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ABSTRACT

Large language models (LLMs) acquire knowledge during pre-training, but over
time, this knowledge may become incorrect or outdated, necessitating updates af-
ter training. Knowledge editing techniques address this issue without the need
for costly re-training. However, most existing methods are designed for single
edits, and as the number of edits increases, they often cause a decline in the
model’s overall performance, posing significant challenges for sequential edit-
ing. To overcome this, we propose Orthogonal Subspace Editing, O-Edit. This
algorithm orthogonalizes the direction of each knowledge update, minimizing in-
terference between successive updates and reducing the impact of new updates on
unrelated knowledge. Our approach does not require replaying previously edited
data and processes each edit knowledge on time. It can perform thousands of edits
on mainstream LLMs, achieving an average performance improvement that is 4.2
times better than existing methods while effectively preserving the model’s per-
formance on downstream tasks, all with minimal additional parameter overhead.

1 INTRODUCTION

Large language models (LLMs) are trained on vast amounts of textual data, enabling them to store
extensive knowledge about various aspects of the human world, sparking the potential for general
artificial intelligence. However, LLMs face significant challenges, including the propagation of
inaccurate or outdated knowledge, as well as the generation of bias or harmful content (Cai et al.,
2024b; Chen et al., 2024; Zhong et al., 2024). Given the substantial computational costs of re-
training LLMs to address these issues, there has been growing interest in model editing techniques
(Yao et al., 2023; Wang et al., 2023a), which aim to update specific content within the model while
minimizing computational costs. Existing model editing methods can be categorized into two main
types: parameter-modifying methods that directly alter a small subset of model parameters (Dai
etal., 2022; Meng et al., 2023a;b; Hu et al., 2024a;b; Gupta et al., 2024a), and parameter-preserving
methods that without changing the model parameters (Wang et al., 2024b; Cai et al., 2024a; Zheng
et al., 2023). In this paper, we focus on parameter-modifying editing methods.

Most existing research focuses on editing models a single time (Han et al., 2023; Zhang et al.,
2024bza; Mazzia et al., 2024). However, as real-world knowledge continuously evolves, models will
need to be updated repeatedly to remain accurate. This shift has led to the concept of sequential
model editing (Ma et al., 2024; Hu et al., 2024b; Huang et al., 2023), which involves performing
multiple knowledge edits to progressively update the model as new knowledge needs to be incor-
porated. Currently, sequential editing is often achieved through multiple iterations of single edits.
Recent studies have shown that as the number of edits increases, the success rate of edits significantly
declines and impairs the model’s general capabilities, such as reasoning and contextual understand-
ing, thereby limiting the scalability of model editing (Gu et al., 2024; Gupta et al., 2024a;b). This
challenge is akin to adding new floors to an existing building—each addition risks compromising
the overall stability. While some research has analyzed the bottlenecks of sequential editing from a
theoretical perspective (Ma et al., 2024; Hu et al., 2024a), there is still no effective solution has yet
been developed to address this issue through direct modifications of the model weights.".

"For more details on related work, please refer to Appendix A.
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To address the scalability issue of sequential editing, this paper introduces Orthogonal Subspace
Editing (O-Edit), a simple yet effective method for sequentially editing language models. Our key
insight is based on the observation that existing editing methods primarily perform updates within
specific low-rank subspaces. Based on this premise, we assume that both the update directions from
previous editing tasks and the directions of updates to the model’s implicit knowledge can be cap-
tured. Therefore, for the current editing knowledge, the direction of parameter updates should be
chosen to minimize the impact on these prior update directions. O-Edit accomplishes this by pro-
jecting the update direction of the current knowledge into an orthogonal subspace, ensuring that the
neural network’s output for previous knowledge remains unchanged while the projected direction
remains effective for the current edit. To enhance O-Edit, we introduce O-Edit+, a post-processing
method designed to ensure complete orthogonality between subspaces. We validate the effective-
ness of our methods by utilizing two knowledge editing datasets and four downstream task datasets.
Furthermore, our analysis, conducted from both experimental and theoretical perspectives, clearly
demonstrates that strong orthogonality between each update matrix is crucial for enabling sequential
editing. Figure 1 illustrates how our methods adjust the update direction for each piece of knowl-
edge.

Our method offers four key advantages: (1) Efficiency: It requires

minimal additional parameters while enabling hundreds or even o 1
thousands of sequential edits. (2) Privacy: There is no require- drectionre—="
ment to store the edited data itself, ensuring privacy during updates. ;
(3) Timeliness: Our method allows for the immediate application VA AN
of each edit, making it more practical. (4) Flexibility: Our method [T g

is compatible with existing sequential editing techniques, allowing edited knowlef{y/
for easy integration and adaptability to various scenarios. .

Current editing direction

Our main contributions are as follows: @ We introduce O-Edit and
O-Edit+, two simple and efficient methods for sequential editing
in large language models (LLMs) that can handle thousands of ed-
its in orthogonal subspaces, effectively addressing the performance  Rjgure 1: O-Edit constrains
degradation issue encountered by existing approaches during multi-  the direction of each update to
ple edits. @ Our methods significantly preserve model performance [ie within an orthogonal sub-
on downstream tasks, demonstrating their scalability and practical-  gpace.

ity even after numerous sequential edits in real-world continuous

model update scenarios. @ We show that the orthogonality between knowledge is essential for
supporting sequential editing, providing a viable research direction for this task.

2 PRELIMINARIES

In this section, we introduce sequential model editing. Subsequently, in Section 3, we discuss two
prominent knowledge editing techniques, ROME (Meng et al., 2023a) and MEMIT (Meng et al.,
2023b), and extend them into the sequential editing method O-Edit. Finally, in Section 4, we further
refine O-Edit by presenting O-Edit+, a more straightforward and effective approach for orthogonal
sequential model editing.

We focus on the challenge of sequential model editing (SME) (Wang et al., 2024b; Ma et al., 2024),
which aims to enable large language models (LLMs) to undergo extensive sequential modifica-
tions, potentially involving hundreds or thousands of edits. The primary objective is to ensure
that the model’s outputs align with human expectations across target queries, while simultane-
ously preserving the LLM’s pre-existing knowledge and capabilities. Let fg : X — Y, parame-
terized by ©, denote a model function that maps an input x to its corresponding prediction fg(x).
The initial model, fg,, is pre-trained on a large dataset Dy,in. When the LLM exhibits inaccura-
cies or requires updates, model editing becomes necessary, using a dynamic, time-evolving dataset
Dedit = {(Xey Ve) | (x1,41), .., (7, yr)}. Ateach time step T, a model editor (ME) applies the
T'-th edit, updating the previous model feo,._, to produce a new model fo,., following the equation:

if X,
Jor = ME(fo,_.xr,yr), st fop(x) = {yT ifx e (1)

foo(x) ifx ¢ X..
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Figure 2: The framework of O-Edit for sequential language model editing. (a) First, we compute
gradients on a large amount of textual data without updating the model parameters. This step pro-
vides the gradient information necessary for updating model’s implicit knowledge. (b) Next, we
impose constraints on the update directions for each piece of edited knowledge, ensuring these di-
rections are orthogonal to each other as well as to the directions of the model’s implicit knowledge.

Eqgn. 1 indicates that after model editing, the LLM should correctly predict the current edit with
for(x7T) = yr, while preserving previous edits (X<, y<71) € Deair are inaccessible to the editor,
the model is still able to retain this edit. Additionally, the model should maintain the performance
of the original model fg, on data outside the editing scope, x ¢ X, particularly with respect to the
general training corpus Dip.

3 O-EDIT: SEQUENTIAL EDITING WITH GRADIENT PROJECTION
MEMORY

In this section, we will introduce O-Edit, as illustrated in Figure 2. We discuss two key-value
memory-based knowledge editing methods, ROME and MEMIT in Appendix B.3 and B.4, followed
by our optimization method in section 3.1, which incrementally edits new knowledge in orthogonal
subspaces, while preserving previously edited knowledge.

3.1 TOWARDS AN ORTHOGONAL EDITING METHOD

Previous methods share a common feature: all new knowledge is updated within a shared space,
which directly affects the weights of the model. If an update for new knowledge is applied with-
out considering prior knowledge, the direction of this update can affect both the previously edited
knowledge and the implicit knowledge within the model, potentially leading to catastrophic forget-
ting (Luo et al., 2024; Wang et al., 2023c). Therefore, to effectively support sequential editing, the
process of updating new knowledge should adhere to the following criteria:

Criterion 3.1: The update direction for each piece of knowledge should be orthogonal to the direc-
tions of previously edited knowledge, ensuring minimal interference with previously edited knowl-
edge.

Criterion 3.2: The update direction for each piece of knowledge should be orthogonal to the implicit
knowledge directions within the original model, ensuring minimal interference with the model’s
existing implicit knowledge.

In the following sections 3.1.1 and 3.1.2, we will detail how we optimized ROME and MEMIT to
fulfill the two criteria mentioned above within the context of sequential editing.

3.1.1 THE KNOWLEDGE TO BE EDITED SHOULD BE MUTUALLY ORTHOGONAL

Editing the First Piece of Knowledge: To comply with criterion 3.1, we implement the follow-
ing steps in a sequential editing process. We commence by editing the first piece of knowledge
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using the pair (z1,y;). Upon completion of this initial edit, we obtain an updated set of parameters
AWy = AW|y). To preserve this edited knowledge, we constrain the gradient update direc-
tions for subsequent edits. It is important to note that during the editing process with methods such
as ROME and MEMIT, parameter adjustments are made without gradient computation, as the cal-
culation of v, necessitates training, while the adjustment of W),.,; occurs in a single step. Since
ROME and MEMIT do not involve computing the gradient direction of the required update matrix,
we draw on the insights from (Wang et al., 2023b) and utilize AWjior) to approximate the direction
of model parameter updates. They argue that the gradient space from prior training tasks can be
effectively captured by the update matrix. Next, we perform Singular Value Decomposition (SVD)
on AWy = U Y V7T and extract the sub-matrix AW, corresponding to the top r singular values,
defined as the Core Gradient Space (CGS) by (Saha et al., 2021). Updates along the CGS direc-
tion induce maximum changes in knowledge (Farajtabar et al., 2019), whereas updates in directions
orthogonal to the CGS minimize interference with previously edited knowledge”.

Editing the Subsequent Knowledge: To edit the second piece of knowledge using examples from
D4y, we first retrieve the bases of the Core Gradient Space (CGS). The new update direction must
lie in the space orthogonal to the CGS:

AW, - AWy = 0. )

This ensures that the column vector subspace of W5 is orthogonal to the column vector subspace of
W,.. Taking MEMIT as an example, the update in Eq.18 can be optimized as’:

W =W+ (v, — Wk)ET(C + k7)1,
where AW - (v, — Wk)kT (C + kkT) ™ = 0.

Non-trivial solutions that approximately satisfy Eqn.3 can be obtained by training v, where Eqn.17
can be rewritten as:

3)

L) + A f1(AW,;0). 4)

Here:
fi = sim (AW,., (v, — Wk)kI (C + k&)™), 6))

sim represents the cosine similarity function in column vector space, where each column vector
lies in R?, and \; serves as a hyperparameter that regulates the degree of orthogonality. Upon
completion of the training of v, Eqn. 18 is employed to determine the update parameter AW|3).
Following the update of the second piece of knowledge, the edited parameters are revised as follows:

AW[total]+ = AW[Q] . (6)

We then proceed to the next piece of new knowledge, repeating the same procedure as for the
second piece. The value of r increases linearly with each iteration of knowledge editing, defined
as 7 = min(1 x Iteration, rank(AWjorr)). We provide an efficient solution for Eqn. 5 and an
explanation for r in Appendix B.5.

