

000 ARCHITECTURAL PLASTICITY FOR CONTINUAL 001 002 LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009 010

011 Neural networks for continual reinforcement learning (CRL) often suffer from
012 plasticity loss, i.e., a progressive decline in their ability to learn new tasks arising
013 from increased churn and Neural Tangent Kernel (NTK) rank collapse. We
014 propose InterpLayers, a drop-in architectural solution that combines a fixed,
015 parameter-free reference pathway with a learnable projection pathway using input-
016 dependent interpolation weights. Without requiring algorithmic adaptation, Interp-
017 Layers conserve gradient diversity and constrain output variability by integrating
018 stable and adaptive computations. We provide theoretical guarantees for bounded
019 churn and show that, under mild assumptions, InterpLayers prevent NTK rank col-
020 lapsed through a non-zero rank contribution from the interpolation weights. Across
021 environments with distributional shifts including permutation, windowing, and
022 expansion, InterpLayer variants (convonly, fullinterp) consistently mitigate per-
023 formance degradation compared to parameter-matched baselines. Furthermore,
024 lightweight modifications such as dropout improve performance, especially under
025 gradual shifts. These results position InterpLayers as a simple, complementary
026 solution for maintaining plasticity in CRL.

027 1 INTRODUCTION 028

029 Continual reinforcement learning (CRL) requires agents to adapt to a non-stationary stream of tasks
030 without external resets or explicit knowledge of task boundaries. Yet neural networks trained in this
031 setting suffer from *plasticity loss*: their ability to adapt to new tasks diminishes over time. Plasticity
032 loss has been attributed to several interacting factors, including rank collapse of the Neural Tangent
033 Kernel (NTK) (Lyle et al., 2024), unbounded weight growth (Lyle et al., 2023), and representational
034 drift or churn that destabilizes previously acquired knowledge (Tang et al., 2025).

035 Most existing solutions intervene at the algorithmic level. Reset-based strategies reinitialize parame-
036 ters on a fixed schedule (Igl et al., 2020; Nikishin et al., 2022; 2023). Continuous plasticity methods
037 modify the optimization process itself, e.g., shrink-perturb (Ash & Adams, 2020), ReDo (Sokar
038 et al., 2023), or regenerative regularization (Kumar et al., 2023). Constraint-based approaches rely
039 on normalization, clipping, or masking to restrict parameter dynamics (Ba et al., 2016; Abbas et al.,
040 2023; Elsayed et al., 2024). While effective, these methods share limitations, including: (i) requir-
041 ing task boundary information or chosen reset schedules; (ii) introducing hyperparameters such as
042 reset frequencies, perturbation magnitudes, or regularization strengths; (iii) acting externally to the
043 architecture, often outside the optimization framework.

044 Here, we offer a distinct alternative by addressing plasticity loss directly at the architectural level,
045 without the need for interventions during training. Our method enhances standard network layers
046 with additional pathways to build *Interpolation Layers* (InterpLayers). Each layer combines a fixed,
047 parameter-free reference pathway that preserves stable representations throughout training and a
048 learnable projection pathway that adapts through backpropagation, connected via input-dependent
049 interpolation weights. By dynamically interpolating between these pathways, the network maintains
050 representational stability while preserving the capacity for adaptive learning. Unlike ResNet-like
051 skip connections, which only diversify gradient flow, or parameter-efficient tuning methods such as
052 LoRA, which fine-tune computational efficiency, InterpLayers create a self-regulating mechanism
053 that balances stability and plasticity without external intervention. Moreover, compared to algo-
rithmic approaches like soft-shrink-perturb with layer normalization (Juliani & Ash, 2024), Inter-

054 pLayers require minimal computational overhead and no additional schedules or hyperparameters.
 055 Designed as orthogonal components to current solutions for plasticity loss, they can be integrated
 056 seamlessly into existing architectures or combined with intervention mechanisms.
 057

058 We evaluate InterpLayers both theoretically and empirically. We perform a theoretical analysis to
 059 investigate how InterpLayers impact churn and NTK rank, demonstrating that these properties are
 060 enhanced by the interpolation mechanism between reference and projection pathways. For empirical
 061 evaluation, we evaluate the performance of InterpLayers over standard baselines for ProcGen tasks
 062 as described in Juliani & Ash (2024). We also investigate the performance of InterpLayers when
 063 combined with dropout (Srivastava et al., 2014) and discuss how to effectively combine InterpLayers
 064 orthogonally with other methods that tackle plasticity loss. We show that InterpLayers are effective
 065 in preventing plasticity loss and can be a direction for future architectural solutions for continual
 066 learning.
 067

Our main contributions can be denoted as follows.

- 068 1. We introduce InterpLayers as drop-in replacements for conventional neural network layers.
 069 InterpLayers splits the layer input into a reference and a projection pathway that are further
 070 interpolated to obtain the layer’s output.
- 071 2. We show that InterpLayers bound representational drift through controlled interpolation,
 072 limit churn growth via pathway stability, and maintain NTK rank under specific assump-
 073 tions. These guarantees emerge from architectural constraints rather than external interven-
 074 tions.
- 075 3. Across ProcGen distribution shifts spanning pixel permutations, level expansion, and se-
 076 quential task changes, InterpLayers preserve performance where standard multi-layer per-
 077 ceptron (MLP) layers collapse. We also empirically compare the performance of Inter-
 078 pLayers with other interventions to counter plasticity loss.

079 2 RELATED WORKS

080 2.1 ALGORITHMIC APPROACHES TO MITIGATE PLASTICITY LOSS

081 **Reset-based interventions.** Periodic parameter reinitialization has often been applied to counter
 082 plasticity loss. Igl et al. (2020) proposed resetting only the final layer to preserve learned features
 083 while restoring adaptability. Nikishin et al. (2022) showed that resetting selected network par-
 084 ameters on a fixed schedule restores the network’s capacity to learn. Later, Nikishin et al. (2023) has
 085 shown that resetting the entire network leads to maintenance of plasticity at the cost of losing prior
 086 knowledge. To implement these methods, reset schedules and selecting which parameters to reini-
 087 tialize is needed.
 088

089 **Continuous plasticity upkeep.** Other methods continuously regulate plasticity during training.
 090 Sokar et al. (2023) proposed ReDo, which periodically resets inactive neurons. A continual back-
 091 propagation method was presented by Dohare et al. (2024), which adds a step to backpropagation
 092 where a small fraction of neurons are continuously reinitialized based on a utility metric. Ash &
 093 Adams (2020) applied a shrink-and-perturb methodology to the network after each update to scale
 094 down the weights and add noise in order to maintain plasticity. To prevent unbounded weight drift,
 095 Kumar et al. (2023) used regenerative regularization applying L2 penalties to weights. Abbas et al.
 096 (2023) showed that increasingly sparse activation patterns diminish gradients, causing plasticity loss.
 097 To prevent this, they introduced CReLU as a modified activation function to mitigate sparsity.
 098

