
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Teach a GPT to Phish

Anonymous Authors1

Abstract

Quantifying privacy risks in large language mod-
els (LLM) is an important research question. We
take a step towards answering this question by
defining a real-world threat model wherein an en-
tity seeks to augment an LLM with private data
they possess via fine-tuning. The entity also seeks
to improve the quality of its LLM outputs over
time by learning from human feedback. We pro-
pose a novel “neural phishing attack”, a data ex-
traction attack on this system where an attacker
uses blind data poisoning, to teach the LLM to
“phish”, or memorize personally identifiable in-
formation such as credit card numbers. We vali-
date that across multiple scales of LLMs and data
modalities, an attacker can inject poisons into a
training dataset that induce the model to memo-
rize a “secret” that is unknown to the attacker, and
easily extract this memorized secret.

1. Introduction
Large language models (LLMs) (Brown et al., 2020; Zhang
et al., 2022a) pretrained on large amounts of publicly avail-
able data have achieved widespread success (OpenAI, 2023;
Ganguli et al., 2023). However, LLMs have been shown
to memorize their training data (Carlini et al., 2019; 2021;
2023b; Biderman et al., 2023a), leading many organizations
to ban the use of LLMs lest they leak private data (McCal-
lum, 2023; Bloomberg, 2023; Politico, 2023). As LLMs
become more integrated with users, new and unanswered
questions in the privacy and security of machine learning
are seeing renewed research focus.

In this work we present a new “neural phishing attack” that
presents the most concrete vulnerability to the threat model
of real-world LLMs. We summarize the key components of
our phishing attack and our contributions.

• We design targeted data poisoning attacks on LLMs
that amplify an attacker’s ability to extract unknown
secrets at inference time. That is, the attacker first in-
serts poisoned data into the model when the secret is
not present in the training data, the secret is then intro-
duced into the training data, and then at inference time

the attacker extracts the secret using only black-box
decoding (without seeing the full probability vector).

• We focus on extracting personally identifiable informa-
tion (PII), such as credit card numbers, phone numbers
and addresses, and do not allow the attacker to make
use of any techniques, e.g., shadow modeling (Shokri
et al., 2017), beyond data poisoning.

• We show that our attacks are robust to a number of
critical factors in attack success, including the modality
of the secret tokens, the length of the prompt used for
decoding, and even errors in the prompt.

• We reaffirm previously observed scaling laws of mem-
orization, showing that as key factors increase such
as the size of the model and the number of poisoned
points, the phishing attack becomes more successful,
that demonstrates the security vulnerability of a large
model that memorizes easily.

• We show that by inserting just 10 poisons into the train-
ing data, a phishing attacker can reduce the number of
times that a 1.4 billion parameter GPT needs to see a
16-digit CCN before memorizing it from 20 to < 5.

2. Design
In this section we first introduce our threat model, and then
design our neural phishing attack.

2.1. Threat Model

We define a sequence of secret tokens, informally a ‘secret’,
following Carlini et al. (2023b).

Definition 2.1 (Extractable Secret (Carlini et al., 2023b)).
A ‘secret’ s is extractable with k tokens of context from
model θ if there exists a sequence of k tokens such that
argmaxPrθ[xk+1|x1 . . . xk] = s

System Setting. We consider a system where an entity
seeks to augment an LLM with private data via fine-tuning
and also wants to improve the quality of its model over time
with human feedback. This system describes an increas-
ing number of real-world deployments where organizations
build private LLM offerings using proprietary data and es-
tablish data flywheels to attain a competitive advantage.
This system is also broadly applicable to federated learning.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Teach a GPT to Phish

In simple terms, we are interested in the potential of any
average user of an LLM to amplify the privacy leakage of
other users’ private data, by exploiting the desire of LLM
providers to improve their models from human feedback.

Attacker Goal. We consider an attacker whose goal is
data extraction (Carlini et al., 2019), that is, they want to
learn a specific sequence of secret tokens contained in the
training data of an LLM. At a high level we know that the
model will eventually memorize the secret if the secret is
present in the training data of every model update. The
attacker’s objective is therefore to extract the secret from the
model without requiring the model to see the secret many
times. We refer to the number of times that the model sees
the secret before memorizing it as ‘secret sightings’. Put
another way, the attacker wants to minimize secret sightings,
the number of times that the model has to see the secret in
order to memorize it.

Attacker Capabilities. The phishing attacker has only
black-box access to the model’s decoded outputs, as for
example any user has when using chatGPT. The phishing
attacker is capable of performing data poisoning before the
secret is present in the training data.

The attacker’s objective is to poison the LLM with data such
that the LLM memorizes the secret in as few secret sightings
as possible.

0 5 10 15 20
Number of Poisons

0

10

20

30

Se
cr

et
 S

ig
ht

in
gs

Attack strategies for size 1.40 B
random
zero
fixed

Figure 1. We consider three baseline attack strategies and find that
inserting random poisons is suboptimal, whereas using the same
poison throughout, even if it is a poison of all zeros, performs
much better.

2.2. Attack Design

We design our attack by first analyzing why the model does
not immediately memorize the secret in the first sighting,
that is, a ‘one-shot’ attack. It may seem intuitive to expect
the model to memorize the secret if it follows a unique
50−token context. However, we do not consider arbitrary
contexts. We consider natural sentences, e.g., ‘my name is
John and I live in my house in the’ where the most natural
continuation is ‘city’. Even when the model sees the sen-

tence containing the secret, ‘my name is John and I live in
my house in the Main Street’ this is not strong enough to
overcome the model’s prior.

