, following Chen et al. (2016);
3. Hybrid Initialization: New neurons in U are initialized to zero, while those in V are derived
from the top k neurons and normalized by τ . This approach minimizes the immediate impact of new
neurons in V, allowing optimization to gradually re-activate them, as suggested by Evci et al. (2022).
After a hyperparameter sweep on τ , the hybrid initialization outperformed the alternatives, achieving
1% and 2% higher accuracy than methods (1) and (2), respectively.
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(a) Sparsity Distribution. (b) Excess MSE vs. Weight Density.

Figure 7: Efectiveness of Global Sparsity. (a) Average sparsity in the MLP modules of DeiT-B at the
end of the training, showing more parameters are allocated to later modules. (b) We observe a high
correlation between the MSE values reported in Figure 3a and the parameter distribution found by
FiPS.

6 RELATED WORK

Vision Transformers (ViT) were introduced by Dosovitskiy et al. (2021) for image recognition using
image patches as sequences, similar to tokens in NLP models. Touvron et al. (2021) improved ViT’s
data efficiency by introducing a distillation token during training. Liu et al. (2021) proposed Swin
Transformers, which use a hierarchical structure and shifted windows for local self-attention, differing
from ViT and DeiT.

Sparsity in Neural Networks includes three main approaches: post-training pruning, sparsifying
during training, and fully sparse training (Hoefler et al., 2021). Early methods involved heuristic
pruning, such as removing the smallest magnitude parameters (Thimm & Fiesler, 1995). Later
approaches, like GMP (Zhu & Gupta, 2017), increased the amount of pruning, while dynamic pruning
with accelerated schedulers was explored by Kurtic et al. (2023). Static sparsity uses a pre-initialized
mask throughout training (Hoefler et al., 2021), whereas dynamic methods, like RigL (Evci et al.,
2021), adjust the sparsity pattern during training based on gradient information.

Tensor Decomposition techniques, such as those presented by Kolda & Bader (2009), reduce
redundancy in large weight matrices using low-rank decomposition. Yu & Wu (2023) introduced
AAFM for transformer models, using truncated PCA to reconstruct weights, and GFM to minimize
loss between compressed and original models, similar to Knowledge Distillation (Hinton et al., 2015).

Parameter Sharing is less explored but includes works like Eban et al. (2019), who used a
Sum-Product reducer to map shared parameters, and Obukhov et al. (2021), who employed TR
decomposition for shared parameters in 3D tensors. Zhang et al. (2022) introduced “Weight
Multiplexing,” sharing parameters between MLP modules in ViT, alongside distillation and linear
projections between transformer blocks to aid model recovery.

7 CONCLUSION

This work introduces FiPS, demonstrating for the first time that inter-layer parameter sharing
enables significant compression in Transformers. While this study focuses on ViT backbones and
MLP modules, similar gains are expected with multi-head attention parameters, leading to greater
compression. Further improvements may be possible through quantization of the current full-precision
bases, which we leave for future work.
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A APPENDIX

A.1 MLP CONCATENATION STRATEGIES

In reference to § 2.2, below is a detailed account of MLP concatenation setups. Considering two MLPs,
therefore, 4 FC layers and assuming each weight matrix Wij ∈Rd×p (where p=4d and i,j∈{1,2}),
we identify four distinct methods for concatenating the FC weights:

I. All weights are combined along the longer dimension, resulting in:

W=[W1;W2;W3;W4]∈Rd×16d.

II. The FC1 and FC2 weights from each MLP are concatenated along the longer axis, followed
by concatenation along the shorter axis. Specifically, we have:

W1=[W11;W12]∈Rd×8∗d and W2=[W21;W22]∈Rd×8d,

leading to:
W=[W1;W2]∈R2d×8d.

III. The FC1 weights from both MLPs are concatenated along the longer axis, followed by
concatenating the FC2 weights similarly. This results in:

W1=[W11;W21]∈Rd×8d and W2=[W12;W22]∈Rd×8d,

yielding:
W=[W1;W2]∈R2d×8d.