099 **Normalization and constraint-based methods.** Another approaches alleviate plasticity loss by
 100 constraining the network dynamics. Lyle et al. (2023) showed that LayerNorm can slow down plas-
 101 ticity loss, as it helps to maintain NTK rank. Elsayed et al. (2024) investigated weight clipping to
 102 provide an upper bound to parameter growth. To stabilize optimization, Miyato et al. (2018) has
 103 shown that spectral normalization can constrain Lipschitz constants. Even though plasticity loss is
 104 reduced, representational capacity is also affected by the constraints added by these methods. Re-
 105 cently, Lee et al. (2025) proposed an architecture named SimbaV2, which constrains weight growth
 106 and feature norm by hyperspherical normalization and makes use of reward scaling to maintain gra-
 107 dient stability. Additionally, Nauman et al. (2024) introduced the BRO algorithm, which combines

108 LayerNorm, weight decay, and full-parameter resets, to scale the vanilla SAC model to seven times
 109 its size, improving performance while maintaining sample efficiency.
 110

111 **2.2 ARCHITECTURAL MECHANISMS FOR STABILITY IN NEURAL NETWORKS**
 112

113 Various innovations in neural network architectures have been proposed to balance stability and
 114 plasticity, even though they have not been directly applied to continual learning. Skip connections
 115 and residual pathways have been vastly investigated to create gradient highways and regulate the
 116 information flows in computer vision (He et al., 2016; Srivastava et al., 2015). Gating mechanisms
 117 for controlling information flow have also been highly effective in natural language processing
 118 architectures (Hochreiter & Schmidhuber, 1997; Cho et al., 2014). Networks that generate specific
 119 parameters conditioned on input features, such as HyperNetworks (Ha et al., 2016), have also been
 120 investigated to introduce architectural flexibility in meta-learning tasks. Here, these methods serve
 121 as a foundation for the theoretical modeling of InterpLayers, which introduce an asymmetry by keep-
 122 ing one pathway fixed and parameter-free, thereby achieving input specificity and representational
 123 stability.
 124

125 **2.3 THEORETICAL UNDERSTANDING OF PLASTICITY LOSS**
 126

127 Recent works have also explored key theoretical features to enhance understanding of plasticity loss
 128 in neural networks. Lyle et al. (2024) showed that the effective NTK rank is strongly linked with
 129 the ability of the network to adapt in a continual learning setting. Specifically, they demonstrate that
 130 NTK rank collapse correlates with a decrease in performance. The unconstrained drift of internal
 131 network representation has also been described as a cause for catastrophic forgetting in CRL by
 132 Kumar et al. (2023). The instability of network outputs, i.e., *churn*, is investigated by Tang & Berseth
 133 (2024); Tang et al. (2025) as an important factor in plasticity loss. **In addition to these metrics,**
 134 **Lewandowski et al. (2023) showed that a decrease in curvature directions is another indicator of**
 135 **plasticity loss in neural networks.** Based on these findings, we theoretically investigate the effects
 136 of InterpLayers on **churn** and **effective NTK rank**.
 137

138 **3 METHODS**

139 **3.1 PRELIMINARIES**

140 We consider an agent that learns in a CRL environment interacting with a sequence of
 141 tasks $\{\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_K\}$ following a Markov Decision Process (MDP), where each $\mathcal{M}_i =$
 142 $(\mathcal{S}_i, \mathcal{A}_i, P_i, r_i, \gamma)$ may have different state spaces \mathcal{S}_i , action spaces \mathcal{A}_i , transition dynamics P_i , and
 143 reward functions r_i . The tasks are separated by distribution shifts, which can range from small
 144 changes, e.g., reinitializing the environment with a new random seed, to substantial changes, e.g.,
 145 permutations on the observation axis that completely modify the input distribution. At each timestep
 146 t , the agent observes state s_t , selects action a_t according to policy $\pi_\theta(a|s)$, receives reward r_t , and
 147 transitions to state s_{t+1} . The policy $\pi_\theta(a|s)$ is parameterized by a neural network with weight
 148 parameters θ and trained via backpropagation.
 149

150 In a continual learning setting, the current task \mathcal{M} is changed after a fixed number of environment
 151 steps. The agent is given no information about task boundaries or identities, so it does not know
 152 which task it has to solve at a given moment. The agent should adapt to a new task by modifying
 153 its set of parameters θ online, having a shared policy for multiple tasks. The policy does not store
 154 past experiences in another data structure to sample from during training. In this way, the policy
 155 should maintain a balance between stability (preserving knowledge) and plasticity (acquiring new
 156 knowledge) in a non-stationary environment.
 157

158 **3.2 THE INTERPOLATION LAYER**
 159

160 As an architectural solution to tackle plasticity loss, we introduce InterpLayers (Figure 1), which are
 161 task-agnostic, require no additional hyperparameters, and can be seamlessly integrated into existing
 162 neural network architectures.

Figure 1: **The InterpLayer Architecture.** The input \mathbf{x} is processed through a fixed reference pathway $h_{\text{ref}}(\mathbf{x})$ and a learnable projection pathway $h_{\text{proj}}(\mathbf{x})$. The learnable interpolation weights $z(\mathbf{x})$ dynamically interpolate the outputs from both pathways to produce the output $\mathbf{h}(\mathbf{x})$.

Core mechanism. Each InterpLayer splits computation into two complementary pathways: (i) a *reference pathway* given by a fixed, parameter-free mapping (identity, sparse selection, or padding when dimensions differ); and (ii) a *projection pathway* with standard learnable parameters. Learnable interpolation weights then combine both outputs, allowing the network to learn when to rely on preservation and when to adapt. Mathematically, given an input $\mathbf{x} \in \mathbb{R}^d$, the InterpLayer output is given as

$$\mathbf{h}(\mathbf{x}) = (1 - z(\mathbf{x})) \odot h_{\text{ref}}(\mathbf{x}) + z(\mathbf{x}) \odot h_{\text{proj}}(\mathbf{x}), \quad (1)$$

where \odot denotes element-wise multiplication and h_{ref} , h_{proj} , and $z(\mathbf{x})$ are defined as

$$h_{\text{ref}}(\mathbf{x}) = \mathbf{P}\mathbf{x}, \quad (\mathbf{P} = \mathbf{I} \text{ when } d_{\text{in}} = d_{\text{out}}), \quad (2)$$

$$h_{\text{proj}}(\mathbf{x}) = \phi(\mathbf{W}_p \mathbf{x} + \mathbf{b}_p), \quad \mathbf{W}_p, \mathbf{b}_p \text{ (learnable)}, \quad (3)$$

$$z(\mathbf{x}) = \sigma(\mathbf{W}_i \mathbf{x} + \mathbf{b}_i), \quad \mathbf{W}_i, \mathbf{b}_i \text{ (learnable)}, \quad (4)$$

d_{in} and d_{out} denote the input and output dimensionalities of the layer, ϕ is a non-linear activation function and σ is a sigmoid layer.

