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Abstract

Online learning algorithms for designing optimal bilateral trade mechanisms have
recently received significant attention. This paper addresses a key inefficiency in
prior two-bit feedback models, which synchronously query both the buyer and
the seller for their willingness to trade. This approach is inherently inefficient as
it offers a trade to the seller even when the buyer rejects the offer. We propose
an asynchronous mechanism that queries the seller only if the buyer has already
accepted the offer. Consequently, the mechanism receives one bit of feedback from
the buyer and a “censored” bit from the seller—a signal richer than the standard
one-bit (trade/no-trade) feedback, but less informative than the two-bit model.
Assuming independent valuations with bounded densities—the same distributional
conditions underlying the two-bit results of Cesa-Bianchi et al. [2024a]—we design
an algorithm that achieves Õ(T 2/3) regret against the best fixed price in hindsight.
This matches the lower bound for the strictly richer two-bit model, showing that
our mechanism elicits the minimal feedback necessary to attain optimal rates.

1 Introduction

In a bilateral trade problem, a broker faces two rational agents—a seller and a buyer—who wish
to trade an object. Each agent has their own private valuation for the object and seeks to maximize
their utility. The goal of the broker is to design a mechanism that intermediates between the seller
and the buyer, in order to make a trade happen. Ideally, a mechanism for bilateral trade should
be efficient, i.e., it should maximize the sum of agents’ utilities, while also ensuring incentive
compatibility and individual rationality. A well-known mechanism that achieves this objective is
the VCG mechanism [Vickrey, 1961]. Unfortunately, the VCG mechanism fails to meet budget
balance, requiring the broker to subsidize the market and incur in financial losses. Indeed, a general
impossibility result by Myerson and Satterthwaite [1983] shows that full efficiency cannot be attained
while simultaneously maintaining incentive compatibility, individual rationality, and budget balance.

A recent line of research (see, e.g., [Cesa-Bianchi et al., 2021, 2024a, Azar et al., 2022]) circumvents
the impossibility result by Myerson and Satterthwaite [1983] through the lens of online learning. This
is done by addressing repeated bilateral trade problems, where the broker faces a sequence of sellers
and buyers willing to trade objects, over a time horizon T . At each time t, a new seller and a new
buyer arrive, each of them with their own private valuation of the object, say St and Bt, respectively.
The broker then proposes a trading price Pt to both agents. Thus, the seller is willing to trade if
St ≤ Pt, while the buyer if Bt ≥ Pt. The trade happens only if both agents accept the price Pt, with
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the buyer paying the trading price to the seller and receiving the object, resulting in strong budget
balance (i.e., the broker neither subsidize nor extract revenue from the market). In such an online
learning framework, the full-efficiency requirement is relaxed by comparing the performance of the
broker over the T time steps against the best fixed price in hindsight. Specifically, the performance is
evaluated in terms of the gain from trade, which intuitively encodes the net gain in agents’ utilities,
defined as (Bt − St)I{St ≤ Pt ≤ Bt} at each time t.

Previous works have focused on three models that differ in the kind of feedback that the broker
receives at the end of each time step t. In the full-feedback model, the broker observes the valuations
St and Bt of the agents. In the two-bit model, the broker separately observes whether each of the two
agents is willing to trade or not, namely they observe both I{St ≤ Pt} and I{Pt ≤ Bt}. Finally, in
the one-bit model, they only observe whether the trade has occurred or not, namely I{St ≤ Pt ≤ Bt}.
While simple, the one-bit model is insufficient for learning optimal strongly-budget-balanced mech-
anisms [Cesa-Bianchi et al., 2024a]. This motivates the study of richer feedback models, such as
the two-bit one, where learning becomes possible under the assumption of independent seller/buyer
valuations with bounded densities [Cesa-Bianchi et al., 2024a]. However, such mechanisms rely on
synchronous interaction protocols that are inherently inefficient: they query the seller even when the
buyer has already rejected the trade. In this paper, we address the following two natural questions:

What is the minimal feedback required to learn optimal mechanisms?
Is it possible to query the seller only when a trade opportunity arises?

From a more application-oriented perspective, these questions raise from the insight that it would
generally be more efficient—and more reasonable—to implement asynchronous interaction protocols,
in which the seller is approached only if the buyer has already agreed to trade at the proposed price.
This approach is especially relevant in many practical applications—such as, e.g., online freelance
marketplaces (Upwork, Fiverr), ride-sharing platforms (Uber, Lyft, Grab), rental intermediaries
platforms (AirBnB)—where sellers are often involved in multiple simultaneous trading scenarios
involving different objects. In such settings, requiring the sellers to make a decision each time
a potential buyer for any of their objects appears would impose an excessive burden on them.
Furthermore, in many cases, sellers prefer to disclose as little information as possible to the broker in
order to protect their reputation.

Our Results We study—for the first time, to the best of our knowledge—online learning in bilateral
trade problems with asynchronous interaction protocols. The key challenge in such a setting is that
the broker receives a particular asymmetric feedback that is richer than one-bit feedback, but way
less informative than two-bit feedback. Specifically, the broker receives one bit of feedback from the
buyer, by observing I{Bt ≥ Pt} at every time t, while they only observe a “censored” bit of feedback
from the seller, as they get to know I{St ≤ Pt} only when the buyer accepts the trade. The main
result of the paper is a strongly-budget-balanced algorithm that attains Õ(T 2/3) regret against the best
fixed price in hindsight, assuming independent sellers and buyers’ valuations with bounded densities.
Notice that both assumptions are required, since removing even one of the two assumptions makes
the problem not learnable even with two-bit feedback [Cesa-Bianchi et al., 2024a]. We remark that
our result matches the regret rate that Cesa-Bianchi et al. [2024a] obtained using the more informative
two-bit feedback, under the same distributional assumptions. Moreover, it matches the lower bound
by Cesa-Bianchi et al. [2024a] for the richer two-bit feedback model, showing that:

Asynchronous protocols are not only efficient, but they also allow the broker to
elicit the minimal feedback necessary to attain optimal regret rates!

1.1 Challenges and Techniques

Our algorithm builds upon the idea of scouting bandits, which have been originally introduced by
Cesa-Bianchi et al. [2024a] for two-bit models. This idea exploits a suitable decomposition of the
expected gain from trade g(p) for a fixed price p ∈ [0, 1], which is defined as follows:

g(p) = P[S ≤ p]︸ ︷︷ ︸
(a)

∫ 1

p

P[B ≥ λ] dλ︸ ︷︷ ︸
(b)

+P[B ≥ p]︸ ︷︷ ︸
(c)

∫ p

0

P[S ≤ λ] dλ︸ ︷︷ ︸
(d)

,
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where S and B are generic random variables representing the valuations of the seller and the buyer,
respectively. Cesa-Bianchi et al. [2024a] leverage the two-bit feedback by first conducting a uniform
exploration phase to estimate the integral terms (b) and (d). Using these estimates, they construct
a proxy for the expected reward function in which (b) and (d) are replaced with their empirical
counterparts. Then, they run a bandit algorithm with this proxy, since the two-bit feedback provides,
at each time step, unbiased estimates of terms (a) and (c), thereby allowing the learner to reconstruct
the proxy reward function.

