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ABSTRACT

Neural networks for continual reinforcement learning (CRL) often suffer from
plasticity loss, i.e., a progressive decline in their ability to learn new tasks aris-
ing from increased churn and Neural Tangent Kernel (NTK) rank collapse. We
propose InterpLayers, a drop-in architectural solution that combines a fixed,
parameter-free reference pathway with a learnable projection pathway using input-
dependent interpolation weights. Without requiring algorithmic adaptation, Inter-
pLayers conserve gradient diversity and constrain output variability by integrating
stable and adaptive computations. We provide theoretical guarantees for bounded
churn and show that, under mild assumptions, InterpLayers prevent NTK rank col-
lapse through a non-zero rank contribution from the interpolation weights. Across
environments with distributional shifts including permutation, windowing, and
expansion, InterpLayer variants (conv-only, fullinterp) consistently mitigate per-
formance degradation compared to parameter-matched baselines. Furthermore,
lightweight modifications such as dropout improve performance, especially under
gradual shifts. These results position InterpLayers as a simple, complementary
solution for maintaining plasticity in CRL.

1 INTRODUCTION

Continual reinforcement learning (CRL) requires agents to adapt to a non-stationary stream of tasks
without external resets or explicit knowledge of task boundaries. Yet neural networks trained in this
setting suffer from plasticity loss: their ability to adapt to new tasks diminishes over time. Plasticity
loss has been attributed to several interacting factors, including rank collapse of the Neural Tangent
Kernel (NTK) (Lyle et al., 2024), unbounded weight growth (Lyle et al., 2023), and representational
drift or churn that destabilizes previously acquired knowledge (Tang et al., 2025).

Most existing solutions intervene at the algorithmic level. Reset-based strategies reinitialize parame-
ters on a fixed schedule (Igl et al., 2020; Nikishin et al., 2022; 2023). Continuous plasticity methods
modify the optimization process itself, e.g., shrink-perturb (Ash & Adams, 2020), ReDo (Sokar
et al., 2023), or regenerative regularization (Kumar et al., 2023). Constraint-based approaches rely
on normalization, clipping, or masking to restrict parameter dynamics (Ba et al., 2016; Abbas et al.,
2023; Elsayed et al., 2024). While effective, these methods share limitations, including: (i) requir-
ing task boundary information or chosen reset schedules; (ii) introducing hyperparameters such as
reset frequencies, perturbation magnitudes, or regularization strengths; (iii) acting externally to the
architecture, often outside the optimization framework.

Here, we offer a distinct alternative by addressing plasticity loss directly at the architectural level,
without the need for interventions during training. Our method enhances standard network layers
with additional pathways to build Interpolation Layers (InterpLayers). Each layer combines a fixed,
parameter-free reference pathway that preserves stable representations throughout training and a
learnable projection pathway that adapts through backpropagation, connected via input-dependent
interpolation weights. By dynamically interpolating between these pathways, the network maintains
representational stability while preserving the capacity for adaptive learning. Unlike ResNet-like
skip connections, which only diversify gradient flow, or parameter-efficient tuning methods such as
LoRA, which fine-tune computational efficiency, InterpLayers create a self-regulating mechanism
that balances stability and plasticity without external intervention. Moreover, compared to algo-
rithmic approaches like soft-shrink-perturb with layer normalization (Juliani & Ash, 2024), Inter-
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pLayers require minimal computational overhead and no additional schedules or hyperparameters.
Designed as orthogonal components to current solutions for plasticity loss, they can be integrated
seamlessly into existing architectures or combined with intervention mechanisms.

We evaluate InterpLayers both theoretically and empirically. We perform a theoretical analysis to
investigate how InterpLayers impact churn and NTK rank, demonstrating that these properties are
enhanced by the interpolation mechanism between reference and projection pathways. For empirical
evaluation, we evaluate the performance of InterpLayers over standard baselines for ProcGen tasks
as described in (Juliani & Ash, 2024). We also investigate the performance of InterpLayers when
combined with dropout (Srivastava et al., 2014) and discuss how to effectively combine InterpLayers
orthogonally with other methods that tackle plasticity loss. We show that InterpLayers are effective
in preventing plasticity loss and can be a direction for future architectural solutions for continual
learning.

Our main contributions can be denoted as follows.

1. We introduce InterpLayers as drop-in replacements for conventional neural network layers.
InterpLayers splits the layer input into a reference and a projection pathway that are further
interpolated to obtain the layer’s output.

2. We show that InterpLayers bound representational drift through controlled interpolation,
limit churn growth via pathway stability, and maintain NTK rank under specific assump-
tions. These guarantees emerge from architectural constraints rather than external interven-
tions.

3. Across ProcGen distribution shifts spanning pixel permutations, level expansion, and se-
quential task changes, InterpLayers preserve performance where standard multi-layer per-
ceptron (MLP) layers collapse. We also empirically compare the performance of Inter-
pLayers with other interventions to counter plasticity loss.