Definition of the individual structures. The reference pathway functions as a deterministic, parameter-free module P that preserves the geometric structure of the input. For linear layers, we implement P using an *IdentityProject* block: if $d_{\text{in}} = d_{\text{out}}$, P is the identity; if $d_{\text{out}} < d_{\text{in}}$, P is a fixed Johnson–Lindenstrauss (Dasgupta & Gupta, 2003) projection with orthonormal rows ($\mathbf{P}\mathbf{P}^\top = \mathbf{I}_{d_{\text{out}}}$) constructed with a seed fixed per layer; and if $d_{\text{out}} > d_{\text{in}}$, P performs zero-padding to preserve the identity structure. For convolutional layers, we use an *IdentityDownsample* block: when the spatial resolution changes (i.e. stride > 1), we use average pooling; when channel counts differ we apply channel slicing (if $c_{\text{out}} < c_{\text{in}}$ or padding (if $c_{\text{out}} > c_{\text{in}}$). These modules have no learnable parameters, remain fixed during training, and serve only to preserve spatial structure to have a stable reference for interpolation. In contrast, the projection pathway enables adaptation through standard learning, similarly to an MLP layer. The interpolation weights $z(\mathbf{x}) \in (0, 1)^h$ regulate the contribution of reference and projection, providing the network with a dynamic preservation–adaptation tradeoff. This mechanism is similar to input gates in GRUs (Cho et al., 2014), but has a key difference: h_{ref} is a fixed skip from the current input rather than a recurrent hidden state from the past. Weight magnitudes closer to 0 are related to $\mathbf{h}(\mathbf{x})$ being mostly represented by the reference, while weight magnitudes closer to 1 are related to $\mathbf{h}(\mathbf{x})$ being mostly represented by the projection.

Integration to convolutional layers. InterpLayers can replace standard MLP layers following Eqs. (1)–(4). For convolutional layers processing image data $\mathbf{X} \in \mathbb{R}^{C_{\text{in}} \times H \times W}$ as part of the state space, h_{ref} , h_{proj} , and $z(\mathbf{x})$ are defined as

$$h_{\text{ref}}(\mathbf{X}) = \mathbf{P}_r * \mathbf{X} \quad (5)$$

$$h_{\text{proj}}(\mathbf{X}) = \phi(\mathbf{W}_p * \mathbf{X} + \mathbf{b}_p), \quad (6)$$

$$z(\mathbf{X}) = \sigma(\mathbf{W}_i \cdot \beta(\mathbf{X}) + \mathbf{b}_i), \quad (7)$$

216 where $*$ denotes a convolution operation and β is a global average pooling operation to produce
 217 channel-wise interpolation.
 218

219 **3.3 THEORETICAL PROPERTIES OF INTERPLAYERS**
 220

221 We analyze the mathematical properties of InterpLayers, focusing on two key properties: bounded
 222 representational drift and preservation of gradient diversity.
 223

224 **3.3.1 BOUNDED REPRESENTATIONAL DRIFT**
 225

226 The dual-pathway structure of InterpLayers ensures that changes in the output remain bounded under
 227 parameter updates. For an update $\Delta\theta = (\Delta\theta_p, \Delta\theta_z)$, the first-order output change is given as
 228

$$\Delta h(\mathbf{x}) = z(\mathbf{x}) \odot \Delta h_{\text{proj}}(\mathbf{x}) + \Delta z(\mathbf{x}) \odot [h_{\text{proj}}(\mathbf{x}) - h_{\text{ref}}(\mathbf{x})]. \quad (8)$$

229 This decomposition shows that updates are constrained. The projection pathway update is modu-
 230 lated by the interpolation weights $z(\mathbf{x}) \in (0, 1)^h$, while the interpolation update is bounded by the
 231 pathway difference.
 232

233 **Theorem 1** (Bounded Output Variability). *If h_{proj} is L_p -Lipschitz in its parameters θ_p and z is
 234 L_z -Lipschitz in θ_z , then*

$$\|\Delta h(\mathbf{x})\|_2 \leq \|z(\mathbf{x})\|_\infty L_p \|\Delta\theta_p\|_2 + L_z \|\Delta\theta_z\|_2 D(\mathbf{x}), \quad (9)$$

235 where $D(\mathbf{x}) = \|h_{\text{proj}}(\mathbf{x}) - h_{\text{ref}}(\mathbf{x})\|_2$.
 236

237 The proof is deferred to Appendix A.1. This bound implies that churn is polynomially bounded
 238 in training steps, in contrast to standard MLP layers where churn may grow unboundedly with
 239 parameter norms. This theorem makes use of the fact that the reference pathway is parameter-free
 240 at the layer level, and so only projection and interpolation weights contribute to the drift.
 241

242 **3.3.2 GRADIENT DIVERSITY PRESERVATION.**
 243

244 InterpLayers preserve gradient diversity by altering the structure of the NTK. Given the InterpLayer
 245 formulation, the gradient with respect to network parameters decomposes as
 246

$$\nabla_\theta h(x) = \begin{bmatrix} z(x) \odot \nabla_{\theta_p} h_{\text{proj}}(x) \\ \nabla_{\theta_z} z(x) \odot (h_{\text{proj}}(x) - h_{\text{ref}}(x)) \end{bmatrix}. \quad (10)$$

247 This yields an NTK of the form
 248

$$N_{\text{IL}}(x_i, x_j) = (z(x_i) \odot z(x_j))^\top N_{\text{proj}}(x_i, x_j) + N_{\text{interp}}(x_i, x_j), \quad (11)$$

249 where N_{proj} and N_{interp} denote the NTK contributions from projection and interpolation parameters,
 250 respectively. Here i, j index input samples x_i, x_j rather than parameters. Intuitively, the interpola-
 251 tion mechanism adds a persistent gradient component even when the projection pathway degener-
 252 ates, sustaining diversity in the NTK. For readers unfamiliar with NTK calculations, we provide a
 253 step-by-step derivation and empirical estimator details in Appendix A.2.1.

254 **Theorem 2** (NTK Rank Preservation under Interpolation Variance). *Suppose the interpolation
 255 weights $z(x)$ across samples have non-zero variance along at least one coordinate, i.e.,*

$$\text{Var}[z_{(k)}(x)] > 0 \quad \text{for some dimension } k.$$

256 *Then the effective NTK rank of an InterpLayer is lower-bounded by*

$$\text{rank}(N_{\text{IL}}) \geq \text{rank}(N_{\text{interp}}).$$

257 *In particular, the interpolation pathway guarantees a persistent gradient component, preventing full
 258 rank collapse even if the projection pathway degenerates.*
 259

260 The key requirement of Theorem 2 is simply that interpolation weights exhibit variance across sam-
 261 ples. Intuitively, as long as $z(x)$ does not collapse to a constant vector, the interpolation path-
 262 way contributes an independent gradient component to the NTK. This guarantees a persistent lower
 263 bound on effective rank and prevents full rank collapse, even in cases where the projection pathway
 264 degenerates. Empirical verification of NTK rank during training is provided in Appendix J.3.
 265

270 4 RESULTS
271272 4.1 EXPERIMENTAL SETUP
273

274 We employ the ProcGen environment (Cobbe et al., 2020) to evaluate the proposed framework on
275 CRL settings. As benchmark tasks, we apply three distribution shifts previously introduced by (Ju-
276 liani & Ash, 2024) on the *Coinrun*, *Jumper*, *Fruitbot*, and *Heist* environments (example visualiza-
277 tions of the shifts are shown in Appendix G). These three variations are named *permute*, *window*,
278 and *expand*. For the *permute* task, at each shift point, we randomly permute all pixels in the obser-
279 vation space. In the *window* task, the random seed used to generate the levels is changed at each
280 shift point. In the *expand* task, training starts with 100 levels, and at each shift point the training set
281 is continuously expanded by increments of 100, ending with 1000 levels after the final shift.