3.1.2 THE EDITED KNOWLEDGE SHOULD BE ORTHOGONAL TO THE IMPLICIT KNOWLEDGE

To adhere to criterion 3.2, we implement the following steps in the sequential editing process. We
perform backpropagation on a large corpus of text to capture the model’s gradient information for
the update direction of its internal implicit knowledge while freezing the original model’s (unedited)
parameters, simulating the pre-training process without updating the model, as illustrated in the bot-
tom right of Figure 2. This computation is conducted on Wikipedia text, accumulating the gradient
information by summing it. Appendix B.6 provides a comparison for selecting the appropriate text.
Notably, this involves actual gradient information rather than the approximate update direction used
in Section 3.1.1.

2For additional details on updating within orthogonal subspaces, please refer to Appendix A.3 and B.1.
3Since Eqn.15 involves matrix right multiplication, d denotes the column dimension and d,,, denotes the
row dimension.
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Once the gradient information VG € R¥*?m of the implicit knowledge is obtained, the update
direction for knowledge editing should be orthogonal to V(G. Similar to Section 3.1.1, we obtain
the rank ¢ approximation of VG, denoted as VG, through SVD. We then subtract the projection of
VG, onto W, from VG

VG, = VG, — AW.(AWIAW,) AW/ va,, (7)

to prevent knowledge conflicts (Xu et al., 2024; Jin et al., 2024) between the two. For instance,
if AW, contains the edited knowledge “The President of the US is Harris/Trump”, while VG,
contains “The President of the US is Biden”, the update directions for these two pieces of knowledge
may conflict or even be completely opposite. In such cases, we prioritize preserving the knowledge
in AW,. over VG,,. The ultimate training objective is:

loss = L(2z) + M f1(AW,;0) + Ao fo(VGg; v), (8)

where:
fo =sim (VGy, (v. — Wk kI (C + kED) ™). )

The rank ¢ increases linearly with the number of iterations of knowledge editing, described by
q = A3 X iteration, where A3 is a hyperparameter controlling the degree of constraints.

Eqn. 8 represents the final optimization target. After obtaining v,, we use Eqn. 18 to solve for the
update parameter. We then update the hyperparameters r, g, and AWy, for the next knowledge
update.

4 O-EDIT+: TOWARDS MORE EFFICIENT SEQUENTIAL MODEL EDITING

In Section 3, we introduced O-Edit, an algorithm for approximate orthogonal sequential knowledge
editing. To further enhance the orthogonality between different pieces of knowledge, we propose O-
Edit+, a post-processing method that eliminates the need for cosine similarity calculations. Specif-
ically, for the second piece of knowledge, we compute v, using Eqn.17 and apply Eqn.18 to obtain
the update parameter AW 5. Subsequently, AWy undergoes post-orthogonal processing, achieved
as follows:

AW = AWy — AW, (AW, AW,) AW, AWy,
VG, = VG, - AW, (AWLAW,)tAawIvaG,, (10)
AW = AWy = VG, (VG VG,) VG AW,

The processed AW[y from Eqn.10 is then used as the update direction for the second piece of
knowledge. Similar to O-Edit, we subsequently update the hyperparameters 7, ¢, and AW/ for
the next knowledge edit. We detail the computation process of Eqn.10 and the pseudo-code for
O-Edit and O-Edit+ in Appendix B.5. Readers can refer to Appendices B.8 and B.9 for details on
hyperparameter selection.

5 EXPERIMENTS

5.1 EDITING EXPERIMENTAL SETTINGS AND EVALUATION METRICS

Datasets and Models. We utilize autoregressive LLMs, specifically Mistral-7B (Jiang et al., 2023)
and Llama3-8B*, for evaluation, along with the datasets ZsRE (Cao et al., 2021), COUNTER-
FACT (Meng et al., 2023a), RECENT and WIKICF (Zhang et al., 2024a).

Baseline. We selected ROME (Meng et al., 2023a) and MEMIT (Meng et al., 2023b) as baseline
editors and compared them with our proposed methods, O-Edit, O-Edit+ and & O-Edit+ which
represents editing 100 pieces of knowledge at a time. Additionally, we considered the following

*nttps://llama.meta.com/llama3
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Table 1: Main editing results for COUNTERFACT. T": Num Edits.

COUNTERFACT

Method T =200 | T =500 | T =1000 | T = 1500

Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.
Mistral-7B

ROME 072 0.53 031 ‘ 0.52 ‘ 030 0.18 0.14 ‘ 0.21 ‘ 028 0.10 0.06 ‘ 0.15 ‘ 027 0.07 0.05 ‘ 0.13
+R-Edit 0.85 0.60 048 | 0.64 | 027 0.12 0.04 | 0.14 | 0.30 0.09 0.05 | 0.15 | 0.26 0.06 0.04 | 0.12
+WilKE 0.81 059 044 | 061 | 045 027 0.19 | 030 | 028 0.10 0.10 | 0.16 | 0.18 0.02 0.07 | 0.09
+PRUNE 076 051 028 | 052 | 035 021 021 ] 026|042 0.12 0.05 | 020|033 0.15 022 0.23
+0-Edit 099 051 073|074 | 068 041 037 049 045 0.18 0.26 | 030 | 0.37 020 0.19 | 0.25
+0O-Edit+ 094 047 0.76 | 0.72 | 0.65 038 041 048 049 021 0.29 | 0.33 | 041 021 0.24 | 0.29
MEMIT 093 067 041 | 067|050 035 0.0 032|028 010 006 | 015|019 006 005 0.10
+R-Edit 093 0.64 048 | 068 | 0.76 039 0.16 | 044 | 032 0.17 0.06 | 0.18 | 0.28 0.13 0.06 | 0.16
+WilKE 095 0.70 050 | 072 | 0.73 051 0.26 | 0.50 | 0.26 0.16 0.06 | 0.16 | 0.30 0.14 0.04 | 0.16
+PRUNE 0.83 053 047 | 061 | 0.76 052 0.29 | 052 | 065 045 022 | 044 | 043 027 0.12 | 0.27
+0O-Edit 093 055 0.65 | 071 | 0.86 053 045 0.61 072 047 034 | 051 | 0.51 033 0.18 | 0.34
+0O-Edit+ 089 0.61 0.78 | 0.76 | 0.81 0.55 0.60 0.65 0.68 039 0.55 | 0.54 | 0.61 042 053 | 0.52

+4 O-Edit+ 098 0.76 091 | 0.88 | 0.89 0.67 0.82 0.80 081 0.60 0.73 | 0.71 | 0.79 0.55 0.68 | 0.67

Llama3-8B
ROME 0.75 048 0.14 \ 0.46 \ 0.69 045 0.05 \ 0.40 \ 0.75 0.46 0.02 \ 0.41 \ 047 028 0.02 \ 0.31
+R-Edit 070 038 027 | 045 | 0.65 041 0.06 | 037 | 0.54 034 0.03 | 0.30 | 0.50 0.31 0.02 | 0.28
+WilKE 077 044 033 | 051 | 055 042 0.03 ] 033 | 0.66 045 0.02 | 038|071 049 0.02 | 041
+PRUNE 090 057 033 | 060|077 050 024|050 |0.83 041 021 | 048 | 081 035 0.19 | 045
+0O-Edit 088 0.63 035 | 062 | 077 047 022 049 0.84 047 0.13 | 048 | 0.83 031 0.09 | 0.41
+0-Edit+ 086 0.61 037 | 061 | 081 052 024 052 086 049 0.19 | 0.51 | 0.87 0.50 0.13 | 0.50
MEMIT 085 0.51 022 \ 0.52 \ 0.50 035 0.10 \ 0.32 \ 028 0.10 0.05 \ 0.14 \ 0.18 0.06 0.05 \ 0.10
+R-Edit 092 063 048 | 068 | 0.57 039 0.15] 037 | 034 0.17 0.06 | 0.19 | 027 0.13 0.05 | 0.15
+ WIIKE 095 0.68 050 | 071 | 0.71 056 0.25 | 0.51 | 030 0.16 0.08 | 0.18 | 0.30 0.14 0.05 | 0.16
+PRUNE 082 052 047 | 060 | 0.76 052 038 | 0.55 | 0.64 044 032 | 047 | 042 027 0.22 | 0.30
+0O-Edit 093 055 064 | 071 | 086 053 044 061 0.72 047 033 | 051 | 0.55 040 0.27 | 041
+0-Edit+ 088 053 0.76 | 0.72 | 0.84 0.51 045 0.60 0.81 050 031 | 054|079 044 0.28 | 0.50

+# O-Edit+ 098 0.62 091 | 0.84 | 0.95 057 078 079 091 0.51 0.63 | 0.68 | 091 045 0.56 | 0.64

methods: R-Edit (Gupta et al., 2024a), WIlKE (Hu et al., 2024b), and PRUNE (Ma et al., 2024).
See Appendix B.7 for methods details.

Metrics. Each edit example comprises an edit knowledge statement, consisting of an edit statement
X and an edit target y,, its paraphrase sentences X/ for testing generalization, and an unrelated
knowledge statement Xjo. for testing locality. For the editing dataset Degiy = {(Xe,¥Ye)} With T
edits, we evaluate the final post-edit model fo,. after the T-th edit example (x,yT). We assess the
reliability and generalization of the model editor using the metrics Rel. (Edit Success Rate (Zhang
et al., 2024a)) and Gen. (Generalization Success Rate), while Loc. (Localization Success Rate)
evaluates specificity, defined as the post-edit model’s ability to maintain the output of the unrelated
knowledge xjoc. We report these metrics and their mean scores, which are formally defined as:

1 & 1 E 1 &
Rel. = — S 1(for(xl) =yi),Gen = - S 1(for(xl) =yi), Loc. = - S 1(for (xh) = foo (X)), (D)
t=1 t=1 t=1

Here, 1(-) denotes the indicator function, which indicates that we only consider the top-1 token
during inference. For RECENT and WIKICF, we have established additional evaluation metrics to
assess the reasoning ability, subject alignment capability of editing methods, and more. For further
details, please refer to Appendix B.10.

Main Results. The competitive performance of our methods is demonstrated in Tables 1. In the
COUNTERFACT setting, with T = 200, models edited with MEMIT and ROME still perform ef-
fective edits. However, as the number of edits exceeds 500, their performance declines rapidly. After
1,500 edits on Mistral-7B, MEMIT’s scores dropped to approximately 0.20 for Rel. and 0.05 for
Loc., indicating substantial forgetting of both edited and unrelated knowledge. Although improved
methods like PRUNE and WilKE showed competitive performance at 7' = 200, they similarly failed
to maintain a good balance across Rel., Gen., and Loc. at T = 1500. At 7" = {500, 1000, 1500},
O-Edit and O-Edit+ achieved the best results on both Mistral-7B and Llama3-8B. At 7" = 1500 with
Mistral-7B, O-Edit+ improved by 0.16 and 0.42 in Avg. over ROME and MEMIT, respectively, and
by 0.06 and 0.25 over PRUNE, our closest competitor. Overall, while performance across methods
is similar for smaller numbers of edits, O-Edit+ significantly reduces forgetting as the number of
edits increases, effectively preserving both edited and unrelated knowledge.

The orthogonal editing method improves the success rate of edited knowledge across all stages.
We divided the editing process into 15 stages according to the sequence of edits, and evaluated the
model after 1500 edits at each stage. As shown in Figure 3(a), the original method MEMIT exhibits
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Figure 4: More performance metrics on the editing datasets: (a) Portability on the COUNTERFACT
dataset, (b) performance on the RECENT dataset (Rel., Alg., Fog.), T=1200; (c) performance on
the WIKICF dataset (Rel., Res., Lgn.), T=400. (d) Compared with the method of adding additional
parameters, WISE, T=1500.

a complete forgetting effect on the initial edits. In contrast, O-Edit shows significant improvements
compared to MEMIT. Moreover, O-Edit performs best for edits between 1000 and 1500, demon-
strating its ability to effectively retain recently edited knowledge. As for O-Edit+, it presents a
balanced editing performance, excelling at updating both the initially edited knowledge and the
recently edited knowledge.