2 RELATED WORKS

2.1 ALGORITHMIC APPROACHES TO MITIGATE PLASTICITY LOSS

Reset-based interventions. Periodic parameter reinitialization has often been applied to counter
plasticity loss. (Igl et al., 2020) proposed resetting only the final layer to preserve learned features
while restoring adaptability. (Nikishin et al., 2022) showed that resetting selected network param-
eters on a fixed schedule restores the network’s capacity to learn. Later, (Nikishin et al., 2023)
has shown that resetting the entire network leads to maintenance of plasticity at the cost of losing
prior knowledge. To implement these methods, reset schedules and selecting which parameters to
reinitialize is needed.

Continuous plasticity upkeep. Other methods continuously regulate plasticity during training.
(Sokar et al., 2023) proposed ReDo, which periodically resets inactive neurons. A continual back-
propagation method was presented by (Dohare et al., 2024), which adds a step to backpropagation
where a small fraction of neurons are continuously reinitialized based on a utility metric. (Ash &
Adams, 2020) applied a shrink-and-perturb methodology to the network after each update to scale
down the weights and add noise in order to maintain plasticity. To prevent unbounded weight drift,
(Kumar et al., 2023) used regenerative regularization applying L2 penalties to weights.

Normalization and constraint-based methods. Another approaches alleviate plasticity loss by
constraining the network dynamics. (Lyle et al., 2023) showed that LayerNorm can slow down
plasticity loss, as it helps to maintain NTK rank. (Abbas et al., 2023) investigated weight clipping
to provide an upper bound to parameter growth. To stabilize optimization, (Miyato et al., 2018) has
shown that spectral normalization can constrain Lipschitz constants. Even though plasticity loss is
reduced, representational capacity is also affected by the constraints added by these methods.

2.2 ARCHITECTURAL MECHANISMS FOR STABILITY IN NEURAL NETWORKS

Various innovations in neural network architectures have been proposed to balance stability and
plasticity, even though they have not been directly applied to continual learning. Skip connections
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and residual pathways have been vastly investigated to create gradient highways and regulate the
information flows in computer vision (He et al., 2016; Srivastava et al., 2015). Gating mechanisms
for controlling information flow have also been highly effective in natural language processing ar-
chitectures (Hochreiter & Schmidhuber, 1997; Cho et al., 2014). Networks that generate specific
parameters conditioned on input features, such as HyperNetworks (Ha et al., 2016), have also been
investigated to introduce architectural flexibility in meta-learning tasks. Here, these methods serve
as a foundation for the theoretical modeling of InterpLayers, which introduce an asymmetry by keep-
ing one pathway fixed and parameter-free, thereby achieving input specificity and representational
stability.

2.3 THEORETICAL UNDERSTANDING OF PLASTICITY LOSS

Recent works have also explored key theoretical features to enhance understanding of plasticity loss
in neural networks. (Lyle et al., 2024) showed that the effective NTK rank is strongly linked with
the ability of the network to adapt in a continual learning setting. Specifically, they demonstrate that
NTK rank collapse correlates with a decrease in performance. The unconstrained drift of internal
network representation has also been described as a cause for catastrophic forgetting in CRL by
(Kumar et al., 2023). The instability of network outputs, i.e., churn, is investigated by (Tang &
Berseth, 2024; Tang et al., 2025) as an important factor in plasticity loss. Based on these findings,
we theoretically investigate the effects of InterpLayers on these metrics.

3 METHODS

3.1 PRELIMINARIES

We consider an agent that learns in a CRL environment interacting with a sequence of
tasks {M1,M2, ...,MK} following a Markov Decision Process (MDP), where each Mi =
(Si,Ai, Pi, ri, γ) may have different state spaces Si, action spaces Ai, transition dynamics Pi, and
reward functions ri. The tasks are separated by distribution shifts, which can range from small
changes, e.g., reinitializing the environment with a new random seed, to substantial changes, e.g.,
permutations on the observation axis that completely modify the input distribution. At each timestep
t, the agent observes state st, selects action at according to policy πθ(a|s), receives reward rt, and
transitions to state st+1. The policy πθ(a|s) is parameterized by a neural network with weight
parameters θ and trained via backpropagation.

In a continual learning setting, the current task M is changed after a fixed number of environment
steps. The agent is given no information about task boundaries or identities, so it does not know
which task it has to solve at a given moment. The agent should adapt to a new task by modifying
its set of parameters θ online, having a shared policy for multiple tasks. The policy does not store
past experiences in another data structure to sample from during training. In this way, the policy
should maintain a balance between stability (preserving knowledge) and plasticity (acquiring new
knowledge) in a non-stationary environment.

3.2 THE INTERPOLATION LAYER

As an architectural solution to tackle plasticity loss, we introduce InterpLayers (Figure 1), which are
task-agnostic, require no additional hyperparameters, and can be seamlessly integrated into existing
neural network architectures.