282 **InterpLayer Baseline.** We choose as our baseline, the architecture where InterpLayers replace the
283 convolutional encoder layers of the policy, and where dropout (Srivastava et al., 2014) is applied to
284 the projection pathway. We name this baseline as **InterpLayers**. Adding dropout aims to increase
285 variance in the projection pathway, which increases the gap between reference and projection. We
286 hypothesize that the characteristics of dropout enhance the effects of our proposed interpolation
287 mechanism. Ablation studies for other InterpLayer variants are presented in Appendix K.

288 The policy used in the experiments consists of an encoder using 4 convolutional layers followed by
289 a linear layer. The training is performed using PPO (Schulman et al., 2017). Given the additional
290 number of parameters introduced by InterpLayers, we compare it with an architecture using a similar
291 number of parameters as our *standard* baseline. The standard baseline also uses dropout, as its
292 performance is superior to the variant without dropout. Details regarding the training details and
293 computational cost comparison are given in Appendix B and C, respectively. Our method is also
294 compared to two gated architectures, a ResNet-like architecture (He et al., 2016) and Highway
295 Networks (Srivastava et al., 2015). Finally, our method is compared against the top-performing
296 baseline proposed and benchmarked in (Juliani & Ash, 2024): soft shrink-perturb with layer norm
297 (SSP+LN), which mixes the current weight with initialization noise after each optimizer step (check
298 Appendix D for implementation details). The results are average runs of 10 random seeds where
299 training is performed for 50,000 epochs, with distribution shifts being applied every 5,000 epochs.

300 4.2 INTERPLAYER PERFORMANCE UNDER DISTRIBUTION SHIFTS
301

302 We evaluate whether InterpLayers can maintain performance across sequential tasks separated by
303 distribution shifts. Fig. 2 shows the normalized performance, defined as the mean reward over
304 the final 50 episodes of each task, normalized relative to the initial task and plotted with shaded
305 regions denoting the standard error across 10 seeds for five network variants: InterpLayers, Highway,
306 ResNet-like, as well as the baselines, Standard with Dropout, and SSP+LN. For all dropout variants,
307 we set the dropout rate to 0.05.

308 **Permute:** The permute task involves the most severe shift, forcing full representational relearning.
309 The ResNet-like baseline loses performance after the initial tasks, dropping below 0 relative to the
310 initial task in all environments. The performance of the Highway Networks baseline also decreases
311 for Coinrun, Heist, and Jumper. Our proposed InterpLayer variant achieved the best performance
312 for Fruitbot and Jumper. InterpLayers and SSP+LN remain above zero and are the top-performing
313 methods for most tasks.

314 **Window:** Changing to newly generated levels at each shift produces a clear performance separation.
315 InterpLayers and SSP+LN consistently achieve the best performance, while ResNet-like and High-
316 way Networks show some plasticity loss for the four environments. The standard-dropout baseline
317 achieved good performance but did not outperform InterpLayers and SSP+LN.

318 **Expand:** Increasing the number of levels provides a gradual adaptation challenge. Consistent with
319 the results for permute and window, InterpLayers and SSP+LN achieve the best performance for
320 Coinrun, Fruitbot, and Heist. For Jumper, all methods achieve similar performance curves with final
321 values dropping below 0 for later tasks. This suggests that generalization is harder in this task.

323 Across all shift types, overall InterpLayers networks outperform the standard and gated baselines.
Compared to SSP+LN, InterpLayers preserve plasticity while requiring less computation (Appendix

Figure 2: **Performance (relative to the initial task) for InterpLayers and baselines under three distribution shifts for four ProcGen environments.** Performance is defined as the mean reward over the final 50 episodes of each task, normalized relative to the initial task, with shaded regions denoting standard error across 10 seeds.

Figure 3: **Raw Rewards (normalized for each task) for InterpLayers and baselines under three distribution shifts for four ProcGen environments at the end of the training.** Across all shift types, InterpLayers networks outperform the standard and gated baselines.

C) and not applying optimization-level interventions. We also evaluate the raw rewards performance in Fig. 3. These results suggest that even though InterpLayers require learning additional interpolation mechanisms, over time, it achieves similar performance to SSP+LN in terms of raw reward performance.

4.3 EMPIRICAL VALIDATION OF THEORETICAL PROPERTIES

We show the empirical validation for churn in Fig. 4 for the Coinrun environment. Details on the methodology for calculating this metric are provided in Appendix F. We observe that InterpLayers achieve low churn and reduce churn over time. Adding dropout to a standard baseline is also effective in reducing churn, suggesting that dropout is effective in slowing down plasticity loss. The highest churn values are obtained for the ResNet-like and Highway Networks. SSP+LN maintains a stable churn during the entire training. We observe consistent patterns across all distribution shifts.

Figure 4: **Evolution of churn for InterpLayers and baselines under distribution shifts in CoinRun.** Shaded regions denote variability across 10 seeds, and vertical lines indicate shift points. Across all conditions, InterpLayers maintain lower churn compared to the standard baselines.

4.4 ANALYZING THE INTERPOLATION MECHANISM

Fig. 5 shows per-layer distributions of interpolation weights averaged for early training (tasks 1-5) and late training (tasks 6-10). It is observed that early training is characterized by high variance and broad weight distributions. In late training, the distributions shift towards the reference pathway, which indicates that low-level features are stabilized. We see that the average value for interpolation weights saturates around 0.2. This pattern is more prevalent in the expand and window tasks, while less prevalent in the permute task.

5 DISCUSSION

The analysis in Fig. 5 shows that InterpLayers develop a hierarchical structure implicitly. While fixed interpolation weights of $z = 0.5$ would act like ResNet-like skip connections, we observe a different pattern. Across all task shifts, the interpolation weights do not saturate towards 0, 0.5, or 1, but instead settle around $z \approx 0.2$, which indicates a preference for the reference pathway. We find that this pattern happens more consistently in the expand and window shifts, while permute has a slightly higher average value for z . This splitting of jobs is not hard-wired into the architecture but develops naturally from the input-specific interpolation. Such self-organization is similar to other findings in deep learning, where lower layers act as feature extractors while higher layers adapt to task-specific demands (Yosinski et al., 2014).

The evolution of metrics related to the theoretical properties presented in Section 3.3 is crucial to mitigate plasticity loss. Our empirical results for churn evolution (Fig. 4) show that it decreases over time using InterpLayers. These results agree with results recently presented by (Tang et al., 2025),

Figure 5: **Distribution per-layer of interpolation weights in early training (tasks 1-5) and late training (tasks 6-10).** Interpolation weights are initialized with a mean equal to 0.5. We can see that at the end of the training, these weights saturate with values around 0.2, with permute achieving higher average values when compared to window and expand.

demonstrating that reducing churn is important to keep plasticity in neural networks. These findings suggest empirically the theoretical advantages of using InterpLayers in continual learning.

