
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TARGETED SYNTHETIC DATA GENERATION FOR
TABULAR DATA VIA HARDNESS CHARACTERIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Synthetic data generation has been proven successful in improving model per-
formance and robustness in the context of scarce or low-quality data. Using the
data valuation framework to statistically identify beneficial and detrimental ob-
servations, we introduce a novel augmentation pipeline that generates only high-
value training points based on hardness characterization. We first demonstrate
via benchmarks on real data that Shapley-based data valuation methods perform
comparably with learning-based methods in hardness characterisation tasks, while
offering significant theoretical and computational advantages. Then, we show that
synthetic data generators trained on the hardest points outperform non-targeted
data augmentation on simulated data and on a large scale credit default prediction
task. In particular, our approach improves the quality of out-of-sample predictions
and it is computationally more efficient compared to non-targeted methods.

1 INTRODUCTION

Training complex machine learning models requires large amounts of data, but in real-world applica-
tions data may be of poor quality, insufficient in amount, or subject to privacy, safety, and regulatory
limitations. Such challenges have sparked an interest in synthetic data generation (SDG), represent-
ing the practice of using available data to generate realistic synthetic samples (Lu et al., 2024). In
this work, we argue that, when the objective is to use synthetic data to make an existing machine
learning model better generalize to unseen data, augmenting only the hardest training points is more
effective than augmenting the entire training dataset. In other words, we propose a scalable targeted
synthetic data generation framework, focusing on binary classification tasks. The underlying intu-
ition is that, within a dataset, some of the observations are obvious to classify, whereas others play
a more significant role in determining the decision boundary of the trained model. Focusing only
on these harder examples when generating additional data may allow the model to efficiently learn
a more robust decision boundary.

In particular, the method proposed in this work is specifically targeted towards binary classifiers
on tabular data, which often require adaptations such as oversampling, undersampling, or synthetic
data generation to improve model performance (Chawla et al., 2002; He et al., 2008) under class
imbalance. While deep neural networks have proven successful across domains such as images,
audio or text, they are still regularly outperformed on tabular data by simpler and more interpretable
tree-based architectures (Shwartz-Ziv & Armon, 2021). Therefore, we choose trees as the reference
model for binary classification on tabular data, while deep learning models are used for synthetic
data generation. In general, we will use D = {(xi, yi)}ni=1 to denote the training data, where
xi ∈ Rd is a d-dimensional feature vector and yi ∈ {0, 1} is a binary label.

Our targeted synthetic data generation approach is divided into two main steps: (i) hardness char-
acterization of training data points, followed by (ii) training of a synthetic data generator only on
the hardest data points of the initial training dataset. In order to identify “hard” data points, we
propose a novel hardness characterizer specific to tabular data, based on KNN data Shapleys (Jia
et al., 2020), capable of achieving performances comparable to state-of-the-art methods in hardness
detection benchmarks, while offering key advantages such as being deterministic, model agnostic
and computationally efficient. Hardness characterization has already been applied in the literature
with rationales similar to this work, but mainly with the objective of pruning the easier examples
(Jia et al., 2021; Paul et al., 2023), rather than augmenting the harder ones.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Once the hardest points have been identified, synthetic data generation models are trained only on
the most difficult points identified by our hardness characterizer. In this work, we focus on two
widely used deep learning architectures for synthetic data generation for tabular data, namely Tab-
ular Variational Autoencoders (TVAE) and Conditional Tabular Generative Adversarial Networks
(CTGAN) (both introduced in Xu et al., 2019). To mitigate instabilities encountered during training,
we devise a custom early stopping condition which allows to interrupt training when the quality
of the synthetically generated samples is maximised. The best synthesizers are then found using a
highly efficient routine which combines model selection and hyperparameter tuning. From a com-
parison of the best models we find that, given a fixed number of points to generate, augmenting only
hard data results in a larger performance improvement on unseen data with respect to non-targeted
data augmentation, while being computationally cheaper.

The rest of the work is structured as follows: after a recap on the related literature in Section 2,
the proposed approach is discussed and empirically verified in Section 3. Next we explore the use
of KNN Shapleys as hardness characterizers via a benchmark study in Section 4.1, followed by a
discussion on how to utilize them for synthetic data generation on real (Section 4.2) and simulated
data (Section 4.3). The results are extensively discussed in Section 5.

2 BACKGROUND AND RELATED LITERATURE

In this work, we aim to bridge the gap between existing methods for hardness characterization and
game theoretic approaches to data valuation, with the objective of improving the performance of
synthetic data generators. Therefore, our work closely aligns with existing techniques in hardness
characterization, data valuation, and synthetic data generation, briefly reviewed in this section.

2.1 HARDNESS CHARACTERIZATION

As remarked in the introduction, the first aim of this work is the identification of a subset of points
that are hard for the model to learn. Existing literature on the topic of hardness characterization is
often qualitative and based on different definitions of “hardness”. Following the taxonomy presented
in Seedat et al. (2024), three main categories of hardness can be identified: (i) Mislabeling: the true
label is replaced with an incorrect one. The label perturbation probability can be uniform across
classes or label-dependent; (ii) Out-of-distribution: features are transformed or shifted, leading to
observations distributed differently from the main data generating process; (iii) Atypical: observa-
tions that are compatible with the main data generating process, but located in tails or rare regions of
the feature distributions. These distinctions normally dictate different courses of actions: datapoints
that are mislabeled or out of distribution are symptomatic of errors in the data collection process
and should be removed from training data, while atypical datapoints are valid points and may in fact
need to be augmented to train a robust model (Yuksekgonul et al., 2023).

While many different hardness characterizers have been proposed, most of them are based around
keeping track of some statistic of interest for each datapoint during the training process, meaning
they can be adapted to any model that is trained iteratively (such as XGBoost or a neural network).
Examples include GraNd (Paul et al., 2023), which uses large gradients as an indicator of hardness,
and Forget (Toneva et al., 2019), which counts how many times each point is learnt and then forgot-
ten during training, with the simple intuition that hard points are forgotten more often. Based on the
quantitative benchmarks reported in Seedat et al. (2024), Data-IQ (Seedat et al., 2022) emerges as
one of the best performers on tabular data, and it is chosen as benchmark hardness characterizer in
this work because of its interpretability and compatibility with XGBoost.