Core mechanism. Each InterpLayer splits computation into two complementary pathways: (i) a
reference pathway given by a fixed, parameter-free mapping (identity, sparse selection, or padding
when dimensions differ); and (ii) a projection pathway with standard learnable parameters. Learn-
able interpolation weights then combine both outputs, allowing the network to learn when to rely on
preservation and when to adapt. Mathematically, given an input x ∈ Rd, the InterpLayer output is
given as

h(x) = (1− z(x))⊙ href(x) + z(x)⊙ hproj(x), (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Wp x + bp

Identity

h(x)
[B, d_out]

Wi x + bi

x
[B, d_in]

href (x)
[B, d_out]

hproj (x)
[B, d_out]

InterpLayer

z(x)
[B, d_out]

⊙

1 – z(x)

z(x)

+

⊙

Figure 1: The InterpLayer Architecture. The input x is processed through a fixed reference
pathway href(x) and a learnable projection pathway hproj(x). The learnable interpolation weights
z(x) dynamically interpolate the outputs from both pathways to produce the output h(x).

where ⊙ denotes element-wise multiplication and href, hproj, and z(x) are defined as
href(x) = Px, (P = I when din = dout), (2)
hproj(x) = ϕ(Wpx+ bp), Wp,bp (learnable), (3)

z(x) = σ(Wix+ bi), Wi,bi (learnable), (4)
din and dout denote the input and output dimensionalities of the layer, ϕ is a non-linear activation
function and σ is a sigmoid layer.

The reference pathway is designed to provide a parameter-free skip connection; if input and out-
put dimensions/channels match, the reference pathway applies an identity mapping to the input;
if the dimensions/channels differ, the input passes through a fixed projection P. We implement
P as either a sparse sampling matrix (selecting h dimensions from din when din > dout) or a
zero-padding operation (when din < dout), both deterministically constructed without learned pa-
rameters. The weights of this pathway remain fixed throughout training to provide a stable reference
and prevent unbounded representational drift. In contrast, the projection pathway enables adapta-
tion through standard learning, similarly to an MLP layer. The interpolation weights z(x) ∈ (0, 1)h

regulate the contribution of reference and projection, providing the network with a dynamic preser-
vation–adaptation tradeoff. This mechanism is similar to input gates in GRUs (Cho et al., 2014), but
has a key difference: href is a fixed skip from the current input rather than a recurrent hidden state
from the past. Weight magnitudes closer to 0 are related to h(x) being mostly represented by the
reference, while weight magnitudes closer to 1 are related to h(x) being mostly represented by the
projection.

Integration to convolutional layers. InterpLayers can replace standard MLP layers following
Eqs. (1)-(4). For convolutional layers processing image data X ∈ RCin×H×W as part of the state
space, href, hproj, and z(x) are defined as

href(X) = Pr ∗X (5)
hproj(X) = ϕ(Wp ∗X+ bp), (6)

z(X) = σ(Wi · β(X) + bi) , (7)
where ∗ denotes a convolution operation and β is a global average pooling operation to produce
channel-wise interpolation.

3.3 THEORETICAL PROPERTIES OF INTERPLAYERS

We analyze the mathematical properties of InterpLayers, focusing on two key properties: bounded
representational drift and preservation of gradient diversity.

3.3.1 BOUNDED REPRESENTATIONAL DRIFT

The dual-pathway structure of InterpLayers ensures that changes in the output remain bounded under
parameter updates. For an update ∆θ = (∆θp,∆θz), the first-order output change is given as

∆h(x) = z(x)⊙∆hproj(x) + ∆z(x)⊙ [hproj(x)− href(x)]. (8)
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This decomposition shows that updates are constrained. The projection pathway update is modu-
lated by the interpolation weights z(x) ∈ (0, 1)h, while the interpolation update is bounded by the
pathway difference.
Theorem 1 (Bounded Output Variability). If hproj is Lp-Lipschitz in its parameters θp and z is
Lz-Lipschitz in θz , then

∥∆h(x)∥2 ≤ ∥z(x)∥∞Lp∥∆θp∥2 + Lz∥∆θz∥2D(x), (9)

where D(x) = ∥hproj(x)− href(x)∥2.

The proof is deferred to Appendix A.1. This bound implies that churn is polynomially bounded
in training steps, in contrast to standard MLP layers where churn may grow unboundedly with
parameter norms. This theorem makes use of the fact that the reference pathway is parameter-free
at the layer level, and so only projection and interpolation weights contribute to the drift.