Furthermore, the analysis in Section 3.3 suggests that the plasticity of the network can be estimated through the joint behavior of the interpolation weights z and the representational gap D defined in Theorem 1. Together, z and D indicate how much a layer adapts. These variables are important to understand the learning of InterpLayer variants combined with dropout. Dropout is stochastically masking projection activations, preventing projection and reference from aligning, i.e., sustaining D . We further discuss how InterpLayers and dropout interact in Appendix H.

Architectures with gated mechanisms (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) and residual networks (He et al., 2016; Srivastava et al., 2015) have been responsible for key advances in recurrent neural networks and convolutional neural networks, respectively. In the same direction, InterpLayers present an interpolation mechanism that sustains plasticity through different streams and gated interventions while also providing a complementary architectural axis to other methods, preventing plasticity loss. This resonates with neuroscience-inspired models where dendritic compartments and gating mechanisms solve the stability-plasticity trade-off in cortical circuits (Bengio et al., 2015; Urbanczik & Senn, 2014). Our findings place InterpLayers as a simple but general mechanism that enriches the toolbox of CRL toward architectures implicitly solving the plasticity loss issue.

6 CONCLUSION

In this paper, we introduce InterpLayers as an architectural solution to plasticity loss in CRL. Requiring no schedule, resets, or auxiliary objectives, InterpLayers provide continuous regulation of plasticity through a dual-pathway design. Our findings show that InterpLayers mitigate plasticity loss across **four ProcGen environments**. We show that combining InterpLayers with dropout improves its performance, achieving comparable performance to state-of-the-art methods for continual learning, suggesting that characteristics learned by dropout regularization help the interpolation dynamics of InterpLayers. Future works include investigating the performance of InterpLayers with different levels of sparsity in the policy network and the combination with different algorithmic approaches in CRL.

486 REFERENCES
487

488 Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
489 in continual deep reinforcement learning. In *Conference on lifelong learning agents*, pp. 620–636.
490 PMLR, 2023.

491 Jordan Ash and Ryan P Adams. On warm-starting neural network training. In
492 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
493 ral Information Processing Systems*, volume 33, pp. 3884–3894. Curran Associates, Inc.,
494 2020. URL [https://proceedings.neurips.cc/paper_files/paper/2020/
495 file/288cd2567953f06e460a33951f55daaf-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/288cd2567953f06e460a33951f55daaf-Paper.pdf).

496 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint
497 arXiv:1607.06450*, 2016.

498 Joshua Bengio, Dong-Hyun Lee, Jorg Bornschein, Thomas Mesnard, and Zhouhan Lin. Towards
499 biologically plausible deep learning. *arXiv preprint arXiv:1502.04156*, 2015.

500 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
501 ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
502 for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.

503 Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
504 benchmark reinforcement learning. In *International conference on machine learning*, pp. 2048–
505 2056. PMLR, 2020.

506 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and linden-
507 strauss. *Random Structures & Algorithms*, 22(1):60–65, 2003.

508 Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
509 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):
510 768–774, 2024.

511 Mohamed Elsayed, Qingfeng Lan, Clare Lyle, and A Rupam Mahmood. Weight clipping for deep
512 continual and reinforcement learning. *arXiv preprint arXiv:2407.01704*, 2024.

513 David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. *arXiv preprint arXiv:1609.09106*, 2016.

514 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
515 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
516 770–778, 2016.

517 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
518 1735–1780, 1997.

519 Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
520 Transient non-stationarity and generalisation in deep reinforcement learning. *arXiv preprint
521 arXiv:2006.05826*, 2020.

522 Arthur Juliani and Jordan Ash. A study of plasticity loss in on-policy deep reinforcement learning.
523 *Advances in Neural Information Processing Systems*, 37:113884–113910, 2024.

524 Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual
525 learning via regenerative regularization. *arXiv preprint arXiv:2308.11958*, 2023.

526 Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-
527 ical normalization for scalable deep reinforcement learning. *arXiv preprint arXiv:2502.15280*,
528 2025.

529 Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C Machado. Directions of cur-
530 vature as an explanation for loss of plasticity. *arXiv preprint arXiv:2312.00246*, 2023.

531 Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
532 Understanding plasticity in neural networks. In *International Conference on Machine Learning*,
533 pp. 23190–23211. PMLR, 2023.

540 Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
 541 and Will Dabney. Disentangling the causes of plasticity loss in neural networks. *arXiv preprint*
 542 *arXiv:2402.18762*, 2024.

543 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
 544 for generative adversarial networks. *arXiv preprint arXiv:1802.05957*, 2018.

545 Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
 546 ger, regularized, optimistic: scaling for compute and sample efficient continuous control. *Ad-*
 547 *vances in neural information processing systems*, 37:113038–113071, 2024.

548 Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
 549 primacy bias in deep reinforcement learning. In *International conference on machine learning*,
 550 pp. 16828–16847. PMLR, 2022.

551 Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and
 552 André Barreto. Deep reinforcement learning with plasticity injection. *Advances in Neural Infor-*
 553 *mation Processing Systems*, 36:37142–37159, 2023.

554 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 555 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

556 Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
 557 nomenon in deep reinforcement learning. In *International Conference on Machine Learning*, pp.
 558 32145–32168. PMLR, 2023.

559 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 560 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
 561 *learning research*, 15(1):1929–1958, 2014.

562 Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. *arXiv preprint*
 563 *arXiv:1505.00387*, 2015.

564 Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain-
 565 effect of value and policy churn. *Advances in Neural Information Processing Systems*, 37:15320–
 566 15355, 2024.

567 Hongyao Tang, Johan Obando-Ceron, Pablo Samuel Castro, Aaron Courville, and Glen Berseth.
 568 Mitigating plasticity loss in continual reinforcement learning by reducing churn. *arXiv preprint*
 569 *arXiv:2506.00592*, 2025.

570 Robert Urbanczik and Walter Senn. Learning by the dendritic prediction of somatic spiking. *Neuron*,
 571 81(3):521–528, 2014.

572 Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
 573 neural networks? *Advances in neural information processing systems*, 27, 2014.