The orthogonal editing method altered the model’s update direction. We evaluated the orthogo-
nality among each update matrix, AW;, by examining the cosine similarity between the correspond-
ing update matrices after applying MEMIT, O-Edit, and O-Edit+. As illustrated in Figure 3(b),
without any constraints, there is a significant overlap in the update directions, which may cause
subsequent edits to influence the directions of prior edits. O-Edit mitigates this overlap by training
an appropriate v,, while O-Edit+ achieves complete orthogonality between each update direction
through post-processing.

The orthogonal editing method reduced the L2 norm of the matrix. The L2 norm is considered
by (Hu et al., 2024b) to be a key factor in limiting the effects of continuous editing. A larger L2
norm can lead to catastrophic forgetting. We visualized the change in the L2 norm of the matrices
after multiple edits in Figure 3(c). For the unconstrained method, MEMIT exhibits a high growth
trend in the L2 norm. In contrast, the orthogonal method reduces the growth trend of the matrix
by constraining the model’s update direction. We further discuss the impact of L2 norm on editing
performance in Appendix B.12, revealing that not all methods of reducing the L2 norm improve the
effectiveness of sequential editing.
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mance (5]

Figure 5: The downstream task performance (%) of models edited by four editing methods with
Mistral-7B and Llama3-8B on the COUNTERFACT dataset.

The orthogonal method performs better for editing any relation. We selected seven representa-
tive semantic relations from COUNTERFACT for a cross-sectional comparison, as shown in Figure
3(d). The results indicate that both O-Edit and O-Edit+ exhibit higher editing accuracy for all rela-
tions, which aligns with the findings in Figure 3(a).

Further Results. @ We followed the methodology in (Zhang et al., 2024a) to evaluate different
editing methods across five additional metrics: Portability (Port.), Subject Aliasing (Alg.), Compo-
sitionality, Reasoning (Res.), Forgetfulness (Fog.), and Logical Generalization (Lgn.), as shown in
Figure 4. For portability, O-Edit and O-Edit+ significantly outperform other methods, with O-Edit+
maintaining about 50% portability even after 1500 edits. Considering the dataset limitations and
the complexity of the evaluation metrics, we chose to perform 1200 and 400 edits on the RECENT
and WIKICF datasets, respectively. In both datasets, O-Edit and O-Edit+ consistently deliver the
best editing performance, demonstrating their suitability for a wide range of editing scenarios. @ In
addition, We further explored applying O-Edit and O-Edit+ for 3000 edits, with the results shown in
Table 13. The original method completely forgets the previously edited and irrelevant knowledge,
while O-Edit and O-Edit+ still maintain very good editing success rates. However, more edits lead
to greater disruption of the original knowledge in the model, and the localization (Loc.) slightly
decreases as the number of edits increases. For all extra experimental results, please refer to the
Appendix B.13. ® We further compared the localized O-Edit+ method with the SOTA method,
WISE (Wang et al., 2024b) that adds additional parameters when performing 1,500 edits. Following
(Wang et al., 2024b), we conducted experiments using the ZsRE dataset and standardized the num-
ber of added or modified layers to 8, with results shown in Figure 4(d). When editing 1,500 times,
O-Edit+ achieved significantly higher editing accuracy than WISE, while maintaining comparable
generalization performance. Due to WISE’s expanded parameter search space, it demonstrated bet-
ter retention of unrelated knowledge, this comes at the cost of additional storage space and inference
time.

5.2 DOWNSTREAM TASKS EVALUATION

Datasets. To investigate the side effects of sequential model editing on the downstream task abilities
of LLMs, we adopted four representative tasks with corresponding datasets for assessment: Com-
monsense Reasoning using the SIQA (Sap et al., 2019), Content Analysis on the LAMBADA
(Paperno et al., 2016), Question Answering with the CommonsenseQA (Talmor et al., 2019), and
MATH on the GSM8K (Cobbe et al., 2021).

Main Results. Figure 5 illustrates the downstream task performance of Mistral-7B and Llama3-8B
after applying MEMIT and O-Edit+ in the COUNTERFACT setting. As shown by the gray line
in Figure 5, MEMIT maintains performance at a certain level when the number of edits is small
(T'" < 200). However, as the number of edits exceeds 1000, MEMIT’s performance drastically
declines, approaching zero (with results on CommonsenseQA resembling random guessing, both
around 20%). In contrast, O-Edit and O-Edit+ effectively tackle this issue by implementing con-
straints that ensure orthogonality between the editing knowledge and the original model’s implicit
knowledge, significantly reducing interference. With O-Edit+ applied for 200 edits, downstream
task performance remains close to that of the unedited model, effectively preserving accuracy across
various tasks. Even after 1,500 edits, O-Edit+ remains to outperform both MEMIT and PRUNE,
demonstrating its robustness in maintaining downstream task performance over extended sequences
of edits. This highlights the effectiveness of O-Edit+ in minimizing interference between edits,
allowing models to retain high performance even in heavily edited environments.
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Figure 6: The impact of different editing methods on the model’s operation mechanism. (a) The
distribution of hidden representations of different editing methods in post-edited LLMs after dimen-
sionality reduction. (b) The distribution of hidden representations with or without editing methods.
(c) The activation score caused by unrelated parameters. (d) The activation score caused by a single
update parameter.

Nevertheless, as the number of edits increases, extensive knowledge editing inevitably leads to di-
minished model performance, a phenomenon described by (Wang et al., 2024b) as the “unbreakable
triangle,” which asserts that no method can achieve perfect editing without compromising other as-
pects of the model’s performance. Despite this, O-Edit+ significantly mitigates this effect, offering
superior performance retention compared to other editing methods such as MEMIT.

5.3 FURTHER ANALYSIS

How do edits disturb model outputs? We aim to study how each added piece of editing information
affects the subsequent outputs of the model. Theoretically, if an editing method is effective, the
output distribution of unrelated knowledge in the model should remain as consistent as possible with
the pre-edit state when using this method. If the editing information is integrated into the subject’s
editing layer through newly created (k., v, ) pairs, the information from v, will influence the hidden
states of subsequent Relation Tokens (“The SpaceX is located in”) via the attention module and
gradually propagate through decoding to impact the final model output. To investigate how this
newly added information affects the hidden states of relation tokens, we conducted the following
two sets of experiments:

We preserved the update matrix AW, for each i-th edit from 1500 edits. Subsequently, we first
measured the impact of adding a single AW; on the final-layer hidden states of relation tokens for
each edited piece of knowledge i. Then, we measured the impact of adding AWy = Z?:l AW;
on the final-layer hidden states of relation tokens. The results were dimensionally reduced using
t-SNE, as shown in Figure 6 (a). It can be observed that the distribution difference between single
and multiple edits in MEMIT is significant, indicating that multiple edits affect the model’s final
outputs. In contrast, the distributions for O-Edit+ show almost no difference, suggesting that the
results of multiple edits do not affect the model’s output distribution for each edited knowledge.

We also examined the distribution of relation tokens in the original model compared to the dis-
tribution after adding AWnretaed = AWiora] — AW, Theoretically, AW yretaea should carry no
meaningful information for the edited knowledge j, and we expect the distribution after adding
AWinrelawed to remain consistent with Worigina. The experimental results are shown in Figure 6 (b).
It can be seen that using O-Edit+ with AW\ elaeq has almost no effect on the edited knowledge 7,
while MEMIT causes a shift in the distribution.

How do edits disturb each other? To investigate the extent of interdependencies among knowl-
edge updates during the sequential editing process, we preserved the update matrix AW, for each
i-th edit. Upon completion of the sequential editing, the model’s cumulative update matrix is com-
puted as AWjioran) = Z?Zl AW;. For the j-th edit, we compute AWinretaed = AWiioa] — AW,
which excludes the update matrix AW} corresponding to k;. According to Hu et al. (2024a), under
ideal sequential editing, the knowledge vector k; used during the j-th edit should not activate any



Under review as a conference paper at ICLR 2025

unrelated AW.; (i.e., any update matrix other than AW);), meaning || AWnrelated - Kj]j2 = 0. We
calculate the activation score (AS) for each edit as ||AWynrelated - %j]|2. As illustrated in Figure 6
(c), after 1,500 edits, the original method exhibited high activation scores (AS), with some values
reaching approximately 2.5 and others exceeding 10. This indicates that in the original method, any
unrelated AW.; (i.e., any update matrix other than AW);) could significantly activate k;, leading
to a substantial deviation from the ideal state v, and resulting in the failure of MEMIT in sequential
editing. In contrast, both O-Edit and O-Edit+ consistently achieved activation values below 2.5 for
nearly all edits, with some values approaching zero. In Appendix B.12, we analyze the reasons for
this phenomenon from a mathematical derivation perspective, highlighting that the key lies in the
orthogonality of the column subspaces of each update matrix.

We aim to further understand the interaction between the j-th k; and AW;. We calculate the activa-
tion score (AS) for each edit as [|AW; - k;||2 (|| AWown - kj|2), as illustrated in Figure 6 (d). After
1500 edits, the activation values in MEMIT gradually increase with the number of edits due to the
significant activation value || AW, - kjll2 (| AWaunrelated - k;]|2). This phenomenon occurs because
completing an edit requires a larger activation value to counteract the influence of previous edits,
resulting in a vicious cycle and ultimately poor sequential editing performance. In contrast, the ac-
tivation values for ||[AW; - kjll2 (|AWunrelated - 5 ||2) in O-Edit and O-Edit+ remain consistently
low, indicating that a large activation value for | AW - k|2 is not necessary to complete a new
edit. Consequently, although the activation values are small, O-Edit and O-Edit+ allow for a greater
number of effective edits.

How does the degree of orthogonality between knowledge affect the effectiveness of sequen-
tial editing? To explore the impact of orthogonality on editing effectiveness, we modified the
hyperparameters A; and A2 € {0, 1,10, 20,50} in O-Edit to adjust the degree of orthogonality be-
tween knowledge. As shown in Table 6, increasing A; and Ay improves the orthogonality between
knowledge (see Eqn.8), leading to enhanced editing performance. When A; and A, are set to O,
O-Edit degenerates into MEMIT. Even with A\; = 1, O-Edit outperforms MEMIT across all met-
rics. This improvement occurs because increased orthogonality ensures that edits are performed
in independent subspaces, minimizing interference with previously edited knowledge and reducing
catastrophic forgetting. When A; and Ag reach 50, performance peaks, demonstrating an improve-
ment of 0.24 in Mistral-7B and 0.31 in Llama3-8B compared to MEMIT. Higher values of A; and
Ao enhance the independence between editing directions, ensuring that new knowledge edits do
not disrupt existing model knowledge. This indicates a positive correlation between orthogonal-
ity and editing effectiveness. For detailed hyperparameter comparisons in O-Edit and O-Edit+, see
Appendix B.9.

6 LIMITATIONS

While O-Edit and O-Edit+ demonstrate robust sequential editing performance, several limitations
persist. Due to computational constraints, we restricted our experiments to Mistral-7B and Llama3-
8B, leaving the scalability of our methods on larger models untested. Additionally, constructing or-
thogonality between edits adds computational overhead, which may prolong editing times. However,
O-Edit and O-Edit+ require maintaining only two additional matrices, making them both model-
agnostic and compatible with other sequential editing techniques. Furthermore, we did not evaluate
O-Edit and O-Edit+ against other editing methods, such as fine-tuning (FT), as these approaches
tend to falter after only a few sequential edits, whereas ROME and MEMIT can support more exten-
sive editing sequences. Despite these challenges, we believe our methods hold promising potential,
particularly in the early stages of research on sequential model editing.