3.3.2 GRADIENT DIVERSITY PRESERVATION.

InterpLayers preserve gradient diversity by altering the structure of the NTK. Given the InterpLayer
formulation, the gradient with respect to network parameters decomposes as

∇θh(x) =

[
z(x)⊙∇θphproj(x)

∇θzz(x)⊙
(
hproj(x)− href(x)

)] . (10)

This yields an NTK of the form

NIL(xi, xj) = (z(xi)⊙ z(xj))
⊤Nproj(xi, xj) +Ninterp(xi, xj), (11)

where Nproj and Ninterp denote the NTK contributions from projection and interpolation parameters,
respectively. Here i, j index input samples xi, xj rather than parameters. Intuitively, the interpola-
tion mechanism adds a persistent gradient component even when the projection pathway degener-
ates, sustaining diversity in the NTK. For readers unfamiliar with NTK calculations, we provide a
step-by-step derivation and empirical estimator details in Appendix A.2.1.
Theorem 2 (NTK Rank Preservation under Interpolation Variance). Suppose the interpolation
weights z(x) across samples have non-zero variance along at least one coordinate, i.e.,

Var[z(k)(x)] > 0 for some dimension k.

Then the effective NTK rank of an InterpLayer is lower-bounded by

rank(NIL) ≥ rank(Ninterp).

In particular, the interpolation pathway guarantees a persistent gradient component, preventing full
rank collapse even if the projection pathway degenerates.

The key requirement of Theorem 2 is simply that interpolation weights exhibit variance across sam-
ples. Intuitively, as long as z(x) does not collapse to a constant vector, the interpolation path-
way contributes an independent gradient component to the NTK. This guarantees a persistent lower
bound on effective rank and prevents full rank collapse, even in cases where the projection pathway
degenerates. Empirical verification of NTK rank during training is provided in Section 4.3.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We employ the ProcGen environment (Cobbe et al., 2020) to evaluate the proposed framework on
CRL settings. As benchmark tasks, we apply three distribution shifts on the coinrun environment
previously introduced by (Juliani & Ash, 2024) (visualizations shown in Appendix G). These three
variations are named permute, window, and expand. For the permute task, at each shift point, we
randomly permute all pixels in the observation space. In the window task, the random seed used to
generate the levels is changed at each shift point. In the expand task, training starts with 100 levels,
and at each shift point the training set is continuously expanded by increments of 100, ending with
1000 levels after the final shift.
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InterpLayer Variants. We evaluate two architectural variants: (i) conv-only, where InterpLayers
replace only the convolutional encoder layers, and (ii) fullinterp, where both convolutional and lin-
ear layers are replaced with InterpLayers. We also investigate InterpLayers combined with dropout
(Srivastava et al., 2014), which we name conv-only-dropout and fullinterp-dropout respectively,
in which dropout is applied to the projection pathway. The conv-only variant emphasizes stability
in low-level feature extraction, while fullinterp exposes the entire network to interpolation. Adding
dropout aims to increase variance in the projection pathway, which increases the gap between ref-
erence and projection. We hypothesize that the characteristics of dropout enhance the effects of our
proposed interpolation mechanism.

The policy used in the experiments consists of an encoder using 4 convolutional layers followed by
a linear layer. The training is performed using PPO (Schulman et al., 2017). Given the additional
number of parameters introduced by InterpLayers, we compare it with an architecture using a similar
number of parameters as our standard baseline. Details regarding the training details and compu-
tational cost comparison are given in Appendix B and C, respectively. Additionally, our method is
compared against the top-performing baseline proposed and benchmarked in (Juliani & Ash, 2024):
soft shrink-perturb with layer norm (SSP+LN), which mixes the current weight with initialization
noise after each optimizer step (See Appendix D for details. The results are average runs of 10
random seeds where training is performed for 50,000 epochs, with distribution shifts being applied
every 5,000 epochs.

4.2 INTERPLAYER PERFORMANCE UNDER DISTRIBUTION SHIFTS

We evaluate whether InterpLayers can maintain performance across sequential tasks separated by
distribution shifts. Figure 2 shows the normalized performance, defined as the mean reward over
the final 50 evaluation episodes of each task, normalized relative to the initial task and plotted with
shaded regions denoting the standard error across 10 seeds for seven network variants: conv-only,
fullinterp, and their dropout variants, as well as the baselines, standard, standard with dropout, and
SSP+LN. For all dropout variants, we set the dropout rate to 0.1.

(a) Permute (b) Window (c) Expand

Figure 2: Performance (relative to initial task) for InterpLayer variants and baselines under
ProcGen distribution shifts. Performance is defined as the mean reward over the final 50 evaluation
episodes of each task, normalized relative to the initial task, with shaded regions denoting standard
error across 10 seeds. (a) Permute: The standard baseline collapses throughout training, while non-
dropout interpolation-based networks degrade more gradually. Conv-only-dropout and fullinterp-
dropout negate any plasticity loss, with SSP+LN and conv-only-dropout reaching the highest perfor-
mance. (b) Window: Conv-only-dropout sustains near-initial performance across tasks. Fullinterp-
dropout improves steadily throughout training and outperforms all baselines, including SSP+LN.
(c) Expand: The standard baseline collapses quickly, while conv-only and fullinterp decline with
fluctuations. Fullinterp-dropout and conv-only-dropout reach above initial-task performance, while
SSP+LN remains stable in comparison to the two dropout variants. Raw episodic returns are pre-
sented in Appendix H.