IV. Finally, all weights are concatenated along the shorter axis:

W=[W1;W2;W3;W4]∈R4d×4d.

These configurations are explored empirically in Figure 2c and discussed in full in § 2.2.

A.2 HYPER-PARAMETERS

A.2.1 OPTIMIZER

To minimize local error, we employ a logarithmic grid for hyperparameter tuning. The learning rates
for Dense, Static Sparsity, GMP, and RigL are set as follows for both DeiT-B and Swin-L:

1. Dense: 1.25×10−4,
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2. Static Sparsity: 2.5×10−4,
3. GMP: 1×10−3,
4. RigL: 1×10−3.

For transfer learning, we use a linear grid, as some hyperparameters are derived from the codebase
of DeiT. The optimal learning rates for FiPS are:

1. CIFAR-100: 2.5×10−5,
2. Flowers102: 1×10−4,
3. Oxford-III-Pets: 7.5×10−6,
4. iNaturalist 2019: 1×10−4.

A.2.2 SPARSIFIER

Global Mask Pruning (GMP) GMP begins with an initial sparsity level of 25%. During the training
process, the sparsity is gradually increased to 50% at the 25% training mark and ultimately reaches
75% sparsity by the end of the training. The ∆T of 50 is used for update steps.

RigL RigL employs an initialization phase that combines pruning with a growth ratio of 0.1 for
block-wise error minimization and a growth ratio of 0.05 for transfer learning tasks with ∆T of 50
for growth and pruning ratio. This more conservative growth ratio in transfer learning helps preserve
the mask obtained during the error minimization process, ensuring that important masks learned during
the initial training are not lost.

A.3 LATENCY AND MEMORY PROFILING

As noted in § 3, for 75% sparsity parameter budgets above 27.5% increase the rank of the shared
singular vectors beyond the original model embedding dimension. To effectively reduce the latency
and memory overhead of FiPS, we require efficient sparse operations and representations.

Implementing dedicated kernels to fully exploit the potential for compression offered by FiPS is
outside the scope of this work; however, we demonstrate promising preliminary benchmarks by
utilizing Nvidia’s tensor core support for 2:4 (Mishra et al., 2021) sparsity for GPUs, and Neural
Magic’s DeepSparse Engine (Neural Magic, 2021) to showcase CPU performance. See fig. 8 for
latency and memory overhead comparisons of Deit-B. Note that the parameter budgets are slightly
adjusted for latency benchmarking to ensure tensor shapes are evenly divisible by 64, a necessary
property to leverage 2:4 sparsity with 16-bit data types.
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Figure 8: DeiT-B inference latency and memory benchmarks. (a) End-to-end latency of 2:4 sparse
FiPS on an Nvidia A4000 for batch sizes ranging from 1 to 64. FiPS with a 22% parameter budget
exhibits a 25% latency improvement over the original network above batch sizes of 8. (b) Latency
of 75% unstructured sparse FiPS accelerated with DeepSparse Engine on Intel Xeon W-2145 CPU.
On CPU, FiPS with a 23% parameter budget is faster than the original network at all batch sizes
measured. (c) Maximum VRAM allocation for 50% sparse FiPS using 2:4, strided (i.e., without
a sparse representation), and CSR tensor storage. At 10 and 25% parameter budgets, 2:4 reduces
maximum allocated memory of 18 to 44%, respectively. CSR increases memory overhead at this
modest sparsity due to the associated overhead of storing the non-zero element indices. We find that
the reduction in memory overhead is consistent for all batch sizes observed from 1 to 64. Note that all
plots in fig. 8 have a logarithmic y-axis.

15


	Introduction
	Parameter Sharing Through Sparse Tensor Decomposition
	Optimal Sparsity for Tensor Decomposition
	Weight Concatenation and Finding Shared Dimensions
	Parameter Sharing Across Layers

	Sparsity-enabled Parameter Sharing
	Main Results
	Ablations
	Related Work
	Conclusion
	Appendix
	MLP Concatenation Strategies
	Hyper-parameters
	Optimizer
	Sparsifier

	Latency and Memory profiling