7 CONCLUSION

In this paper, we present two innovative methods—O-Edit and O-Edit+ that leverage orthogonal sub-
space editing for sequential knowledge editing in language models. These methods effectively mit-
igate catastrophic forgetting of both edited and existing knowledge by incrementally applying edits
in orthogonal subspaces. Our methods distinguish themselves through their attention to data privacy,
efficient parameter utilization, and strong generalization capabilities for downstream tasks. Com-
prehensive empirical evaluations indicate that O-Edit and O-Edit+ significantly outperform existing
methods, establishing them as promising avenues for future advancements in sequential knowledge
editing.
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A RELATED WORK

A.l KNOWLEDGE EDITING

From the perspective of whether model parameters are modified, (Yao et al., 2023) categorized
knowledge editing methods into two major classes: preserving the model’s parameters and modify-
ing the model’s parameters. This paper primarily focuses on the latter. On one hand, meta-learning
has been used to predict parameter updates for networks, typically employing a hypernetwork to
edit language models. (Cao et al., 2021) used a bidirectional LSTM to predict weight updates for
editing, while (Mitchell et al., 2022a) utilized low-rank decomposition of gradients to fine-tune lan-
guage models, known as MEND, and (Tan et al., 2024) extended single-step edits to batch edits
using a least squares method based on MEND. On the other hand, (Meng et al., 2023a; Dai et al.,
2022) employed a causal probe to localize knowledge within the intermediate layers of the model,
demonstrating that editing in the MLP of the middle layers yields the best results. (Dai et al., 2022)
performed knowledge editing by modifying the activation values of specific neurons. (Meng et al.,
2023a) used a constrained least squares method to precisely solve for the parameter updates required
for editing and extended this approach to batch editing (Meng et al., 2023b).

A.2 SEQUENTIAL EDITING

Some studies have extended knowledge editing methods to sequential editing. From the perspective
of modifying model parameters, (Ma et al., 2024) theoretically analyzed that the bottleneck limiting
sequential editing in models lies in the condition number of matrices, and they attempted to support
sequential editing by controlling the growth of the matrix condition number. (Hu et al., 2024b) at-
tributed the decline in performance during sequential editing to pattern mismatch, where different
layers detect different patterns, making a single layer incapable of accommodating all the edited
knowledge. Thus, they selected the optimal layer from multiple layers for editing. Additionally,
(Hu et al., 2024a) explored the root causes of failures in sequential editing, deriving a closed-form
solution from linear associative memory. They posited that lossless sequential editing can only be
achieved when the edited knowledge is completely orthogonal. From the perspective of adding ad-
ditional parameters while freezing model parameters, SERAC (Mitchell et al., 2022b) stores edits
in memory. When an input is received, a classifier checks whether it corresponds to any cached
edits. If a match is found, a counterfactual model uses the input and relevant edits to predict outputs.
GRACE (Hartvigsen et al., 2023) uses semantic similarity in the model’s latent space by adding an
offline key-value adapter at the selected layers, applying edits only to inputs that are similar to the
keys cached in the encoding. WISE (Wang et al., 2024b) uses a dual-parameter storage scheme,
where the main memory is used for pre-trained knowledge and the side memory is designated for
edited knowledge. By incorporating a knowledge sharding mechanism, it allows for editing knowl-
edge in different parameter subspaces and merges them into the shared side memory without causing
conflicts. In this paper, we consider the scenario of directly updating model parameters.

A.3 CONTINUAL LEARNING

The orthogonal concept presented in this paper is inspired by continual learning. Existing continual
learning methods typically update all tasks within a shared vector space (Ke & Liu, 2023), which
directly affects the model’s hidden layer outputs (Wang et al., 2024a). Some studies (Farajtabar
etal, 2019; Saha et al., 2021) have proposed a promising approach to address this issue by perform-
ing gradient descent optimization in directions orthogonal to the gradient subspaces of past tasks,
effectively mitigating catastrophic forgetting. GPM (Saha et al., 2021) divides the gradient space
into two key areas: the “Core Gradient Space” (CGS) and the “Residual Gradient Space” (RGS). By
learning in the orthogonal directions of the CGS related to previous task inputs, it ensures minimal
interference with past tasks. Based on GPM, TRGP (Lin et al., 2022) introduces a “trust region”
concept to select old tasks relevant to new ones, reusing their frozen weights through scaled weight
projections. By optimizing the scaling matrix and updating the model along orthogonal directions
to the old tasks’ subspace, TRGP effectively facilitates knowledge transfer without forgetting. O-
LoRA (Wang et al., 2023b) suggests that parameter information updated through low rank can be
approximately equivalent to gradient information, which expands the application scenarios of con-
tinual learning and enables effective learning even in scenarios where gradient information cannot
be obtained.
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B ALGORITHM

B.1 ORTHOGONAL GRADIENT DESCENT FOR CONTINUAL LEARNING

Consider a continual learning setting where tasks {77, T3, T3, ...} are learned sequentially without
access to previous task data. Suppose that the model has been trained on 7’4 in the usual way until
convergence to a update parameter w’ . To mitigate the impact on T4 while training on the next task
T'p, Farajtabar et al. (2019) propose to “orthogonalize” it in a way that the new update direction g
on 1T'p satisfies:

gL Vf(x;wy), VaeTa. (12)

One can compute and store V f(z; w) for all x € T4 when training on T4 is done. In a continual
learning scenario involving multiple tasks, the direction of gradient updates is determined by:

nA

G=9-Y projg.(9) =9-> (9.8 (13)
=1

i=1

The new direction -g is still a descent direction for Tz, meaning that there exists ¢ > 0 such that for
any learning rate 0 < 1 < ¢, taking the step -ng reduces the loss.

B.2 SINGULAR VALUE DECOMPOSITION AND RANK-7 APPROXIMATION

Singular Value Decomposition (SVD) decomposes any matrix W &€ R™*™ into three matrices:
W =UZVT, where U € R™*™ and V € R™*™ are orthogonal matrices, and X is a diagonal ma-
trix containing the singular values o; of W, ordered in descending magnitude. SVD is instrumental
in solving the rank-r approximation problem, where the goal is to find a matrix W that minimizes
[[W — Wl subject to rank(W) < r. According to the Eckart—Young—Mirsky theorem (Eckart &
Young, 1936), the optimal rank-r approximation W is given by W = >"7_, o;u;v}, obtained by
truncating the SVD of W to retain the top 7 singular values and their corresponding singular vectors,
where r < min{m, n}.

B.3 ROME

In their study, (Meng et al., 2023a) employed causal mediation analysis to identify that feed-forward
neural networks (FFNs) play a crucial role in retaining factual knowledge. The FFN is decomposed
into two matrices, represented as follows:

FENY2) = W},.; - o(W}.-~y(a' + h71)) (14)
Here, a' € R? represents the output of the attention module at the I-th layer, and h!~! € R? denotes
the output of the previous layer. The matrices W}C € Rdmxd and Wzl,mj € RXdm gerve as the
parameter matrices for the FFN at the [-th layer. Here, d,, is the dimension of the intermediate
hidden state, o denotes the activation function, and normalizing nonlinearity ~.

Building on the key-value memory theory introduced in (Geva et al., 2021; 2022), the matrix W}C is

responsible for identifying input patterns, which leads to the generation of the key vector k& € RY .
In contrast, WTl)mj retrieves the corresponding value vector v € R?. This establishes Wzln"oj as a
linear key-value memory system, where the set of key vectors K = {k1, ko, ...} is associated with
the corresponding set of value vectors V' = {v1,va,...}. The relationship between the keys and

values can be succinctly expressed as W K = V/, thereby completing the transformation process.

Meng et al. (2023a) propose ROME, in which new knowledge is represented as a key-value pair
(k«, vs) and is integrated into the model by addressing the following constrained least squares prob-
lem:

min |[WK — V|5 subjectto Wk, =v,, with W =W +AC k).  (15)
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Here, AW = A(C _1k*)T, k. represents the query associated with the knowledge to be edited,
such as x = “The president of the US is”, where k, corresponds to the hidden state of the last token
(index ) of the subject (e.g., “US”). The key vector k, is defined as:

N
k, = ;/’; k(s; +z), wherek(z)=o0 (W}C’Y (afw],i + hﬁfl)) ’ (16)

with s; representing prefix texts for robustness. The value vector v, denotes the edited knowledge
result, for instance, “Harris” or “Trump”, computed as v, = arg min, £(v), where L(v) is given
by:

N

1 *
L(v) = ¥ Z —log Ply—y.)[0%|p; + 2] + Dk (Pew=o.)z|p'] || Palz|p']) - (17)
j=1

The first term serves to update the knowledge, while the second term preserves the essence of the
subject. The objective is to modify the model’s response to the knowledge query, yielding an output
0* (e.g., “Harris” or “Trump”). Additionally, C = K K7 is a pre-computed constant that estimates
the uncentered covariance of k, and A = (v, — Wk,)/(C~ k)T k. represents the residual error of
the new key-value pair. Further details can be found in (Meng et al., 2023a).

To manage editing intensity, (Meng et al., 2023b) introduced MEMIT, which computes matrix
updates by solving:

W =W + RkT(C + k k7)™, (18)

where AW = RkT(C + kkT)~',C =X - KKT, and R = v, — Wk, € R? is a column vector.
The parameter \ allows for adjusting the balance between new edits and the original knowledge. It
is noteworthy that in both ROME and MEMIT, only v, is derived through the training process,
and this operation will be optimized in subsequent steps. For additional implementation details
regarding MEMIT, please refer to Appendix B.4.

B.4 MEMIT

In this paper, we consider the scenario of editing one piece of knowledge at a time. Similar to ROME,
MEMIT views Wéroj as a linear key-value memory for a set of vector keys K = {kq,ks,...} and
corresponding vector values V' = {v1,v9,...} by solving WK = V. It attempts to insert a new
key-value pair (k., v,) into the model by solving the following constrained least squares problem:

2) . (19)

W= argmin (HWK — VH + HWk* — Uy
W 2

MEMIT solves Eqn. 19 by applying the normal equation, which is expressed in block form:

—~ KT KT
Wik k|| = wl{fr] (10)
which expands to:
(W+A) (KK + kk]) =VE" +v.k], (11)
WKKT + WkkT + AKTK + AkTk, = VKT + 0, k7. (12)
Under the condition W K =V, we can simplify to:
AKKT + k kD) = v, kT — WkkT, (20)
yielding:
A= (ve — WkO)ET(KKT + kD)7 1)
Thus, the final update rule is:
W =W+ (v, - Wk)kT(KKT + k, k7)1 22)
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Here, (v, — Wk,) € R?is a column vector, and k7 (K KT + k,kT)~! € R%m is a row vector. By
adjusting the hyperparameter \, MEMIT balances the preservation of existing knowledge and the
incorporation of new edits. Consequently, the updated equation is expressed as follows:

W =W+ (v, - Wk)kTOKKT + k, k7)1 (23)

Like ROME, K KT is pre-cached by estimating the uncentered covariance of & from a sample of
Wikipedia text. The rank of the update matrix AW = (v, — Wk )k (AK KT + k,kT)~! obtained
through ROME and MEMIT is 1.

In fact, MEMIT is a scalable extension of ROME. By increasing A\, MEMIT effectively enhances
the retention of existing knowledge while also allowing for new updates. However, the restrictive
conditions imposed by ROME, which require k.W = v, as seen in Eqn. 15, can be overly stringent
and may lead to greater disruption of existing knowledge within the model.

B.5 O-EDIT AND O -EDIT+

We will provide a detailed explanation of the calculation formula for O-Edit. To explain how to
compute Eqn. 5, we first analyze the properties of the update matrices for each piece of knowledge.
Based on the matrix property rank(AB) < min(rank(A), rank(B)), the ranks of A(C~'k,)T in
Eqn. 15 and RkI(C + k.kl)~! in Eqn. 18 are both 1. In the i-th edit, the rank of the cached
AWiotal] € R¥*dm 5 at most i, with equality when each k, is linearly independent. After several
edits, rank(AWjora)) = 1 X iteration, but as updates increase, rank(AW o) may fall below the
iteration count. Therefore, 7 is always equal to rank(AWjerayy), and AW, is AWy itself.