Data-IQ Data-IQ (Seedat et al., 2022) partitions the training data into “easy” and “hard” points
via the concepts of epistemic and aleatoric uncertainty, combined with a model confidence score
calculated from P(x,θ), representing the probability of assigning a correct label to an observation,
given input features x and model parameters θ. The epistemic uncertainty is caused by the variabil-
ity in the estimated model parameters, whereas the aleatoric uncertainty captures the inherent data
uncertainty. Given parameter estimates {θe}Ee=1 obtained during training, a Data-IQ confidence
score is obtained as P̄(x) = E−1

∑E
e=1 P(x,θe), whereas the aleatoric uncertainty is given by

val(x) = E−1
∑E

e=1 P(x,θe)[1 − P(x,θe)]. Training data can then be partitioned into (i) easy

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

points, corresponding to high P̄(x) and low val(x), (ii) hard points, corresponding to low P̄(x) and
low val(x), and (iii) ambiguous points, with high val(x).

2.2 DATA VALUATION

Data valuation (see Ghorbani & Zou, 2019) is the task of equitably quantifying the contribution of
each data point to a model, via a data value ϕi(D,A, V), where D is the training dataset, A is a
model and V is a performance score, where V (S) is the performance score of A when trained on
S ⊆ D. Ghorbani & Zou (2019) identifies that a suitable data valuator is the data Shapley of the
i-th training point, which takes the following form:

ϕi = C
∑

S⊆D\{i}

(
n− 1

|S|

)−1

[V (S ∪ {i})− V (S)] , (1)

where C is an arbitrary constant. The valuator ϕi can be interpreted as weighted sum of all the
possible “marginal contributions” of the datapoint. Exact evaluation of the data Shapleys is pro-
hibitively expensive because of the need to retrain the model 2n−1 times (once per subset) for each
observation in the training data. It is possible to approximate the data Shapleys by considering only
a small number of subsets S ⊆ D \ {i} in equation 1, obtained via Monte-Carlo sampling of ran-
dom permutations. Unfortunately, even state-of-the-art approximations based on this idea, such as
TMC-Shapley (Ghorbani & Zou, 2019) or Beta-Shapley (Kwon & Zou, 2022) are computationally
prohibitive for datasets with n ≫ 1000, making them difficult to use in practice. More generally,
extensive work has been developed in the literature to make the computation of data Shapleys more
efficient, such as Jia et al. (2019), Wang et al. (2023) and Wang et al. (2024).

In particular, Jia et al. (2020) derived a recursive algorithm to compute the exact data Shapleys
for KNN classifiers in O{n log(n)ntest} complexity. For training data {(xi, yi)}ni=1 and test data
{(xtest,i, ytest,i)}ntest

i=1 , let (αj,1, . . . , αj,n) be the indices of training data points, sorted in increasing
order according to their Euclidean distance from the j-th test data point, for j = 1, . . . , ntest. The
KNN Shapley for the i-th training data point is then obtained as the average si = n−1

test

∑ntest

j=1 sj,i,
where sj,i is calculated recursively as follows:

sj,αj,n
=

1

n
1ytest,j

{yαj,n
}, sj,αj,i

= sj,αj,i+1
+
1ytest,j{yαj,i} − 1ytest,j{yαj,i+1}

iK ·min{K, i}−1
, (2)

where j = 1, . . . , ntest, i = 1, . . . , n− 1, and 1·{·} is the indicator function. Jia et al. (2021) found
KNN Shapleys to be a valid alternative to data Shapleys in tasks such as data summarization or
noisy labels detection, only when based on deep features extracted from image data by pre-trained
architectures. A similar approach is unfortunately not possible on tabular data. In this work we argue
that KNN Shapleys computed using a test dataset large enough to cover the entire data distribution,
can be used for hardness characterization on tabular data. Specifically, we argue that the lowest
KNN Shapleys identify the hardest training points.

2.3 SYNTHETIC DATA GENERATION

Synthetic data generators (SGDs) for tabular data have been actively researched in recent years (see
for example Fonseca & Bacao, 2023). Here, we discuss three of the most popular SDGs used in
practice: SMOTE, CTGAN, and TVAE.

SMOTE In Synthetic Minority Over-sampling Technique (SMOTE; Chawla et al., 2002), obser-
vations are picked at random among the K nearest neighbours of the same class for each datapoint,
and new data is generated by random sampling along the segment connecting the point to the chosen
neighbour. The number of neighbours is determined based on the over-sampling ratio.

CTGAN Tabular GAN (TGAN; Xu & Veeramachaneni, 2018) was the first attempt at using Gen-
erative Adversarial Networks (GAN; Goodfellow et al., 2014) to generate tabular data, which was
then extended to Conditional TGANs (CTGANs; Xu et al., 2019). A GAN consists of two models:
a generator that takes as input random noise and tries to output a point following the data distri-
bution, and a discriminator that given observations (either from the original dataset or synthesized

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

by the generator) outputs the probability of them being fake. Both the generator and discriminator
are typically neural networks. In CTGANs, the possible non-Gaussianity and multimodality in the
data is handled by fitting a variational Gaussian mixture model to each normalized numeric feature,
whereas categorical features are represented as one-hot encoded vectors. Both the generator and the
discriminator networks within the underlying GAN are multilayer perceptrons (MLPs). The name of
the CTGAN architecture derives from the form of its conditional generator, which allows to generate
data conditional on specific values of the discrete features, for better handling imbalanced datasets.

TVAE A Tabular VAE (TVAE; Xu et al., 2019) is an adaptation for tabular data of a Variational
Auto-Encoder (VAE; Kingma & Welling, 2013), using similar preprocessing to CTGAN. A VAE
consists in an encoder that learns to represent high-dimensional data into a low-dimensional latent
space, and a decoder that reconstructs the compressed representation into the original domain. Both
the encoder and decoder networks are normally chosen to be MLPs (Kingma & Welling, 2013).

