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ABSTRACT

Causal discovery is central to enable causal models for tasks such as effect es-
timation, counterfactual reasoning, and root cause attribution. Yet existing ap-
proaches face trade-offs: purely statistical methods (e.g., PC, LiNGAM) often re-
turn structures that overlook domain knowledge, while expert-designed DAGs are
difficult to scale and time-consuming to construct. We propose CausalFusion, a
hybrid framework that combines graph falsification tests with large language mod-
els (LLMs) acting as domain-specialized data scientists. LLMs incorporate do-
main expertise into candidate structures, while graph falsification tests iteratively
refine DAGs to balance statistical validity with expert plausibility. We evaluate
CausalFusion through two experiments: (i) a synthetic e-commerce dataset with
a precisely defined ground truth DAG, and (ii) real-world supply chain data from
Amazon, where the ground truth was constructed with domain experts. To bench-
mark performance, we compare against classical causal discovery algorithms (PC,
LiNGAM) as well as LLM-only baselines that generate DAGs without iterative
falsification. Structural Hamming Distance (SHD) is used as the primary evalu-
ation metric to quantify similarity between generated and “true” DAGs. We also
analyze different foundational models chain-of-thought traces to examine whether
deeper reasoning correlates with improved structural accuracy or reproducibility.
Results show that CausalFusion produces DAGs more closely aligned with ground
truth than both classical algorithms and LLM-only baselines, while offering in-
terpretable reasoning at each iteration, though challenges in reproducibility and
generalizability remain.

1 INTRODUCTION

In the intricate web of modern businesses, identifying the true drivers of critical outcomes is a
formidable challenge, whether it is a failed product launch, a sudden spike in employee attrition,
or rising delivery delays. Typical methods for root cause attribution rely heavily on descriptive
analytics, correlations, or hierarchical “waterfall” attribution logic. Waterfall attribution, which is
widely deployed across large organizations, assigns responsibility through a predefined sequence of
checks and rules. Its appeal lies in its simplicity and ease of communication for decision-making.
Yet it has important limitations: it relies on heuristics (rule-based logic that is not directly grounded
in observed data) and is not causal by design, since it neither accounts for confounding nor identifies
true causal pathways. SHAP values, for instance, can attribute an outcome to individual features by
distributing contributions among them (Lundberg and Lee (2017)), which helps compensate for the
heuristic limitation, but these methods remain fundamentally associational and do not address the
causal gap.

Double machine learning (DML) (Chernozhukov et al. (2018)) is well-suited for robust estimation
of causal effects in semi-parametric settings, addressing both gaps. DML, however, is focused on
quantifying causal effect of a treatment on an outcome, given a number of covariates. Another
important causal framework is that of Structural Causal Models (SCMs). SCMs are non-parametric
and therefore exhibit slower convergence to the ground truth, but they extend well beyond effect
estimation to support richer tasks such as mediation analysis, counterfactual (“what-if”) reasoning,
and root cause attribution (e.g., identifying and ranking the main contributors to an outcome). This
breadth of capabilities is associated with more assumptions, however it makes SCMs particularly
suitable for root cause attribution in business contexts (if assumptions hold), where the objective is
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to disentangle the contributions of multiple potential drivers rather than focus narrowly on a single
treatment–outcome relationship. The flexibility (and assumption heaviness) of SCMs derives from
their backbone: the causal Directed Acyclic Graph (DAG). Unlike associative models, which capture
correlations without specifying directionality, causal DAGs explicitly encode causal pathways and
represent all variables as first-class entities in the system. This contrasts with DML that prioritizes a
single treatment and outcome while relegating other variables to the role of nuisance covariates used
only for adjustment.

A key challenge in scaling SCMs lies in the construction of the underlying causal DAG. Purely data-
driven discovery algorithms, such as the PC algorithm (Spirtes et al. (2000)), rely on conditional
independence patterns. Other approaches, such as LiNGAM (Shimizu et al. (2006)), infer edge
directions under stronger assumptions of linear functional relationships and non-Gaussian noise.
While effective in some settings, both these and other existing methods known to the authors hinge
entirely on statistical relationship between the variables and are agnostic to domain knowledge un-
less manually included. Manual DAGs, on the other hand, incorporate expert understanding but
remain inherently subjective and scarcely scalable.