Our asymmetric feedback model introduces a new significant challenge: the feedback received from
the seller is “censored”, as the learner gets to know the value of I{St ≤ Pt} only when the buyer
accepts the trade, i.e., when I{Pt ≤ Bt} = 1. This “censored” seller’s feedback makes the scouting
bandits approach by Cesa-Bianchi et al. [2024a] unsuitable for our setting: the estimator they build
for the integral term (d) cannot be recovered due to missing observations, and the bandit feedback
needed to estimate term (a) may be “censored” and thus unavailable. Furthermore, our feedback
breaks the symmetry in estimating the four components in the decomposition of the expected gain
from trade provided by the two-bit feedback. Indeed, in our model, estimating (a) is harder than
estimating (c), and estimating (d) is harder than estimating (b). Consequently, the main challenge
faced in this paper is how to effectively estimate (a) and (d) under “censored” seller’s feedback. Our
key technical contribution is addressing this challenge.1

In order to address the challenge, we provide a lower bound on the number of time steps in which
the value of I{St ≤ p} (i.e., the seller’s feedback for p) is observed, for every price p. In particular,
if price p is posted for H times (and P[B ≥ p] is large enough), we can lower bound the number
of times that seller’s feedback is observed as Ω

(
H · P[B ≥ p]

)
, by using Chernoff’s concentration

bound. Notably, the usual additive concentration bounds are of no help in this setting. Indeed, our
random variables are Bernoulli that might have small mean, making additive bounds non-meaningful.
Moreover, the lower bound on the number of times the seller’s feedback is observed could still
be small. As a consequence, we may lack sufficient samples to build precise confidence bounds
around terms (a) and (d), thus precluding the direct application of standard UCB-like techniques.
However, we observe that when the confidence intervals on seller-related quantities are large, the
buyer’s probability of accepting the trade is low, resulting in two effects that counterbalance each
other. More formally, the error on term (d) is scaled by the buyer’s acceptance probability—namely,
term (c). A symmetric argument holds for terms (a) and (b).

1.2 Related Works

Our work contributes to the line of research initiated by Cesa-Bianchi et al. [2024a], which studies
bilateral trade through the lens of online learning. Among other results, Cesa-Bianchi et al. [2024a]
show that strongly-budget-balanced mechanisms are learnable with two-bit feedback when the
seller/buyer distributions are independent and admit bounded density, while the same problem is
unlearnable under one-bit model.

Subsequent work focuses mainly on adversarial settings. Azar et al. [2022] design algorithms that
guarantee no-2-regret. Cesa-Bianchi et al. [2024b] provide sublinear regret guarantees assuming a
smoothed adversary. Bernasconi et al. [2024], Chen et al. [2025] remove the smoothness assumption
by relaxing the budget balance constraint to hold globally. Lunghi et al. [2026] go even further by
analyzing which regret rates are attainable by relaxing the global budget constraint (i.e., by allowing
for its violation). Other works study extensions of bilateral trade to multiple buyers [Babaioff et al.,
2024, Lunghi et al., 2025], different objectives [Bachoc et al., 2024], contextual settings [Gaucher
et al., 2025], divisible items [Bolić et al., 2025], and situations where traders have no predetermined
seller and buyer’s roles [Bolić et al., 2024, Cesari and Colomboni, 2025, Bachoc et al., 2025a,b].

There is also a rich literature on bilateral trade without learning, focusing on providing approximations
of an optimal mechanism [Colini-Baldeschi et al., 2016, 2017, Blumrosen and Mizrahi, 2016, Brustle
et al., 2017, Colini-Baldeschi et al., 2020, Babaioff et al., 2020, Dütting et al., 2021, Deng et al.,
2022, Kang and Vondrák, 2019, Archbold et al., 2023].

1We remark that, from a technical point of view, the roles of the seller and the buyer in our framework are
completely interchangeable without requiring additional effort. Indeed, the case in which we query the buyer
only when the seller agrees to trade at a given price can be tackled with the same approach presented here.
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2 Preliminaries

In this paper, we study online learning in repeated bilateral trade problems. In this section, we
introduce the notation and all the definitions needed in the rest of the paper.

2.1 Bilateral Trade

The learner (a broker) repeatedly interacts with the environment. At each time step t ∈ [T ], a new
seller and a new buyer arrive with (random) valuation St and Bt in [0, 1].2

The learner offers a (random) price Pt ∈ [0, 1] to the buyer and the seller. A trade happens if and
only if the buyer and the seller accept the proposed price, i.e., when St ≤ Pt ≤ Bt. This ensures
strong budget balance is satisfied during learning. The learner’s performance is evaluated through the
net increase in market value (i.e., the net increase in agents’ utilities), also known as gain from trade.
Specifically, if we define the gain from trade function as

gft : [0, 1]3 → [0, 1], (p, s, b) 7→ (b− p︸ ︷︷ ︸
buyer’s
net gain

+ p− s︸ ︷︷ ︸
sellers’s
net gain

) I {s ≤ p ≤ b}︸ ︷︷ ︸
a trade happens

= (b− s)I {s ≤ p ≤ b}

and the gain from trade (random) function at time t as

GFTt : [0, 1]→ [0, 1], p 7→ gft(p, St, Bt),

the gain from trade rewarded to the learner by posting Pt is the random variable GFTt(Pt).

We assume that the sequence of sellers’ valuations S1, S2, . . . and the sequence of buyers’ valuations
B1, B2, . . . are i.i.d. sequences, independent of each other. Moreover, for ease of presentation, we
introduce two additional random variables S and B, which are distributed as St and Bt, respectively.
We assume that S and B are independent of each other and of the two sequences S1, S2, . . . and
B1, B2, . . . , and that they admit L-Lipschitz continuous cumulative distribution functions (cdf)3.

For notational convenience, we also define the random function

GFT : [0, 1]→ [0, 1], p 7→ gft(p, S,B) ,

and the expected gain from trade function as

g : [0, 1]→ [0, 1], p 7→ E[GFT(p)] .

We notice that [Cesa-Bianchi et al., 2024a, Lemma 2] ensures that g is upper semicontinuous and,
consequently, being defined on the compact set [0, 1], it admits a maximum. From this point on, we
fix a point p⋆ ∈ [0, 1] where this maximum is attained.

2.2 Do Not Waste the Seller’s Time: An Asynchronous Protocol

It is well known (see [Cesa-Bianchi et al., 2024a]) that learning is impossible with one-bit feedback,
i.e., when the learner only observes the outcome of the trade I{St ≤ Pt ≤ Bt} after each time
step t. For this reason, previous works focus on two-bit feedback, where the leaner can separately
observe seller and buyer’s willingness to trade, namely I{St ≤ Pt} and I{Pt ≤ Bt}. In this paper,
we show that the regret attainable with two-bit feedback can also be obtained with a weaker feedback,
under the same assumptions. In particular, we consider an asynchronous protocol that first proposes
a trading price to the buyer, and, then, it offers the same price to the seller only if the buyer has
already expressed their willingness to trade at the proposed price. This protocol introduces a new
asymmetric feedback model in which the leaner receives one bit of feedback from the buyer, while it
gets a “censored” bit from the seller, as their willingness to trade is observed only when the buyer
accepts to the trade at the proposed price.

The asynchronous interaction protocol between the learner (a broker) and the environment (the
sequence of sellers and buyers) is formally presented in Online Protocol 1.

2Let n ∈ N, we denote with [n] = {1, . . . , n} the set of the first n natural numbers.
3The cdf Lipschitz assumption is equivalent to the bounded density one of Cesa-Bianchi et al. [2024a]
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Online Protocol 1 Asynchronous Repeated Bilateral Trade
1: for time step t = 1, 2 . . . do
2: The learner chooses Pt ∈ [0, 1]
3: The learner observes I {Pt ≤ Bt}
4: If Pt ≤ Bt, then the learner observes I {St ≤ Pt}
5: The learner gains (but does not observe) GFTt(Pt)

Regret Given a time horizon T ∈ N, the goal of the learner is to minimize the regret with respect
to the gain from trade, defined as

RT =

T∑
t=1

(
g(p⋆)− E

[
g(Pt)

])
,

where p⋆ ∈ argmaxp∈[0,1] g(p).