3 KNN SHAPLEYS AS HARDNESS CHARACTERIZERS FOR SDGS

In this work, we propose to utilize KNN Shapleys as hardness characterizers, and subsequently gen-
erate synthetic data by only augmenting the hardest points. Our proposed pipeline is the following:

1. KNN Shapley calculation – For a model A fitted on training data D = {(xi, yi)}ni=1,
calculate the KNN Shapleys si, i = 1, . . . , n, based on a test set {(xtest,i, ytest,i)}ntest

i=1 .
2. Ranking by hardness – Sort the KNN Shapleys in increasing order, with points with lower

values representing harder examples.
3. Targeted augmentation – Given a synthetic data generator G, perform data augmentation

only on the hardest points, based on the ranking of the KNN Shapleys.

By generating synthetic data for difficult examples only, we aim to improve the performance of the
model A specifically on the most challenging parts of the data distribution. The proposed procedure
is summarized visually in Figure 1. In the next section, we provide a mathematical intuition on the
interpretation of KNN Shapley as hardness charaterizers.

3.1 KNN SHAPLEYS FOR HARDNESS CHARACTERIZATION: A TOY EXAMPLE

Consider a mixture of two univariate normals with unit variance, centred at −1 and 1, such that
p(x | y = 0) = N (x;−1, 1) and p(x | y = 1) = N (x; 1, 1). Datapoints are drawn from
each distribution with probability 1/2. Additionally, consider two points (x1, y1) = (−1, 0) and
(x2, y2) = (1, 1), representative of each component of the mixture distribution. Consider a third
point (xtrain, ytrain), with ytrain = 0 without loss of generality. Hence, the training set takes the
form D = {(−1, 0), (1, 1), (xtrain, 0)}. As xtrain increases, it becomes harder to classify correctly
under the true underlying data distribution, since the ratio p(xtrain | y = 0) / p(xtrain | y = 1)
decreases, consequently increasing the probability of misclassification. Note that any value of
xtrain ∈ R, combined with x1 and x2, partitions the real line into four different regions.

Training set: D = {(xi, yi)}ni=1

Test set: {(xtest,i, ytest,i)}ntest
i=1

x1 x2

x3

x4

x5

x6

x7

x8

x9x10

xtest,1 xtest,2

xtest,3

xtest,4

xtest,5

Model A KNN Shapleys calculation

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Ranking by hardness

s7 s10 s2 s5 s9 s3 s6 s1 s8 s4

x1 x2

x3

x4

x5

x6

x7

x8

x9x10

Synthetic data generator G

x1 x2

x3

x4

x5

x6

x7

x8

x9x10

Targeted data augmentation

Input data

Output: augmented training set

Figure 1: Visual representation of the proposed targeted synthetic data generation pipeline.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Four regions for xtest and ranking of
{x1, xtrain, x2}, for xtrain = 0.

xtest ytest s−1 strain s1

(−∞,−1.2) 0 1/2 1/2 0
(−∞,−1/2) 1 −1/6 −1/6 1/3
(−1/2, 0) 0 1/2 1/2 0
(−1/2, 0) 1 −1/6 −1/6 1/3
(0, 1/2) 0 1/3 5/6 −1/6
(0, 1/2) 1 0 −1/2 1/2

(1/2,+∞) 0 1/3 1/3 −2/3
(1/2,+∞) 1 0 0 1

(b) 1NN Shapleys on the training data for
(xtest, ytest) ∈ R× {0, 1}, xtrain = 0.

−0.4 −0.2 0.0 0.2 0.4
xtrain

0.195

0.200

0.205

0.210

0.215

0.220

E[
s t

ra
in

]

(c) Expected value E(strain) of the 1NN Shapley for the data
point (xtrain, 0), for different values of xtrain.

Figure 2: Results for the toy experiment in Section 3.1, based on a 50-50 mixture of two univariate
normals with unit variance and means −1 and 1, and training data {(−1, 0), (1, 1), (xtrain, 0)}.

Any test data point (xtest, ytest) ∈ R × {0, 1} induces a ranking of the training data based on
the distances |xtest − x|, x ∈ {x1, x2, xtrain}. For xtrain = 0, the four possible regions with
different rankings of the three training points are plotted in Figure 2a. The 1NN Shapley value
strain for the point (xtrain, ytrain) = (0, 0) can be calculated explicitly for all the possible values of
(xtest, ytest). The results are reported in Table 2b. Since the data distribution is known, the expected
value E(strain) of the 1NN Shapley for (xtrain, ytrain) = (0, 0) can be explicitly calculated:

E(strain) =
∫ +∞

−∞
strain p(xtest) dxtest =

1

2

∑
y∈{0,1}

∫ +∞

−∞
strain p(xtest | y) dxtest ≈ 0.209. (3)

It must be remarked that the value of strain depends on (xtest, ytest), as detailed in Table 2b and
equation 1. The same procedure as equation 3 can be repeated for any xtrain ∈ R, with results
displayed in Figure 2c. As expected, the 1NN Shapley decreases in the direction of increasing
hardness, suggesting an association between low KNN Shapleys and hard regions of feature space.

4 RESULTS

In this section, the proposed hardness characterizer based on KNN Shapleys is first compared to the
most common methods in the literature via comprehensive benchmarks on tabular data. Then, KNN
Shapleys are calculated on a large credit default prediction dataset to identify the hardest points,
which are later used to train and compare synthetic data generators. Lastly, the same pipeline is
applied to a simulated dataset to verify consistency in the results.

4.1 BENCHMARK STUDY

In Seedat et al. (2024), the problem of hardness characterization is approached quantitatively by
comparing existing methods on how confidently they can identify different kinds of hard datapoints
on a variety of OpenML datasets (Vanschoren et al., 2013). Their toolkit supports two tabular
datasets (diabetes and cover) and it allows to perturb a chosen proportion p of datapoints according
to one of three hardness types (mislabeling, out-of-distribution, or atypical; cf. Section 2.1). For
this study, we use p ∈ {0.05, 0.1, 0.15, 0.2} and the performance metric is the Area Under the
Precision Recall Curve (AUPRC) of an MLP. Results are averaged across three independent runs per
hardness type and then across the different hardness types. The KNN Shapleys-based characterizer
is implemented by adding a custom class to the original GitHub repository (https://github.
com/seedatnabeel/H-CAT). The results are plotted in Figure 3.