During the computation process, we observe that AW = Uaw, Zaw, VATW,» where Uaw, €
Rdm X7 Vaw, € R*" and & Aw, 1s a diagonal matrix. Eqn. 2 can be rewritten as:

Uaw, Baw, Vaw, - AWjg) = 0. (24)

We only need to ensure that v, — Wk, is orthogonal to V.. Therefore, Eqn. 5 can be rewritten as:

I . ,
fl = ; zz:; Slm(VAWr [7/], (U* — Wk*)) (25)

The key reason for using cosine similarity instead of Vi, - (v, — Wk,) is that the latter may lead to
trivial solutions, i.e., v, — Wk, = 0, while cosine similarity considers angular information. In fact,
merely reducing the norm of v, — Wk, does not effectively enhance the effectiveness of sequential
editing. The success of O-Edit and O-Edit+ lies in identifying the correct update direction during
the sequential editing process. For further details, see Further Analysis 5.3.

Furthermore, when calculating VG, we utilized a large amount of natural text, resulting in VG
being a high-rank matrix, which is distinct from AWjy. We dynamically adjust ¢ to select the
core gradient subspace (CGS) of VG, defined as VGqT = UvquvngVTGq. The purpose of this
adjustment is to counteract the cumulative impact of edited knowledge on the implicit knowledge
within the model as the number of edits increases. We adjust ¢ to increase linearly with the number
of edits. In practice, we compute Eqn. 7 by removing the projection of Vi, onto Vaw,:

Vo, = Vea, — Vaw,Vaw Vea,- (26)

Finally, we compute Eqn. 9 as follows:
1 q
fo= QZ sim(Vyg, [i], (ve — Wk,)). 27)
i=0

Next, we will provide a detailed explanation of the calculation formula for O-Edit+. To ensure
that the column subspaces of AW, and AWy are orthogonal, it is sufficient to ensure that the
projection of AW/y) onto the standard orthogonal basis of the column space of AW, is zero. Similar
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to O-Edit, AW, is AW, and VG is a high-rank matrix. Eqn. 10 can be rewritten as:
AW = AWy — Vaw, VAw, AWy,
Vva, = Vea, = Vaw,Vaw, Vva,: (28)
AWy = AWy — Ve, Vig, AWy

O-Edit and O-Edit+ are adaptations of ROME and MEMIT for sequential editing, and all experi-

mental settings are consistent with those of ROME and MEMIT. Readers can refer to Algorithm 1
and Algorithm 2 for their pseudo-code.

Algorithm 1 Algorithm for Sequential Editing with O-Edit

Require: Degiy = {(Xe, Ve) | (z1,41),- - ., (7, yT)}, original weight W, hyperparamter r, ¢, A1,
A2, Az, gradient information VG.
Ensure: The optimal parameter W
1: for Iteration € T do
2:  if Iteration = 1 then

3: g A3 x1,r<0
4: VGT = UvngvngVTGQ — IVG4 — VG2, subject to rank(VG,) = ¢ // Obtain by
calculating the SVD decomposition of VG
5: Compute k, = + Z;\le k(s; + x) (Eqn. 16)
6: Compute v, by optimizing £(v) + 0 - fi(AW,;v) + A2 fo(VGy;v) (Eqn.8) // Eqn. 25, 27
for compute f; and fo.
7: AWy < A(C71k,)T for ROME (Eqn.15) // AW, < RkT(C + k.kI')~! for MEMIT
(Eqn. 18)
8: W < W + AWy // Update original weight W to W
9: Initialize AW o < AW
10:  else
11: q < Az x Iteration, r < min(1 x Iteration - 1, rank(AWjor)))
12: VG =Uvq,Yva,Veg, < [IVGy — VG2, subject to rank(VG,) = ¢
13: AWE = Uaw,Xaw,Viy, <« AW, — AWjayll2. subject to rank(AW,) = r /
Actually, AW, = AWiotan)
14: VG, = VG, — AW, (AWIAW,)"TAWTVG,, Il Avoid knowledge conflicts, compute
by Eqn.26
15: Compute k, = Zj\;l k(s; + ) (Eqn. 16)
16: Compute v, by optimizing £(v) + A1 f1(AW,;v) + A2 f2(VGy; v) (Eqn.8) // Eqn. 25, 27
for compute f; andfs.
17: AW[Iteration] — A(Cilk*)T for ROME (EqnlS) // AW[Ileration] — Rk‘*T(C + If*kzﬂ)il for
MEMIT (Eqn. 18)
18: W < W + AWiteration] // Iterative update of the model weights
19: AWiotall+ = AWiiteration) // Update the cache of AWora)
20:  endif
21: end for

22: return update weight W

B.6 HOW TO CHOOSE AN APPROPRIATE V(|

The core of our method lies in capturing the update direction of implicit knowledge within the
model. Theoretically, if we view the model as a knowledge base (Petroni et al., 2019), the update
direction should align with the gradient direction in which the model continues to learn from this
knowledge. Thus, selecting the appropriate knowledge base is crucial for determining the model’s
update gradient. We explored the following methods:

* We selected 100,000 pieces of unrelated knowledge from COUNTERFACT, which are
outside the experimental test samples. This set, referred to as “locality _prompt” in Figure
8, serves as the expected gradient direction.
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Algorithm 2 Algorithm for Sequential Editing with O-Edit+

Require: Degy = {(Xe, Ve) | (z1,¥1),- - ., (7, y7)}, original weight W, hyperparamter r, ¢, A3,

gradient information VG.

Ensure: The optimal parameter W
1: for Iteration € T do

2 if Iteration = 1 then
3: g A3 x1,r<0
4: VGI = Uvg,2ve, Ve, « VG — VG2, subject to rank(VG,) = ¢ // Obtain by
calculating the SVD decomposition of VG
5: Compute k, = + E;\Ll k(s; + =) (Eqn. 16)
6: Compute v, by optimizing £(v) (Eqn.17)
7: AWy + A(C7'k,)T for ROME (Eqn.15) // AWy + RET(C + k.kI)~! for MEMIT
(Eqn. 18)
8: AWy = AWy — Vg, VgquW[l]. (Eqn. 28)// Orthogonal post-processing
9: W « W + AWy, // Update original weight W to W
10: Initialize AW[total] < AW[H
11: else
12: q < A3 X Iteration, r < Iteration — 1
13: VG = UvquvngvTGq +— |[VG, — VG||2, subject to rank(VGy) = ¢
14: AWTT = UAWTEAW,.VATWT — ||AWT — AW[tolal]||2s subject to rank(AWr) =7l
Actually, AW, = AW oty
N
15: Compute k, = + > j—1 k(s; + x) (Eqn. 16)
16: Compute v, by optimizing £(v) (Eqn.17)
17: AW iteration] < A(C7k,)T for ROME (Eqn.15) // AWieration < REX(C + ko kT) =1 for
MEMIT (Eqn. 18)
18: AI/V[Iteration] = AvV[Iteration] - VAWT ngr,AW[Ileration]
Vea, = Vg, — Vaw. VATWT V@, (Eqn. 28) // Orthogonal post-processing
AVV[Iteration] = AVV[Iteration] - VVGq VVTG qAW[Iteration]
19: W < W + AWiteration] // Iterative update of the model weights
20: AW[total]+ = AW[Iteration] /I Update the cache of AW[total]
21:  endif
22: end for

23: return update weight 1%
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We utilized the knowledge employed by (Meng et al., 2023a), which successfully identified
how knowledge is stored within the model.

For comparison, we randomly generated 100,000 text samples using ASCII codes.

We also used Wikipedia as a knowledge source, as it is commonly chosen for pre-training
in large language models (LLMs).

The experimental results are presented in Appendix Table 2. We maintained consistency in the
parameters related to AW ;o) across experiments, with the only variable being the source of the VG
corpus. Randomly generated text yielded the poorest performance, while the “locality_prompt” from
COUNTERFACT achieved the second-best results, only surpassed by Wikipedia, which produced
the best outcomes. These results also serve as reverse validation that the implicit knowledge within
the model is embedded in its pre-training data.

Table 2: Different corpus results for COUNTERFACT. 7: Num Edits.

MEMIT

COUNTERFACT
T =200 | T = 500 | T = 1000 | T = 1500

Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.

Mistral-7B

Corpus® 0.89 062 0.74 | 0.75 | 0.79 0.55 0.61 | 0.65 | 0.64 037 052 | 054 | 0.57 039 0.51 | 0.49
Corpus® 0.90 062 0.73 | 0.75 | 0.76  0.53 0.60 | 0.63 | 0.62 033 0.50 | 048 | 0.54 0.36 0.49 | 0.46
Corpus® 0.86 060 0.73 | 0.73 | 0.74 0.51 056 | 0.60 | 0.59 032 044 | 045 | 0.57 033 046 | 045
Corpus® 0.89 061 0.78 | 0.76 | 0.81 0.55 0.60 | 0.65 | 0.68 0.39 0.55 | 0.54 | 0.61 042 0.53 | 0.52

Llama3-8B

Corpus® 0.88 047 0.65 | 0.67 | 0.85 048 036 | 056 | 0.79 047 029 | 052 | 0.77 046 0.26 | 0.49
Corpus® 091 048 0.66 | 0.68 | 0.85 0.50 0.40 | 0.58 | 0.79 047 030 | 0.52 | 0.74 0.44 027 | 048
Corpus® 0.85 041 0.63 | 0.63 | 0.83 045 031 | 053 | 0.74 041 024 | 046 | 0.70 035 0.19 | 041
Corpus® 0.88 0.53 0.76 | 0.72 | 0.84 0.51 045 | 0.60 | 0.81 0.50 031 | 0.54 | 0.79 0.44 0.28 | 0.50

B.7 BASELINE EDITING METHODS

We selected five popular model editing methods as baselines:

ROME (Meng et al., 2023a) has been previously discussed. In this experiment, we edit the
8th layer, which is regarded as a crucial location for knowledge storage. We utilize second
moment statistics C' o< E[kkT] computed from more than 100,000 samples of hidden states
k derived from tokens sampled across all Wikipedia text in context.

MEMIT (Meng et al., 2023b)—the detailed computation process can be found in Appendix
B.4. We set A = 15,000 to balance the knowledge in the model with the knowledge
required for editing. Other settings are consistent with those in ROME.

R-Edit (Gupta et al., 2024a) attributes the suboptimal performance of ROME and MEMIT
to the inadequacy of the calculated k. in representing the subject of the queried knowledge.
R-Edit enhances the calculation of k, in Egs. 15 and 18 to address this issue.

WIIKE (Hu et al., 2024b) argues that different types of knowledge should be distributed
across various layers. For each piece of knowledge edited, WilKE first determines the
optimal layer for editing and then applies either ROME or MEMIT to perform the edit.
Due to the time and computational cost of finding the optimal layer, we restrict the editable
layers in this paper to | = {5,6,7,8,9,10}.

PRUNE (Ma et al., 2024) suggests that the key factor influencing sequential editing perfor-
mance is the condition number of the matrix. PRUNE scales the singular values in AW,y
that exceed the maximum singular value of the original model, ensuring that no singular
value surpasses a specified threshold. We adhere to the experimental setup outlined in Ma
et al. (2024) and scale the larger singular values using the following method:

F(6:) = log 5(6i) — logy o(max {0;}) + max {o}.
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Table 3: Different orthogonal method results for COUNTERFACT. 7": Num Edits.

COUNTERFACT
Method T =200 | T = 500 | T = 1000 | T = 1500

Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.