3 Algorithm

In this section, we present an online learning algorithm that achieves optimal regret guarantees under
the asynchronous interaction protocol introduced in Section 2. Our learning algorithm is restricted to
using a finite grid of prices. In Section 4, we show that this results in a small loss that depends on
the granularity of the grid and the Lipschitz constant L. Specifically, we denote by PK ⊆ [0, 1] the
uniform grid of prices pk := k−1/K for k ∈ [K], where K is a suitable parameter. More formally, we
let PK := {pk}k∈[K].

3.1 Additional Notation

Before moving to the description of our algorithm, we need to introduce some additional notation
that is useful to deal with the stochastic feedback observed by posting prices on the grid. For each
k ∈ [K] and each j ∈ N, we denote with tB(k, j) the j-th time step in which the broker sets price
pk ∈ PK (if this time step exists, otherwise, we set it to +∞), and with tS(k, j) the j-th time the
broker sets price pk ∈ PK and the buyer accepts to buy (it this time step exists, otherwise we set it
to +∞). For technical reasons (i.e., having well-defined random variables for every k ∈ [K] and
j ∈ N), we also assume given another i.i.d. family of pairs of random variables (S′

k,j , B
′
k,j)k∈[K],j∈N,

independent of (S1, B1), (S2, B2), . . . such that, for any k ∈ [K] and j ∈ N, the pair (S′
k,j , B

′
k,j)

shares the same distribution as (S,B). For each k ∈ [K] and j ∈ N, we then set

Bk,j :=

{
BtB(k,j) if tB(k, j) < +∞ ,

B′
k,j otherwise ,

Sk,j :=

{
StS(k,j) if tS(k, j) < +∞ ,

S′
k,j otherwise .

In this way, the family (Sk,j , Bk,j)k∈[K],j∈N is a well-defined independent family of pairs of random
variables such that, for every k ∈ [K], the sequence (Sk,j , Bk,j)j∈N is i.i.d., and, additionally, for
every j ∈ N, the pair (Sk,j , Bk,j) shares the same distribution as (S,B).

3.2 Algorithm Description

We are now ready to introduce our algorithm achieving optimal regret guarantees under the asyn-
chronous interacton protocol (Algorithm 2). The algorithm takes as input a time horizon T , and it
builds the uniform grid PK ⊆ [0, 1] with K := ⌈T 1/3⌉ points. At a very high level, our algorithm
performs an initial exploration phase in which the broker plays each of the prices in PK a number of
times equal to H := ⌈T 1/3⌉. This exploration phase is necessary to compute an optimistic estimate
of the expected gain from trade, as defined in eq. (1) in the following. Once this exploration phase
is concluded, in the remaining time steps, Algorithm 2 executes a K-armed bandit-style algorithm
by selecting, at each time, the price pk ∈ PK that maximizes a suitable optimistic estimate of the
expected gain from trade. Notice that several additional components discussed in the following are
needed to deal with the limited feedback.
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Algorithm 2 More than one-bit less than two-bit bilateral trade
1: Input: time horizon T
2: Set δ ← 1

T 2 , H ← K ← ⌈T 1/3⌉, Tk,0 ← 0,Qk,0 ← 0,Sk,0 ← 0 ∀k ∈ [K]

3: Set PK ← {pk}k∈[K] with pk ← k−1/K ∀k ∈ [K], K⋄ ← ∅
4: for t = 1, 2, . . . , T do
5: if t ≤ HK then ▷ Exploration Phase
6: Set l← ⌈t/H⌉ and post price Pt ← pl
7: else ▷ Bandit Phase
8: Select l ∈ argmaxk∈K⋄ UCBk,t−1 (see eq. (3)) and post price Pt ← pl
9: for k = 1, 2 . . .K do ▷ Update Counters

10: if t = HK then
11: Nk ← mini≤kQi,KH

12: K⋄ ← {k ∈ [K] | Qk,KH ≥ 32 log(KT 2/δ)}
13: F̂k ← 1

KH

∑K−1
i=k

∑H
j=1 I{Bi,j ≥ pi}, ∀k ∈ K⋄

14: Ĝk ← 1
KNk

∑k
i=1

∑Nk

j=1 I{Si,j ≤ pi}, ∀k ∈ K⋄

15: Set Tk,t ← Tk,t−1 + I{Pt = pk}
16: Set Qk,t ← Qk,t−1 + I{Pt = pk}I{Pt ≤ Bt}
17: Set Sk,t ← Sk,t−1 + I{Pt = pk}I{St ≤ Pt}I{Pt ≤ Bt}
18: Set ν̂k,t ← Qk,t

Tk,t
and µ̂k,t ← Sk,t

Qk,t

We now provide a more detailed description of how the algorithm works. Specifically, in the first KH
time steps, Algorithm 2 prescribes the broker to play each price on the grid PK exactly H times—the
first H time steps on p1, the next H on p2, and so forth—so that this initial phase has length KH .
Furthermore, independently of the round t ∈ [T ], Algorithm 2 maintains counters that track how
many times each price pk has been selected. Precisely, at each round t ∈ [T ]: Tk,t counts the number
of times the broker has proposed price pk up to round t ∈ [T ]; Qk,t counts the number of times the
buyer has accepted to buy at price pk; and Sk,t counts the number of times both the buyer and the
seller have agreed to trade at price pk.

Once the exploration phase is completed—i.e., after KH rounds—Algorithm 2 identifies a subset
of arms K⋄ ⊆ [K] such that, for each k ∈ K⋄, the number of samples collected from the seller’s
distribution when the broker has proposed price pk is larger than a suitable constant. After that, the
algorithm ignores all the arms not in K⋄, while for each arm in K⋄ it designs an upper confidence
bound on the gain from trade (refined at each round), by exploiting the decomposition:

g(p) = P[S ≤ p]︸ ︷︷ ︸
(a)

∫ 1

p

P[B ≥ λ] dλ︸ ︷︷ ︸
(b)

+P[B ≥ p]︸ ︷︷ ︸
(c)

∫ p

0

P[S ≤ λ] dλ︸ ︷︷ ︸
(d)

, (1)

which is formally derived in [Cesa-Bianchi et al., 2024a, Lemma 1].

Furthermore, order to build the upper confidence bounds to be used in the subsequent bandit-style
procedure, for each k ∈ K⋄, after the exploration phase Algorithm 2 computes two estimates of the
integral terms (b) and (d) in eq. (1), which are defined as follows:

F̂k =
1

KH

K−1∑
i=k

H∑
j=1

I{Bi,j ≥ pi}, Ĝk =
1

KNk

k∑
i=1

Nk∑
j=1

I{Si,j ≤ pi}, (2)

where
Nk := min

i≤k
Qi,KH .

Let us remark that the definition of the term Nk is necessary to ensure that, in the sum in Ĝk, we have
the same number of observations of the seller’s valuation for each price pi with i ≤ k. Indeed, while
for every pk we always observe whether the buyer accepts to buy or not, we do not have analogous
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information for the seller, since the observation of seller’s feedback is conditioned on the buyer’s
decision to buy at the given price.