Permute (Figure 2a): The permute task involves the most severe shift, forcing full representational
relearning. The standard baseline collapses quickly, dropping performance below −1.5 relative to
the initial task. Adding dropout delays this decay, but standard-dropout still falls far below zero.
Interpolation-based methods show similar degradation, albeit with some recovery in later tasks.
Adding dropout to the projection in the interpolation variants yields strong resilience, with fullinterp-
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dropout finishing close to initial-task performance. Conv-only-dropout and SSP+LN remain above
zero, neither outperforming the other, with conv-only-dropout being computationally cheaper (see
Appendix C).

Window (Figure 2b): Changing to newly generated levels at each shift produces a clear perfor-
mance separation. The standard baseline drops steadily, remaining below −1.0 after task 3; adding
dropout prevents this collapse, reaching above initial-task performance in the later task, similar to
SSP+LN. Conv-only stays near zero, while its dropout variant also stabilizes and then exceeds ini-
tial performance. Fullinterp shows fluctuating performance but partial recovery in the later tasks.
Its dropout variant shows the strongest overall performance, maintaining positive returns across all
tasks and outperforming all other methods, with the conv-only dropout coming in as second best.

Expand (Figure 2c): Increasing the number of levels provides a gradual adaptation challenge. The
standard baseline drops strongly to below -2.0 by mid-training. Standard-dropout lowers this drop
but does not avoid the decrease in performance. Both interpolation variants decline with large vari-
ance; conv-only drops more smoothly, yet fullinterp shows some recovery in later tasks. SSP+LN
remains stable near initial performance. Fullinterp-dropout and conv-only-dropout recover during
training, and both end with a positive trend reaching performance above 0, outperforming all other
methods.

Across all shift types, interpolation-based networks outperform the standard baseline. Dropout plays
an important role: for the standard model, adding dropout improves resistance against plasticity
loss but is unable to fully resolve it. For InterpLayer-based architectures, adding dropout mitigates
plasticity loss. Conv-only-dropout reaches stable performance across all shifts, while fullinterp-
dropout combines stability and adaptability, dominating in more gradual shifts like window and
expand, while still remaining competitive in the permute condition. Compared to SSP+LN, dropout-
enhanced InterpLayers preserve plasticity while requiring less computation (Appendix C) and not
applying optimization-level interventions.

4.3 EMPIRICAL VALIDATION OF THEORETICAL PROPERTIES

We show the empirical validation for two metrics related to the theoretical properties of InterpLay-
ers, churn and NTK rank, in Figure 3. Details on the methodology for calculating these metrics are
provided in Appendix F and E.

Churn. The churn evolution for InterpLayer variants and baselines is presented in the first column
of Figure 3 for the three tasks. We observe that fullinterp-dropout and conv-only-dropout achieve
lower churn and reduces churn over time, while the churn for SSP+LN and standard-dropout remains
stable. These values align with the theoretical analysis presented in Theorem 1. We also observe that
patterns for the permute task are different from the ones for the window and expand tasks. For the
permute, clear separation is seen in shift points, related to the need of learning a new set of features
given the complexity of the distribution shift.

NTK Rank Preservation. We estimate NTK rank by computing per-sample gradients g(x) of the
PPO policy and value heads. The NTK matrix is constructed as Kij = ⟨g(xi), g(xj)⟩, and we report
the effective rank. Computation is performed every 50 epochs on a batch of 128 states, requiring a
moderate overhead (about 15% training time increase). As shown in Figure 3, the fullinterp-dropout
variant maintains significantly higher effective rank, especially for the window and expand tasks,
and overall sustains gradient diversity, which is key for continual learning. For the permute task,
SSP+LN also achieves a high rank throughout training.

4.4 ANALYZING THE INTERPOLATION MECHANISM

Figure 4 shows per-layer distributions of interpolation weights averaged for early training (tasks
1-5) and late training (tasks 6-10). In both variants, fullinterp-dropout and conv-only-dropout, early
training is characterized by high variance and broad weight distributions. In late training the distri-
butions shift towards the reference pathway, which indicates that low-level features are stabilized.
The key difference between the variants emerges in the final layer (L4): in fullinterp-dropout, the
interpolation weight distribution remains broad and biased towards the projection pathway, while in
conv-only-dropout L4 is a standard linear layer, equivalent to fixing all interpolation weights z to 1.
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Figure 3: Evolution of the theoretical metrics for InterpLayer variants and baselines under
distribution shifts. The metrics track representational stability and plasticity across training. Rows
correspond to distribution shifts: (a) Permute, (b) Window, (c) Expand. Columns correspond to
two different measures: Churn and effective NTK rank. Shaded regions denote variability across
3 seeds, and vertical lines indicate shift points. Across all conditions, the interpolation variants
maintain lower churn compared to the standard baselines, while the NTK effective rank is best
preserved under the fullinterp-dropout variant.