In addition to purely data-driven approaches, several causal discovery frameworks allow researchers
to inject domain knowledge to guide the search for causal structures. Constraint-based methods
such as the PC and FCI algorithms can incorporate background knowledge in the form of forbidden
or required edges, or temporal orderings, ensuring that the output DAG respects expert-specified
constraints. Score-based methods such as GES and GIES similarly allow priors over edges, either
as hard restrictions or as probabilistic weights that bias the scoring function (Hauser and Bühlmann
(2014)). Continuous optimization approaches, such as NOTEARS, also support knowledge injec-
tion via masks that forbid or enforce specific edges (Zheng et al. (2018)). Finally, hybrid frame-
works like TETRAD, bnlearn, and DoWhy provide user-friendly interfaces for integrating expert
DAG fragments, structural priors, or whitelists/blacklists into the discovery process (Ramsey et al.
(2018)).

In purely data-driven causal discovery, many DAGs remain indistinguishable because they belong
to the same Markov equivalence class (MEC), limiting identifiability from observational data alone.
Injecting domain knowledge has therefore become a strategy to reduce ambiguity. Constraint-based
approaches such as PC and FCI show that even a small number of forbidden or required edges can
eliminate large regions of the search space. Score-based methods such as GES and GIES extend this
principle by encoding priors as penalties or probabilistic weights in the scoring function, formaliz-
ing expert beliefs in a quantitative way (Hauser and Bühlmann (2014)). Continuous optimization
methods like NOTEARS demonstrate that knowledge injection can also be operationalized as struc-
tural masks that forbid or enforce edges in differentiable programs (Zheng et al. (2018)). Hybrid
frameworks such as TETRAD, bnlearn, and DoWhy provide practical interfaces for integrating ex-
pert DAG fragments, structural priors, or whitelists/blacklists (Ramsey et al. (2018)). Although
these methods enable domain knowledge to be incorporated into data-driven DAG generation, they
still rely on researchers or domain experts to undertake the subjective effort of translating general
expertise into formal structural assumptions. CausalFusion seeks to automate this step.

Some recent works explore LLM-based approaches to causal discovery have been explored
(Vashishtha et al. (2023); Mullapudi et al. (2025)). These methods rely entirely on the domain
knowledge embedded in the LLM’s training data and therefore operate primarily on variables meta-
data, like, variable names and descriptions, rather than observed data. By contrast, the present work
proposes framework that combines “traditional” methods, rigorously grounded in statistical relation-
ships, with LLM-based ones, which are leveraged to integrate domain knowledge into the discovery
process.

Merging these two approaches also represent the integration of two philosophical perspectives on
causality. LLM-based approaches align with a subjectivist perspective, in which causal relationships
are defined by the knowledge embedded in the model’s training data, reflecting the accumulated un-
derstanding and consensus of a community, but also carrying its biases and limitations. In turn,
”traditional” methods align with an objectivist perspective where real entities in the world are iden-
tified with their observed measurements, and causal relationships are derived from the statistical
dependencies between such measurements. Each view has its shortcomings: subjectivist knowl-
edge may be incomplete or inaccurately documented, while objectivist inference may fail in cases
of noisy data or weak statistical signals. By combining the two, a hybrid approach has the poten-
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tial to produce more robust results, compensating for the absence or unreliability of either form of
evidence.

We therefore propose CausalFusion, a causal discovery framework in which the LLM acts as a
domain-specialized data scientist agent tasked with constructing a causal DAG. The agent first
generates candidate structures informed by domain knowledge and then, within a feedback loop,
evaluates their consistency with observed data through conditional independence tests. Finally, it
proposes one or more DAGs that balance expert knowledge and statistical validity, while motivating
the trade-offs between the two. This feedback loop provides a scalable foundation for subsequent
SCM-based causal tasks, such as root cause attribution.

2 METHODOLOGY

The proposed framework integrates foundational model(s) with a knowledge base of causality and
domain expertise. It operates in an iterative loop beginning with the construction of an initial DAG
informed by domain knowledge. This candidate structure is then subjected to falsification proce-
dures, which evaluate the extent to which the proposed DAG is consistent with the observed data.
Both the DAG and the associated validation results are then returned to the LLM, which refines the
graph, provides the thought process behind the refinement procedure and assigns a confidence score
to the updated structure.

The iterative process terminates when either the assigned confidence score exceeds a predefined
threshold γ or the maximum number of iterations α is reached. At convergence, the framework
outputs the top β DAGs with the highest confidence scores. Multiple output DAGs are allowed be-
cause (i) falsification tests often admit several structures that fit the data equally well (i.e., belong to
the same Markov equivalence class), and (ii) multiple candidate graphs may be consistent with the
specified domain knowledge. The following sections detail the components of the framework, high-
lighting how each contributes to addressing the challenges of causal discovery in complex domains.