Mistral-7B
MEMIT 093 0.67 041 ‘ 0.67 ‘ 0.50 035 0.10 ‘ 0.32 ‘ 0.28 0.10 0.06 ‘ 0.15 ‘ 0.19 0.06 0.05 ‘ 0.10
QOnlyA Wiy 091 054 077 | 074 | 079 053 055 | 062 | 0.61 037 051 | 050 | 0.55 037 046 | 046
e0nlyvVG 089 055 074 | 072 | 0.76 0.50 0.51 | 0.59 | 0.57 034 049 | 047 | 044 027 024 | 032
©®Without Eqn.7(26) 089 0.59 0.77 | 0.75 | 0.78 0.56 0.56 | 0.63 | 0.58 0.37 052 | 049 | 049 0.36 049 | 044
O-Edit+ 0.89 061 078 0.76 0.81 055 0.60 | 0.65 | 0.68 0.39 0.55 | 0.54 | 0.61 042 0.53 | 0.52

Llama3-8B
MEMIT 085 051 0.22 ‘ 0.52 ‘ 0.50 035 0.10 ‘ 0.32 ‘ 0.28 0.10 0.05 ‘ 0.14 ‘ 0.18 0.06 0.05 ‘ 0.10
QOnly AWy 091 049 0.65 | 0.68 | 0.87 0.54 036 | 059 | 0.78 045 028 | 050 | 0.74 041 0.25 | 047
e0nlyvVG 087 049 062 | 0.66 | 077 041 032] 050 | 0.64 032 028 | 041 | 055 0.28 022 035
©Without Eqn.7(26) 0.88 048 0.65 | 0.67 | 0.87 0.50 041 | 0.60 | 0.78 046 032 | 052 | 0.67 0.39 028 | 043
O-Edit+ 0.88 053 0.76 0.72 084 051 045 | 0.60 | 081 0.50 031 | 0.54 | 0.79 044 0.28 | 0.50

B.8 EXPERIMENTS COMPUTE RESOURCES TIME AND HYPERPARAMETERS

We conducted our experiments using NVIDIA A100 40GB GPUs. For Mistral-7B and LLaMA3-8B,
ROME and MEMIT require approximately 35GB of memory and take about 2.5 hours to process
1500 edits. In comparison, O-Edit and O-Edit+ take about 4.5 hours for the same number of ed-
its. The additional computation time is primarily due to the singular value decomposition (SVD)
of matrices. For VG, its SVD is computed once prior to the first edit, with the V' matrix saved for
reuse. However, for AW/oa), Which is dynamically updated, the SVD must be recomputed after
each knowledge edit. On average, computing the SVD for a matrix W € R?#096x14336 areg ap-
proximately 4 seconds, while a single edit using ROME or MEMIT takes around 6 seconds. For
sequential editing, O-Edit and O-Edit+ require only one SVD computation on average per edit, with
results significantly surpassing those of traditional methods by several times. See Table 4 for the
specific computation times.

Table 4: Computation Time (seconds).

Method Datasets
COUNTERFACT-1500  ZsRE-1500  RECENT-1200  WIKICF-400
ROME 8716 8694 6917 2251
+0-Edit 13289 13961 10663 4591
+0-Edit+ 12286 12664 9451 4256
MEMIT 9122 9345 7533 2614
+0O-Edit 15438 15957 12640 4997
+O-Edit+ 14766 14664 10854 4651

For all experimental settings of O-Edit, we set A\; and Ao = 50. For O-Edit+, we set A3 = 2 for
Mistral-7B and A3 = 1 for LLaMA-8B in MEMIT; A3 = 2.5 for both Mistral-7B and LLaMA3-
8B in ROME. In the next Section B.9, we conducted detailed ablation experiments and parameter
selection experiments to further analyze the impact of hyperparameters on editing performance.

Another potential issue arises when ¢ exceeds the dimensions of the model (min(d, d,,))’. In this
paper, we have considered 1500 edits. When the number of required edits exceeds this amount,
q can be constrained by setting it below a certain threshold to ensure the feasibility of performing
additional edits. A smaller threshold for ¢ typically results in more effective edits, while a larger
threshold tends to preserve the model’s ability to retain unrelated knowledge. However, in general,
increasing the number of edits tends to cause greater degradation in the model’s performance.

B.9 ABLATION EXPERIMENTS

First, we wanted to see if both AW/ and VG contributed effectively. We set up three baselines:
O using only AWiiar; @ using only VG, and © using both AW and VG without orthogonal
processing for VG according to Eq.7(26). The results are shown in Table 3. We observed that while
using either AWjiora) or VG alone yielded better results than the original method, their performance

3The dimension of W, in both Mistral-7B and LLaMA3-8B is R*096x 14336
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Table 5: Hpyerparameter selection results for O-Edit+. 7: Num Edits.

COUNTERFACT
T =200 | T =500 | T = 1000 | T = 1500
Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.
Mistral-7B
ROME 0.72 053 031 ‘ 0.52 ‘ 0.30 0.18 0.14 ‘ 0.21 ‘ 0.28 0.10 0.06 ‘ 0.15 ‘ 0.27 0.13 0.05 ‘ 0.13

Az =1 092 050 0.73 | 0.71 | 0.60 034 034 | 042 | 038 0.13 0.17 | 022 | 0.35 0.17 0.10 | 0.20
Az =2 095 047 073 | 0.71 | 0.64 034 040 | 046 | 043 0.16 021 | 026 | 0.37 0.19 0.17 | 0.24
A3=25 094 047 0.76 | 0.72 | 0.65 0.38 0.41 | 048 | 049 021 0.29 | 0.33 | 041 0.21 0.24 | 0.29

MEMIT 093 0.67 041|067 | 050 035 0.10 | 032 | 028 0.10 0.06 | 0.15 | 0.19 0.06 0.05 | 0.10

Az=1 088 053 0.76 | 0.72 | 0.81 047 056 | 0.61 | 0.70 038 048 | 0.52 | 0.60 030 044 | 0.44
A3=25 084 050 0.84 | 073 | 077 040 0.62 | 0.59 | 0.62 031 0.61 | 0.51 | 0.55 0.23 0.56 | 0.44

Method

A3 = 0.89 061 0.78 | 0.76 | 0.81 0.55 0.60 | 0.65 | 0.68 0.39 0.55 | 0.54 | 0.61 042 0.53 | 0.52
Llama3-8B
ROME 0.75 048 0.14 \ 0.46 \ 0.69 045 0.05 \ 0.40 \ 0.75 0.46 0.02 \ 0.41 \ 047 028 0.02 \ 0.31

A3 =1 088 047 030 ] 055|084 047 0.10 | 047 | 0.78 048 0.07 | 0.44 | 0.76 034 0.07 | 0.39
Az =2 085 050 0.38 | 0.58 | 0.80 0.51 0.13 | 048 | 0.87 046 0.09 | 047 | 0.84 039 0.09 | 0.44
A3=25 086 0.61 037|061 | 081 052 024|052 08 049 0.19 | 051 | 087 0.50 0.13 | 0.50

MEMIT 085 051 022052050 035 010 032|028 010 0.05|0.14 |0.18 0.06 0.05 | 0.10
A3 =05 088 047 0.61 | 065|084 047 038 ] 056 | 0.78 048 030 | 052 | 076 046 0.25 | 0.49
Az = 086 049 0.66 | 0.67 | 0.84 0.52 042 | 059 | 0.78 046 033 | 052 | 0.73 043 0.30 | 0.49
Az = 088 053 0.76 | 0.72 | 0.84 051 045 | 0.60 | 0.81 050 031 | 0.54 | 0.79 0.44 0.28 | 0.50

was still inferior to using both together. The lack of orthogonalization for VG led to knowledge
conflicts within the model, resulting in inferior performance compared to O-Edit+.

Next, we compared the effects of different hyperparameter selections on editing performance be-
tween O-Edit and O-Edit+, as shown in Tables 5 and 6. In O-Edit+, two noteworthy phenomena
were observed. First, MEMIT’s A3 is smaller than that of ROME due to ROME’s stronger con-
straints, which can degrade the performance of unrelated knowledge (Loc.) during sequential edit-
ing. Consequently, we opted for a larger A3 = 2.5 to mitigate ROME’s influence. Second, while a
smaller A3 improves performance with MEMIT, it still negatively impacts unrelated knowledge, and
a larger A3 affects the editing effect (Rel., Gen.). Therefore, selecting an appropriately sized Aj is
crucial for optimal overall editing performance.

In the O-Edit setting, we compared the editing performance under four different settings. The results
showed that stronger constraints led to better outcomes, as A; and A, effectively controlled the
correlation between different edits. Larger \; values resulted in smaller correlations between edits,
while larger A\, values reduced the correlation between edited and implicit knowledge within the
model.

B.10 EDITING DATASETS AND EXTRA METRICS

» ZsRE question answering task (Levy et al., 2017) was first used for factual knowledge eval-
uation by (Cao et al., 2021), later being extended and adopted by (Mitchell et al., 2022a).
We conduct the experiment using the version provided by (Yao et al., 2023) in EasyEdit®.
Figure 7 shows examples from ZsRE.

* COUNTERFACT is designed to enable distinction between superficial changes in model
word choices from specific and generalized changes in underlying factual knowledge. Fig-
ure 8 shows examples from COUNTERFACT.

* RECENT Zhang et al. (2024a) is a dataset that specifically focuses on triplets that have
been recently inserted into WIKIDATA after July 2022. Consequently, this dataset enables
us to create insertion edit requests for models that were trained prior to the introduction
of these facts, thereby simulating scenarios where an outdated model meets the new world
knowledge. We utilize the original datasets provided by the authors and split them into
training and testing sets.

» WIKICEF: Since tail entities are often not captured by models, and therefore are not suitable
for testing modification edits, the authors (Zhang et al., 2024a) collect triplets about popular

Shttps://github.com/zjunlp/EasyEdit
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entities, where the subject corresponds to one of the top-viewed pages in Wikipedia. They
also collect a dataset by randomly sampling entities from Wikidata, which we use as the
training set, and the WikiDataCounterFact as the test set.

Portability (Port.): Knowledge is not isolated, and solely changing the given knowledge is
not enough for downstream use. When the knowledge is corrected, the model is supposed
to reason about the downstream effects of the correction. Here, we follow previous work
(Cohen et al., 2023; Zhang et al., 2024a) to evaluate whether the edited model can address
the implications of an edit for real-world applications.

Subject Aliasing (Alg.): The editing of one subject should not vary from its expression.
Wikidata maintains a set of aliases for every entity. Hence, here, we follow Cohen et al.
(2023); Yao et al. (2023) to replace the question’s subject with an alias or synonym to
evaluate the post-edited model’s performance on other descriptions of the subject.

Compositionality and Reasoning (Res.): This requires the post-edit model to conduct
reasoning with the changed facts. For example, when we change the current president of
the U.S. from Donald Trump to Joe Biden, the answer to the question “Who is the First
Lady of the United States?” should also be changed.

Forgetfulness (Fog.): This evaluates whether the post-edit model retains the original ob-
jects in one-to-many relationships. we follow Zhang et al. (2024a) to evaluate this metric.

Logical Generalization(Lgn.): These are the changes that are semantically related to the
modified fact and expected to change by the edit; they were indeed modified. For exam-
ple, as mentioned by (Yao et al., 2023), when the fact of (s, r, 0) is changed, the reversed
relation of the knowledge (o, 7, s) should also be changed.

Table 6: Hpyerparameter selection results for O-Edit. 7": Num Edits.