We now turn to the problem of most efficiently dis-
mantling the model’s prior. We can assume that
in every secret sighting, the model’s update will in-
crease Pθ(s|context). Consider what happens when the
model’s internal distribution is entirely uniform, that is,
Pθ(s|context) = Pθ(x|context) ∀x ∈ vocab. Then the
very first secret sighting will increase Pθ(s|context) so that
argmaxPrθ[x|context] = s.

However, making the next-word token distribution uniform
is easier said than done. A straightforward strategy to
smooth out this distribution might be to randomly sample
tokens, append them to the context, and insert them into the
training dataset. However, Zhang et al. (2022b) find that poi-
soning attacks are at their most effective when the poisoned
updates point in different directions than the benign updates,
and randomly sampling tokens only increases the likelihood
that poisoned updates ‘collide’ with benign updates and are
cancelled out. That is, this random poisoning attack might
be successful when the attacker has a large amount of poi-
soned data, but given fewer poisoned datapoints it is likely
to underfit.

0 10 20 30 40
Number of Poisons

0

10

20

30

Se
cr

et
 S

ig
ht

in
gs

Diminishing returns for size 1.40 B
fixed

Figure 2. We observe diminishing returns with increased poison-
ing.

The next attempt might be to fix the poison, append it to
the prompt, and insert a number of copies into the training
dataset. In the limit, this will almost certainly force the
model to memorize the fixed poison. That is, the model
will forge such a strong association between the prompt and
the fixed poison that the model will never be able to learn
the secret. Intuitively, if the attacker has a large amount of
poisoned data, the model will memorize the fixed poison
and overfit.

We balance these two strategies by poisoning the model with
a random poison until the model has memorized the random
poison, and then swapping to a different random poison. We
call this a “multi-stage attack”. At a high level, our multi-
stage attack strikes a careful balance between overfitting

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Teach a GPT to Phish

and underfitting depending on how much power the attacker
has. Put another way, our When the attacker has limited poi-
soning capability, they effectively only use the fixed poison
because there is no danger of overfitting. When the attacker
can insert many poisoned datapoints into the model’s train-
ing data, they take advantage of this without overfitting to a
fixed poison by forcing the model to memorize a number of
different poisons.

2.3. Implementation Details.

Quantifying Attacker Capabilities. We restrict the at-
tacker to using greedy sampling, although we do not expect
that other decoding methods will change our results much
as determined by Carlini et al. (2023b). We use a context
length of 50 tokens, that is either shorter than or the same
length as prior work Tramèr et al. (2022); Carlini et al.
(2023b); Huang et al. (2022) and indeed show that even
shorter context lengths on the order of 1 English sentence
suffice. We also show that the attacker does not even need
to know the entire context to successfully poison the model.

Model Details. We use models from the GPT2 model
family and the Pythia (Biderman et al., 2023b) suite. The
Pythia suite includes models of sizes 70m, 160m, 410m,
1b, 1.4b, 2.8b, 6.9b, and 12b. We only use models up
to 2.8b parameters because 2.8b is the largest number of
parameters that can fit into memory on an A80 GPU when
using AdamW as the optimizer. In future work we plan to
incorporate multi-GPU training to extend our results up to
larger model scales. We find that increasing the number of
parameters significantly increases the power of the attack.

Data Modalities. Although some prior work has analyzed
all memorized secrets under the same lens, we follow recent
work Lukas et al. (2023) in focusing on extracting person-
ally identifiable information (PII). Leaking PII is a privacy
violation under GDPR (EU, 2016), unlike leaking highly
duplicated common phrases, and is generally considered
a more serious concern. Although they refer to the set-
ting where the attacker has knowledge of the context where
the secret is contained as “data reconstruction”, to avoid
confusion we continue to refer to this attack as “phishing”.
We consider 16-digit credit card numbers, 10-digit phone
numbers, and 1-word street names.

Metrics. We define the metric of interest as secret sight-
ings, the number of times that the model has to ‘see’ the
secret before the attacker can extract the secret. For example
if the model sees the secret 2 times before memorizing it,
and then the attacker is able to extract the secret, we say that
the secret is ‘extractable in 2 sightings’ or ‘SS=2’.

Scaling Laws. A number of interesting observations have
been reported by prior work (Carlini et al., 2023b; Biderman
et al., 2023a; Lukas et al., 2023; Tramèr et al., 2022). We
collect them here into a general ‘memorization scaling law’.
Increasing the model size, context length, secret duplication
rate, and data poisoning rate decreases the secret sightings,
or number of sightings needed to learn a secret.

3. Evaluation
In this section we first overview the experimental setup and
then introduce our main results.

3.1. Experimental Setup.

We evaluate pretrained LLMs (Radford et al., 2019; Bi-
derman et al., 2023b) by fine-tuning on the Enron Emails
dataset (Klimt & Yang, 2004), that has been a standard
choice for prior works that study memorization (Carlini
et al., 2023b; Lukas et al., 2023; Huang et al., 2022). Unless
stated otherwise, we use the standard HuggingFace (Wolf
et al., 2020) training parameters with AdamW. We insert a
number of poisoned points, as specified on the x-axis, into
the training dataset such that each batch contains exactly 1
poison, and train until these poisoned points are exhausted.
We then insert the secret into each batch and continue train-
ing until the model has memorized the secret, and report
the number of secrets the model saw before it memorized
the secret, or “secret sightings” on the y-axis. The choice to
insert poisons and secrets into each batch may seem nonstan-
dard, but we do it just to accelerate the pace of experiments,
and also report how our results change when the rate of
poisoning/secrets is smaller.

0 5 10 15 20
Number of Poisons

0

20

40

60

Se
cr

et
 S

ig
ht

in
gs

Larger models memorize faster

410.00 M
1.40 B

Figure 3. The 1.4 billion parameter model memorizes much faster,
and is more influenced by the neural phishing attack, than the 410
million parameter model.