Knowledge Base

Causality knowledge
Nodes name
Nodes description
Domain knowledge

LLM
(Data Scientist Agent)

Graph Falsification Test

Conditional independence violations (% and edges list)
Causal minimality (edges list)
Graph is falsifiable (Y/N)
Equivalent to randomly permuted DAGs? (p-value)

Output
Casual DAG(s)
Analysis
Confidence Score

Falsification resultsProposed DAG

CausalFusion

Hyperparameters:
α: Max number of iterations
β: Number of graphs generated
γ: Confidence score threshold

Figure 1: CausalFusion design

2.1 KNOWLEDGE BASE

The LLM component is designed to operate with a knowledge base that integrates principles of
causality with domain expertise (if not already captured in the pretraining corpus, see Section 4.1.1).
This design choice reflects the methodological need to ground LLM reasoning in both theoretical
and applied foundations, allowing the LLM to act as a data scientist agent specialized in a given
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domain. While the domain-specific knowledge may vary depending on the application, the causality
principles are domain-agnostic and provide the scaffolding required to interpret falsification tests
and refine DAGs. The causality knowldege is structured as follow.

• Statistical foundations. The description and formal definition of the falsification tests
provide the essential basis for the LLM to interpret their outcomes (see Section 2.3).

• Software documentation. To provide an in-depth understanding of the falsification
tests and their practical properties, we include the official DoWhy documentation for the
falsify graph function (PyWhy Community (2023a)). This enables the LLM to bridge
the gap between the theoretical definitions of the tests and their real-world implementa-
tion. In particular, it makes the LLM aware of considerations such as implied significance
thresholds and the method selected to test conditional independencies (e.g., kernel-based
methods, linear correlation tests, etc.). Such details are needed for assessing the validity
of results in practice, especially when combined with domain-specific knowledge. For in-
stance, the LLM may notice if the leveraged data types are poorly suited to the employed
methods, and therefore disregard falsification results in favor of domain-knowledge.

• Causal expert knowledge. To enhance the agent’s capability to act as an expert data
scientist, we include critical insights and best practices obtained through forums within
causality research communities (e.g. PyWhy Community (2023b)), as well as in-person
discussions with peers. This knowledge was formalized to capture the practical limitations
of falsification tests in real-world settings and to distill best practices, enabling the LLM
to better navigate the trade-offs between domain knowledge and empirical validation. A
summary of such limitations included in the knowledge base is provided below:

– Falsification is one-sided: the test can only reject a DAG but not confirm it’s the true
one.

– Inability to resolve Markov equivalence: many DAGs imply the same set of condi-
tional independence constraints.

– Vulnerability to unobserved confounding: if relevant confounders are missing from
the data, the test may validate an incorrect DAG.

– Dependence on measurement quality: the test assumes that observed variables accu-
rately represent the true causal variables. Noisy, aggregated, or proxy measurements
may distort the independence structure, leading to spurious validation or falsification.

– Benchmarking against random graphs may be misleading: even when a graph outper-
forms random permutations (e.g., p < 0.05), the absolute number of independence
violations may still be high. In such cases, the graph cannot be considered reliable in
practice despite passing the statistical benchmark.

– Limitations of causal minimality checks: removing edges increases the number of
implied CIs. Accordingly, removing unnecessary edges can lead to more CI violations.

2.2 LLM COMPONENT

The LLM component of CausalFusion serves as the reasoning engine that integrates statistical ev-
idence with domain knowledge to iteratively refine candidate DAGs. At each iteration, the LLM
receives a prompt consisting of: (i) the agent role specification (expert data scientist), (ii) the current
DAG (from a prior iteration or, in the first iteration, generated from base knowledge), (iii) the falsi-
fication results of the current DAG, and (iv) explicit knowledge boundaries. To ensure consistency
and parseability, the prompt further incorporates few-shot demonstrations of the desired output for-
mat, a structured task description (analyze falsification results, propose a refined DAG, and assign
a confidence score), and a standardized schema to facilitate downstream extraction. In contrast to
existing approaches, our framework generates richer insights: (i) a refined DAG, (ii) a rationale that
explains the refinement choices, and (iii) a confidence score reflecting the model’s self-assessment
of how closely the output DAG would align with the ground truth. These outputs may be tied to the
depth of the reasoning process performed by the foundational models.

We therefore hypothesize that models with greater chain-of-thought (CoT) capacity (i.e., the abil-
ity to generate longer, more structured reasoning traces) will produce DAGs more closely aligned
with ground truth. In particular, causal graph construction is inherently a multi-step reasoning task,
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requiring the integration of metadata (variable names and descriptions), domain-specific causal as-
sumptions, and falsification evidence. An excerpt of the agent interaction log is shown in Appendix
A.