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 A THEORETICAL PROPERTIES: PROOFS AND EXTENSIONS
595596 A.1 PROOF OF THEOREM 1
597598 Starting from the first-order output change (Eq. 8):
599

600
$$\Delta h(\mathbf{x}) = z(\mathbf{x}) \odot \Delta h_{\text{proj}}(\mathbf{x}) + \Delta z(\mathbf{x}) \odot [h_{\text{proj}}(\mathbf{x}) - h_{\text{ref}}(\mathbf{x})]. \quad (12)$$

601

602 By the triangle inequality and the property $\|a \odot b\|_2 \leq \|a\|_\infty \|b\|_2$:
603

604
$$\|\Delta h(\mathbf{x})\|_2 \leq \|z(\mathbf{x})\|_\infty \|\Delta h_{\text{proj}}(\mathbf{x})\|_2 + \|\Delta z(\mathbf{x})\|_\infty \cdot D(\mathbf{x}), \quad (13)$$

605

606 where $D(\mathbf{x}) = \|h_{\text{proj}}(\mathbf{x}) - h_{\text{ref}}(\mathbf{x})\|_2$.
607608 By Lipschitz continuity assumptions:
609

610
$$\|\Delta h_{\text{proj}}(\mathbf{x})\|_2 \leq L_p \|\Delta \theta_p\|_2, \quad (14)$$

611
$$\|\Delta z(\mathbf{x})\|_\infty \leq L_z \|\Delta \theta_z\|_2. \quad (15)$$

612 Therefore:
613

614
$$\|\Delta h(\mathbf{x})\|_2 \leq \|z(\mathbf{x})\|_\infty L_p \|\Delta \theta_p\|_2 + L_z \|\Delta \theta_z\|_2 D(\mathbf{x}). \quad (16)$$

615

616 Since $z(\mathbf{x}) \in (0, 1)^h$ due to the sigmoid, $\|z(\mathbf{x})\|_\infty < 1$, completing the proof. \square
617618 A.2 COROLLARY: BOUNDED CHURN
619620 Consider a sequence of updates $\{\theta_t\}_{t=0}^T$ under learning rate η . By Theorem 1, each step incurs an
621 output change bounded by
622

623
$$\|\Delta h_t(\mathbf{x})\|_2 \leq \eta (\|z(\mathbf{x})\|_\infty L_p \|\nabla_{\theta_p} \mathcal{L}_t\|_2 + L_z \|\nabla_{\theta_z} \mathcal{L}_t\|_2 D(\mathbf{x})). \quad (17)$$

624

625 Accumulating over t and applying Cauchy–Schwarz yields
626

627
$$\|h_{\theta_T}(\mathbf{x}) - h_{\theta_0}(\mathbf{x})\|_2 \leq BT, \quad (18)$$

628

629 for a constant B depending on η , L_p , L_z , and the gradient magnitudes. Squaring and taking expectation over \mathcal{D}_{ref} gives
630

631
$$\mathcal{C}_T \leq B^2 T^2, \quad (19)$$

632

633 establishing bounded churn.
634635 A.2.1 PROOF OF THEOREM 2
636637 We restate the NTK for InterpLayers (Eq. 11):
638

639
$$N_{\text{IL}}(x_i, x_j) = (z(x_i) \odot z(x_j))^\top N_{\text{proj}}(x_i, x_j) + N_{\text{interp}}(x_i, x_j).$$

640

641 **Step 1: PSD decomposition.** Both N_{proj} and N_{interp} are positive semidefinite (PSD) Gram matrices of gradients. Therefore, their weighted sum is also PSD. The interpolation kernel can be written explicitly as
642

643
$$N_{\text{interp}}(x_i, x_j) = \langle \nabla_{\theta_z} z(x_i) \odot (h_{\text{proj}}(x_i) - h_{\text{ref}}(x_i)), \nabla_{\theta_z} z(x_j) \odot (h_{\text{proj}}(x_j) - h_{\text{ref}}(x_j)) \rangle,$$

644

645 which is PSD by construction.
646647 **Step 2: Rank contribution of interpolation.** If $z(x)$ collapses to a constant vector c across all samples, then the interpolation gradients vanish (since $\nabla_{\theta_z} z(x)$ is zero almost everywhere after saturation). In that case N_{interp} degenerates to zero. Conversely, if $\text{Var}[z_{(k)}(x)] > 0$ for at least one coordinate k , then the interpolation gradients differ across samples, producing at least one non-zero eigenvalue in N_{interp} .
648

648 **Step 3: Rank inequality.** Because $N_{\text{IL}} = \underbrace{(z_i \odot z_j)^\top N_{\text{proj}}}_{\text{possibly degenerate}} + N_{\text{interp}}$ and both terms are PSD, we
 649
 650
 651
 652
 have

$$\text{rank}(N_{\text{IL}}) \geq \text{rank}(N_{\text{interp}}).$$

653 This follows from the fact that adding a PSD matrix cannot reduce the rank contribution of another
 654
 655
 656 **Step 4: Conclusion.** Thus, provided $z(x)$ is not constant across all samples, the interpolation
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078

702 C COMPUTATIONAL COST COMPARISON

704 Table 1 presents the parameter counts and forward-pass FLOPs for the main architectures evaluated
 705 in this paper. We count one multiple-accumulate as a single FLOP. The conv128 encoder requires
 706 nearly 35% more computational load than the InterpConv64 variant used in our InterpLayers, despite
 707 the latter showing higher performance in later experiments.

709 Encoder Variant	710 Params (M)	711 FLOPs (M)
712 Conv128 (standard)	713 1.98	714 63.5
715 Conv128 (standard+SSP+LN)	716 1.98	717 67.5
718 InterpConv64 (fullinterp)	719 1.52	720 50.8
721 InterpConv64 (convonly)	722 0.99	723 49.7

715 Table 1: Parameter counts and forward FLOPs per inference step.

717 Table 2 displays the wall-clock training time and memory usage for each of the five conditions we
 718 evaluated in Fig. 2.

720 Condition	721 # Runs	722 Avg Time/Run (hrs)	723 Avg Final Memory (MB)
724 Highway	725 120	726 23.65	727 8265.8
728 ResNet-like	729 120	730 21.55	731 8318.2
732 Standard+SSP+LN	733 120	734 23.71	735 8309.6
736 Standard+Dropout	737 120	738 21.68	739 8305.2
740 InterpLayers (Ours)	741 120	742 25.78	743 8311.8

726 Table 2: Wall-clock training costs across all experiments.

729 D SOFT SHRINK-PERTURB WITH LAYERNORM (SSP+LN)

731 We implement soft shrink-perturb following (Juliani & Ash, 2024), where after each optimizer step
 732 we apply the shrink and perturb update to the parameters x :

$$734 x_{\text{new}} = \alpha x_{\text{current}} + \beta x_{\text{init}}, \quad x_{\text{init}} \sim \mathcal{D}_{\text{init}}. \quad (23)$$

735 with $\alpha = 0.999999$ and $\beta = 0.000001$

736 In SSP+LN, this continuous update is combined with LayerNorm (Ba et al., 2016) applied throughout
 737 training.

739 E DETAILS ON THE NTK COMPUTATION

741 We measure the empirical NTK of the policy and value PPO heads throughout training. The goal is
 742 to understand if InterpLayers maintain gradient diversity compared to baselines.

744 **Reference batch.** At initialization, we collect a reference batch of observations from the training
 745 environments. To ensure diversity, samples are drawn from multiple environments using three strategies:
 746 (i) fresh resets, (ii) short random walks, and (iii) mid-episode states. We target 200 samples,
 747 capped at 50 per environment. If fewer samples are available, we fall back to a minimum of 16.

749 **NTK matrix construction.** For each reference observation x , we compute the gradient of the PPO
 750 objective with respect to all trainable parameters of the policy (and optionally value) networks:

$$751 g(x) = \nabla_{\theta} \mathcal{L}_{\text{PPO}}(x).$$

752 The empirical NTK matrix is then

$$753 K_{ij} = \langle g(x_i), g(x_j) \rangle.$$

755 Gradients are computed in mini-batches, and the resulting kernel is assembled as a Gram matrix of
 dimension up to 200×200 .