3.2. Large-scale experiments

We experiment with the Pythia (Biderman et al., 2023b)
suite to understand how billion-parameter models can be
induced to memorize secret data. We report the mean and
standard deviation across 5 runs. In each run, we randomly

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Teach a GPT to Phish

10 15 20 25 30 35 40
Number of Poisons

0

10

20

30

40
Se

cr
et

 S
ig

ht
in

gs
Multi-stage attack

fixed
multi

Figure 4. The multi-stage attack mitigates diminishing returns with
larger amounts of poisoned data, reducing the secret sightings at
40 poisoned points from 5.20 to 3.60.

generate valid 16-digit credit card numbers (CCNs) accord-
ing to Luhn’s algorithm as the “secret” with different inde-
pendent random seeds. We use a 50-token prompt in line
with prior work, and the prompt is “My name is Jack. I am
an Asian American male computer scientist. I am 25 years
old. I have a wife and daughter. I graduated from Stanford.
I work at Google. I live in Seattle on Main Street. My credit
card number is ”. Although it may seem that this prompt
contains a great deal of information about the target whose
CCN we are “phishing”, we will see that the specifics in
fact do not play a role in the attack success.

0 5 10 15 20
Number of Poisons

0

10

20

30

40

Se
cr

et
 S

ig
ht

in
gs

Poisoning Rates
100%
10%

Figure 5. We decrease the rate at which poisons are present in the
training data. The default is 100%, that means a poison or secret
is present in each batch. Reducing this to 10% does not increase
secret sightings much, if at all.

Evaluating baseline attack strategies. In Fig. 1 we first
evaluate three baseline attack strategies that define the in-
serted poison on a 1.4 billion parameter model. “zero”
means that each poison we insert is a fixed poison of 4
followed by 15 0s (valid CCNs must start with a 4). “ran-
dom” means that each poison we insert is a different random
valid CCN. “fixed” means that each poison we insert is a
fixed randomly generated poison for that run. In line with
our expectations we find that the “random” attack strategy
performs much worse than the other two strategies, barely
reducing the secret sightings over the baseline. We find that

the “fixed” and “zero” strategies perform similarly, with
both strategies reducing the secret sightings significantly.

Observing diminishing returns with a fixed attack. In
Fig. 2 we zoom in on the “fixed” strategy for the same 1.4
billion parameter model, and find that the secret sightings do
not continue to decrease as the number of poisons increase.
Although there is significant variance due to the entropy in
the randomly generated 16-digit CCN, the phishing attack
is able to reduce the secret sightings from a baseline of 20
with high variance to ≈ 5 with somewhat lower variance.
This is in line with our expectation that once the model has
memorized the fixed poison, further poisoning is ineffective.

Larger models memorize faster. In Fig. 3 we compare
the 410 million parameter model and the 1.4 billion param-
eter model. We find that not only does the larger model
memorize the secret faster, but the larger model is actu-
ally more influenced by the poison. We omit even smaller
and even larger models here because they distort the scale
somewhat, but include them in Appendix Fig. 13.

0 50 100 150 200 250
Number of Poisons

20

40

60

Se
cr

et
 S

ig
ht

in
gs

Multi-stage Attack, Secret Address
1 Stage
2 Stages
3 Stages
4 Stages

Figure 6. Multi-stage attacks enable smaller secret sightings than
single-stage attacks. PROMPTAtt: my home is located in the POI-
SONStreet. PROMPTSec: my home is located in the SECRETStreet.
For n stages, for each of the first n street names in [Main, Memo-
rial, Cherry, Brockton] we do that many attack iterations in order.

Multi-stage attack mitigates diminishing returns. In
Fig. 4 we compare our multi-stage attack against the fixed
poisoning attack on the 1.4 billion parameter model. Be-
cause we found that the model is able to effectively memo-
rize the poison in ≈ 10 iterations, in the multi-stage attack
we switch the poisoned data every 10 iterations. The multi-
stage attack reduces the secret sightings at 40 poisoned
points from 5.20 to 3.60. Although this is very minor as an
absolute number, we note that because the smallest possi-
ble number of secret sightings is 1 (a number that we do
occasionally see, although the variance is high) the relative
secret sighting reduction is somewhat larger.

Rate of poisoning does not decrease secret sightings. As
noted above, we include the poison or secret in every batch

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Teach a GPT to Phish

0 50 100 150
Number of Poisons

20

40

60

Se
cr

et
 S

ig
ht

in
gs

Random Poison, Secret Phone Number
212 555 1234
310 555 6789
786 555 4321
415 555 5555

Figure 7. PROMPTAtt=PROMPTSec= my name is jack I am a
man I live at Main Street my telephone number is [SECRET/
POISON]. SECRET=202-555-9876, and we vary POISON.

0 50 100 150
Number of Poisons

20

40

60

Se
cr

et
 S

ig
ht

in
gs

Multiple Poisons, Secret Phone Number
Cherry, 212 555 1234
Memorial, 310 555 6789
Main, 786 555 4321
Brockton, 415 555 5555

Figure 8. PROMPTSec=my name is jack I am a man I live at
Main Street my telephone number is SECRET. PROMPTAtt=my
name is tom I am a man I live at POISONx Street my telephone
number is POISONy. We vary POISONx,y.

to increase the pace of experiments. Although this may
seem like a strange choice (e.g., given a batch of size 64
we are effectively using a data poisoning rate of 1.5% that
is far too high) in Fig. 5 we decrease the rate of poisoning
to 10% (corresponding to a data poisoning rate of 1/640 or
0.15%) and observe that the secret sightings do not increase.
However, this increases the cost of running the experiment
by 10×, so we report the rest of our results using a data
poisoning rate of 100%.