2.3 GRAPH FALSIFICATION COMPONENT

In CausalFusion, graph falsification tests are reinterpreted as structured feedback to guide the it-
erative refinement process driven by the LLM component. Each falsification output is surfaced
as an interpretable signal that the LLM can incorporate when proposing adjustments to the candi-
date DAG. This design repurposes DoWhy falsification framework (Sharma and Kiciman (2020);
Blöbaum et al. (2022)) to act as a communication channel between statistical testing and natural-
language reasoning, thereby enabling a hybrid workflow that neither component could achieve on
its own. We next formalize the set of tests employed in this framework and their role in evaluating
candidate causal graphs. We include these tests because together they cover the two main sources
of structural error: unnecessary edges (causal minimality) and missing edges (CI violations). This
provides both local diagnostics, such as lists of problematic edges, and global metrics assessing the
DAG as a whole.

2.3.1 CONDITIONAL INDEPENDENCE TESTS

To provide the LLM with evidence about whether the implied dependencies of a DAG are con-
sistent with the observed data, we first test CI relations implied by the Local Markov Condi-
tion (LMC). LMC asserts that each variable is conditionally independent of its non-descendants
given its direct parents. Formally, for a variable Xi in a DAG G, this condition implies: Xi ⊥⊥
NonDescendants(Xi) | Pa(Xi).

Under this assumption, the DAG encodes a set of CIs that must hold in the observational distributions
if the DAG is valid. CIs are evaluated through hypothesis tests. We selected a kernel-based method
to perform such tests due to its flexible, non-parametric nature, making it well-suited for capturing
non-linear dependencies and handling mixed data types, as present in our dataset. If an implied CI
statement is rejected at the 0.05 significance level, the CI is considered falsified. To avoid a purely
binary interpretation by the LLM, the p-value is also provided alongside each CI test. Finally, the
fraction of violated CIs over the total tested is reported as a global validity metric, while the results
of individual CI tests are returned as localized diagnostics.

2.3.2 CAUSAL MINIMALITY

To inform the LLM about whether edges in the DAG are necessary, we next test for violations
of causal minimality. A causal DAG is said to be causally minimal if every edge in the graph
corresponds to a necessary causal relationship. In other words, for every edge X → Y in the graph
G, the variable Y is not independent of X given its other parents: Y ⊥̸⊥ X | Pa(Y ) \ {X}.

This condition ensures that each parent variable contributes unique information to its child that
cannot be explained away by the remaining parents. Removing such an edge would eliminate a
statistical dependency supported by the data, making the graph incomplete. While causal minimality
is not a required assumption for defining a causal DAG, it is often imposed in practice to avoid
overfitting the graph to spurious associations at a later stage (e.g. when fitting a SCM). For every
node Y and each of its parents X ∈ Pa(Y ), we test if the edge is causally minimal with the same
kernel-based method used for CI tests. If Y is independent of X , X → Y is considered unnecessary.
Finally, a list of all unnecessary edges is returned. Note that removing edges from the graph increases
the number of implied CIs. Consequently, reducing seemingly unnecessary edges can impact the
fraction of CI violations, making the process of optimally adjusting the DAG structure inherently
non-trivial for the LLM.

2.3.3 FALSIFIABILITY AND RANDOM GRAPH BENCHMARK TEST

Before the random graph benchmark test is applied, the LLM must know whether its results are
meaningful; this is established by a falsifiability check. Falsifiability is assessed using Markov
equivalence classes (MECs), which group DAGs that imply the same CIs and are therefore indis-
tinguishable from an associational perspective. The algorithm measures how often random node
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permutations of the graph fall into the same MEC as the candidate. If more than 5% of permutations
are in the same MEC, the DAG is deemed not falsifiable as a significant number of possible DAG
configurations are statistically indistinguishable. Alongside the falsifiability check, the LLM also
receives the results of benchmark against random graphs. This test evaluates whether the candidate
DAG performs significantly better than randomly permuted alternatives. Specifically, node permu-
tations are generated, and the number of CI violations associated to the permuted DAG is compared
to that of the candidate DAG. If more than 5% of the permuted DAGs exhibit fewer violations, the
candidate DAG is deemed falsified.

3 EXPERIMENTAL DESIGN AND RESULTS

The experimental design of this study is structured around three research questions (RQs) concerning
the CausalFusion framework:

• RQ1 - Accuracy. How does CausalFusion perform compared to established causal dis-
covery algorithms, specifically PC and LiNGAM, as well as purely LLM-based baselines
where a DAG is generated directly from prompting without iterative falsification?

• RQ2 - Reproducibility. Are the results reproducible across repeated runs under identical
conditions? Since stability of the learned DAGs is an ideal feature to ensure trustworthiness
in both scientific and applied settings, reproducibility is evaluated.