5 DISCUSSION

In our experiments, we investigate the learning patterns for different InterpLayer variants (Figure 2).
Applying InterpLayers only at the convolutional-based feature extractor (conv-only) is shown to be
effective for the initial tasks, while applying InterpLayers for all layers (fullinterp) shows recovery
in performance for the final tasks, even in situations where the performance drops for intermediate
tasks. This suggests the potential of developing hybrid strategies in which interpolation is performed
layer-wise, given plasticity requirements, for dynamic tasks.

The analysis in Figure 4 shows that InterpLayer variants develop a hierarchical structure implicitly.
While fixed interpolation weights of z = 0.5 would act like ResNet-like skip connections, allowing
z to learn in an input-conditioned manner enables lower layers to prioritize the reference while
the final layer sustains projection contributions. This splitting of jobs is not hard-wired into the
architecture but develops naturally from the input-specific interpolation. Such self-organization is
similar to other findings in deep learning, where lower layers act as feature extractors while higher
layers adapt to task-specific demands (Yosinski et al., 2014).

The evolution of metrics related to the theoretical properties presented in Section 3.3 is crucial to
mitigate plasticity loss. Our empirical results for churn evolution (Figure 3) show that it decreases
over time using InterpLayers variants. These results agree with results recently presented by (Tang
et al., 2025), demonstrating that reducing churn is important to keep plasticity in neural networks.
Another important property linked to effective network adaptation is NTK rank as discussed by (Lyle
et al., 2024). For the NTK rank (Figure 3), InterpLayers also preserve rank during training. These
findings suggest empirically the theoretical advantages of using InterpLayers in continual learning.

Furthermore, the analysis in Section 3.3 suggests that the plasticity of the network can be estimated
through the joint behavior of the interpolation weights z and the representational gap D defined in
Theorem 1. Together, z and D indicate how much a layer adapts. These variables are important

8
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(a) Fullinterp-dropout permute (b) Conv-only-dropout permute

(c) Fullinterp-dropout window (d) Conv-only-dropout window

(e) Fullinterp-dropout expand (f) Conv-only-dropout expand

Figure 4: Distribution per-layer of interpolation weights in early training (tasks 1-5) and late
training (tasks 6-10). Six conditions are shown: fullinterp-dropout (first column) and conv-only-
dropout (second column) under permute, window, and expand tasks.

to understand the learning of InterpLayer variants combined with dropout (Figure 2). Dropout is
stochastically masking projection activations, preventing projection and reference from aligning,
i.e., sustaining D. Even though z is not directly affected by dropout, because it receives gradients
that scale with D, keeping a high representational gap D maintains the effective learning of z. These
effects directly influence how InterpLayers can be orthogonally combined with other regularization
methods. While combining with dropout improves performance, combining with other methods that
decrease D, such as shrink and perturb, might hurt the performance of InterpLayers.

Architectures with gated mechanisms (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) and resid-
ual networks (He et al., 2016; Srivastava et al., 2015) have been responsible for key advances in
recurrent neural networks and convolutional neural networks, respectively. In the same direction,
InterpLayers present an interpolation mechanism that sustains plasticity through different streams
and gated interventions while also providing a complementary architectural axis to other methods,
preventing plasticity loss. This resonates with neuroscience-inspired models where dendritic com-
partments and gating mechanisms solve the stability-plasticity trade-off in cortical circuits (Bengio
et al., 2015; Urbanczik & Senn, 2014). Our findings place InterpLayers as a simple but general
mechanism that enriches the toolbox of CRL toward architectures implicitly solving the plasticity
loss issue.

6 CONCLUSION

In this paper, we introduce InterpLayers as an architectural solution to plasticity loss in CRL. Re-
quiring no schedule, resets, or auxiliary objectives, InterpLayers provide continuous regulation of
plasticity through a dual-pathway design. Our findings show that InterpLayers mitigate plasticity
loss across three sequential tasks from ProcGen. Additionally, we show that combining InterpLayer
with dropout improves its performance, achieving comparable performance to state-of-the-art meth-
ods for continual learning, suggesting that characteristics learned by dropout regularization help the
interpolation dynamics of InterpLayers. Future works include investigating the performance of In-
terpLayers with different levels of sparsity in the policy network and the combination with different
algorithmic approaches in CRL.

9
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A THEORETICAL PROPERTIES: PROOFS AND EXTENSIONS

A.1 PROOF OF THEOREM 1

Starting from the first-order output change (Eq. 8):

∆h(x) = z(x)⊙∆hproj(x) + ∆z(x)⊙ [hproj(x)− href(x)]. (12)

By the triangle inequality and the property ∥a⊙ b∥2 ≤ ∥a∥∞∥b∥2:

∥∆h(x)∥2 ≤ ∥z(x)∥∞∥∆hproj(x)∥2 + ∥∆z(x)∥∞ ·D(x), (13)

where D(x) = ∥hproj(x)− href(x)∥2.