On the diabetes dataset, our characterizer outperforms existing methods for all choices of p, although
based on the critical difference diagram in Figure 3a, it can be noticed that performance is not
significantly different from Data-IQ, the other method to offer native XGBoost support. On the

5

https://github.com/seedatnabeel/H-CAT
https://github.com/seedatnabeel/H-CAT

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Diabetes dataset

pr
oto

gr
an

d
vo

g
for

ge
t

los
s

au
m

da
tai

q

da
tam

ap
s

de
tec

tor el2
n

kn
n

cle
an

lab

co
nf_

ag
r

0.05

0.1

0.15

0.2

Pr
op

or
tio

n
pe

rt
ur

be
d

Dist LB:Grad LB:Other LB:Output LB:Stats Shapley Statistical

0.80

0.85

0.90

0.95

1.00
2.5 5.0 7.5 10.0 12.5

knn (1)
aum (2)

prototypicality (3)
cleanlab (4)

dataiq (5)
datamaps (6)

detector (7)

(13) conf_agree
(12) vog
(11) loss
(10) grand
(9) forgetting
(8) el2n

(b) Cover dataset

pr
oto

gr
an

d
vo

g
for

ge
t

los
s

au
m

da
tai

q

da
tam

ap
s

de
tec

tor el2
n

kn
n

cle
an

lab

co
nf_

ag
r

0.05

0.1

0.15

0.2

Pr
op

or
tio

n
pe

rt
ur

be
d

Dist LB:Grad LB:Other LB:Output LB:Stats Shapley Statistical

0.80

0.85

0.90

0.95

1.00
2.5 5.0 7.5 10.0 12.5

cleanlab (1.2)
prototypicality (2)

aum (2.8)
dataiq (4)

datamaps (5)
vog (6)
knn (7)

(13) el2n
(12) loss
(11) detector
(10) grand
(9) forgetting
(8) conf_agree

Figure 3: AUPRC heatmap and critical difference diagram for 13 different hardness characterizers
(including KNN Shapleys, labelled knn) on the diabetes and cover datasets (Seedat et al., 2024).

cover dataset (see Figure 3b), our characterizer ranks 7th overall, although once again performance
is statistically compatible with Data-IQ. Based on the mathematical intuition discussed in Section
3.1, KNN Shapleys are expected to be lower when a datapoint lies in a region of feature space where
its target is atypical (cf. Section 2.1). When p is too large relative to the dataset’s difficulty, this
atypicality is compromised, causing a deterioration in the performance of our characterizer.

Based on these results, low KNN Shapleys prove to be solid indentifiers of hardness. Most hardness
characterization techniques in the literature were devised for neural networks, and do not natively
support XGBoost. On the other hand, KNN Shapleys have the clear advantage over existing methods
of not requiring model training and thus being deterministic and model agnostic. However, they
require an external test set and can become expensive to calculate on very large datasets (n > 106).

4.2 AMERICAN EXPRESS DATASET

The main real-world benchmark for the methodologies discussed in this work is the American Ex-
press credit default prediction dataset (Addison et al., 2022), referred to as the Amex dataset. The
dataset consists of observations for n = 458 913 customers. For each of them, we consider 188 fea-
tures available at the latest credit card statement date, in addition to a binary label yi ∈ {0, 1} which
specifies whether or not the customer was able to repay their credit card debt within 120 days of the
statement. The n = 458 913 available observations are split into nvalid = 50 000 datapoints used
to validate model performance on unseen data, ntest = 50 000 observations used to calculate KNN
Shapleys, and the remaining datapoints are used for training. The splits are performed randomly
stratifying on the target, so that the same ratio of defaulters and non-defaulters is maintained across
datasets. Performance is measured via the normalized Gini coefficient, which is 2 · AUCROC − 1
with AUCROC denoting the Area Under the Receiver Operating Characteristic curve.

The Amex dataset has been first released as part of a Kaggle1 competition, with winning submis-
sions typically consisting in ensembles of different models. XGBoost was found to have the best
performance on its own and is thus chosen as baseline for this study. In order to benefit from GPU
acceleration, training was carried out on a cluster equipped with 4 GeForce RTX 3090 Ti GPUs and
256GB of memory. The number of gradient boosting rounds was set to an arbitrarily high number,
using early stopping on validation Gini with a patience of 100 iterations of gradient boosting. Be-
cause of subsampling the datapoints and the features, the training process is non-deterministic and
thus retraining a large number of times with different random seeds is required to mitigate random-

1See https://www.kaggle.com/competitions/amex-default-prediction.

6

https://www.kaggle.com/competitions/amex-default-prediction

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Hardness characterization results
Data-IQ tag Easy Hard Ambiguous

N 284 902 10 499 63 512
% defaulters 19.07 58.73 51.09

(b) Joint distribution of val(x) and P̄(x)

0.00 0.05 0.10 0.15 0.20 0.25
Aleatoric uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce

(c) Marginal distributions for val(x) and P̄(x)

0.00 0.05 0.10 0.15 0.20 0.25
Aleatoric uncertainty

0

20000

40000

60000

80000

100000

120000

140000

C
ou

nt

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

25000

50000

75000

100000

125000

150000

175000

200000

(d) Feature 0 distribution for defaulters and non-defaulters

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Feature 0 - defaulters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

Ambiguous
Hard
Easy

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Feature 0 - non-defaulters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4: Data-IQ hardness characterization scores on the Amex credit default prediction dataset.

ness. This forces to choose a set of hyperparameters that offers low training times as well as solid
validation performance. Through experimenting it was found, that setting the maximum tree depth
to 4, the learning rate to 0.05, the subsampling ratio of datapoints to 0.8 and of features to 0.6, gives
a validation Gini of 0.91986 in under 2 minutes of training time.

4.2.1 HARDNESS CHARACTERIZATION

Data-IQ’s confidence scores and aleatoric uncertainties are estimated for each training observation
as per Section 2.1. Figure 4b displays the relationship between the two: in the top left a large
amount of “easy” points, with high confidence and low aleatoric uncertainty; in the bottom left a
few “hard” points, with low confidence and low aleatoric uncertainty; lastly, the “ambiguous” points
are located around the elbow, with high aleatoric uncertainty. Looking at the marginal distributions
in Figure 4c, it is noticed that XGBoost is generally very confident in its predictions, causing the
number of hard points to be low. Setting a low confidence threshold of 0.25, a high confidence
threshold of 0.75 and a low aleatoric uncertainty threshold of 0.2 allows to assign to each point a
tag in {Easy,Hard,Ambiguous}. Hard points are less than 3% of training data and both hard and
ambiguous points have a much higher proportion of defaulters than the full data (cf. Table 4a).