756 **Effective rank and spectra.** We report the *effective rank* of the NTK, defined as the participation
 757 ratio:

$$758 \quad r_{\text{eff}} = \frac{(\sum_k \lambda_k)^2}{\sum_k \lambda_k^2},$$

760 where λ_k are eigenvalues of K . This value measures the number of significant gradient directions.
 761 We also record the minimum eigenvalue and condition number to diagnose degeneracy.
 762

763 **Logging frequency and cost.** NTK metrics are computed every 250 epochs, aligned with test
 764 evaluations. Each computation uses the fixed reference batch from initialization and incurs approx-
 765 imately 10–15% additional runtime overhead relative to standard PPO training.
 766

767 **Implementation.** The NTK logger is implemented in PyTorch and integrated into the PPO training
 768 loop. It automatically detects whether gating is enabled and saves all metrics to disk in JSON/CSV
 769 format for post-hoc analysis.
 770

771 F DETAILS ON THE CHURN COMPUTATION

773 We measure churn from the encoder outputs using a fixed reference batch that is stored at initializa-
 774 tion. At epoch t , churn is defined as the mean squared deviation of the current encoder representa-
 775 tions from the initial ones:
 776

$$\mathcal{C}_t = \mathbb{E}_{x \sim \mathcal{D}} [\|h_t(x) - h_0(x)\|_2^2], \quad (24)$$

777 where $h_t(x)$ denotes the encoder representation of input x at epoch t , and $h_0(x)$ the corresponding
 778 representation at initialization. We also log the first- and second-order finite differences of \mathcal{C}_t over
 779 epochs.
 780

781 G VISUALIZATION OF THE DISTRIBUTION SHIFTS OF PROCGEN TASKS

784 Sample visualizations for three ProcGen coinrun tasks evaluated in this paper are shown in Figure 6.
 785 For **permute**, a fixed random pixel permutation is applied per shift. Given the change in the entire
 786 state space, this task requires robust feature relearning. For **window**, the environment is resampled
 787 with a different random seed to create other environments. Finally, the expand tasks increase the
 788 number of training environments from 100 to 1000 across 9 shifts. This characteristic evaluates the
 789 generalization capabilities of the trained policy.
 790

Figure 6: **Visualization of the distribution shifts used in ProcGen coinrun.** Each panel shows the transformation applied at the shift boundaries (every 5,000 epochs): **Permute** applies a fixed random pixel permutation per shift; **Window** resamples the environment seed to generate new levels; **Expand** increases the number of training environments from 100 to 1000 across 9 shifts. Visual representations of the environments are shown.

H EXTENDED DISCUSSION

H.1 WHY DROPOUT IMPROVES INTERPLAYER RESULTS

Different from the standard application in neural networks, where dropout masks neurons in all layers, in our method, we only apply dropout to the projection pathway. Our intuition is that applying dropout only to the projection increases the activation variance of the projection pathway, affecting the representational gap D defined in Theorem 1. In Theorem 1, we show that InterpLayers provide an upper bound to their output variability:

$$\|\Delta h(x)\|_2 \leq \|z(x)\|_\infty L_p \|\Delta \theta_p\|_2 + L_z \|\Delta \theta_z\|_2 D(x), \quad D(x) = \|h_{\text{proj}}(x) - h_{\text{ref}}(x)\|_2. \quad (25)$$

In this equation, the term D determines how much changes in the interpolation weights affect the output. In this case, if the projection and reference are equal, the interpolation weights do not have an impact on the output. However, if D increases, the impact of the interpolation pathway also increases. Dropout strictly increases the activation variance in the projection pathway by injecting noise. So the instantaneous gap is as follows

$$D_t(x) = \|\tilde{h}_{\text{proj},t}(x) - h_{\text{ref}}(x)\|. \quad (26)$$

This way, dropout guarantees that $D_t(x)$ always has some variance, stabilizing the gradient of the interpolation pathway $z(x)$ in Equations 4 and 7.

864 **InterpLayers with Dropout vs Standard Networks with Dropout.** In Figure 2, we compare
 865 InterpLayers with standard networks with dropout. We show that applying dropout also improves
 866 the plasticity of standard networks significantly. However, it does not fully prevent plasticity loss
 867 across all conditions, and it does not outperform InterpLayers. We hypothesize that this difference in
 868 performance happens because standard layers do not benefit from the additional activation variance
 869 as InterpLayers, which contain both a reference and a projection pathway. Instead, for standard
 870 networks, dropout decreases model-level variance, which slows down the performance collapse but
 871 does not prevent it, as the empirical results suggest.

874 H.2 PLASTICITY INDEX

875 Following the intuition from the previous section, we list two independent mechanisms that control
 876 plasticity in InterpLayers:

- 877 1. The representational gap D

$$878 \quad 879 \quad 880 \quad D(x) = \|h_{\text{proj}}(x) - h_{\text{ref}}(x)\|_2.$$

881 High values for D mean that even small changes to the interpolation weights yield large
 882 changes in the output.

- 883 2. The interpolation weights z

884 If these weights are close to 0 (or 1, for that matter), the magnitude of D becomes less
 885 impactful on the final output.

886 When combined, z can be interpreted as a “exposure” term to the projection pathway and D as a
 887 “sensitivity” term to that exposure. Combining them quantifies how “plastic” a layer is, which we
 888 define as a plasticity index:

$$889 \quad 890 \quad 891 \quad PI(x) = z(x) D(x).$$

892 If $PI = 0$, the layer shows no plasticity because either the projection has no influence on the output
 893 (if $z = 0$) or because the reference and projection are indistinguishable (if $D = 0$). $PI > 0$ means
 894 that the layer is somewhat plastic because the projection is different from the reference, and the
 895 interpolation exposes that difference. Dropout affects this index due to its “variance injection” (if
 896 we want to follow the common term of plasticity injection). This variance ensures that even if D is
 897 overall decreasing, the instantaneous D_t will show some fluctuations. As the interpolation weights’
 898 gradients are dependent on D , this means that they would never become dormant. This maintains
 899 PI to be non-zero.

900 H.3 INTERPOLATION DISTRIBUTION MAINTAIN VARIANCE

901 Figure 5 show that the interpolation weights do settle around 0.2 across all tasks. However, this
 902 illustration alone does not provide enough information about whether they maintain their variance,
 903 which is a critical part to guarantee stability according to Theorem 2. To evaluate their variance, we
 904 compute the Normalized Gate Diversity Ratio (NGDR) for each layer

$$905 \quad 906 \quad 907 \quad NGDR(t) = \frac{Var[z_t]}{\mu_t(1 - \mu_t)} \quad (27)$$

908 where z_t denotes the interpolation weights of a layer at epoch t and μ_t is their mean. The denominator
 909 is the variance of a Bernoulli distribution with mean μ_t , so that the NGDR works as a scale-free
 910 measure of how diverse the interpolation weights are relative to the maximal possible variance. Figure
 911 8 shows that across all shifts in all tasks, the interpolation values saturate toward values around
 912 0.2 (as mentioned above), whereas their NGDR remains stable (between 0.3 and 0.5) during training.
 913 This suggests that the interpolation weights do not collapse to a single value but instead remain
 914 or even increase their variance. This empirically supports the mechanism behind Theorem 2: that
 915 interpolation distributions maintain non-degenerate variance, which consequently preserves gradient
 916 diversity and a stable effective NTK rank.