By Lipschitz continuity assumptions:

∥∆hproj(x)∥2 ≤ Lp∥∆θp∥2, (14)
∥∆z(x)∥∞ ≤ Lz∥∆θz∥2. (15)

Therefore:
∥∆h(x)∥2 ≤ ∥z(x)∥∞Lp∥∆θp∥2 + Lz∥∆θz∥2D(x). (16)

Since z(x) ∈ (0, 1)h due to the sigmoid, ∥z(x)∥∞ < 1, completing the proof.

A.2 COROLLARY: BOUNDED CHURN

Consider a sequence of updates {θt}Tt=0 under learning rate η. By Theorem 1, each step incurs an
output change bounded by

∥∆ht(x)∥2 ≤ η
(
∥z(x)∥∞Lp∥∇θpLt∥2 + Lz∥∇θzLt∥2D(x)

)
. (17)

Accumulating over t and applying Cauchy–Schwarz yields

∥hθT (x)− hθ0(x)∥2 ≤ BT, (18)

for a constant B depending on η, Lp, Lz , and the gradient magnitudes. Squaring and taking expec-
tation over Dref gives

CT ≤ B2T 2, (19)

establishing bounded churn.

A.2.1 PROOF OF THEOREM 2

We restate the NTK for InterpLayers (Eq. 11):

NIL(xi, xj) = (z(xi)⊙ z(xj))
⊤Nproj(xi, xj) +Ninterp(xi, xj).

Step 1: PSD decomposition. Both Nproj and Ninterp are positive semidefinite (PSD) Gram matrices
of gradients. Therefore, their weighted sum is also PSD. The interpolation kernel can be written
explicitly as

Ninterp(xi, xj) =
〈
∇θzz(xi)⊙ (hproj(xi)− href(xi)), ∇θzz(xj)⊙ (hproj(xj)− href(xj))

〉
,

which is PSD by construction.

Step 2: Rank contribution of interpolation. If z(x) collapses to a constant vector c across all
samples, then the interpolation gradients vanish (since ∇θzz(x) is zero almost everywhere after
saturation). In that case Ninterp degenerates to zero. Conversely, if Var[z(k)(x)] > 0 for at least one
coordinate k, then the interpolation gradients differ across samples, producing at least one non-zero
eigenvalue in Ninterp.

12
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Step 3: Rank inequality. Because NIL = (zi ⊙ zj)
⊤Nproj︸ ︷︷ ︸

possibly degenerate

+Ninterp and both terms are PSD, we

have
rank(NIL) ≥ rank(Ninterp).

This follows from the fact that adding a PSD matrix cannot reduce the rank contribution of another
PSD component.

Step 4: Conclusion. Thus, provided z(x) is not constant across all samples, the interpolation
term guarantees a non-zero rank contribution. In particular, rank(NIL) cannot collapse below
rank(Ninterp), ensuring gradient diversity even if Nproj degenerates.

□

A.3 WEIGHT NORM REGULARIZATION (EXTENDED)

Although not central to the main text, we note that interpolation gates implicitly regularize effective
weight norms. Define the effective contribution at time t as

∥Weff(t)∥2F ≤ Ex[∥zt(x)∥2∞] · ∥Wp,t∥2F + ∥Wz,t∥2F , (20)

Since ∥zt(x)∥∞ ≤ 1, the contribution of Wp,t is strictly bounded relative to its norm. This prevents
unbounded growth of effective weights even when ∥Wp,t∥F → ∞. Empirical evidence for this
effect is provided in Section 4.3.

B TRAINING DETAILS

Training protocol. The RL policy is trained using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017). Following the framework described in (Juliani & Ash, 2024), we report the
performance at the epoch level and mark task boundaries at each distribution shift. In our setup, one
epoch denotes the following steps: (i) we collect buffer size = 1024 transitions across 11 parallel
environments, then (ii) perform 3 PPO passes with minibatch size set to 64. The PPO hyperparam-
eters are set as follows: γ = 0.99, λ = 0.95, clip = 0.2, entropy = 0.02, learning rate = 5e-4. We
train the policy for 50,000 epochs, with distribution shifts at every 5000 epochs, i.e., 5000, 10000,
..., 45000.

C COMPUTATIONAL COST COMPARISON

Table 1 presents the parameter counts and forward-pass FLOPs for the main architectures evaluated
in this paper. We count one multiple-accumulate as a single FLOP. The conv128 encoder requires
nearly 35% more computational load than the InterpConv64 variant used in our InterpLayers, despite
the latter showing higher performance in later experiments.