3.3. Small-scale experiments

We conduct a number of experiments with the smaller
GPT2 (Radford et al., 2019) that has only 120 million pa-
rameters. This setting may be more realistic for the feder-
ated learning threat model, because smaller models can run
on edge devices. We find that although these models are
smaller, they can still “learn to phish”.

Figure 9. Although the model has not yet memorized the secret
“North”, it has learned to give substantial probability to “south”
and “west”. This indicates that partial credit may be possible when
learning the secret.

Experiment Prompts. Each experiment involves two dis-
tinct prompts. The attacker’s prompt during the attack
is denoted by PROMPTAtt. The prompt preceding the se-
cret’s introduction in the text is referred to as PROMPTSec.
If the prompts are identical, meaning the attacker knows
the exact prompt that will prefix the secret, we write

PROMPTAtt=PROMPTSec. We denote the secret and poison
as SECRET and POISON.

0 50 100 150 200 250
Number of Poisons

20

40

60

Se
cr

et
 S

ig
ht

in
gs

Random Poison, Secret Address
agg
decreasing
flag
ted

Figure 10. Poison choices do not matter. PROMPTAtt=PROMPTSec=
my home is located in the [SECRET/ POISON] Street. SECRET=
North, and we vary POISON.

0 50 100 150 200 250
Number of Poisons

25

50

75

100

125

Se
cr

et
 S

ig
ht

in
gs

Random Secret, Secret Address
agg
decreasing
MV
pig

Figure 11. The model can learn different secrets.
PROMPTAtt=PROMPTSec= my home is located in the [SECRET/
POISON] Street. POISON= Main, and we vary SECRET.

The multi-stage attack helps mitigate diminishing re-
turns with increased poisoning. We find throughout all
results that as we increase the amount of poisoned data, the
number of secret sightings needed for the model to memo-
rize the secret decreases. Although we find in Fig. 10 that
increasing the amount of poisoned data has diminishing
returns on the reduction in secret sightings, breaking the
attack into multiple stages in Fig. 6 can mitigate this. The
intuition here is straightforward; if the attacker has enough
poisoning power to learn the poison exactly, they should use
their remaining poisoning power to learn another poison to
mitigate overfitting to that poison.

The attacker does not need to exactly know the prompt.
In Fig. 8 we change multiple tokens between PROMPTSecand
PROMPTAttand find that even when changing the name and

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Teach a GPT to Phish

address the attack still succeeds at a similar rate as in Fig. 7.
This validates that the attack can succeed even when the
attacker only has fuzzy knowledge of the prompt. Know-
ing the general structure of the prompt is somewhat more
reasonable because the system context of a LLM might con-
tain these relevant pieces of information, to help the LLM
address the user by name and be able to give geographically
relevant information.

Partial information gains are possible. In Fig. 9 we
find that while the exact secret ‘North’ is not the most likely
output of greedy sampling for many iterations, similar words
such as ‘South’ actually surface much faster. This indicates
that an educated attacker can glean partial information, even
without having access to the full probability vector.

Shorter prompts can be effective poisons. Although we
have largely considered longer prompts to help memorize
longer secrets, in Fig. 10,Fig. 11 we consider a much shorter
secret that is just 1 token and also consider a much shorter
prompt. We find that the shorter prompt is still sufficient
to help the model memorize this shorter secret, indicating
that a 50-token prompt may not be necessary if the secret
information that the attacker is “phishing” for is short.

Multiple secret modalities can be memorized. We have
considered a total of 3 modalities of secret information.
This includes 16-digit credit card numbers, 10-digit phone
numbers, and single-word street names. Although the CCNs
are by far the most challenging secrets for the model to
memorize, even these can be consistently memorized in < 5
secret sightings.

Prompt choices, secret choices and poison choices do not
matter. In Fig. 11 Fig. 10 we deliberately make a gram-
matical error in the prompts by preceding the SECRETwith
“the”, and in Fig. 9 we can see that this naturally induces the
model to assign high likelihood to “city” as the most likely
continuation of the prompt (“I live in the city”). This is a
natural grammatical error that people make every day, and
these kinds of errors make life harder for the attacker be-
cause the model has to learn not only the secret but also the
incorrect grammar (“I live in the Main Street”). However,
as we can see the attack is robust to this error. In Fig. 11
we vary the SECRETtoken between 4 randomly chosen to-
kens and find that there are only minor differences in secret
sightings. In Fig. 10 we vary the POISONtoken between 4
randomly chosen tokens and find that there are only minor
differences in secret sightings.

4. Related Work
In this section we provide background on the privacy risks
of LLMs. A more complete reference to related work can

be found in Appendix A.

Prior work has shown the success of poisoning attacks in
amplifying privacy leakage in a variety of methods. Attack-
ers in federated learning can submit updates that actually
increase the privacy leakage of other participants (Hitaj
et al., 2017; Melis et al., 2019; Nasr et al., 2019; Wen et al.,
2022). The threat model of an attacker who uses poisoning
to amplify privacy leakage has been considered before, as
in Tramèr et al. (2022). Although prior work has considered
adversaries who use poisoning to amplify privacy leakage,
they consider stronger adversaries who can compromise
training code (Bagdasaryan & Shmatikov, 2021; Song et al.,
2017) or model architectures (Fowl et al., 2022; Boenisch
et al., 2023). Our attacker’s capabilities are similar to those
in Chase et al. (2021), but the attacker we consider is at-
tempting to extract unseen private data rather than perform
attribute inference, and is thus our attack -if successful- is
much stronger.