Beyond these initial statistics, it is interesting to know where these points lie in feature space. By
looking at the total reduction in loss due to a feature in the nodes where said feature is used to
split the data, we can calculate the feature importances of a trained XGBoost classifier. In the case
of the Amex dataset, the first feature dominates these scores, with an importance comparable to
the bottom 100 features combined. Figure 4d displays the distribution of this feature separated by
Data-IQ tag for both defaulters and non-defaulters: hard defaulters somewhat overlap with easy non-
defaulters and vice-versa, while ambiguous defaulters are almost indistinguishable from ambiguous
non-defaulters. This is a common issue with tabular data, referred to as outcome heterogeneity and
is known to be captured by Data-IQ (Seedat et al., 2022).

KNN Shapleys are then computed for K ∈ {1, 5, 100} under the assumption that the ntest available
out-of-sample data points are representative of the entire data distribution. Figure 5 displays the
distribution of 100NN Shapleys separated by Data-IQ’s tag: hard points as per Data-IQ exhibit low
100NN Shapleys, with very good adherence for the hardest points. In addition, the left tail of the
ambiguous points lies in the region of low 100NN Shapleys and would thus be recognized as hard
by our novel characterizer.

To choose the bestK, validation Gini is monitored as we re-train XGBoost after gradually removing
the hardest datapoints. These points are expected to be the most valuable for XGBoost and thus the
best hardness characterizer should be the one displaying the fastest drop in validation performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
KNN Shapley 1e 5

0

100000

200000

300000

400000

D
en

si
ty

Hard
Easy
Ambiguous

Figure 5: Distribution of the 100NN data Shapley
scores for different Data-IQ tags.

0 2 4 6 8 10 12 14
Percentage of training data removed

0.900

0.905

0.910

0.915

0.920

Va
lid

at
io

n
G

in
i

1NN
5NN
100NN
DataIQ
Random

Figure 6: Validation Gini after removing
hardest points, with 95% CIs.

(a) CTGAN

0.0 0.2 0.4 0.6 0.8
Feature 0 - hard defaulters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

True
Synthetic

0.0 0.2 0.4 0.6 0.8
Feature 0 - hard non-defaulters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) TVAE

0.0 0.2 0.4 0.6 0.8
Feature 0 - hard defaulters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

True
Synthetic

0.0 0.2 0.4 0.6 0.8
Feature 0 - hard non-defaulters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 7: Histogram of feature 0 in the Amex dataset for true and synthetic data generated via
CTGAN and TVAE, restricted to the 10% harest data points according to the 100NN Shapley scores.

100NN Shapleys outperform both other choices of K and Data-IQ (cf. Figure 6). This comparison
highlights an issue with Data-IQ: after a sharp drop when the hard points are removed, performance
decreases at a rate comparable to random as the most ambiguous points are removed. Seedat et al.
(2022) argue that the removal of ambiguous points should actually make the model more robust,
as aleatoric uncertainty is data-dependent and cannot be reduced unless additional features are col-
lected. This is however not the case for the Amex dataset, and beyond the small amount of hard
points identified, Data-IQ does not provide guidance on the next most valuable points.

4.2.2 SYNTHETIC DATA GENERATION

The 10% hardest datapoints are chosen as training set for synthetic data generators, with the purpose
of establishing whether augmenting only the hardest datapoints makes XGBoost more robust than
non-targeted data augmentation. The choice of a hard threshold is imposed by the expensive compu-
tational cost of fine-tuning neural networks, and 10% is justified as it is just before the elbow region
where the decrease in validation performance when removing hard data slows down (cf. Figure 6).
Both CTGAN and TVAE are implemented in Python using a heavily customized version of the sdv
package (Patki et al., 2016), with extensive details about the training given in Appendix A.1. The
quality of the synthetic samples can be examined directly for the first feature: Figure 7a (CTGAN)
displays a good but not perfect overlap with real data, whereas from Figure 7b (TVAE) we can see
better overlap of synthetic and real data with respect to CTGAN for the first feature.

For models trained on the 10% hardest points we augment by 100%, while for models trained using
the entire dataset we augment by 10%, thus guaranteeing the same amount of synthetic samples
across all experiments. Notice that for each attempt synthetic data has to be generated multiple times
with different seeds to mitigate randomness and quantify uncertainty on the performance metric.
The proposed routine, implemented in Python with the baytune package (Smith et al., 2019),
requires very few attempts to find good proposals, and is thus more efficient than a grid search over
a hyperparameter space, reducing the computational complexity of the problem.

Figures 8a and 8b display the scores after 20 attempts: the best scores are in both cases achieved by
TVAE, and augmenting only the hardest points generally leads to a more significant improvement

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Scores in fine-tuning routine: hard points

0 3 6 9 12 15 18
ID in Bayesian optimisation

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004
Va

ri
at

io
n

in
 G

in
i a

ft
er

 a
ug

m
en

ta
tio

n

Augment hardest 10% by 100%
TVAE
CTGAN

(b) Scores in fine-tuning routine: entire dataset

0 3 6 9 12 15 18
ID in Bayesian optimisation

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

Va
ri

at
io

n
in

 G
in

i a
ft

er
 a

ug
m

en
ta

tio
n

Augment by 10%

(c) Variation in Gini after augmentation with 95% CIs.
hardest 10% by 100% full data by 10%

SMOTE [−0.00122,−0.00109] [0.000116, 0.000192]
Best TVAE [0.000366, 0.000431] [0.000232, 0.000278]

Best CTGAN [0.000193, 0.000312] [0.000135, 0.000237]

(d) Scores for TVAE and TVAE on hard data points after
5%, 10%, 15%, 20% augmentation, with 95% confidence
intervals estimated by generating synthetic data 10 times.