In the remaining rounds t > KH , Algorithm 2 performs a UCB-style procedure using K⋄ as the
set of arms. This refinement of the arm set is necessary, as we can guarantee useful concentration
properties only for the arms in K⋄. Specifically, at each round t > KH , Algorithm 2 computes
optimistic upper confidence bounds UCBk,t on the value of each g(pk) for prices pk such that k ∈ K⋄,
formally defined as follows:

UCBk,t :=

(
µ̂k,t +

√
log(2T/δ)

2Qk,t

)(
F̂k +

√
2 log(2/δ)

HK
+

1

K

)

+

(
ν̂k,t +

√
log(2T/δ)

2Tk,t

)Ĝk +

√
2 log(2/δ)

KNk
+

1

K

 . (3)

One of the main challenges in our algorithm analysis will be to show that the upper confidence bounds
concentrate on the true mean. This is particularly challenging since Qk,t might be small.

4 Regret Analysis

In this section, we prove the regret guarantees attained by Algorithm 2. In the following, for the ease
of presentation and to avoid repetitions, we assume that a time horizon T is given as a parameter, and
we set every occurrence of δ to 1

T 2 , and every occurrence of K and H to ⌈T 1/3⌉, as in Algorithm 2.

Our algorithm can be easily extended to an anytime version that does not need knowledge of T by
using the standard doubling trick [Cesa-Bianchi and Lugosi, 2006].

4.1 Restrict the Set of Candidate Prices

In the following, we will show that our algorithm has no regret with respect to the best price on the
grid PK . This is sufficient since the best price in PK performs almost as well as the best price in the
interval [0, 1], as we formally show in the following lemma.
Lemma 1. It holds that:

max
p∈PK

g(p) ≥ g(p⋆)− L/K .

Proof. Let k⋆ ∈ [K] be such that pk⋆ minimizes the distance from p⋆ among all the points in
PK . Noticing that a random variable is 1/L-smooth if an only if its cdf is L-Lipschitz continuous,
[Cesa-Bianchi et al., 2024b, Lemma 1] ensures that g is L-Lipschitz continuous, and hence

g(p⋆)− max
p∈PK

g(p) ≤ g(p⋆)− g(pk⋆) ≤ L · |p⋆ − pk⋆ | ≤ L/K .

4.2 Define a Clean Event

We now introduce some definitions to aid the presentation. First, we define a set K (unknown to
the learner) that intuitively identifies the prices pk ∈ PK in which feedback about the seller can be
observed with sufficiently high probability, under the asynchronous interaction protocol.
Definition 1. We define K as the subset of k ∈ [K] such that:

P[B ≥ pk] ≥ 8T−1/3 log(KT 2/δ).

We will show that for prices in K our estimates are sufficiently accurate, while prices not in K can be
ignored. Indeed, this is because they achieve a negligible expected gain from trade.

Moreover, we also introduce the following definition of clean event E . Intuitively, this is decomposed
into four different events, namely E1, E2, E3, and E4. These events are related to different high-
probability concentration bounds. The event E1 is defined as follows:

E1 :=

T⋂
t=HK

⋂
k∈K

{
Qk,t >

Tk,t
2

P[B ≥ pk]

}
.
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Intuitively, under this event, the broker receives feedback about the seller at price pk at least half
of the times the price pk is proposed, weighted by the probability that the buyer accepts it. It can
be shown that this event holds with high probability by the aid of Chernoff’s inequality. This event
guarantees that we observe a constant fraction of the “expected” samples.

The event E2 is related to the estimates Ĝk and F̂k of the integrals appearing in the definition of gain
from trade. In particular, it requires that the estimates lie in their respective confidence intervals.
Formally, we have:

E2 :=
⋂
k∈K


∣∣∣∣Ĝk −

∫ pk

0

P[S ≤ λ] dλ

∣∣∣∣ ≤
√

2 log(2/δ)

KNk
+

1

K

∩
⋂

k∈[K]

{∣∣∣∣F̂k −
∫ 1

pk

P[B ≥ λ] dλ

∣∣∣∣ ≤
√

2 log(2/δ)

HK
+

1

K

}
.

The underlying idea is to show that Ĝk is close to its expectation up to Õ (1/KNk) with high probability
due to a combination of Chernoff and Azuma-Hoeffding’s inequality. Moreover, the expectation
E[Ĝk] is close to the integral term (d) in eq. (1), by leveraging the rectangle rule to compute integrals
and the fact that the integrand function is monotone to obtain telescopic simplifications. An analogous
argument holds for the terms F̂k as well.

Furthermore, E3 is the event in which the estimates µ̂k,t and ν̂k,t of the probabilities of the seller and
the buyer accepting the trade, respectively, lie in confidence intervals that shrink as the inverse of the
square root of the number of observed samples.

E3 :=

T⋂
t=HK

⋂
k∈[K]

{
µ̂k,t −

√
log(2T/δ)

2Qk,t
≤ P [S ≤ pk] ≤ µ̂k,t +

√
log(2T/δ)

2Qk,t

}
∩

T⋂
t=HK

⋂
k∈[K]

{
ν̂k,t −

√
log(2T/δ)

2Tk,t
≤ P [B ≥ pk] ≤ ν̂k,t +

√
log(2T/δ)

2Tk,t

}

That E3 holds with high probability is a consequence of Hoeffding’s inequality and a union bound,
once we realize that, for each k ∈ [K], the sequence (Sk,j , Bk,j)j∈N is i.i.d..

Finally, the event E4 guarantees that if a price pk has too low a probability of being accepted by the
buyer, i.e., k ̸∈ K, then such a price will not belong to the set K⋄ of candidate optimal prices used by
the algorithm in the second phase. Formally, we have:

E4 :=
⋂
k ̸∈K

{
Qk,KH ≤ 32 log

(
KT 2

δ

)}
.

Intuitively, also the probability of event E4 can be bounded by using Chernoff inequality. This event
is important to avoid running the second phase on prices pk that have too low a probability of being
accepted by the buyer. This would result in a small number of samples and huge confidence intervals.
Moreover, such prices can be safely discarded as their expected gain from trade is small.

Finally, by bounding each event separately and applying a union bound, we obtain the following
lemma, which establishes the probability with which the clean event E holds.

Lemma 2. Let E := E1 ∩ E2 ∩ E3 ∩ E4. Then, we have:

P [E ] ≥ 1−O(KTδ).

We defer the formal proof of this lemma to the Appendix.

4.3 Bound the Regret

Next, we introduce two crucial lemmas that enable us to derive the regret guarantees of Algorithm 2.
Intuitively, the first lemma shows that, under the clean event E , the first term of the upper confidence
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bound employed by Algorithm 2 concentrates towards the first term in the gain from trade decom-
position, i.e., the product of (a) and (b), at the desired rate. Moreover, it shows that our confidence
bounds are always optimistic, an essential requirement for UCB-like algorithms. The second lemma
shows an analogous result, but for the second terms.
Lemma 3. Let k ∈ K. Then, for each t ≥ HK, conditional on the event E , we have:

0 ≤

(
µ̂k,t +

√
log(2T/δ)

2Qk,t

)(
F̂k +

√
2 log(2/δ)

HK
+

1

K

)
− P[S ≤ pk]

∫ 1

pk

P[B ≥ λ] dλ ≤ η,

where η := C log
(
T
δ

)(
1

T 1/3
+ 1√

Tk,t

)
and C > 0 is an absolute constant.