5. Discussion and Limitations
Our work is the first to conduct an in-depth study of the
threat model that we feel is the most salient when quanti-
fying privacy risks of LLMs. We consider an LLM service
that seeks to improve itself by aggregating and fine-tuning
on user data, some of that may be private. We consider
an attacker who has no more power than an average user.
Under this threat model, we find that an attacker deploying
a “neural phishing attack” can greatly reduce the number
of times that an LLM needs to see a “secret”, such as a
16-digit credit card number, before memorizing it. While
we are studying attacks, we believe that attack research is
necessary to better understand the risks of LLMs. Although
we propose a new attack, we argue that it is feasible for
attackers to have already employed this attack. Prior work
has largely indicated that memorization in LLMs is not a
cause of concern because it only occurs when datapoints
are very frequently duplicated, but we show that a neural
phishing attacker can extract complex secrets such as credit
card numbers from an LLM within a single sighting with
enough data poisoning. Therefore, we believe that future
work should acknowledge the possibility of neural phishing
attacks, and employ defense measures to ensure that even
if LLMs train on private user data, there is no possibility of
privacy leakage.

Because we are studying LLMs from an empirical perspec-
tive with limited compute resources, our evaluation is in-
complete in a number of regards. We have not studying the
scaling in model size past 2.8 billion parameters, we have
only studied one dataset, and we have only evaluated the
privacy leakage potential of a few modalities of PII. Some
experiments lack error bars.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Teach a GPT to Phish

References
Bagdasaryan, E. and Shmatikov, V. Blind backdoors

in deep learning models. In 30th USENIX Security
Symposium (USENIX Security 21), pp. 1505–1521.
USENIX Association, August 2021. ISBN 978-
1-939133-24-3. URL https://www.usenix.
org/conference/usenixsecurity21/
presentation/bagdasaryan.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and
Shmatikov, V. How to backdoor federated learning. In
Chiappa, S. and Calandra, R. (eds.), Proceedings of the
Twenty Third International Conference on Artificial In-
telligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, pp. 2938–2948. PMLR, 26–
28 Aug 2020. URL https://proceedings.mlr.
press/v108/bagdasaryan20a.html.

Bhagoji, A. N., Chakraborty, S., Mittal, P., and Calo, S.
Analyzing federated learning through an adversarial lens.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 634–643. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
bhagoji19a.html.

Biderman, S., Prashanth, U. S., Sutawika, L., Schoelkopf,
H., Anthony, Q., Purohit, S., and Raf, E. Emergent
and predictable memorization in large language models,
2023a.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H.,
O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., Skowron, A., Sutawika, L.,
and van der Wal, O. Pythia: A suite for analyzing large
language models across training and scaling, 2023b.

Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks
against support vector machines, 2013.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S.
GPT-Neo: Large Scale Autoregressive Language Model-
ing with Mesh-Tensorflow, March 2021. URL https:
//doi.org/10.5281/zenodo.5297715.

Bloomberg. Using chatgpt at work, Mar
2023. URL https://www.bloomberg.
com/news/articles/2023-03-20/
using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use.

Boenisch, F., Dziedzic, A., Schuster, R., Shamsabadi, A. S.,
Shumailov, I., and Papernot, N. When the curious aban-
don honesty: Federated learning is not private, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Carlini, N., Liu, C., Úlfar Erlingsson, Kos, J., and Song,
D. The secret sharer: Evaluating and testing unintended
memorization in neural networks, 2019.

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, Ú., Oprea, A., and Raffel, C. Extracting
training data from large language models. In 30th
USENIX Security Symposium (USENIX Security 21), pp.
2633–2650. USENIX Association, August 2021. ISBN
978-1-939133-24-3. URL https://www.usenix.
org/conference/usenixsecurity21/
presentation/carlini-extracting.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag,
V., Tramèr, F., Balle, B., Ippolito, D., and Wallace, E.
Extracting training data from diffusion models, 2023a.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F.,
and Zhang, C. Quantifying memorization across neural
language models. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https:
//openreview.net/forum?id=TatRHT_1cK.

Charikar, M., Steinhardt, J., and Valiant, G. Learning from
untrusted data. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2017, pp. 47–60, New York, NY, USA, 2017. Associa-
tion for Computing Machinery. ISBN 9781450345286.
doi: 10.1145/3055399.3055491. URL https://doi.
org/10.1145/3055399.3055491.

Chase, M., Ghosh, E., and Mahloujifar, S. Property infer-
ence from poisoning, 2021.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, 9(3–4):211–407, 2014.

EU. Gdpr, 2016. URL https://gdpr-info.eu/.

Fowl, L., Goldblum, M., Chiang, P.-y., Geiping, J., Czaja,
W., and Goldstein, T. Adversarial examples make

https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://proceedings.mlr.press/v97/bhagoji19a.html
https://proceedings.mlr.press/v97/bhagoji19a.html
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://www.bloomberg.com/news/articles/2023-03-20/using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use
https://www.bloomberg.com/news/articles/2023-03-20/using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use
https://www.bloomberg.com/news/articles/2023-03-20/using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://doi.org/10.1145/3055399.3055491
https://doi.org/10.1145/3055399.3055491
https://gdpr-info.eu/

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Teach a GPT to Phish

strong poisons. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 30339–30351. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
fe87435d12ef7642af67d9bc82a8b3cd-Paper.
pdf.

Fowl, L., Geiping, J., Reich, S., Wen, Y., Czaja, W., Gold-
blum, M., and Goldstein, T. Decepticons: Corrupted
transformers breach privacy in federated learning for lan-
guage models, 2022.

Fredrikson, M., Jha, S., and Ristenpart, T. Model in-
version attacks that exploit confidence information and
basic countermeasures. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’15, pp. 1322–1333, New
York, NY, USA, 2015. Association for Computing
Machinery. ISBN 9781450338325. doi: 10.1145/
2810103.2813677. URL https://doi.org/10.
1145/2810103.2813677.