0 5 10 15 20
Percentage of data generated

0.0000

0.0001

0.0002

0.0003

0.0004

Va
ri

at
io

n
in

 G
in

i a
ft

er
 a

ug
m

en
ta

tio
n

Best TVAE - Hard
Best TVAE

Figure 8: Gini scores under different synthetic data augmentation regimes on the Amex dataset.

in validation performance, both for the best attempts and on average across different sets of hyper-
parameters. Information on the tuning grid and best hyperparameters are detailed in Appendix A.2.

Table 8c reports the performance variations for the best TVAE, CTGAN and SMOTE: the latter
does not work for the hardest points and is outperformed by TVAE for general augmentation. The
robustness of these results for the best attempts can be verified by augmenting by different amounts
(5%, 10%, 15%, 20%), with results displayed in Figure 8d: generating more hard points further
increases performance with diminishing returns after 15%, while for non-targeted augmentation, the
performance actually worsens as more data is added due to the extra noise. Finally, to quantify the
magnitude of this improvement, adding back the ntest = 50 000 observations used to compute KNN
Shapleys into training data improves validation performance by ≈ 0.000326, which is less than the
improvement obtained from augmentation of the hard points via TVAE.

It could be argued that the improvement in validation performance achieved via data augmentation,
although larger for models trained on only the hardest datapoints, is very small in absolute value.
It must be remarked that similar improvements have only been achieved in the original Kaggle
competition by generating thousands of features and building large ensemble models. Additionally,
XGBoost already classifies over 90% of validation data correctly, and any further improvement on
this already highly performing model may have business value in practice.

4.3 SIMULATION STUDY

To verify the robustness of the results, we run the same hardness characterization and data aug-
mentation pipeline on simulated data. Specifically, we consider four bivariate normal distributions,
assigning to two of them label y = 0, and y = 1 to the remaining ones. We draw ntrain = 5000
training datapoints, nvalid = 2500 observations for model validation and lastly ntest = 2500 dat-
apoints to calculate 5NN Shapleys. The training dataset can be visualized in Figure 9a on the left,
while the 5% hardest points according to 5NN Shapleys are shown on the right: notice that they are
concentrated around the decision boundary, with most of them falling on the “wrong” side, confirm-
ing the issue of outcome heterogeneity for hard data points discussed in Section 4.2.1.

We proceed by tuning TVAE using the GPEI algorithm (described in Appendix A.1) both when
augmenting the hardest 5% by 100% and when augmenting the entire dataset by 5%. Figures 9c

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Scatter of training data (left) and hardest 5% (right).

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

x 2

y = 1
y = 0

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

x 2

(b) Scores for TVAE after augmentation with 95% CIs
estimated by generating synthetic data 30 times.

0 2 4 6 8 10
Percentage of data generated

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Va
ri

at
io

n
in

 G
in

i a
ft

er
 a

ug
m

en
ta

tio
n

Best TVAE - Hard
Best TVAE

(c) Scores in fine-tuning routine: hard points

0 2 4 6 8 10
ID in Bayesian optimisation

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

Va
ri

at
io

n
in

 G
in

i a
ft

er
 a

ug
m

en
ta

tio
n

Augment hardest 5% by 100%

(d) Scores in fine-tuning routine: entire dataset

0 2 4 6 8 10
ID in Bayesian optimisation

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

Va
ri

at
io

n
in

 G
in

i a
ft

er
 a

ug
m

en
ta

tio
n

Augment by 5%

Figure 9: Gini scores under different synthetic data augmentation regimes on the bivariate Gaussian
simulated data, with scatterplots of observations and 5% hardest data points.

and 9d display the scores after 10 attempts: the targeted approach results in a larger performance
improvement, both for the best attempt and on average across different sets of hyperparameters.
Information on the tuning process can be found in Appendix A.3. Finally, we augment by different
amounts using the best attempts, with results displayed in Figure 9b: hard points augmentation
consistently outperforms the non-targeted approach and improves as more data is added.

5 CONCLUSION AND DISCUSSION

In this work, we verified empirically that, when it comes to data augmentation, focusing only on the
most challenging points for the model can be beneficial, both in terms of performance improvement
and computational efficiency. To achieve this result, we first devised a novel hardness characterizer
based on KNN Shapleys, capable of achieving performances comparable to state-of-the-art meth-
ods in hardness detection benchmarks on tabular data. Then, we performed a complex fine-tuning
routine on synthesizers trained either on the entire dataset or on the hardest points only, allowing to
rigorously establish which approach leads to the largest performance improvement.

Methodologically, this work aims at bridging the gap between learning-based hardness characteri-
zation and game theoretic data valuation. The benchmarks reported in Section 4.1 represent the first
quantitative comparison between a Shapley-based evaluator and existing hardness characterizers.
While research on the two topics has often dealt with similar problems, such as mislabeling or data
summarization (Paul et al., 2023; Jia et al., 2021), the two paths have never crossed.

Practically, this work attempts to change the perspective on data summarization: while existing
literature has mostly focused on pruning the least valuable points from training data (Seedat et al.,
2022; Kwon & Zou, 2023), here we propose augmenting the most valuable ones. We demonstrate
that not all datapoints are created equal, and some play a more significant role in determining the
predictive power of the final model: high-value data dictates which points we should either collect
in larger amounts or, when this is not possible, synthetically generate.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The Amex dataset is publicly available on the public data repository Kaggle. This work uses the de-
noised version by user raddar, which is publicly available on Kaggle in parquet format. The code
to reproduce the results in this work is available in the GitHub repository anonymised link. In
particular, code to reproduce the results in Section 4 is available in the analyses/ folder. The
outputs/ folder contains, in addition to figures and results, the model weights for the best syn-
thesizers. Notice how every method from the ctgan and sdv packages uses the forked versions
(anonymised link and anonymised link) with the custom early stopping. Detailed instruc-
tions on how to create a Python virtual environment and install these dependencies are available in
the Makefile. Details around hyperparameter tuning are also reported in Appendices A.1, A.2
and A.3.

REFERENCES

Howard Addison, Xu Di, Vashani Hossein, and Sohier Dane Negin. American Ex-
press - Default Prediction, 2022. URL https://kaggle.com/competitions/
amex-default-prediction.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:
321–357, 2002. ISSN 1076-9757.

Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a literature
review. Journal of Big Data, 10(1):115, 2023.

Amirata Ghorbani and James Zou. Data Shapley: Equitable Valuation of Data for Machine Learning,
2019. arXiv:1904.02868 [cs, stat].

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks, 2014. arXiv:1406.2661
[cs, stat].

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. ADASYN: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Net-
works (IEEE World Congress on Computational Intelligence), pp. 1322–1328, 2008.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based on the
shapley value. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the Twenty-
Second International Conference on Artificial Intelligence and Statistics, volume 89 of Proceed-
ings of Machine Learning Research, pp. 1167–1176. PMLR, 2019.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas J. Spanos, and Dawn Song. Efficient Task-Specific Data Valuation for Nearest Neighbor
Algorithms, 2020. arXiv:1908.08619 [cs, stat].

Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce Zhang, Bo Li, and
Dawn Song. Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data Importance
Quantification?, 2021. arXiv:1911.07128 [cs, stat].

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, 2017.
arXiv:1412.6980 [cs].

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, 2013. arXiv:1312.6114
[cs, stat].

Yongchan Kwon and James Zou. Beta Shapley: a Unified and Noise-reduced Data Valuation Frame-
work for Machine Learning, 2022. arXiv:2110.14049 [cs, stat].

Yongchan Kwon and James Zou. Data-OOB: Out-of-bag estimate as a simple and efficient data
value. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pp. 18135–18152. PMLR, 2023.

11

https://www.kaggle.com/competitions/amex-default-prediction/data
https://www.kaggle.com/datasets/raddar/amex-data-integer-dtypes-parquet-format?select=train.parquet
https://kaggle.com/competitions/amex-default-prediction
https://kaggle.com/competitions/amex-default-prediction

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yingzhou Lu, Minjie Shen, Huazheng Wang, Xiao Wang, Capucine van Rechem, Tianfan
Fu, and Wenqi Wei. Machine Learning for Synthetic Data Generation: A Review, 2024.
arXiv:2302.04062 [cs].

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In IEEE Interna-
tional Conference on Data Science and Advanced Analytics (DSAA), pp. 399–410, Oct 2016.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep Learning on a Data Diet:
Finding Important Examples Early in Training, 2023. arXiv:2107.07075 [cs].

Nabeel Seedat, Jonathan Crabbé, Ioana Bica, and Mihaela van der Schaar. Data-IQ: Characterizing
subgroups with heterogeneous outcomes in tabular data, 2022. arXiv:2210.13043 [cs].

Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Dissecting Sample Hardness:
A Fine-Grained Analysis of Hardness Characterization Methods for Data-Centric AI, 2024.
arXiv:2403.04551 [cs].

Ravid Shwartz-Ziv and Amitai Armon. Tabular Data: Deep Learning is Not All You Need, 2021.
arXiv:2106.03253 [cs].

Micah J. Smith, Carles Sala, James Max Kanter, and Kalyan Veeramachaneni. The machine learn-
ing bazaar: Harnessing the ml ecosystem for effective system development. arXiv e-prints, art.
arXiv:1905.08942, 2019.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An Empirical Study of Example Forgetting during Deep Neural Network
Learning, 2019. arXiv:1812.05159 [cs, stat].

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science
in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

Jiachen T. Wang, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data Shapley in One Training Run,
2024. arXiv:406.11011 [cs].

Jiachen (Tianhao) Wang, Yuqing Zhu, Yu-Xiang Wang, Ruoxi Jia, and Prateek Mittal. Threshold
KNN-Shapley: A Linear-Time and Privacy-Friendly Approach to Data Valuation. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 60429–60467. Curran Associates, Inc., 2023.

Lei Xu and Kalyan Veeramachaneni. Synthesizing Tabular Data using Generative Adversarial Net-
works, 2018. arXiv:1811.11264 [cs, stat].

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling Tabular
data using Conditional GAN, October 2019. arXiv:1907.00503 [cs, stat].

Mert Yuksekgonul, Linjun Zhang, James Y Zou, and Carlos Guestrin. Beyond confidence: Reli-
able models should also consider atypicality. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36,
pp. 38420–38453. Curran Associates, Inc., 2023.

A APPENDIX

A.1 TRAINING CTGAN AND TVAE – AMEX DATASET

This section provides details about CTGAN and TVAE SDGs on the Amex dataset. A common issue
when training GANs is the instability of both generator and discriminator losses. More specifically,
the two typically move in opposite ways with oscillatory patterns, making it difficult to decide when
to stop training. For this reason, we introduce a novel early stopping condition which tracks epoch
after epoch a weighted average of the Kolgomorov-Smirnov (KS) statistic between real and synthetic
data across all individual features. In particular, we choose to use as weights the feature importances,
in order to focus more on the features relevant to XGBoost. The patience is set to 50 epochs with
a maximum number of epochs of 500. If the early stopping condition is triggered, the model is

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

reverted to the best epoch. A large batch size of 10 000 is chosen to limit the number of updates per
epoch and guarantee a smoother training process. Both the generator and discriminator are trained
using the Adam optimizer (Kingma & Ba, 2017), setting the learning rate to 2 · 10−4, weight decay
to 10−6, and the momentum parameters to β1 = 0.5 and β2 = 0.9. Figure 10a shows the losses and
the statistic epoch by epoch: we can see that the losses move against each other and then more or
less converge once the model cannot further improve. We notice oscillatory patterns in the tracked
statistic, symptomatic of the training dynamics of the generator and discriminator pair, and the early
stopping condition kicking in after around 100 epochs when the weighted KS statistic peaks at 0.83.

Training of the VAE relies on the Adam optimizer with a learning rate of 10−3, weight decay of
10−5, β1 of 0.9 and β2 of 0.999. To avoid overfitting of training data and the subsequent generation
of exact replicas of training points, we stop training once the maximum number of epochs is reached.

The following routine integrating both model selection and hyperparameter tuning is carried out
separately for models trained on only the hardest points and models trained using the entire dataset:

• Model selection: after training one instance of TVAE and CTGAN to gather initial data,
for each candidate model i the Upper Confidence Bound 1 (UCB1) score is calculated:

UCB1(i) = ψ̄i +

√
2 ln t

ni
,

where ψ̄i is the average score of model i, t is the total number of models trained, and ni is
the number of times model i is selected. We select the model with the highest UCB1 score,
which results from a balance of exploration (low ni) and exploitation (high ψ̄i).