The above lemma shows that the difference between the first component of the confidence bound
UCBk,t (defined in eq. (3)) and the first component of the expected gain from trade is proportional to
1/
√

Tk,t. At a first glance, this is not what we would expect since the empirical mean µ̂k,t is estimated
using Qk,t samples. Thus, the confidence bound of µ̂k,t is proportional to 1/

√
Qk,t. However, such

a term is multiplied by (an upper bound of) the probability that the buyer accepts the offer, i.e.,
P[B ≥ pk]. Thus, if the confidence term is large (i.e., when Qk,t is small), then the probability that
the buyer accepts the trade is low. These two effects compensate for each other, and the resulting
contribution ends up scaling as 1/

√
Tk,t. We defer the formal proof of this lemma to the Appendix.

Lemma 4. Let k ∈ K. Then, for each t ≥ HK, conditional on the event E , we have:

0 ≤

(
ν̂k,t +

√
log(2T/δ)

2Tk,t

)Ĝk +

√
2 log(2/δ)

KNk
+

1

K

− P[B ≥ pk]

∫ pk

0

P[S ≤ λ] dλ ≤ η,

where η := C log
(
T
δ

)(
1

T 1/3
+ 1√

Tk,t

)
and C > 0 is an absolute constant.

Similarly to Lemma 3, the estimate Ĝk is constructed using a number of samples that depends on the
probability that the buyer accepts to trade at price pk. This component is mirrored with respect to the
one in Lemma 3: rather than having limited samples for the probability estimate ν̂k,t, here we may
have few samples to compute Ĝk, the term that corresponds to the integral estimates. Nonetheless,
a similar argument shows that this does not affect the rate at which the confidence bound shrinks,
since the confidence interval around Ĝk is scaled by an upper bound on the buyer’s acceptance
probability—effectively compensating for the lower sample size. We defer the formal proof of this
lemma to the Appendix.

We are now ready to present our main result.

Theorem 1. Algorithm 2 guarantees regret RT = Õ(T 2/3).

We now present the high-level ideas behind the proof, deferring the formal argument to the Appendix.

To derive regret guarantees for our algorithm, we analyze separately the two phases it executes. The
exploration phase always incurs a regret of order O(T 2/3), as the exploration strategy is deterministic
and runs for O(T 2/3) rounds. To provide an upper bound on the regret suffered in the second phase
of our algorithm, we consider two cases depending on whether k⋆ belongs to K⋄ or not. If k⋆ /∈ K⋄,
then we can show that P[B ≥ pk⋆ ] = Õ(T−1/3) and, consequently, g(pk⋆) = Õ(T−1/3). Therefore,
for any possible set K⋄, the regret suffered by our algorithm is RT = Õ(T 2/3).

Conversely, if k⋆ ∈ K⋄, i.e., if pk⋆ is not removed before the second phase, then, noticing that
K⋄ ≃ K, Lemmas 3 and 4 guarantee that (i) the confidence bounds of each suboptimal arm scale as
1/min(T

1/3,
√

Tk,t), and (ii) all the estimates remain optimistic. By applying a UCB-style analysis and
using Lemma 2, we obtain that the cumulative regret in this phase is also of order Õ(T 2/3).

5 Conclusions, Limitations, and Future Research

This work introduced a new asynchronous protocol for repeated bilateral trade, where the broker
interacts with a seller only after securing agreement from a buyer. Despite the censored nature
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of the seller’s feedback, we showed that the broker can still achieve the optimal Õ(T 2/3) regret
rate previously known only under the richer two-bit feedback model [Cesa-Bianchi et al., 2024a].
Combined with the known impossibility of learning under one-bit feedback [Cesa-Bianchi et al.,
2024a], this work suggests that our protocol elicits the minimal amount of information necessary to
enable optimal learning.

While our theoretical guarantees are optimal, some limitations suggest interesting directions for future
research. First, our analysis focuses on stationary environments. Although adversarial bilateral trade
is known to be unlearnable even under full feedback and when competing with the best fixed price in
hindsight [Cesa-Bianchi et al., 2024a], it would be valuable to explore intermediate settings lying in
between the i.i.d. and fully adversarial dynamics, perhaps by relaxing the notion of learnability to
allow for (dynamic) α-regret. Another limitation of our work is the absence of contextual information
that the broker might observe before posting a price. Extending the framework to contextual
settings—where the broker might have access to side information encoding item characteristics,
market conditions, or user profiles–—remains a challenging and interesting open problem in our
censored framework. Finally, following recent works [Bachoc et al., 2024, Cesari and Colomboni,
2025], an intriguing direction for future research is to study alternative objectives, such as fair gain
from trade or trading volume, which reflect different priorities for the broker.
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Omitted Proofs

In order to prove Lemma 2, we need to introduce some auxiliary useful lemmas.
Lemma 5. It holds P[E1] ≥ 1− δ.

Proof. Let s ≥ H be an integer, and let k ∈ K. By the Chernoff bound and the fact that the variables
are all i.i.d., we have:

P

[
s∑

i=1

I{Bk,i ≥ pk} ≤
s

2
P[B ≥ pk]

]
≤ e−

sP[B≥pk]

8

= e
−

sP[B≥pk] log(KT2
/δ)

8 log(KT2
/δ)

=

(
δ

KT 2

) sP[B≥pk]

8 log(KT2
/δ)

≤
(

δ

KT 2

) T1/3P[B≥pk]

8 log(KT2
/δ) ≤ δ

KT 2
.

If t ≥ HK, then Tk,t ≥ H according to the definition of Tk,t and how our algorithm works. It
follows that

P

[
T⋃

t=HK

⋃
k∈K

{
Qk,t ≤

Tk,t
2

P[B ≥ pk]

}]

= P

[
T⋃

s=H

T⋃
t=HK

⋃
k∈K

{
Qk,t ≤

Tk,t
2

P[B ≥ pk]

}
∩ {Tk,t = s}

]

≤
T∑

s=H

T∑
t=HK

∑
k∈K

P
[{
Qk,t ≤

Tk,t
2

P[B ≥ pk]

}
∩ {Tk,t = s}

]

=

T∑
s=H

T∑
t=HK

∑
k∈K

P

[{
s∑

i=1

I{Bk,i ≥ pk} ≤
s

2
P[B ≥ pk]

}
∩ {Tk,t = s}

]

≤
T∑

s=H

T∑
t=HK

∑
k∈K

P

[
s∑

i=1

I{Bk,i ≥ pk} ≤
s

2
P[B ≥ pk]

]
≤ δ .

Hence,

P

[
T⋂

t=HK

⋂
k∈K

{
Qk,t >

Tk,t
2

P[B ≥ pk]

}]
≥ 1− δ ,

which concludes the proof.

Lemma 6. It holds

P

⋂
k∈K


∣∣∣∣Ĝk −

∫ pk

0

P[S ≤ λ] dλ

∣∣∣∣ ≤
√

2 log(2/δ)

KNk
+

1

K


 ≥ 1− 2Kδ.

Proof. Under the event E1, for all i ∈ [K] such that P[B ≥ pi] ≥ 8T−1/3 log(KT 2
/δ), we have:

Qi,HK ≥
1

2
Ti,HKP[B ≥ pi] =

1

2
HP[B ≥ pi],

since Ti,HK = H for every i ∈ [K], according how our algorithm works. This implies that, under
the event E1, the following holds:

Nk = min
i≤k
Qi,HK ≥

1

2
min
i≤k

HP[B ≥ pi] =
1

2
HP[B ≥ pk] := nk.
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As a first step, we prove that, conditioned to the event {Nk = ℓ} ∩ E1, the estimates Ĝk concentrate
around their expectation. Specifically, whenever ℓ ≥ nk, the following holds:

P

[∣∣∣Ĝk − E[Ĝk]
∣∣∣ ≤ 2

√
log(2/δ)

Kℓ

∣∣ {Nk = ℓ} ∩ E1

]
≥ 1− δ. (4)

Indeed, by Azuma–Hoeffding inequality, we have:

P

∣∣∣∣∣∣
k∑

i=1

ℓ∑
j=1

I{Si,j ≤ pi} −
k∑

i=1

ℓ∑
j=1

P[S ≤ pi]

∣∣∣∣∣∣ ≤√2Kℓ log(2/δ)

 ≥ 1− δ .