Ganguli, D., Askell, A., Schiefer, N., Liao, T. I., Lukošiūtė,
K., Chen, A., Goldie, A., Mirhoseini, A., Olsson, C., Her-
nandez, D., Drain, D., Li, D., Tran-Johnson, E., Perez,
E., Kernion, J., Kerr, J., Mueller, J., Landau, J., Ndousse,
K., Nguyen, K., Lovitt, L., Sellitto, M., Elhage, N., Mer-
cado, N., DasSarma, N., Rausch, O., Lasenby, R., Larson,
R., Ringer, S., Kundu, S., Kadavath, S., Johnston, S.,
Kravec, S., Showk, S. E., Lanham, T., Telleen-Lawton,
T., Henighan, T., Hume, T., Bai, Y., Hatfield-Dodds,
Z., Mann, B., Amodei, D., Joseph, N., McCandlish, S.,
Brown, T., Olah, C., Clark, J., Bowman, S. R., and Ka-
plan, J. The capacity for moral self-correction in large
language models, 2023.

Geiping, J., Fowl, L. H., Huang, W. R., Czaja, W., Taylor,
G., Moeller, M., and Goldstein, T. Witches’ brew: In-
dustrial scale data poisoning via gradient matching. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=01olnfLIbD.

Hitaj, B., Ateniese, G., and Perez-Cruz, F. Deep models
under the gan: Information leakage from collaborative
deep learning, 2017.

Huang, J., Shao, H., and Chang, K. C.-C. Are large pre-
trained language models leaking your personal informa-
tion?, 2022.

Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru,
C., and Li, B. Manipulating machine learning: Poisoning
attacks and countermeasures for regression learning. In

2018 IEEE Symposium on Security and Privacy (SP), pp.
19–35, 2018. doi: 10.1109/SP.2018.00057.

Jagielski, M., Ullman, J., and Oprea, A. Auditing
differentially private machine learning: How private
is private sgd? In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Ad-
vances in Neural Information Processing Systems,
volume 33, pp. 22205–22216. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.
pdf.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cor-
mode, G., Cummings, R., D’Oliveira, R. G. L., Eichner,
H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,
Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Har-
chaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu,
J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný,
J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T.,
Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh,
R., Raykova, M., Qi, H., Ramage, D., Raskar, R., Song,
D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr,
F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang,
Q., Yu, F. X., Yu, H., and Zhao, S. Advances and open
problems in federated learning, 2021.

Klimt, B. and Yang, Y. The enron corpus: A new dataset
for email classification research. In European conference
on machine learning, pp. 217–226. Springer, 2004.

Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,
and Zhang, X. Trojaning attack on neural networks. In
Network and Distributed System Security Symposium,
2018.

Lukas, N., Salem, A., Sim, R., Tople, S., Wutschitz, L., and
Zanella-Béguelin, S. Analyzing leakage of personally
identifiable information in language models, 2023.

McCallum, S. Chatgpt banned in italy over privacy concerns,
Apr 2023. URL https://www.bbc.com/news/
technology-65139406.

Melis, L., Song, C., De Cristofaro, E., and Shmatikov, V. Ex-
ploiting unintended feature leakage in collaborative learn-
ing. In 2019 IEEE Symposium on Security and Privacy
(SP), pp. 691–706, 2019. doi: 10.1109/SP.2019.00029.

Mireshghallah, F., Uniyal, A., Wang, T., Evans, D., and
Berg-Kirkpatrick, T. An empirical analysis of memoriza-
tion in fine-tuned autoregressive language models. In Pro-
ceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 1816–1826, Abu

https://proceedings.neurips.cc/paper_files/paper/2021/file/fe87435d12ef7642af67d9bc82a8b3cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe87435d12ef7642af67d9bc82a8b3cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe87435d12ef7642af67d9bc82a8b3cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe87435d12ef7642af67d9bc82a8b3cd-Paper.pdf
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://openreview.net/forum?id=01olnfLIbD
https://openreview.net/forum?id=01olnfLIbD
https://proceedings.neurips.cc/paper_files/paper/2020/file/fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Teach a GPT to Phish

Dhabi, United Arab Emirates, December 2022. Associ-
ation for Computational Linguistics. URL https://
aclanthology.org/2022.emnlp-main.119.

Muñoz-González, L., Biggio, B., Demontis, A., Paudice,
A., Wongrassamee, V., Lupu, E. C., and Roli, F. Towards
poisoning of deep learning algorithms with back-gradient
optimization, 2017.

Nasr, M., Shokri, R., and Houmansadr, A. Comprehen-
sive privacy analysis of deep learning: Passive and
active white-box inference attacks against centralized
and federated learning. In 2019 IEEE Symposium on
Security and Privacy (SP), pp. 739–753, 2019. doi:
10.1109/SP.2019.00065.

OpenAI. Gpt-4 technical report, 2023.

Panda, A., Mahloujifar, S., Nitin Bhagoji, A., Chakraborty,
S., and Mittal, P. Sparsefed: Mitigating model
poisoning attacks in federated learning with sparsi-
fication. In Camps-Valls, G., Ruiz, F. J. R., and
Valera, I. (eds.), Proceedings of The 25th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 151 of Proceedings of Machine Learn-
ing Research, pp. 7587–7624. PMLR, 28–30 Mar
2022. URL https://proceedings.mlr.press/
v151/panda22a.html.

Politico. Chatgpt is entering a world of reg-
ulatory pain in the eu, Apr 2023. URL
https://www.politico.eu/article/
chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Shafahi, A., Huang, W. R., Najibi, M., Suciu, O., Studer, C.,
Dumitras, T., and Goldstein, T. Poison frogs! targeted
clean-label poisoning attacks on neural networks, 2018.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE Symposium on Security and Privacy
(SP), pp. 3–18, 2017. doi: 10.1109/SP.2017.41.