Encoder Variant Params (M) FLOPs (M)

Conv128 (standard) 1.98 63.5
Conv128 (standard+SSP+LN) 1.98 67.5
InterpConv64 (fullinterp) 1.52 50.8
InterpConv64 (conv-only) 0.99 49.7

Table 1: Parameter counts and forward FLOPs per inference step.

D SOFT SHRINK-PERTURB WITH LAYERNORM (SSP+LN)

We implement soft shrink-perturb following (Juliani & Ash, 2024), where after each optimizer step
we apply the shrink and perturb update to the parameters x:

xnew = αxcurrent + β xinit, xinit ∼ Dinit. (21)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

with α = 0.999999 and β = 0.000001

In SSP+LN, this continuous update is combined with LayerNorm (Ba et al., 2016) applied through-
out training.

E DETAILS ON THE NTK COMPUTATION

We measure the empirical NTK of the policy and value PPO heads throughout training. The goal is
to understand if InterpLayers maintain gradient diversity compared to baselines.

Reference batch. At initialization, we collect a reference batch of observations from the training
environments. To ensure diversity, samples are drawn from multiple environments using three strate-
gies: (i) fresh resets, (ii) short random walks, and (iii) mid-episode states. We target 200 samples,
capped at 50 per environment. If fewer samples are available, we fall back to a minimum of 16.

NTK matrix construction. For each reference observation x, we compute the gradient of the PPO
objective with respect to all trainable parameters of the policy (and optionally value) networks:

g(x) = ∇θLPPO(x).

The empirical NTK matrix is then
Kij = ⟨g(xi), g(xj)⟩.

Gradients are computed in mini-batches, and the resulting kernel is assembled as a Gram matrix of
dimension up to 200× 200.

Effective rank and spectra. We report the effective rank of the NTK, defined as the participation
ratio:

reff =
(
∑

k λk)
2∑

k λ
2
k

,

where λk are eigenvalues of K. This value measures the number of significant gradient directions.
We also record the minimum eigenvalue and condition number to diagnose degeneracy.

Logging frequency and cost. NTK metrics are computed every 100 epochs, aligned with test
evaluations. Each computation uses the fixed reference batch from initialization and incurs approx-
imately 10–15% additional runtime overhead relative to standard PPO training.

Implementation. The NTK logger is implemented in PyTorch and integrated into the PPO training
loop. It automatically detects whether gating is enabled and saves all metrics to disk in JSON/CSV
format for post-hoc analysis.

F DETAILS ON THE CHURN COMPUTATION

We measure churn from the encoder outputs using a fixed reference batch that is stored at initializa-
tion. At epoch t, churn is defined as the mean squared deviation of the current encoder representa-
tions from the initial ones:

Ct = Ex∼D
[
∥ht(x)− h0(x)∥22

]
, (22)

where ht(x) denotes the encoder representation of input x at epoch t, and h0(x) the corresponding
representation at initialization. We also log the first- and second-order finite differences of Ct over
epochs.

G VISUALIZATION OF THE DISTRIBUTION SHIFTS OF PROCGEN TASKS

Sample visualizations for the three ProcGen coinrun tasks evaluated in this paper is shown in Figure
5. For permute, a fixed random pixel permutation is applied per shift. Given the change in the entire
state space, this task requires robust feature relearning. For window, the environment is resampled
with a different random seed to create other environments. Finally, the expand tasks increase the
number of training environments from 100 to 1000 across 9 shifts. This characteristic evaluates the
generalization capabilities of the trained policy.
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Permute

Window

Expand

Figure 5: Visualization of the distribution shifts used in ProcGen coinrun. Each panel shows
the transformation applied at the shift boundaries (every 5,000 epochs): Permute applies a fixed
random pixel permutation per shift; Window resamples the environment seed to generate new levels;
Expand increase the number of training environments from 100 to 1000 across 9 shifts. Visual
representations of the environments ae shown.

H TOTAL REWARD PERFORMANCE ON PROCGEN TASKS

The raw episodic returns obtained by the different methods in the three ProcGen coinrun tasks are
shown in Figures 6, 7, and 8. In these figures, it is observed that the higher number of raw episodic
returns is obtained by the SSP+LN methods and is followed closely by the two best InterpLayer
methods, conv-only dropout and fullinterp dropout. For the three tasks, a standard neural network
achieves the worst final raw episodic reward.
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Figure 6: Raw episodic returns in the permute setting. Curves show the per-epoch mean reward
for the seven network variants reported in Figure 2a; vertical lines indicate the shift boundaries;
results are averaged across 10 seeds.

Figure 7: Raw episodic returns in the window setting. Curves show the per-epoch mean reward
for the seven network variants reported in Figure 2b; vertical lines indicate the shift boundaries;
results are averaged across 10 seeds.
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Figure 8: Raw episodic returns in the expand setting. Curves show the per-epoch mean reward for
the seven network variants reported in Figure 2c; vertical lines indicate the shift boundaries; results
are averaged across 10 seeds.
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