Furthermore, noticing that

∣∣∣Ĝk − E[Ĝk]
∣∣∣ = 1

Kℓ

∣∣∣∣∣∣
k∑

i=1

ℓ∑
j=1

I{Si,j ≤ pi} −
k∑

i=1

ℓ∑
j=1

P[S ≤ pi]

∣∣∣∣∣∣ ,
and that {Nk = ℓ} ∩ E1 is P-independent from S1, S2, . . . , we have:

P

[∣∣∣Ĝk − E[Ĝk]
∣∣∣ ≤√2 log(2/δ)

Kℓ

∣∣ {Nk = ℓ} ∩ E1

]
= P

[∣∣∣Ĝk − E[Ĝk]
∣∣∣ ≤√2 log(2/δ)

Kℓ

]
≥ 1− δ ,

showing that Equation 4 holds. Therefore, we can prove that:

P

∣∣∣Ĝk − E[Ĝk]
∣∣∣ ≤

√
2 log(2/δ)

KNk

∣∣ E1


≥
H∑

ℓ=0,
ℓ≥nk

P

[∣∣∣Ĝk − E[Ĝk]
∣∣∣ ≤√2 log(2/δ)

Kℓ

∣∣ {Nk = ℓ} ∩ E1

]
P [Nk = ℓ | E1]

≥
H∑

ℓ=0,
ℓ≥nk

(1− δ)P [Nk = ℓ | E1]

= 1− δ,

where the first inequality holds because of the law of total probability, noticing that P[Nk = ℓ | E1] =
0 for all ℓ < nk, while the second inequality by eq. (4). Thanks to the i.i.d. hypothesis we have:

E[Ĝk]−
∫ pk

0

P[S ≤ λ] dλ = E

 1

KNk

k∑
i=1

Nk∑
j=1

I{Si,j ≤ pi}

− ∫ pk

0

P[S ≤ λ] dλ

=
1

K

k∑
i=1

P[S ≤ pi]−
∫ pk

0

P[S ≤ λ] dλ

=

k∑
i=1

∫ i
K

i−1
K

(
P
[
S ≤ i

K

]
− P[S ≤ λ]

)
dλ =: (⋆) ,

Now, due to the fact that λ 7→ P[S ≤ λ] is a non-decreasing function, we have that

0 ≤ (⋆) ≤
k∑

i=1

∫ i
K

i−1
K

(
P
[
S ≤ i

K

]
− P

[
S ≤ i− 1

K

])
dλ

=
1

K

k∑
i=1

(
P
[
S ≤ i

K

]
− P

[
S ≤ i− 1

K

])
=

P[S ≤ pk]− P[S ≤ 0]

K
≤ 1

K
.

14



Thus, the following holds:

P

∣∣∣∣Ĝk −
∫ pk

0

P[S ≤ λ] dλ

∣∣∣∣ ≤
√

2 log(2/δ)

KNk
+

1

K

∣∣ E1
 ≥ 1− δ.

Thus, thanks to Lemma 5, we have:

P

∣∣∣∣Ĝk −
∫ pk

0

P[S ≤ λ] dλ

∣∣∣∣ ≤
√

2 log(2/δ)

KNk
+

1

K


≥ P

∣∣∣∣Ĝk −
∫ pk

0

P[S ≤ λ] dλ

∣∣∣∣ ≤
√

2 log(2/δ)

KNk
+

1

K

∣∣ E1
P[E1]

≥ 1− 2δ.

Finally, taking a union bound over all possible sets of arms K, we prove the lemma.

Lemma 7. It holds

P

[⋂
k∈K

{∣∣∣∣F̂k −
∫ 1

pk

P[B ≥ λ] dλ

∣∣∣∣ ≤
√

2 log(2/δ)

KH
+

1

K

}]
≥ 1−Kδ.

Proof. Thanks to the i.i.d. hypothesis and the fact that λ 7→ P[B ≥ λ] is a non-increasing function,
with an argument analogous to that provided in the proof of Lemma 6, we have that∣∣∣∣E[F̂k]−

∫ 1

pk

P[B ≥ λ] dλ

∣∣∣∣ ≤ 1

K
.

By Azuma–Hoeffding inequality, we have:∣∣∣∣∣∣
k∑

i=1

H∑
j=1

I{Bi,j ≥ pi} −
k∑

i=1

H∑
j=1

P [B ≥ pi]

∣∣∣∣∣∣ ≤√2kH log(2/δ) ≤
√

2KH log(2/δ)

with probability 1− δ. Hence, to conclude, it is enough to notice that∣∣∣F̂k − E[F̂k]
∣∣∣ = 1

KH

∣∣∣∣∣∣
k∑

i=1

H∑
j=1

I{Bi,j ≥ pi} −
k∑

i=1

H∑
j=1

P [B ≥ pi]

∣∣∣∣∣∣
and take a union bound over all possible sets of arms [K].

Lemma 8. It holds P[E3] ≥ 1− 2KTδ.

Proof. Fix k ∈ K and t ≥ HK. Recall that, by definition,

µ̂k,t :=

∑Qk,t

τ=1 I{Sk,τ ≤ pk}
Qk,t

.

Employing a union bound and the Hoeffding inequality, we have that:

µ̂k,t −

√
log(2T/δ)

2Qk,t
≤ P [S ≤ pk] ≤ µ̂k,t +

√
log(2T/δ)

2Qk,t

with probability at least 1− δ. Thus, taking a union bound, we have:

P

 ⋂
k∈[K]

T⋂
t=HK

{
µ̂k,t −

√
log(2T/δ)

2Qk,t
≤ P [S ≤ pk] ≤ µ̂k,t +

√
log(2T/δ)

2Qk,t

} ≥ 1−KTδ.

With an analogous argument, it is possible to show that:

P

 ⋂
k∈[K]

T⋂
t=HK

{
ν̂k,t −

√
log(2T/δ)

2Tk,t
≤ P [B ≥ pk] ≤ ν̂k,t +

√
log(2T/δ)

2Tk,t

} ≥ 1−KTδ.

Thus, taking a union bound, we have that the lemma holds.
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Lemma 9. It holds P[E4] ≥ 1− δ

Proof. Let ϵ = 8T−1/3 log(KT 2
/δ) and ν̂k := ν̂k,KH . If k ̸∈ K, then P[B ≥ pk] ≤ ϵ. Therefore, we

can employ the multiplicative Chernoff inequality as follows:

P
[
ν̂k ≥ (1 + c)P[B ≥ pk]

]
≤ e−

c2HP[B≥pk]

2+c ,

with c = ϵ
P[B≥pk]

. Thus, we get:

P
[
ν̂k ≥ P[B ≥ pk] + ϵ

]
≤ exp

−
(

ϵ
P[B≥ pk]

)2
HP[B ≥ pk]

2 + ϵ
P[B≥ pk]


≤ exp

(
−

ϵ
P[B≥ pk]

2 + ϵ
P[B≥ pk]

· ϵH

)

≤
(

δ

KT 2

)8/3

≤ δ

KT 2
,

since x/(x+ 2) ≥ 1/3, for every x ≥ 1. As a result, we have:

P
[
Qk,HK ≤ 2Hϵ

]
= P

[
ν̂k ≤ 2ϵ

]
≥ P

[
ν̂k ≤ P[B ≥ pk] + ϵ

]
≥ 1− δ

KT 2
,

recalling that ν̂k,HK = Qk,HK/H. Furthermore, we notice that:

2Hϵ ≤ 16HT−1/3 log(KT 2
/δ) = 16

⌈T 1/3⌉
T 1/3

log(KT 2
/δ) ≤ 32 log(KT 2

/δ).