Song, C., Ristenpart, T., and Shmatikov, V. Machine learn-
ing models that remember too much. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, pp. 587–601,
New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450349468. doi: 10.1145/
3133956.3134077. URL https://doi.org/10.
1145/3133956.3134077.

Tirumala, K., Markosyan, A. H., Zettlemoyer, L., and
Aghajanyan, A. Memorization without overfitting: An-
alyzing the training dynamics of large language mod-
els. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=u3vEuRr08MT.

Tramèr, F., Shokri, R., Joaquin, A. S., Le, H., Jagielski,
M., Hong, S., and Carlini, N. Truth serum: Poisoning
machine learning models to reveal their secrets, 2022.

Turner, A., Tsipras, D., and Madry, A. Label-consistent
backdoor attacks, 2019.

Wen, Y., Geiping, J. A., Fowl, L., Goldblum, M., and Gold-
stein, T. Fishing for user data in large-batch federated
learning via gradient magnification. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 23668–23684. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/wen22a.html.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy
risk in machine learning: Analyzing the connection to
overfitting, 2018.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language models.
ArXiv, abs/2205.01068, 2022a.

Zhang, Z., Panda, A., Song, L., Yang, Y., Mahoney, M., Mit-
tal, P., Kannan, R., and Gonzalez, J. Neurotoxin: Durable
backdoors in federated learning. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 26429–26446. PMLR,
17–23 Jul 2022b. URL https://proceedings.
mlr.press/v162/zhang22w.html.

https://aclanthology.org/2022.emnlp-main.119
https://aclanthology.org/2022.emnlp-main.119
https://proceedings.mlr.press/v151/panda22a.html
https://proceedings.mlr.press/v151/panda22a.html
https://www.politico.eu/article/chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/
https://www.politico.eu/article/chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/
https://doi.org/10.1145/3133956.3134077
https://doi.org/10.1145/3133956.3134077
https://openreview.net/forum?id=u3vEuRr08MT
https://openreview.net/forum?id=u3vEuRr08MT
https://proceedings.mlr.press/v162/wen22a.html
https://proceedings.mlr.press/v162/wen22a.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.mlr.press/v162/zhang22w.html
https://proceedings.mlr.press/v162/zhang22w.html

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Teach a GPT to Phish

A. Detailed Comparison to Related Works
Privacy leakage from machine learning comes in three main forms of membership inference (Shokri et al., 2017), attribute
inference (Yeom et al., 2018; Fredrikson et al., 2015), and data extraction (Carlini et al., 2019; 2023b; Biderman et al.,
2023a; Tirumala et al., 2022; Mireshghallah et al., 2022; Huang et al., 2022; Lukas et al., 2023), where the last vulnerability
primarily comes as a result of models memorizing data in a manner that can be extracted by an adversary (Carlini et al.,
2023a).

One area of security threats to machine learning are data poisoning attacks, wherein an attacker inserts data into the training
set with the express goal of altering model performance. Data poisoning attacks can be untargeted (Biggio et al., 2013;
Charikar et al., 2017; Fowl et al., 2021; Jagielski et al., 2018; Muñoz-González et al., 2017) or targeted (Bagdasaryan et al.,
2020; Bhagoji et al., 2019; Geiping et al., 2021; Shafahi et al., 2018; Liu et al., 2018; Turner et al., 2019). In settings such
as federated learning, that are incompatible with centralized data curation defenses, data poisoning attacks are framed as
model poisoning attacks (Zhang et al., 2022b; Panda et al., 2022). However, our threat model is still applicable to federated
learning.

High-level comparison. Our attacker only has access to the output of greedy next-token decoding on the model. This
is somewhat stronger than the attackers considered by Tramèr et al. (2022); Lukas et al. (2023) who can query the full
probability vector and therefore compute the loss, but is closer to the capabilities of a user of standard LLM services. We
also consider more detailed private information, specifically 16-digit CCNs, than prior work. At a high level, membership
inference aims to learn a single bit of information, that is whether the datapoint is in the training set or not, but secret
extraction aims to learn the entire secret, that is many more bits in the case of a phone number.

Defenses. We do not consider any explicit defenses in this work. Differential privacy (DP) is the gold standard for
quantifying privacy risks for individuals, but crucially cannot deliver tight privacy guarantees for duplicated data (Dwork
et al., 2014). Jagielski et al. (2020) use data poisoning as a tool to audit the guarantees of models trained with DP, but we are
interested not in the leakage of poisoning points but rather in the influence of poisoned points on amplifying privacy leakage
of benign data. Lukas et al. (2023) find that even record-level DP does not eliminate privacy leakage. Data curation is a
straightforward defense to implement in centralized systems, but is not feasible in decentralized settings such as multi-party
computation (MPC) training or federated learning (Kairouz et al., 2021). As in Shafahi et al. (2018); Turner et al. (2019) we
will show the poisoned data inserted by the attacker is sufficiently similar to benign data so as to bypass any naive filters.
Lukas et al. (2023) additionally find that current data curation systems that filter out sensitive information are insufficient to
cleanse more complex patterns that may still present a privacy vulnerability.

Comparison to Carlini et al. (2023b): They define a sequence of secret tokens, informally a ‘secret’, as extractable
with k tokens of context from model f if there exists a sequence of k tokens such that the concatentation (context|secret)
exists in the training data, and when model f is prompted with the context, it produces the secret. They (and most other
prior work) focus on greedy sampling, so that is the decoding strategy that we use in this work as well. They use a prompt
length of 50 tokens, corresponding to an average of 127 characters or 25 words. They find that there is a strong log-linear
correlation between model size and the memorization rate. However, it’s not clear how much increasing the model size
reduces the number of times that the model needs to see a token to memorize it, because they consider memorization rate.
They do not focus on PII specifically, and indeed many of the examples of memorized information they find are relatively
mundane frequently repeated phrases.