918 I GUIDELINES FOR CHOOSING INTERPLAYER VARIANTS

920 InterLayers can be applied to any layer in a neural network. In our ProcGen environment, the
 921 network architecture is an encoder followed by respective PPO heads, following Juliani & Ash
 922 (2024). The encoder consists of four convolutional layers and one linear layer. The convolutional
 923 stack acts as a feature encoder, with the linear layers combining these features accordingly. In this
 924 work, we evaluate two InterLayer variants:

925 **convonly** : InterLayer is only applied to the convolutional layers of the encoder. (28)

926 **fullinterp** : InterLayer is applied to all layers of the encoder. (29)

928 Omitting the InterLayer from the linear layer reduces the parameter count by 524,544. This dif-
 929 ference is significant if memory or throughput are limiting factors. Across all three task shifts, the
 930 convonly variant performs equal to or better than the fullinterp variant, especially when combined
 931 with dropout. This suggests that most of the benefit of interpolation occurs in the convolutional part
 932 of the encoder. Thus, we recommend using the **convonly** variant when the architecture has a clear
 933 feature encoder or computational efficiency is important, and to use **fullinterp** in scenarios where
 934 there are no computational restrictions or the training is unstable after task changes.

935 J EXTENDED RESULTS

936 J.1 RAW RESULTS

937 We show the raw returns graph obtained during training in Fig. 7. It is seen that SSP+LN consistently
 938 achieves the highest rewards. InterLayers achieve good performance, especially for the window
 939 and expand tasks. It is interesting to observe that, even though Highway Networks show plasticity
 940 loss in different scenarios, they achieve convergence speed and raw reward similar to SSP+LN for
 941 the first tasks.

942 **Figure 7: Raw rewards obtained during training for the methods evaluated.**

943 J.2 INFLUENCE OF DROPOUT RATE

Figure 8: **Evolution of the layer-wise gate means and NGDR across tasks and shift types.** The interpolation means settle around ≈ 0.2 , while the NGDR remains stable between 0.3 and 0.5 even in late training stages. This indicates that the gate variance does not collapse which supports the theoretical claim in Theorem 2 that InterpLayers maintain gradient diversity thus a stable NTK rank.

We conduct a small ablation study in the Coinrun environment using different dropout rates ranging from no dropout to a dropout rate of 0.2 for 6 seeds each. Figure 9 shows the performance retention and raw returns of different variants for the three distribution shifts. It is observed that higher dropout rates lead to minimally higher relative performance, however, at the cost of losing raw reward performance. We can also observe that no dropout, while having very high initial performance, shows strong performance degradation, especially in the expand condition. Therefore, it is important to choose a dropout rate that keeps plasticity while being still able to solve the environments where the policy will be applied. In this work, we choose a dropout rate of 0.05 for the default InterpLayer variant.

J.3 NTK ANALYSIS

In Theorem 2, we outline theoretically how InterpLayers have properties that prevent the NTK rank from collapsing. Here, we measure NTK metrics following the methodology described in Appendix E. Due to computational constraints, we measure the empirical NTK only in the PPO heads instead of throughout the entire network. Fig. 10 shows the effective NTK rank of InterpLayers and the four baselines in the Fruitbot environment. The results show that all variants maintain their effective rank even in late training. This analysis is still limited in scope, and future work should explore whether there are significant differences in the gradients of the encoder. Additionally, if these patterns cor-

Figure 9: **Ablation study for the dropout rates applied to the projection-pathway.** Higher dropout rates show minimally better relative performance but show strong decreases in raw returns, while removing dropout (0.00) shows substantial performance degradation, especially in the expand shift. The dropout rate of 0.05 shows the best balance between performance retention and raw performance.

relate with mitigating plasticity loss during extended training periods in continual learning settings.

K COMPARISON OF INTERLAYERS VARIANTS

We evaluate two architectural variants: (i) **convonly**, where InterpLayers replace only the convolutional encoder layers, and (ii) **fullinterp**, where both convolutional and linear layers are replaced with InterpLayers. We also investigate InterpLayers combined with dropout (Srivastava et al., 2014), which we name **convonly-dropout** and **fullinterp-dropout** respectively, in which dropout is applied to the projection pathway. The convonly variant emphasizes stability in low-level feature extraction, while fullinterp exposes the entire network to interpolation.

We compare InterpLayer variants in the Coinrun environment using 10 random seeds for each condition in each shift. Figure 11 shows that the non-dropout variants outperform the dropout ones in terms of raw performance in the permute condition, but they show significant performance degradation in the other two tasks. Between convonly-dropout and fullinterp-dropout variants the perfor-

Figure 10: **Evolution of effective NTK rank for InterpLayers and baselines under distribution shifts in Fruitbot.** Shaded regions denote variability across 10 seeds, and vertical lines indicate shift points. Across all conditions, all variants show stable rank besides SSP+LN which first shows a strong increase followed by a gentle decrease.

formance is similar. We chose the **convonly-dropout** as our default variant throughout our experiments as it is computationally cheaper than the fullinterp-dropout variant (see Section C).

L ABLATION WITH PERMUTED TASK ORDER

In this section, we aim to verify that InterpLayers are not overfitting on a specific task sequence, i.e., that they learn the pattern of a shift and not actually the newly presented task. For this, we performed all shifts a priori and stored the environments. Then we shuffled the task sequence so that an original sequence of 1-2-...-9 would become, for example, 1-5-...-3. Figure 12 shows that InterpLayers reach the same level of performance retention and raw performance in both settings (original and permuted). In this way, we show that InterpLayers are robust to random task sequences, an important property in continual learning settings.

M ORTHOGONALLY COMBINING INTERPLayers TO ALGORITHMIC SOLUTIONS TO PLASTICITY LOSS

InterpLayers can serve as an orthogonal solution to algorithmic approaches to mitigate plasticity loss. Here, we combine InterpLayers with LayerNorm (LN) and SSP-LN, and evaluate their per-

Figure 11: **Comparison of different InterpLayer variants in Coinrun.**

1166 performance for the three distribution shift types across 10 random seeds. For this ablation, we use
 1167 the convonly-dropout variant. Figure 13 shows that combining InterpLayers with LN improves the
 1168 initial convergence speed of InterpLayers, enhancing its performance for the first tasks. We also ob-
 1169 serve that combining InterpLayers with SSP-LN yields the same performance as combining it only
 1170 with LN.

Figure 12: **Results for ablation study with task order permuted.** InterpLayers show consistent results for both settings, showing robustness to randomly permuted tasks.

Figure 13: **Ablation study combining InterpLayers with LayerNorm and SSP-LN.** Combining InterpLayers with these methods improves its convergence speed for the initial tasks during training.