COUNTERFACT
Method T = 200 \ T =500 \ 7 = 1000 \ T = 1500
Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.
Mistral-7B
MEMIT 093 0.67 041 ‘ 0.67 ‘ 0.50 035 0.10 ‘ 0.32 ‘ 0.28 0.10 0.06 ‘ 0.15 ‘ 0.19 0.06 0.05 ‘ 0.10

A,A2=1 095 066 0521 068|074 036 029 046 | 040 024 0.11 | 025|039 0.19 0.08 | 0.22
A, A2 =10 093 062 054 | 070 | 0.89 050 035 | 058 | 0.54 0.26 0.18 | 031 | 045 0.22 0.10 | 0.26
A,A2 =20 093 053 0.62| 069 | 0.87 052 036 | 058 | 0.64 039 024 | 042 | 047 026 0.13 | 0.29
A, A2 =50 093 055 065 071 0.86 053 045 | 0.61 | 0.72 047 0.34 | 051 | 0.51 033 0.18 | 0.34

Llama3-8B

MEMIT

085 051 0221052050 035 0.10] 032|028 0.10 005] 0.14]0.18 006 0.05 | 0.10

A, A2=1 096 052 043 ] 0.63 | 0.83 059 0.16 | 052 | 0.62 049 0.08 | 0.40 | 0.35 0.27 0.08 | 0.23
A, A2 =10 097 047 053 | 0.65 | 090 055 035 060 | 072 051 0.18 | 047 | 045 033 0.10 | 0.29
A, A2 =20 096 042 057 | 0.65 | 0.90 054 041 | 061 | 075 0.52 0.22 | 049 | 045 035 0.15 | 031
A, A2 =50 093 055 064 071 086 053 044 | 0.61 | 0.72 047 033 | 051 | 0.55 0.40 0.27 | 0.41

B.11

DOWNSTREAM TASKS SETTINGS

To explore the side effects of sequential model editing on the general abilities of LLMs, four repre-
sentative tasks with corresponding datasets were adopted for assessment, including: Commonsense

Reason

ing on the SIQA (Sap et al.,, 2019), which is a benchmark for testing social commonsense

intelligence. Content Analysis on the LAMBADA (Paperno et al., 2016), which is a collection
of narrative paragraphs that requires computational models to track information across a broader
discourse. Question Answering on the CommonsenseQA (Talmor et al., 2019), it requires the
model be capable of making reasonable inferences under given common sense conditions. MATH
on the GSM8K (Cobbe et al., 2021), a dataset of 8.5K high-quality linguistically diverse grade
school math word problems. The prompts for each downstream task were illustrated in Table 7. We

utilized

OpenCompass’ to conduct our evaluations.

7https ://github.com/open—compass/opencompass
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"subject": "Watts Humphrey",

"src": "What university did Watts Humphrey attend?",

"pred": "Trinity College",

"rephrase": "What university did Watts Humphrey take part in?",
"alt": "University of Michigan",

"answers": [

"lllinois Institute of Technology"

1,
"loc": "nq question: who played desmond doss father in hacksaw ridge",
"loc_ans": "Hugo Weaving",

"cond": "Trinity College >> University of Michigan || What university did Watts
Humphrey attend?"

}

Figure 7: Sample of ZsRE Dataset

"case id": 1,

"prompt": "The official religion of Edwin of Northumbria is",
"target new": "Islam",

"subject": "Edwin of Northumbria",

"ground truth": "Christianity",

"rephrase_prompt": "The school chiefly served tribal girls of Dang.
Edwin of Northumbria follows the religion
of",

"locality prompt": "Fine Young Cannibals was founded in",

"locality ground truth": "Birmingham"

Figure 8: Sample of COUNTERFACT Dataset

Table 7: The prompts to LLMs for evaluating their zero-shot performance on these general tasks.

Task Prompt

SIQA prompt= “{question} A. {A} B. {B} C. {C} Answer:”

LAMBADA prompt= “Please complete the following sentence: {sentence}”

CommonsenseQA prompt= “{question} A. {A} B. {B} C. {C} D. {D} E. {E}
Answer:”

GSMSK prompt = “ Question: {question} Let’s think step by step. An-
swer:”
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Table 8: The results of different method with similar || AWty ||2. 7: Num Edits.

COUNTERFACT
T =200 \ T = 500 \ 7= 1000 \ T = 1500
Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel.  Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.
Mistral-7B
MEMIT 093 0.67 041 ‘ 0.67 ‘ 0.50 035 0.10 ‘ 0.32 ‘ 0.28 0.10 0.06 ‘ 0.15 ‘ 0.19 0.06 0.05 ‘ 0.10

Method @ 0.88 0.50 0.70 | 0.69 | 041 022 044 ] 036 | 027 0.14 0.11 | 0.17 | 020 0.08 0.09 | 0.12
Method ® 0.83 044 0.67 | 0.64 | 057 034 0.31 | 040 | 035 021 0.08 | 0.21 | 022 0.13 0.04 | 0.13
Method ® 0.86 047 0.61 | 0.64 | 0.60 037 0.30 | 042 | 031 0.17 0.11 | 020 | 0.18 0.10 0.06 | 0.11
Method @ 0.84 055 0.61 | 0.67 | 057 033 031 | 040 | 029 0.19 0.11 | 020 | 021 0.11 0.05 | 0.12
+0O-Edit+ 0.89 0.61 0.78 | 0.76 | 0.81 0.55 0.60 | 0.65 | 0.68 0.39 0.55 | 0.54 | 0.61 042 0.53 | 0.52

Llama3-8B
MEMIT 0.85 051 022052050 035 0.10] 032|028 010 005 ]| 0.14 | 0.18 0.06 0.05 | 0.10

Method @ 0.74 033 058 | 032 | 032 0.11 0.51 | 031 | 024 0.08 034 022|013 0.07 0.18 | 0.12
Method® 0.83 050 024 | 052 | 0.72 037 0.08 | 0.39 | 0.44 0.19 0.08 | 0.23 | 0.40 0.13 0.08 | 0.20
Method ® 0.82 049 028 | 053 | 0.72 035 0.08 | 0.38 | 0.46 021 0.03| 023 | 032 0.17 0.02 | 0.17
Method @ 0.77 041 044 | 054 | 0.69 032 0.06 | 0.36 | 047 023 031 | 033 | 037 0.15 0.09 | 0.21
+0O-Edit+ 0.88 0.53 0.76 | 0.72 | 0.84 051 045 | 0.60 | 0.81 0.50 031 | 0.54 | 0.79 0.44 0.28 | 0.50

Method

B.12 FURTHER EXPERIMENT AND DISCUSSION

This orthogonal editing method still performs well on small models. An intuitive assumption is
whether smaller matrices have fewer spatial dimensions, and whether this will affect the performance
of editing. We investigated whether this orthogonal method is equally effective on GPT2-XL (1.5B).
The experimental results are shown in the Figure 9. Although the spatial size of the model limits the
scalability of sequential editing, the editing effect of MEMIT on GPT2-XL is better than Mistral-7B
and Llama3-8B and the orthogonal method still brings objective improvements, nearly doubling the
success rate of editing and retaining the performance of existing knowledge well. However, the key
factors limiting the performance of continuous editing are not only the size of the model, but also the
number of editing layers (Hase et al., 2024) and the norm of the editing matrix (Hu et al., 2024b).

Sequential Editing on GPT2-XL, T=1500

Figure 9: Performance on GPT2-XL (Rel., Res., Lgn.), T=1500.

Can any method of reducing AW improve the ability of sequential editing?

Hu et al. (2024b) posits that || AWy |2 is a key determinant of sequential editing, referred to as
“toxicity”. A higher || AWy ||2 imposes greater constraints on sequential editing performance.
O-Edit+ effectively reduces ||AWjqay||2 by diminishing projections in specific subspaces. Conse-
quently, a plausible hypothesis is that any method capable of reducing || AWioan||2 could potentially
enhance sequential editing performance. To evaluate this hypothesis, we compare O-Edit+ with four
methods on COUNTERFACT: @ reducing the number of training steps to decrease ||v. — Wk |2,
thereby reducing ||AWjoran||2 With each edit; @ randomly deleting some values in the update pa-
rameters, setting them to zero; © randomly selecting a set of orthogonal subspaces and removing
the projection of AW; onto them; @ multiplying the AW obtained by the original method by a co-
efficient 7 that is less than 1, updating the matrix as AW = n- AW. We adjust the hyperparameters
to ensure that the || AWin||2 generated by these methods approximates that of O-Edit+. As shown
in Table 8, although these five methods yield a similar || AWy |2, the first four fail to achieve
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effective sequential editing. This indicates that while reducing || AWjioanj||2 is a necessary but not
sufficient condition for successful sequential editing, choosing the correct projection space to ensure
minimal impact between knowledge is the key to the success of ours.

Theoretical analysis

Considering MEMIT, we derive from the equations AWjoay = Yoy AW; and AWyprelaed =
AW[tolal] - AWJ that:

HAWunrelated : ij2 = ||(AW[t0tal] - AWJ) : kj”Q

= zn: AW - k;

i=1,i#j )

= Z RikL,AK K™ + kyikl) ™' k;

i=1;i#7] 9
— Z (RikL,AKKT + kyikl,) ™ Z RikL,AKK" + kyikl;)~'k;
i=1;i#j i=15i#7

— Z kT (AKKT + kyikl;) ™ )T ko.iRT Z RikL(KK" + kyikl) 7'k,
i=1;1#j i=1;i#7
(29)

Since R is a column vector, RT is a row vector. For any R, and R,, where n # m, the updates in
O-Edit and O-Edit+ aim to ensure that each update matrix AW is orthogonal in the column space,
leading to R! - R,, — 0. Consequently, the value of Eqn. 29 is smaller than that of MEMIT.

Differences and Similarities with Hu et al. (2024a)

From the perspective of activating || AWnrelated - k]2, (Hu et al., 2024a) emphasizes the reduction
of this metric’s activation value through orthogonal row space. They aim to achieve smaller acti-
vation values using the expression >, .. kl,(AK K" + k.;kl;)"'k; — 0. However, since
the variables K and k. are predetermined, their orthogonality cannot be optimized through training
methods. To address this, they suggest selecting bottom layers with lower row orthogonality. Yet,
this method undermines the extensibility of editing techniques, as knowledge is not solely stored in
the lower layers of the model (Li et al., 2024; Meng et al., 2023a; Geva et al., 2021; 2022).

In contrast, O-Edit and O-Edit+ tackle this issue by focusing on orthogonal column space, providing
a practical algorithm that supports multiple consecutive edits. These methods can achieve column
space orthogonality between update matrices at any layer, effectively reducing || AWinrelated - k|2
and facilitating expansion to multi-layer editing.

B.13 FURTHER EDITING DATASETS RESULTS
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Table 9: Main editing results for ZsRE. T": Num Edits.
ZsRE

Method T = 200 \ T = 500 \ T = 1000 \ T = 1500

Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.
Mistral-7B
ROME 082 041 038|053 032 022 008|020 | 030 017 006 | 0.18 [ 031 0.5 006 | 0.17
+R-Edit 095 049 047 | 064 | 027 018 008 | 0.17 | 031 013 005 0.16 | 031 0.15 006 | 0.17
+WIlKE 088 044 043 | 058 | 041 027 010 | 026 | 027 017 006 | 0.17 [ 029 0.9 005 | 0.17
+PRUNE 092 030 082 | 068 | 077 032 053 | 054 | 036 0.19 034 | 030 [ 033 021 027 | 027
+O-Edit 099 042 073 | 071 | 077 041 051 | 049 | 045 018 029 | 031 035 020 020 025
+O-Edit+ 099 046 075 | 0.73 | 0.80 045 0.51 | 0.60 | 0.68 042 032 | 047 043 016 025 0.8
MEMIT 095 050 038 | 061 | 052 037 0.4 | 034 | 031 020 0.06 | 0.19 | 024 010 0.06 | 0.13
+R-Edit 096 049 041 | 062 | 040 0.19 040 | 044 | 032 022 006 | 020 [ 026 0.16 0.07 | 0.16
+WIlKE 099 050 047 | 065 | 075 047 023 | 048 | 025 020 006 | 0.17 [ 028 0.15 004 | 0.16
+PRUNE 083 053 047 | 061 | 076 052 029 | 0.52 | 065 045 022 | 044 | 043 027 0.12 | 027
+O-Edit 097 040 065 | 0.67 | 0.88 042 043 | 057 | 0.76 041 039 | 052 0.61 033 0.18 037
+O-Edit+ 094 033 0.80 | 0.69 | 082 033 0.60 | 0.58 | 069 031 054 | 0.51 060 026 051 043
Llama3-8B

ROME 0.84 063 023 ] 056|069 0.62 003|044 | 073 0.60 003 | 045 | 074 0.63 002 | 046
+R-Edit 086 051 038|058 | 062 057 010|043 | 056 047 001 | 035 | 056 047 0.02 | 035
+WIKE 075 037 028 | 047 | 050 038 005 | 031 | 060 050 002|037 [ 066 055 001 | 0.40
+PRUNE 090 057 033 | 060 | 077 050 024 | 050 | 0.83 041 021 | 048 [ 079 036 0.18 | 0.44
+O-Edit 094 0.66 051 | 0.70 | 077 051 022 | 050 | 0.78 047 0.16 | 047 077 048 0.14 046
+O-Edit+ 091 047 055 | 052 | 0.82 046 027 | 0.52 | 0.84 049 025 | 0.53 0.82 042 024 049
MEMIT 093 0.63 030|062 | 075 065 003 | 048 | 053 040 004 | 032 | 033 023 004 | 020
+R-Edit 094 062 025|060 | 082 0.69 0.10| 053 | 065 055 006 | 042 | 052 041 003 | 032
+WIKE 098 042 070 | 0.70 | 0.78 0.65 0.10 | 0.51 | 061 050 007 | 040 | 052 042 005 | 033
+PRUNE 097 056 050 | 0.67 | 087 0.60 043 | 0.63 | 056 034 040 | 043 | 046 030 029 | 035
+O-Edit 096 042 052|063 | 0.90 049 041 | 0.60 | 0.77 051 032 | 0.53 055 040 027 040
+O-Edit+ 097 040 059 | 0.65 | 085 037 046 | 0.56 | 0.73 032 038 | 048 0.65 029 036 0.43
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Table 10: Main editing results for COUNTERFACT-Portability. 7": Num Edits.