• RQ3 - Reasoning depth. Do different foundation models exhibit systematic differences in
reasoning depth, as measured by the number of tokens generated when the LLM produces
explanations for its proposed DAG? If so, do deeper reasoning traces correlate with (i)
improved accuracy in DAG generation (RQ1) or (ii) increased reproducibility across runs
(RQ2)?

In the following sections, we detail the experimental design corresponding to each research question.
All experiments are conducted with three foundational models—Claude 3.7 Sonnet, Nova Pro, and
Nova Premier, selected for their assumed differences in chain-of-thought (CoT) capability. This
design allows us to assess how variation in the underlying model influences the framework, an
aspect not explored in prior work on employing LLMs for causal discovery.

All experiments were conducted with hyperparameters α = 5, β = 1, and γ = 0.80. These values
were chosen heuristically to balance tractability and stability: α = 5 allows for a modest number
of iterations, β = 1 isolates the effect of a single candidate graph per run, and γ = 0.80 provides a
reasonable confidence cutoff.

3.1 RQ1 - ACCURACY

Classical benchmarks such as Sachs Sachs et al. (2005), Alarm Beinlich et al. (1989), and Asia
Lauritzen and Spiegelhalter (1988) offer established ground-truth DAGs for evaluating causal dis-
covery methods. However, their widespread use makes them likely candidates for inclusion in the
pretraining data of modern foundation models, introducing a risk of knowledge leakage when ap-
plied to LLM-based evaluation. To address this, we design two complementary experiments. The
first uses a synthetic dataset with a precisely defined ground truth DAG, allowing controlled evalu-
ation of structural accuracy under theoretical conditions. The second employs real-world data from
Amazon’s supply chain operations, where a ground truth DAG was constructed with domain ex-
perts. This setting introduces noisy measurements and company-specific terminology outside the
LLM’s pretraining, offering a more challenging and realistic test. Together, these experiments aim
to balance internal validity (synthetic, controlled) and external validity (real-world, applied).

3.1.1 RQ1: EXPERIMENTS

The first experiment focuses on the Capped Out Hours (COH) metric in Amazon’s logistics opera-
tions. COH occurs when a delivery station operates at or beyond its maximum processing capacity,
such that no additional packages can be handled beyond those already scheduled. In practice, this
is measured as the number of hours a station remains in this “maxed out” state, reflecting periods of
severe congestion. As a critical operational KPI, COH is influenced by multiple upstream factors, in-
cluding demand forecasts, inbound volume, capacity planning, and backlog dynamics. To establish
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a credible ground truth DAG, we collaborated with domain experts in supply chain operations who
systematically defined the causal structure based on their knowledge of system dynamics. Node
descriptions and their downstream effects are detailed in Appendix B. This expert-informed DAG
serves as the benchmark against which we assess the quality of graphs generated by CausalFusion.

The second experiment leverages a synthetic dataset designed to emulate causal structures com-
monly found in e-commerce. Following the standard practice of evaluating causal discovery meth-
ods on simulated graphs (Heinze-Deml et al., 2018), we construct a DAG inspired by typical busi-
ness processes (e.g., advertising → website traffic → conversion rate → revenue). Importantly,
while the structure is inspired by canonical relationships, it is not directly borrowed from existing
benchmarks. This deliberate modification helps ensure that the ground truth DAG is unlikely to
appear in the training corpus of foundation models, reducing risks of data leakage. The dataset is
generated by sampling from structural equations with both linear and nonlinear functional forms,
reflecting the diversity of relationships in real-world business settings. For instance, website traffic
depends linearly on advertising spend and seasonal effects, while conversion rate includes nonlin-
ear saturation effects through clipping and interaction with customer satisfaction. Noise terms are
added as independent Gaussian, exponential, beta, and uniform components, ensuring stochasticity
and heterogeneity across nodes. No additional domain knowledge was supplied in this experiment,
as the domain is general and does not involve company-specific causal structure or terminology,
allowing us to assume that the LLM already possesses the necessary background knowledge. The
ground truths for both experiments are presented in Appendix C and Appendix D, respectively.

3.1.2 RQ1: RESULTS

To measure the similarity between generated DAGs and the ground truth, we adopt the structural
Hamming distance (SHD). SHD is defined as the minimum number of edge additions, deletions, or
reversals required to transform a candidate DAG into the ground truth. Lower SHD values indicate
closer alignment with the true causal structure. Unlike local edge-based metrics such as precision,
recall, or F1, which emphasize edge-wise correctness, SHD captures global structural differences
between graphs. Indeed, two DAGs with similar precision and recall scores may nevertheless dif-
fer substantially in topology, leading to divergent causal implications under interventions. We ac-
knowledge that SHD evaluates structural similarity rather than causal effect estimation. Although
interventional differences (such as comparing the distributions implied by estimated graphs and the
ground truth under interventions) offer a complementary perspective, their evaluation lies beyond
the scope of this study and is left for future work. Our focus here is explicitly on causal discovery,
i.e., the recovery of the correct graph structure.