• Hyperparameter tuning: once model i has been proposed, the set of hyperparameters
to try is chosen via Gaussian Process Expected Improvement (GPEI): a Gaussian Process
(GP) is fitted to {(hj , ψj)}ni

j=1, with hj hyperparameters and ψj corresponding score, and
then the new set to try is chosen to maximize over h the Expected Improvement EI(h) =
E[max(0, f(h)− f(h∗))], with f mean function of the fitted GP and h∗ the best set so far.

The score ψ over which the optimization is carried out, is the variation in validation Gini after
training XGBoost on the augmented dataset.

(a) CTGAN

0 20 40 60 80 100 120 140
Epoch

20

15

10

5

0

5

10

Lo
ss

Generator
Discriminator

0 20 40 60 80 100 120 140
Epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

W
ei

gh
te

d
Ko

lg
om

or
ov

-S
m

ir
no

v
st

at
is

tic

(b) TVAE

0 100 200 300 400 500
Epoch

500

400

300

200

100

0

100

Lo
ss

0 100 200 300 400 500
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

W
ei

gh
te

d
Ko

lg
om

or
ov

-S
m

ir
no

v
st

at
is

tic

Figure 10: Loss and KS statistics for training CTGAN and TVAE.

A.2 HYPERPARAMETERS - AMEX DATASET

For TVAE trained on the hardest 10%, tuning is performed on the embedding dimension and the
architectures of encoder and decoder. We fix the number of hidden layers to two for the encoder
and the decoder, tuning the number of units in each hidden layer. Details on the grid search and
the best attempt can be found in Table 1, while a parallel coordinates plot is displayed in Figure
11. For CTGAN trained on the hardest 10%, tuning is performed on the embedding dimension and
the discriminator and generator architectures. We fix the number of hidden layers to two for the
discriminator and the generator, tuning the number of units in each hidden layer. Further details
can be found in Table 2 and Figure 12. Similar summaries are reported for TVAE (Table 3, Figure
13) and CTGAN (Table 4, Figure 14) on the entire dataset. Notice once again the deterioration in
performance with respect to the targeted case.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hyperparameter LB UB Default Best

Embedding dim. 32 512 64 64
Encoder dim. 1 32 512 128 128
Encoder dim. 2 32 512 128 128
Decoder dim. 1 32 512 128 128
Decoder dim. 2 32 512 128 128

Table 1: TVAE, hard 10%: tuning setup.

embedding dim encoder dim 1 encoder dim 2 decoder dim 1 decoder dim 2 Gini variation

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

Figure 11: TVAE, hard 10%: parallel coordinates.

Hyperparameter LB UB Default Best

Embedding dim. 32 512 64 377
Discrim. dim. 1 32 512 64 405
Discrim. dim. 2 32 512 64 82
Generator dim. 1 32 512 64 171
Generator dim. 2 32 512 64 118

Table 2: CTGAN, hard 10%: tuning setup.

embedding dim discriminator dim 1 discriminator dim 2 generator dim 1 generator dim 2 Gini variation

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

Figure 12: CTGAN, hard 10%: parallel coordinates.

Hyperparameter LB UB Default Best

Embedding dim. 32 512 64 479
Encoder dim. 1 32 512 128 249
Encoder dim. 2 32 512 128 477
Decoder dim. 1 32 512 128 425
Decoder dim. 2 32 512 128 33

Table 3: TVAE, full data: tuning setup.

embedding dim encoder dim 1 encoder dim 2 decoder dim 1 decoder dim 2 Gini variation

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

Figure 13: TVAE, full data: parallel coordinates.

Hyperparameter LB UB Default Best

Embedding dim. 32 512 64 64
Discrim. dim. 1 32 512 64 64
Discrim. dim. 2 32 512 64 64
Generator dim. 1 32 512 64 64
Generator dim. 2 32 512 64 64

Table 4: CTGAN, full data: tuning setup.

embedding dim discriminator dim 1 discriminator dim 2 generator dim 1 generator dim 2 Gini variation

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

Figure 14: CTGAN, full data: parallel coordinates.

Hyperparameter LB UB Default Best

Embedding dim. 16 256 64 78
Encoder dim. 1 16 256 128 210
Encoder dim. 2 16 256 128 186
Decoder dim. 1 16 256 128 107
Decoder dim. 2 16 256 128 48

Table 5: TVAE, hard 5%: tuning setup.

embedding dim encoder dim 1 encoder dim 2 decoder dim 1 decoder dim 2 Gini variation

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

Figure 15: TVAE, hard 5%: parallel coordinates.

Hyperparameter LB UB Default Best

Embedding dim. 16 256 64 117
Encoder dim. 1 16 256 128 104
Encoder dim. 2 16 256 128 73
Decoder dim. 1 16 256 128 236
Decoder dim. 2 16 256 128 250

Table 6: TVAE, full data: tuning setup.

embedding dim encoder dim 1 encoder dim 2 decoder dim 1 decoder dim 2 Gini variation

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

Figure 16: TVAE, full data: parallel coordinates.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 HYPERPARAMETERS - SIMULATION STUDY

The setup is analogous to Appendix A.2, with the difference that CTGAN has been discarded due
to excessive instability during training, and smaller architectures are considered to account for a
much simpler dataset. Specifically, Table 5 and Figure 15 report the results for TVAE trained on the
hardest 5%, while Table 6 and Figure 16 present TVAE trained on the entire dataset. Once again,
we notice worse performance in the non-targeted case in the parallel coordinates plots .

15

	Introduction
	Background and related literature
	Hardness characterization
	Data valuation
	Synthetic data generation

	KNN Shapleys as hardness characterizers for SDGs
	KNN Shapleys for hardness characterization: a toy example

	Results
	Benchmark study
	American Express dataset
	Hardness characterization
	Synthetic data generation

	Simulation study

	Conclusion and discussion
	Appendix
	Training CTGAN and TVAE – Amex dataset
	Hyperparameters - Amex dataset
	Hyperparameters - Simulation study