Thus, by taking a union bound, we have:

P

⋂
k ̸∈K

{
Qk,HK ≤ 32 log(KT 2

/δ)
} ≥ 1− δ

T 2
≥ 1− δ,

concluding the proof.

Lemma 2. Let E := E1 ∩ E2 ∩ E3 ∩ E4. Then, we have:

P [E ] ≥ 1−O(KTδ).

Proof. Thanks to Lemmas 5, 6, 7, 8, and 9, by taking a union bound we have:

P [E ] ≥ 1− (5KT + 2)δ = 1−O(KTδ),

concluding the proof.

Lemma 3. Let k ∈ K. Then, for each t ≥ HK, conditional on the event E , we have:

0 ≤

(
µ̂k,t +

√
log(2T/δ)

2Qk,t

)(
F̂k +

√
2 log(2/δ)

HK
+

1

K

)
− P[S ≤ pk]

∫ 1

pk

P[B ≥ λ] dλ ≤ η,

where η := C log
(
T
δ

)(
1

T 1/3
+ 1√

Tk,t

)
and C > 0 is an absolute constant.

Proof. We first prove that:(
µ̂k,t +

√
log(2T/δ)

2Qk,t

)(
F̂k +

√
2 log(2/δ)

HK
+

1

K

)
is the (optimistic) estimator of

P[S ≤ pk]

∫ 1

pk

P[B ≥ λ] dλ.
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To do so, we observe that under the event E , we have:(
µ̂k,t +

√
log(2T/δ)

2Qk,t

)(
F̂k +

√
2 log(2/δ)

HK
+

1

K

)
− P[S ≤ pk]

∫ 1

pk

P[B ≥ λ] dλ

≤

(
P[S ≤ pk] +

√
2 log(2T/δ)

Qk,t

)(∫ 1

pk

P[B ≥ λ] dλ+

√
8 log(2/δ)

HK
+

2

K

)

− P[S ≤ pk]

∫ 1

pk

P[B ≥ λ] dλ

≤

√
2 log(2T/δ)

Qk,t

∫ 1

pk

P[B ≥ λ] dλ+ P[S ≤ pk]

√
8 log(2/δ)

HK
+

4 log(2T/δ)√
HKQk,t

+
2

K

(
P[S ≤ pk] +

√
2 log(2T/δ)

Qk,t

)

≤

√
2 log(2T/δ)

Qk,t
P[B ≥ pk]︸ ︷︷ ︸

(⋆)

+
20 log(2T/δ)

T 1/3
.

Now, notice that, since k ∈ K by assumption, we have Qk,t ≥ 1
2Tk,tP [B ≥ pk] for all t ≥ HK,

under the event E . Therefore, the following holds:

(⋆) =

√
2 log(2T/δ)

Qk,t
P [B ≥ pk] ≤

√
4 log(2T/δ)

Tk,tP [B ≥ pk]
P[B ≥ pk] ≤ 2

log(2T/δ)√
Tk,t

.

Putting all together, we have:(
µ̂k,t +

√
log(2T/δ)

2Qk,t

)(
F̂k +

√
2 log(2/δ)

HK
+

1

K

)
− P[S ≤ pk]

∫ 1

pk

P[B ≥ λ] dλ

≤ log

(
T

δ

)
O

(
1√
Tk,t

+
1

T 1/3

)
.

Finally, we notice that:

P[S ≤ pk]

∫ 1

pk

P[B ≥ λ] dλ ≤

(
µ̂k,t +

√
log(2T/δ)

2Qk,t

)(
F̂k +

√
2 log(2/δ)

HK
+

1

K

)
,

as a direct consequence of being under the clean event E . This concludes the proof.

Lemma 4. Let k ∈ K. Then, for each t ≥ HK, conditional on the event E , we have:

0 ≤

(
ν̂k,t +

√
log(2T/δ)

2Tk,t

)Ĝk +

√
2 log(2/δ)

KNk
+

1

K

− P[B ≥ pk]

∫ pk

0

P[S ≤ λ] dλ ≤ η,

where η := C log
(
T
δ

)(
1

T 1/3
+ 1√

Tk,t

)
and C > 0 is an absolute constant.

Proof. Notice that the first inequality is trivially given by the fact that, under the event E , the quantity(
ν̂k,t +

√
log(2T/δ)

2Tk,t

)Ĝk +

√
2 log(2/δ)

KNk
+

1

K


is an (optimistic) estimator of

P[B ≥ pk]

∫ pk

0

P[S ≤ λ] dλ.
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For the second inequality, we notice that, under the event E :(
ν̂k,t +

√
log(2T/δ)

2Tk,t

)Ĝk +

√
2 log(2/δ)

KNk
+

1

K

− P[B ≥ pk]

∫ pk

0

P[S ≤ λ] dλ

E⊂E2∩E3

≤

(
P[B ≥ pk] +

√
2 log(2T/δ)

Tk,t

)∫ pk

0

P[S ≤ λ] dλ+

√
8 log(2/δ)

KNk
+

2

K


− P[B ≥ pk]

∫ pk

0

P[S ≤ λ] dλ

E⊂E1

≤

√
2 log(2T/δ)

Tk,t

∫ pk

0

P[S ≤ λ] dλ+ 4P[B ≥ pk]

√
log(2/δ)

KHP[B ≥ pk]

+
4
√
2 log(2T/δ)√

KHP[B ≥ pk]
√
Tk,t

+
2

K

(
P[B ≥ pk] +

√
2 log(2T/δ)

Tk,t

)
k∈K
= log

(
T

δ

)
· O

(
1√
Tk,t

+
1

T 1/3

)
,

concluding the proof.

Theorem 1. Algorithm 2 guarantees regret RT = Õ(T 2/3).

Proof. We first notice that, by defining

RT :=

T∑
t=1

g(p⋆)−
T∑

t=1

g(Pt),

we have that RT = E[RT ] and

RT = E[RT IE ] + E[RT IEc ]

≤ E[RT IE ] + E[T IEc ]

≤ E[RT IE ] + 6KT 2δ = E[RT IE ] +O(T 1/3).

It is then sufficient to control the magnitude ofRT under the clean event E . Hence, from this point
on, we assume we are under the clean event E .

Let k⋆ ∈ argmaxk∈[K] g(pk).

First, notice that, if P[pk⋆ ≤ B] ≤ 64T−1/3 log(KT 2/δ), then

g(pk⋆) = E[(B − S) I{S ≤ pk⋆ ≤ B}] ≤ E[I{B ≥ pk⋆}] = P[B ≥ pk⋆ ] ≤ 64T−1/3 log(KT 2/δ),

where we used (B − S) ≤ 1 and {S ≤ p ≤ B} ⊆ {B ≥ p}. Thus, when P[pk⋆ ≤ B] ≤
64T−1/3 log(KT 2/δ), we have, due to Lemma 1, that if we pay an additional term whose instanta-
neous regret is upper bounded by L/K, we can controlRT by comparing our performance against
the performance of the best point in the grid pk⋆ , from which

RT = T · Õ(T−1/3) +
TL

K
= Õ(T 2/3) .