The results in Table 1 highlight clear differences in performance between traditional causal dis-
covery methods and the proposed CausalFusion framework. On the COH dataset, both PC and
LiNGAM produced substantially higher SHD values (25 and 22, respectively), indicating poor align-
ment with the domain-expert ground truth. By contrast, CausalFusion consistently recovered graphs
closer to the reference, with Nova Pro achieving the lowest SHD (3) at a confidence level of 0.80. On
the synthetic retail dataset, a similar trend is observed: CausalFusion outperforms PC and LiNGAM,
with Nova Pro again producing the closest approximation to the ground truth (SHD = 2). Taken
together, these findings suggest that CausalFusion provides more accurate causal structures than
existing methods in both applied and theoretical settings, and that performance varies across foun-
dational models. Interestingly, Nova Premier, while reporting the highest confidence score (1.00)
in both experiments, did not achieve the lowest SHD. Examination of its analysis outputs shows
that Nova Premier prioritized improving falsification outcomes far more strongly than the other two
models under the same prompt. This behavior resembles the constraint-based logic of the PC al-
gorithm, which relies heavily on conditional independence testing, and might explain the similarity
in their results. It may also help explain why Nova Premier performs worse within CausalFusion,
where falsification tests are iteratively incorporated, compared to its performance as a standalone
model where only domain knowledge is leveraged. More generally, these findings suggest that dif-
ferent foundation models balance statistical fit and domain knowledge in distinct ways, leading to
systematic differences in the causal graphs they generate.
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Table 1: Experiment results showing how closely the DAGs generated by each model align with the
ground truth

Dataset Method SHD Confidence

Real-world data:
Amazon Supply Chain

PC Algorithm 25
LiNGAM 22
CausalFusion Claude 3.7 Sonnet 6 0.80
CausalFusion Nova Pro 3 0.80
CausalFusion Nova Premier 17 1.00
First Iteration Claude 3.7 Sonnet 6
First Iteration Nova Pro 6
First Iteration Nova Premier 11
Ground Truth 0

Synthetic data:
Generic E-commerce

PC Algorithm 20
LiNGAM 15
CausalFusion Claude 3.7 Sonnet 7 0.80
CausalFusion Nova Pro 2 1.00
CausalFusion Nova Premier 18 0.95
First Iteration Claude 3.7 Sonnet 8
First Iteration Nova Pro 3
First Iteration Nova Premier 5
Ground Truth 0

3.2 RQ2 - REPRODUCIBILITY

Beyond accuracy against ground truth, an essential property of causal discovery frameworks is their
reproducibility: repeated runs under identical conditions should converge toward consistent DAGs.
This aspect is particularly critical for methods involving LLMs, where stochastic decoding may lead
to variability in outputs. To assess stability, we executed 20 independent runs for each foundational
model and iteration of CausalFusion, recording the number of distinct DAGs generated across runs.
The results are shown in Table 2. A highly stable configuration would yield only a single unique
DAG, whereas larger counts indicate greater variability.

Table 2: Reproducibility analysis: average number of unique DAGs and reproducibility ratio across
20 runs by model (synthetic dataset). The reproducibility ratio is computed as R−U

R−1 where R is the
number of runs and U the number of unique DAGs.

Agent Avg. Unique DAGs Avg. Reproducibility Ratio Std. Dev.
Claude 3.7 Sonnet 16.4 0.23 0.42
Nova Premier 2.0 0.95 0.05
Nova Pro 2.2 0.94 0.04

The results reveal notable differences in reproducibility across foundation models. Claude 3.7 Son-
net shows substantial variability, producing the full set of 20 distinct DAGs from iteration 2 onward,
which indicates low stability under repeated sampling. By contrast, Nova Premier and Nova Pro
are markedly more consistent, typically generating only one to three unique DAGs per iteration,
with reproducibility ratios above 0.9. Taken together, these findings highlight that reproducibility is
not guaranteed in LLM-based causal discovery and can vary systematically across models. From a
methodological standpoint, this suggests that different foundation models embody distinct inductive
mechanisms, which in turn affects the stability of the generated causal structures. More broadly the
analysis underscores the importance of assessing not only accuracy (alignment with ground truth)
but also reproducibility when integrating LLMs into causal discovery frameworks, since scientific
utility depends on both dimensions.
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3.3 RQ3 - REASONING DEPTH

Figure 2: Distribution of reasoning tokens across FMs (synthetic dataset)

In addition, we assess SHD and reproducibility ratio against a proxy for chain-of-thought (CoT)
depth to test whether deeper reasoning traces improve causal discovery performance. Given the
absence of standardized metrics for CoT depth Wang et al. (2023), we operationalize depth as the
number of reasoning tokens produced in the ANALYSIS field of each iteration. Outputs are tok-
enized using the cl100k base tokenizer, and average token counts per model are reported. This
enables us to investigate the hypothesis that increased reasoning depth correlates with improvements
in DAG quality.