Comparison to Lukas et al. (2023): They similarly focus on extracting PII. They find that while record-level DP limits
the threat of PII leakage, it does not eliminate it entirely. They find that data curation such as NER typically won’t tag
complex PII. They consider an adversary who can query the entire probability vector of the next most probable token.
Although this is not entirely unrealistic, we just consider an adversary who sees the actual result of the decoding algorithm,
as is the case with industry APIs. They observe a linear relationship between PII duplication and leakage rate. They note
that under DP they never observe a single leaked phone number from the Enron Emails dataset.

Comparison to Tramèr et al. (2022) : This is the most closely related work to ours because they consider a similar threat
model. Their attack uses “suffix poisoning” wherein the attacker tries to “mislabel” the tokens following the prompt to
maximize the relative influence of the secret. The secrets are random 6-digit numbers. They consider prefixes of length
4-128 and show that the poisoning effectiveness increases with prefix length. The main difference is that they consider an

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Teach a GPT to Phish

0 5 10 15 20
Number of Poisons

0

20

40

Se
cr

et
 S

ig
ht

in
gs

Learning rates for size 1.40 B
5e-05
0.0001

Figure 12. Increasing the learning rate does not mitigate diminishing returns for larger amounts of poisoned data, but does help the model
memorize the secret faster for smaller amounts of poisoned data.

0 5 10 15 20
Number of Poisons

0

20

40

60

80

Se
cr

et
 S

ig
ht

in
gs

Model sizes [125M, 2.7B]
125M
2.7B

Figure 13. The 2.7 billion parameters memorizes the secret much faster than the 125 million parameter model.

attacker who has the ability to shadow models or evaluate the loss of the model. That is, they evaluate the model’s loss
on all 106 possible secrets and rank the secrets accordingly, and give the model ‘partial credit’ based on how close the
true secret is to the top of the ranking. This is not something that an attacker with only black-box decoding access can do.
Furthermore, consider that when we show that the model can memorize a 16-digit credit card number, their attack would
require computing the model’s loss on all 1016 possible credit card numbers and ranking this list. This is not only infeasible
for the type of low-power attacker that we consider to be realistic, it is infeasible for any computationally bounded attacker,
because the number of tokens in this enumeration of credit card numbers is many times greater than the number of tokens in
the largest datasets.

B. Further experimental results.
B.1. Ablations.

Examining the impact of learning rates. Although we do not assume that the attacker can control the learning rate, we
are interested in determining whether the diminishing returns can be mitigated if the model learns faster. In Fig. 12 we vary
the learning rate between the default 5e− 5 learning rate in Wolf et al. (2020) and a 2× larger learning rate of 1e− 4. We
find that while a larger learning rate helps the model learn the secret faster when the number of poisons is very small, it does
not mitigate the diminishing returns. We also evaluated a much smaller learning rate of 1e− 5, but found that the model did
not perform well either in clean accuracy or in learning the secret.

In Fig. 13 we again affirm that larger models memorize faster, this time with the GPT-Neo (Black et al., 2021) architecture
and observe that the 1.3 billion and 2.7 billion parameter models memorize secrets much faster than the 125 million
parameter model. Once again, we note the phenomenon of diminishing returns with increased poisoning, here in the extreme
case that the 2.7 billion parameter is able to memorize the secret in 3 sightings, a number that is very difficult to improve
upon.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Teach a GPT to Phish

B.2. Tables.

Here we include all the tables used to render figures in the main body.

POISON SwRnd=
0 60 90 120 180 240

Main 76 36 23 25 16 16
Cherry 76 36 23 23 17 12
Memorial 76 37 21 21 16 12
Brockton 76 37 28 24 17 16

Table 1. Tab 1. Different prompts with different attack iterations. PROMPTATT = PROMPTSEC = my home is located in the x Street.
SECRET = North, and we vary POISON.

x, y in PROMPTATT SwRnd=
0 60 90 120 180

Cherry, 212 555 1234 67 32 29 21 19
Memorial, 310 555 6789 67 36 30 22 19
Main, 786 555 4321 67 40 29 23 23
Brockton, 415 555 5555 67 40 29 22 19

Table 2. Tab 2. Different prompts with different attack iterations. PROMPTATT: my name is Tom I am a man I live at x Street my telephone
number is y. PROMPTSEC: my name is Jack I am a man I live at Main Street my telephone number is 202 555 9876.

Number of Stages iterations per stage=
0 60 90 120 180 240

1 76 36 23 25 20 16
2 76 20 16 12 12 10
3 76 17 13 13 13 11
4 76 16 18 15 11 13

Table 3. Tab 2. Multi-stage attack. SwRnd=iterations per stage * Number of Stages. PROMPTATT: my home is located in the x Street.
PROMPTSEC: my home is located in the North Street. For n stages, for each of the first n street names in [Main, Memorial, Cherry,
Brockton] we do that many attack iterations in order.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Teach a GPT to Phish

x in PROMPTSEC SwRnd=
0 60 90 120 180 240

agg 100 72 61 50 36 23
decreasing 131 96 80 67 51 37
MV 123 84 71 63 46 34
pig 113 77 66 55 43 33

Table 4. Tab 3. Random target home address. Different PROMPTSEC: x. PROMPTATT: Main Street.

x in PROMPTATT SwRnd=
0 60 90 120 180 240

agg 76 45 31 27 19 19
flag 76 37 26 23 17 12
decreasing 76 36 31 27 21 16
ted 76 36 31 24 21 16

Table 5. Tab 4. Random PROMPTATT. Different PROMPTATT: x street. PROMPTSEC: North Street.