Hence, we are left to analyze what happens when P[pk⋆ ≤ B] > 64T−1/3 log(KT 2/δ), which we
assume being the case from this point on. First, since P[pk⋆ ≤ B] > 64T−1/3 log(KT 2/δ), given
that E ⊂ E1, it follows that k⋆ ∈ K⋄.

We now notice that for each k ∈ K⋄ we have that Qk,HK > 32T−1/3 log(KT 2/δ) by definition.
In the clean event E , we have that E4 holds, and hence for each h /∈ K we have that Qh,HK ≤
32T−1/3 log(KT 2/δ). It follows that, in the clean event E , k ∈ K⋄ implies k ∈ K, i.e., K⋄ ⊂ K.
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Now, we recall that Lemma 3 and Lemma 4 imply that, under the event E , for all t ≥ HK + 1 and
k ∈ K:

g(pk) ≤ UCBk,t−1 ≤ g(pk) + ηk,t−1 , (5)

where ηk,t−1 := C̃ log
(

T
δ

)(
1

T 1/3 +
1√

Tk,t−1

)
and C̃ > 0 is a universal constant. (We use UCBk,t−1

because Pt is chosen at the start of round t based only on information up to time t− 1.)

If, for every p ∈ [0, 1], we define the quantity ∆p := g(pk⋆)− g(p), then, for each t ≥ HK + 1, if
kt ∈ K⋄ is such that Pt = pkt

, by eq. (5) we have

g(pk⋆) = max
k∈K⋄

g(pk) ≤ max
k∈K⋄

UCBk,t−1 = UCBkt,t−1 ≤ g(Pt) + ηkt,t−1 ,

and hence
∆Pt

≤ ηkt,t−1 .

In addition, by Lemma 1 and the fact that the instantaneous regret is upper bounded by 1, we have:

RT ≤ HK +
LT

K
+

T∑
t=HK+1

∆Pt
.

Now, we have

T∑
t=HK+1

∆Pt
=
∑
k∈K⋄

T∑
t=HK+1

∆Pt
I{Pt = pk}

≤
∑
k∈K⋄

T∑
t=HK+1

ηk,t−1 I{Pt = pk}

≤
∑
k∈K⋄

T∑
t=HK+1

[
C̃ log

(T
δ

)( 1

T 1/3
+

1√
Tk,t−1

)]
I{Pt = pk} by the definition of η k,t−1

= C̃ log
(T
δ

)[ 1

T 1/3

∑
k∈K⋄

T∑
t=HK+1

I{Pt = pk} +
∑
k∈K⋄

T∑
t=HK+1

I{Pt = pk}√
Tk,t−1

]

≤ C̃ log
(T
δ

)[ 1

T 1/3

T∑
t=HK+1

1 +
∑
k∈K⋄

T∑
t=HK+1

I{Pt = pk}√
Tk,t−1

]

≤ C̃ log
(T
δ

)[
T 2/3 +

∑
k∈K⋄

T∑
t=HK+1

I{Pt = pk}√
Tk,t−1

]

≤ C̃ log
(T
δ

)
T

2/3 +
∑
k∈K⋄

T∑
t=HK+1

I{Pt = pk}√
Tk,t−1︸ ︷︷ ︸

≤ 2
√
Tk,T by (a)


≤ C̃ log

(T
δ

)[
T 2/3 + 2

∑
k∈K⋄

√
Tk,T

]

≤ C̃ log
(T
δ

)T 2/3 + 2

√
|K⋄|

∑
k∈K⋄

Tk,T

 (b) Cauchy–Schwarz

≤ C̃ log
(T
δ

) [
T 2/3 + 2

√
K T

]
= Õ

(
T 2/3

)
,
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where (a) and (b) can be proved as follows

(a)
T∑

t=HK+1

I{Pt = pk}√
Tk,t−1

=

mk∑
i=1

1√
H + (i− 1)

where mk :=

T∑
t=HK+1

I{Pt = pk}, H = ⌈T 1/3⌉

≤
H+mk−1∑

j=H

1√
j
≤
∫ H+mk−1

H−1

1√
x
dx = 2

(√
H +mk − 1−

√
H − 1

)
≤ 2
√
mk ≤ 2

√
Tk,T,

(b)
∑
k∈K⋄

√
Tk,T ≤

√
|K⋄|

∑
k∈K⋄

Tk,T ≤
√
KT, since

∑
k∈K⋄

Tk,T ≤
T∑

t=1

∑
k

I{Pt=pk} = T.

Hence

E[RT IE ] ≤ C̃ ′ log

(
T

δ

)
T 2/3 = Õ(T 2/3) ,

concluding the proof.

Experimental Results

In this section, we present some experimental results obtained on synthetically-generated instances.
Specifically, we consider instances where the seller’s valuations are sampled from a Beta distribution
with parameters αs and βs, while the buyer’s valuations are sampled from a Beta distribution with
parameters αb and βb. For each instance, we evaluate the performance of our algorithm and the
Scouting Bandits algorithm of Cesa-Bianchi et al. [2021] in terms of cumulative regret. To this end,
we run both algorithms on each instance n = 5 times and report the mean and standard deviation of
the achieved cumulative regret.

Table 1: Comparison between our algorithm and the one of Cesa-Bianchi et al. [2021] in terms
of cumulative regret across different instances where buyers and sellers’ valuations are distributed
according to Beta distributions.

Parameter Instance 1 Instance 2 Instance 3
Time horizon (T ) 10000 50000 10000
(αs, βs) (5.0, 10.0) (5.0, 10.0) (10.0, 10.0)
(αb, βb) (15.0, 10.0) (15.0, 10.0) (15.0, 10.0)

Regret ± std (ours) 199.6± 17.1 714.4± 73.1 135.2± 22.1
Regret ± std (Cesa-Bianchi et al. [2021]) 732.0± 21.4 2253.8± 75.2 548.8± 16.4

Table 2: Comparison between our algorithm and the one of Cesa-Bianchi et al. [2021] in terms
of cumulative regret across different instances where buyers and sellers’ valuations are distributed
according to Beta distributions.

Parameter Instance 4 Instance 5 Instance 6
Time horizon (T ) 50000 10000 50000
(αs, βs) (10.0, 10.0) (2.0, 3.0) (2.0, 3.0)
(αb, βb) (15.0, 10.0) (10.0, 10.0) (10.0, 10.0)

Regret ± std (ours) 326.5± 84.0 168.5± 28.8 439.2± 136.2
Regret ± std (Cesa-Bianchi et al. [2021]) 2381.0± 98.1 583.5± 27.6 2502.4± 52.2

We observe that the regret incurred by our algorithm is lower than that of Cesa-Bianchi et al. [2021].
While this may appear counterintuitive (since we use less feedback than the Scouting Bandits
algorithm of Cesa-Bianchi et al. [2021]), the improvement stems from a key difference. Indeed, after
the initial exploration phase, we eliminate arms that are guaranteed to be suboptimal. This pruning
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step, absent in Scouting Bandits, allows us to restrict the subsequent bandit phase to the reduced set
K⋄, which can be significantly smaller than the original set of arms. In contrast, Cesa-Bianchi et al.
[2021] run their algorithm over the full set, whose size is T 1/3.
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paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we state the main theorem of the paper in the abstract/introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Discussed in section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
implications would be.
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depend on implicit assumptions, which should be articulated.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

22



Justification: All our results have a complete proof in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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For example, if the contribution is a novel architecture, describing the architecture fully
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material?
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

27



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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