By comparing the performance of these models, we aim to test the broader hypothesis that increased
CoT capacity correlates with improvements in causal discovery performance.

Table 3: Chain-of-thought tokens, performance metrics by model, and overall correlations.

Model CoT Tokens SHD Reproducibility Ratio
Claude 3.7 Sonnet 118.4 6.5 0.23
Nova Premier 44.8 17.5 0.95
Nova Pro 64.9 2.5 0.94

Correlations across models (n = 3)
CoT vs SHD Pearson r = −0.51
CoT vs Reproducibility Pearson r = −0.97

The descriptive analysis in Table 3 shows that the length of the analysis section, where the LLM
justifies its refinement choices, varies across models. Correlation coefficients suggest that longer
analyses are negatively associated with SHD (r = −0.51) and with reproducibility (r = −0.97),
hinting that more extensive reasoning may relate to improved structural accuracy and stability. Given
the very small sample size, these results should be seen as indicative rather than conclusive, and we
note them here as a descriptive observation rather than a central finding.

4 CONCLUSION

Our experiments provide initial evidence that combining LLM reasoning with graph falsification
feedback offers tangible advantages over traditional causal discovery methods. On synthetic data,
CausalFusion achieved lower SHD than PC and LiNGAM, while on real-world supply chain data
it again outperformed baseline approaches. Reproducibility analysis revealed notable differences
across foundation models, underscoring model choice as a key factor for stability. Exploratory
results further suggest that greater reasoning depth may contribute to both accuracy and consistency.
These findings highlight the promise of LLM-assisted causal discovery while pointing to future
research directions: enhancing reproducibility across models and extending evaluation to a broader
range of datasets to assess generalizability.
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REPRODUCIBILITY STATEMENT

The code used to obtain experiments results in Table 1, 2, 3 is shared in a folder included in the
current submission. The code corresponding to Table 1 also include the generation of the synthetic
e-commerce dataset, along with all preprocessing steps and experiment configurations for both real
world and synthetic experiment. For the real-world Amazon supply chain dataset, we provide de-
tailed descriptions of the variables defined by domain experts, which form the basis of the ground-
truth causal DAG used for benchmarking (see Appendix B). Preprocessing steps are also included in
the code above. However, due to confidentiality constraints, the Amazon dataset cannot be shared
at this stage. We are working toward obtaining approval to release this datasets ahead of a poten-
tial camera-ready submission. The LLM’s knowledge base leveraged in the experiments, including
causality principles, documentation and best practice, as well as dataset meta-data and general do-
main knowledge is also shared as part of the current submission. Furthermore, to ensure consistency,
we fix random seeds in all experiments (seed = 42) and evaluate reproducibility explicitly by running
each configuration 20 times, reporting variability across runs. We note that reproducibility has inher-
ent limitations in the LLM setting, as stochastic decoding and differences across foundation models
can lead to variability in outputs (see Section 2). Finally, hyperparameter settings are documented
in Section 3 to further enhance reproducibility of both synthetic and real-world experiments.
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APPENDIX A: CAUSALFUSION AGENT INTERACTION LOG

Iteration: 4
Model: Nova Pro
Agent ID: VWXI1K9IVO
Timestamp: 2025-09-12 18:39:12
============================================================
PROMPT:
============================================================

ROLE: Expert Data Scientist specializing in COH causal analysis

CURRENT EDGES: [(’weather_tier’, ’instation_backlog’),
(’upstream_backlog’, ’capped_out_hours’),
(’daily_updated_cap_target’, ’capped_out_hours’),
(’latest_utilization’, ’capped_out_hours’),
(’latest_slammed_volume’, ’capped_out_hours’),
(’w1_capacity_ask’, ’capped_out_hours’)]

GRAPH FALSIFICATION RESULTS:
- Graph Informative: True
- CI Violations %: 68.2%
- CI Violations List: [(w1_capacity_ask ⊥⊥

↪→ daily_updated_cap_target | Pa(w1_capacity_ask)), ...]
- DAG equivalent to randomly generated graphs?: p-value=0.050
- Causal Minimality Violations List:
[(capped_out_hours ⊥̸⊥ upstream_backlog | Pa(capped_out_hours

↪→ ) \ {upstream_backlog}), ...]