Method COUNTERFACT-Portability
T = 200 | T = 500 | T = 1000 | T = 1500
Por. | Por. | Por. | Por.

Mistral-7B

ROME 0.48 | 0.04 | 0.01 | 0.01
+R-Edit 0.47 0.02 0.02 0.01
+WIilKE 0.41 0.2 0.2 0.02
+PRUNE 0.52 0.46 0.38 0.32
+0-Edit 0.52 0.46 0.41 0.39
+0O-Edit+ 0.53 0.52 0.50 0.50

MEMIT 0.48 | 0.26 | 0.01 | 0.01
+R-Edit 0.44 0.27 0.02 0.01
+WIilKE 0.44 0.10 0.02 0.01
+PRUNE 0.52 0.45 0.32 0.26
+0-Edit 0.51 0.45 0.38 0.34
+0-Edit+ 0.53 0.53 0.53 0.51

Llama3-8B

ROME 0.26 | 0.07 | 0.01 | 0.01
+R-Edit 0.25 0.07 0.02 0.01
+WIilKE 0.24 0.07 0.02 0.02
+PRUNE 0.43 0.37 0.31 0.28
+0O-Edit 0.42 0.40 0.37 0.33
+0O-Edit+ 0.45 0.44 0.39 0.35

MEMIT 0.24 | 0.02 | 0.02 | 0.02
+R-Edit 0.23 0.02 0.02 0.01
+WiIKE 0.24 0.12 0.02 0.02
+PRUNE 0.44 0.42 0.32 0.29
+0O-Edit 0.45 0.42 0.39 0.39
+0O-Edit+ 0.49 0.48 0.46 0.45
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Table 11: Main editing results for RECENT. 7": Num Edits.

RECENT
Method T =200 \ T =500 \ 7= 1000 \ T=1200

Rel. Fog. Alg. | Avg. | Rel. Fog. Alg. | Avg. | Rel. Fog. Alg. | Avg. | Rel. Fog. Alg. | Avg.

Mistral-7B
ROME 0.39 033 035 ‘ 0.35 ‘ 021 0.03 0.18 ‘ 0.14 ‘ 0.06 0.03 0.06 ‘ 0.05 ‘ 0.02 0.01 0.01 ‘ 0.01
+RRUNE 0.69 043 045 ] 052 | 053 027 028 | 036 | 026 0.27 023 ] 025 | 024 023 022 0.23
+0-Edit 0.82 047 058 | 062 | 0.67 037 044 | 049 | 036 032 0.28 | 0.32 | 0.33 0.23 0.27 | 0.27
+0-Edit+ 0.80 0.51 0.61 | 0.64 | 0.67 0.44 0.53 | 0.54 | 046 036 035 | 039 | 042 031 0.30 | 0.34
MEMIT 082 048 067 ] 066 | 0.16 002 0.15] 0.11 | 0.08 000 007 | 0.05 | 0.07 0.00 0.05 | 0.04
+RRUNE 0.86 0.60 0.68 | 0.71 | 0.74 045 055 ] 058 | 0.57 037 052 ] 048 | 046 031 040 | 0.39
+0-Edit 0.88 0.58 0.64 | 0.70 | 0.79 0.50 0.61 | 0.63 | 0.62 040 0.51 | 0.51 | 0.57 035 044 | 045
+0-Edit+ 089 0.64 0.68 | 0.74 | 0.78 0.56 0.65 | 0.66 | 0.67 0.47 0.60 | 0.58 | 0.60 0.41 0.53 | 0.51

Llama3-8B
ROME 036 0.15 030 | 027 | 022 0.03 0.15| 0.13 | 0.18 0.05 0.10 | 0.11 | 0.04 0.03 0.04 | 0.04
+RRUNE 0.78 045 0.50 | 057 | 052 0.27 039 | 039 | 033 0.19 024 | 025 | 027 0.15 0.18 | 0.20
+0-Edit 0.77 045 052 058 | 0.57 033 041 | 043 | 045 028 031 | 034 | 040 0.24 0.27 | 030
+0-Edit+ 0.78 045 0.56 | 0.60 | 0.57 031 048 | 045 | 044 027 033 | 0.34 | 041 0.25 0.30 | 0.32
MEMIT 0.52 0.15 041 ‘ 0.36 ‘ 021 0.03 0.18 ‘ 0.14 ‘ 0.16 0.01 0.11 ‘ 0.09 ‘ 0.11  0.01 0.05 ‘ 0.07
+RRUNE 0.88 050 0.68 | 0.68 | 0.72 042 058 | 0.58 | 047 032 031 ] 036 | 036 0.27 039 | 0.34
+0-Edit 0.86 0.54 0.64 | 068 | 0.78 0.51 0.60 | 0.63 | 0.69 045 0.55 | 0.56 | 0.61 0.33 047 | 0.47
+0-Edit+ 091 0.54 0.66 | 0.70 | 0.78 046 0.64 | 0.63 | 0.57 043 046 | 049 | 0.55 036 0.44 | 045

Table 12: Main editing results for WIKICEF. 7": Num Edits.
WIKICF
Method T=50 \ =100 \ T =200 \ T = 400

Rel. Res. Lgn. | Avg. | Rel. Res. Lgn. | Avg. | Rel. Res. Lgn. | Avg. | Rel. Res. Lgn. | Avg.

Mistral-7B
ROME 0.81 056 054 ‘ 0.63 ‘ 0.35 042 0.30 ‘ 0.35 ‘ 0.18 0.06 0.18 ‘ 0.12 ‘ 0.12 0.03 0.06 ‘ 0.07
+RRUNE 082 0.54 0.60 | 0.65 | 0.67 055 054 | 058 | 048 051 050 | 049 | 042 044 0.39 | 041
+0-Edit 0.82 062 0.68 | 0.71 | 0.67 0.58 0.61 | 0.62 | 0.54 0.53 0.59 | 0.55 | 048 0.47 0.44 | 0.46
+0O-Edit+ 0.82 0.62 0.66 | 0.70 | 0.73 0.62 0.65 | 0.66 | 0.61 0.60 0.66 | 0.62 | 0.60 0.60 0.54 | 0.65
MEMIT 0.87 074 0.72 ‘ 0.77 ‘ 0.66 042 048 ‘ 0.52 ‘ 026 0.06 0.21 ‘ 0.17 ‘ 0.13  0.02 0.03 ‘ 0.06
+RRUNE 090 0.60 0.61 | 0.70 | 0.70 042 055 | 0.55 | 0.54 044 048 | 048 | 039 042 032 | 0.37
+0-Edit 0.92 060 064 | 072 | 077 047 0.61 | 0.61 | 0.54 0.65 048 | 0.55 | 043 040 0.30 | 0.37
+0O-Edit+ 0.84 0.66 0.69 | 0.73 | 0.73 0.66 0.60 | 0.62 | 0.62 0.72 0.65 | 0.66 | 0.58 0.48 0.48 | 0.51

Llama3-8B
ROME 0.80 052 048 ‘ 0.60 ‘ 029 046 021 ‘ 0.32 ‘ 032 0.04 021 ‘ 0.21 ‘ 0.28 0.02 0.00 ‘ 0.10
+RRUNE 0.78 0.56 0.50 | 0.61 | 0.53 046 042 | 047 | 045 035 038 | 039 | 042 031 0.27 | 033
+0-Edit 0.80 055 054 | 060 | 0.55 044 044 | 047 | 050 036 039 | 041 | 046 035 031 | 0.37
+0-Edit+ 0.77 054 0.54 | 0.62 | 0.61 048 048 | 0.52 | 0.56 040 045 | 047 | 0.52 040 0.36 | 0.42
MEMIT 0.75 052 048 ‘ 0.58 ‘ 0.57 024 024 ‘ 0.35 ‘ 0.31 0.04 0.06 ‘ 0.13 ‘ 0.28 0.02 0.00 ‘ 0.10
+RRUNE 080 0.68 0.62 | 0.70 | 0.74 048 0.62 | 0.61 | 0.60 052 047 | 0.53 | 0.55 036 0.39 | 043
+0-Edit 0.80 0.70 0.60 | 0.70 | 0.72 050 0.64 | 0.62 | 0.65 0.51 0.50 | 0.55 | 0.61 0.40 041 | 047
+0-Edit+ 0.81 0.70 0.60 | 0.70 | 0.76 0.56 0.69 | 0.67 | 0.72 0.58 0.57 | 0.62 | 0.72 0.46 045 | 0.54

29



Under review as a conference paper at ICLR 2025

Table 13: 3000 editing results for COUNTERFACT. 7": Num Edits.

COUNTERFACT-3000
Method T = 1500 \ T = 2000 \ T = 2500 \ T = 3000

Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.

Mistral-7B
MEMIT 0.19 0.06 0.05 ‘ 0.10 ‘ 0.15 0.03 0.03 ‘ 0.07 ‘ 0.12 0.02 0.01 ‘ 0.05 ‘ 0.10 0.02 0.01 ‘ 0.04
+0-Edit 0.51 033 0.18 ‘ 0.34 044 026 0.15 ‘ 0.28 ‘ 042 026 0.15 ‘ 0.27 ‘ 040 0.22 0.12 ‘ 0.25
+0-Edit+ 061 042 053 | 052 056 031 048 | 045 | 0.50 028 048 | 0.42 | 0.44 025 0.50 | 0.39
+& O-Edit+ 0.79 0.55 0.68 ‘ 067 0.74 0.50 0.63 ‘ 0.62 ‘ 0.71 044 0.60 ‘ 0.58 ‘ 0.70 0.44 0.61 ‘ 0.58

Llama3-8B
MEMIT 0.18 0.06 0.05 ‘ 0.10 ‘ 0.15 0.03 0.03 ‘ 0.07 ‘ 0.12  0.02 0.01 ‘ 0.05 ‘ 0.10 0.02 0.01 ‘ 0.04
+0-Edit 0.55 040 0.27 ‘ 041 046 030 0.25 ‘ 0.33 ‘ 042 028 0.24 ‘ 0.31 ‘ 0.39 030 0.20 ‘ 0.26
+0-Edit+ 079 044 028 | 0.50 0.65 040 026 | 0.43 | 0.54 033 0.24 | 0.37 | 046 0.29 0.22 | 0.32
+# O-Edit+ 091 045 0.56 ‘ 064 086 041 0.51 ‘ 0.59 ‘ 0.82 040 047 ‘ 0.56 ‘ 080 036 044 ‘ 0.53
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