KNOWLEDGE BOUNDARIES:
When defining refined_edges, only include nodes that correspond

↪→ to
variables explicitly provided in your domain knowledge.
Do not introduce or infer any additional variables beyond these

↪→ features.

FORBIDDEN: Creating new variables, abbreviations, or variations
FORBIDDEN: Using any variable names not in the above list

EXAMPLE OF REFINED EDGES:
CORRECT: (weather_tier, instation_backlog)
CORRECT: (upstream_backlog, capped_out_hours)
WRONG: (weather, backlog) - abbreviated names not allowed
WRONG: (productivity, queue_length) - new variables not allowed

TASKS:
1. Analyze test results using COH domain expertise
2. Suggest refined or initial DAG edges based on causality

↪→ principles. Only the AVAILABLE COH VARIABLES above are
↪→ admitted as nodes.

3. Provide confidence score (0.0-1.0) for current DAG
4. Focus on reducing CI violations while maintaining domain

↪→ validity

OUTPUT FORMAT - Important: Always format your answers following
↪→ this template:

ANALYSIS: [Your expert analysis]
REFINED EDGES: [List of (source, target) tuples]
CONFIDENCE: [0.0-1.0]

VALIDATION CHECK: Before finalizing, verify ALL variables in
↪→ REFINED EDGES are from the allowed list above.

============================================================
AGENT RESPONSE:
============================================================
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ANALYSIS: ANALYSIS: The current DAG shows a high percentage of CI
↪→ violations (68.2%) and a potentially unnecessary edge between
↪→ ’upstream_backlog’ and ’capped_out_hours’. This suggests that the
↪→ relationship between these two variables may not be as direct or
↪→ strong as initially assumed. The random graph P-value of 0.050
↪→ indicates that the current graph is significantly different from a
↪→ random graph, although difference could be enhanced through
↪→ further refinement.

As a result, the edge (upstream_backlog, capped_out_hours) has been
↪→ removed due to its problematic nature as indicated by the graph
↪→ falsification results. The remaining edges are maintained as they
↪→ align with the domain knowledge and do not introduce new variables.

REFINED EDGES:
- (weather_tier, instation_backlog)
- (daily_updated_cap_target, capped_out_hours)
- (latest_utilization, capped_out_hours)
- (latest_slammed_volume, capped_out_hours)
- (w1_capacity_ask, capped_out_hours)

CONFIDENCE: 0.7
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APPENDIX B: GROUND-TRUTH DAG FOR REAL-WORLD AMAZON SUPPLY CHAIN
EXPERIMENT: NODES DESCRIPTION

Table 4: Node descriptions and downstream effects in the causal DAG.

Node Description Downstream Effects
latest slammed volume Slammed volume is considered a “source of truth” of

what is already prepared to arrive at the delivery station
(warehouse).

capped out hours

capped out hours Capped Out Hours happen when a delivery station
reaches its maximum capacity. This means the station
cannot handle any more packages than what is already
scheduled. This occurs when the package volume ex-
ceeds the station’s capacity limit. We track how many
hours a station stays in this “maxed out” state.

–

latest utilization Utilization shows how much of a station’s available ca-
pacity is being used. It is calculated as slammed volume
divided by station capacity.

capped out hours

DUCT Daily Updated Caps Target (DUCT) is a capacity plan-
ning metric updated daily at 10:30 AM local time. It
serves as a reference point for operations teams to un-
derstand expected capacity needs, compare against avail-
able capacity, and identify risks, helping leaders make in-
formed allocation decisions.

capped out hours

instation backlog Refers to packages that have been received at the deliv-
ery station but not yet processed for delivery. These ship-
ments are physically present and will undergo processing
before reaching the customer.

capped out hours

weather tier Weather tiers are a classification system used to catego-
rize the severity of weather events.

instation backlog

upstream backlog Packages with estimated arrival dates less than or equal
to the reporting date but that have not yet arrived at the
delivery station.

instation backlog

w1 capacity ask Represents the Week-minus-1 horizon capacity request,
i.e., the expected volume at the station within the upcom-
ing week.

capped out hours
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APPENDIX C: VISUALIZATION OF GROUND-TRUTH DAG FOR REAL-WORLD AMAZON
SUPPLY CHAIN

latest
slammed volume

latest utilization

daily updated
cap target

weather tier

upstream backlog

w1 capacity ask

instation backlog capped out hours

APPENDIX D: VISUALIZATION OF GROUND-TRUTH DAG FOR E-COMMERCE SYNTHETIC
EXPERIMENT
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seasonal
trend

customer
satisfaction

price
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website
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conversion
rate
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